1
|
Gill J, Sharma A. Exploration of aminoacyl-tRNA synthetases from eukaryotic parasites for drug development. J Biol Chem 2022; 299:102860. [PMID: 36596362 PMCID: PMC9978631 DOI: 10.1016/j.jbc.2022.102860] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 01/01/2023] Open
Abstract
Parasitic diseases result in considerable human morbidity and mortality. The continuous emergence and spread of new drug-resistant parasite strains is an obstacle to controlling and eliminating many parasitic diseases. Aminoacyl-tRNA synthetases (aaRSs) are ubiquitous enzymes essential for protein synthesis. The design and development of diverse small molecule, drug-like inhibitors against parasite-encoded and expressed aaRSs have validated this enzyme family as druggable. In this work, we have compiled the progress to date towards establishing the druggability of aaRSs in terms of their biochemical characterization, validation as targets, inhibitor development, and structural interpretation from parasites responsible for malaria (Plasmodium), lymphatic filariasis (Brugia,Wuchereria bancrofti), giardiasis (Giardia), toxoplasmosis (Toxoplasma gondii), leishmaniasis (Leishmania), cryptosporidiosis (Cryptosporidium), and trypanosomiasis (Trypanosoma). This work thus provides a robust framework for the systematic dissection of aaRSs from these pathogens and will facilitate the cross-usage of potential inhibitors to jump-start anti-parasite drug development.
Collapse
Affiliation(s)
- Jasmita Gill
- ICMR-National Institute of Malaria Research, New Delhi, India
| | - Amit Sharma
- ICMR-National Institute of Malaria Research, New Delhi, India; Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
2
|
Chakraborti S, Chhibber-Goel J, Sharma A. Drug targeting of aminoacyl-tRNA synthetases in Anopheles species and Aedes aegypti that cause malaria and dengue. Parasit Vectors 2021; 14:605. [PMID: 34895309 PMCID: PMC8665550 DOI: 10.1186/s13071-021-05106-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 11/19/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Mosquito-borne diseases have a devastating impact on human civilization. A few species of Anopheles mosquitoes are responsible for malaria transmission, and while there has been a reduction in malaria-related deaths worldwide, growing insecticide resistance is a cause for concern. Aedes mosquitoes are known vectors of viral infections, including dengue, yellow fever, chikungunya, and Zika. Aminoacyl-tRNA synthetases (aaRSs) are key players in protein synthesis and are potent anti-infective drug targets. The structure-function activity relationship of aaRSs in mosquitoes (in particular, Anopheles and Aedes spp.) remains unexplored. METHODS We employed computational techniques to identify aaRSs from five different mosquito species (Anopheles culicifacies, Anopheles stephensi, Anopheles gambiae, Anopheles minimus, and Aedes aegypti). The VectorBase database ( https://vectorbase.org/vectorbase/app ) and web-based tools were utilized to predict the subcellular localizations (TargetP-2.0, UniProt, DeepLoc-1.0), physicochemical characteristics (ProtParam), and domain arrangements (PfAM, InterPro) of the aaRSs. Structural models for prolyl (PRS)-, and phenylalanyl (FRS)-tRNA synthetases-were generated using the I-TASSER and Phyre protein modeling servers. RESULTS Among the vector species, a total of 37 (An. gambiae), 37 (An. culicifacies), 37 (An. stephensi), 37 (An. minimus), and 35 (Ae. aegypti) different aaRSs were characterized within their respective mosquito genomes. Sequence identity amongst the aaRSs from the four Anopheles spp. was > 80% and in Ae. aegypti was > 50%. CONCLUSIONS Structural analysis of two important aminoacyl-tRNA synthetases [prolyl (PRS) and phenylanalyl (FRS)] of Anopheles spp. suggests structural and sequence similarity with potential antimalarial inhibitor [halofuginone (HF) and bicyclic azetidine (BRD1369)] binding sites. This suggests the potential for repurposing of these inhibitors against the studied Anopheles spp. and Ae. aegypti.
Collapse
Affiliation(s)
| | - Jyoti Chhibber-Goel
- Molecular Medicine, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Amit Sharma
- Molecular Medicine Group, National Institute of Malaria Research, New Delhi, India
- Molecular Medicine, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
3
|
Chhibber-Goel J, Yogavel M, Sharma A. Structural analyses of the malaria parasite aminoacyl-tRNA synthetases provide new avenues for antimalarial drug discovery. Protein Sci 2021; 30:1793-1803. [PMID: 34184352 DOI: 10.1002/pro.4148] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/12/2021] [Accepted: 06/22/2021] [Indexed: 11/10/2022]
Abstract
Malaria is a parasitic illness caused by the genus Plasmodium from the apicomplexan phylum. Five plasmodial species of P. falciparum (Pf), P. knowlesi, P. malariae, P. ovale, and P. vivax (Pv) are responsible for causing malaria in humans. According to the World Malaria Report 2020, there were 229 million cases and ~ 0.04 million deaths of which 67% were in children below 5 years of age. While more than 3 billion people are at risk of malaria infection globally, antimalarial drugs are their only option for treatment. Antimalarial drug resistance keeps arising periodically and thus threatens the main line of malaria treatment, emphasizing the need to find new alternatives. The availability of whole genomes of P. falciparum and P. vivax has allowed targeting their unexplored plasmodial enzymes for inhibitor development with a focus on multistage targets that are crucial for parasite viability in both the blood and liver stages. Over the past decades, aminoacyl-tRNA synthetases (aaRSs) have been explored as anti-bacterial and anti-fungal drug targets, and more recently (since 2009) aaRSs are also the focus of antimalarial drug targeting. Here, we dissect the structure-based knowledge of the most advanced three aaRSs-lysyl- (KRS), prolyl- (PRS), and phenylalanyl- (FRS) synthetases in terms of development of antimalarial drugs. These examples showcase the promising potential of this family of enzymes to provide druggable targets that stall protein synthesis upon inhibition and thereby kill malaria parasites selectively.
Collapse
Affiliation(s)
- Jyoti Chhibber-Goel
- Structural Parasitology Group, Molecular Medicine, International Center for Genetic Engineering and Biotechnology, New Delhi, India
| | - Manickam Yogavel
- Structural Parasitology Group, Molecular Medicine, International Center for Genetic Engineering and Biotechnology, New Delhi, India
| | - Amit Sharma
- Structural Parasitology Group, Molecular Medicine, International Center for Genetic Engineering and Biotechnology, New Delhi, India.,ICMR-National Institute of Malaria Research, New Delhi, India
| |
Collapse
|
4
|
Abstract
Aminoacyl-tRNA synthetases (AARSs) have been considered very attractive drug-targets for decades. This interest probably emerged with the identification of differences in AARSs between prokaryotic and eukaryotic species, which provided a rationale for the development of antimicrobials targeting bacterial AARSs with minimal effect on the homologous human AARSs. Today we know that AARSs are not only attractive, but also valid drug targets as they are housekeeping proteins that: (i) play a fundamental role in protein translation by charging the corresponding amino acid to its cognate tRNA and preventing mistranslation mistakes [1], a critical process during fast growing conditions of microbes; and (ii) present significant differences between microbes and humans that can be used for drug development [2]. Together with the vast amount of available data on both pathogenic and mammalian AARSs, it is expected that, in the future, the numerous reported inhibitors of AARSs will provide the basis to develop new therapeutics for the treatment of human diseases. In this chapter, a detailed summary on the state-of-the-art in drug discovery and drug development for each aminoacyl-tRNA synthetase will be presented.
Collapse
Affiliation(s)
- Maria Lukarska
- Institute for Advanced Biosciences (IAB), Structural Biology of Novel Drug Targets in Human Diseases, INSERM U1209, CNRS UMR 5309, University Grenoble Alpes, Grenoble, France
| | - Andrés Palencia
- Institute for Advanced Biosciences (IAB), Structural Biology of Novel Drug Targets in Human Diseases, INSERM U1209, CNRS UMR 5309, University Grenoble Alpes, Grenoble, France.
| |
Collapse
|
5
|
Nyamai DW, Tastan Bishop Ö. Identification of Selective Novel Hits against Plasmodium falciparum Prolyl tRNA Synthetase Active Site and a Predicted Allosteric Site Using in silico Approaches. Int J Mol Sci 2020; 21:E3803. [PMID: 32471245 PMCID: PMC7312540 DOI: 10.3390/ijms21113803] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/10/2020] [Accepted: 05/19/2020] [Indexed: 12/14/2022] Open
Abstract
Recently, there has been increased interest in aminoacyl tRNA synthetases (aaRSs) as potential malarial drug targets. These enzymes play a key role in protein translation by the addition of amino acids to their cognate tRNA. The aaRSs are present in all Plasmodium life cycle stages, and thus present an attractive malarial drug target. Prolyl tRNA synthetase is a class II aaRS that functions in charging tRNA with proline. Various inhibitors against Plasmodium falciparum ProRS (PfProRS) active site have been designed. However, none have gone through clinical trials as they have been found to be highly toxic to human cells. Recently, a possible allosteric site was reported in PfProRS with two possible allosteric modulators: glyburide and TCMDC-124506. In this study, we sought to identify novel selective inhibitors targeting PfProRS active site and possible novel allosteric modulators of this enzyme. To achieve this, virtual screening of South African natural compounds against PfProRS and the human homologue was carried out using AutoDock Vina. The modulation of protein motions by ligand binding was studied by molecular dynamics (MD) using the GROningen MAchine for Chemical Simulations (GROMACS) tool. To further analyse the protein global motions and energetic changes upon ligand binding, principal component analysis (PCA), and free energy landscape (FEL) calculations were performed. Further, to understand the effect of ligand binding on the protein communication, dynamic residue network (DRN) analysis of the MD trajectories was carried out using the MD-TASK tool. A total of ten potential natural hit compounds were identified with strong binding energy scores. Binding of ligands to the protein caused observable global and residue level changes. Dynamic residue network calculations showed increase in betweenness centrality (BC) metric of residues at the allosteric site implying these residues are important in protein communication. A loop region at the catalytic domain between residues 300 and 350 and the anticodon binding domain showed significant contributions to both PC1 and PC2. Large motions were observed at a loop in the Z-domain between residues 697 and 710 which was also in agreement with RMSF calculations that showed increase in flexibility of residues in this region. Residues in this loop region are implicated in ATP binding and thus a change in dynamics may affect ATP binding affinity. Free energy landscape (FEL) calculations showed that the holo protein (protein-ADN complex) and PfProRS-SANC184 complexes were stable, as shown by the low energy with very few intermediates and hardly distinguishable low energy barriers. In addition, FEL results agreed with backbone RMSD distribution plots where stable complexes showed a normal RMSD distribution while unstable complexes had multimodal RMSD distribution. The betweenness centrality metric showed a loss of functional importance of key ATP binding site residues upon allosteric ligand binding. The deep basins in average L observed at the allosteric region imply that there is high accessibility of residues at this region. To further analyse BC and average L metrics data, we calculated the ΔBC and ΔL values by taking each value in the holo protein BC or L matrix less the corresponding value in the ligand-bound complex BC or L matrix. Interestingly, in allosteric complexes, residues located in a loop region implicated in ATP binding had negative ΔL values while in orthosteric complexes these residues had positive ΔL values. An increase in contact frequency between residues Ser263, Thr267, Tyr285, and Leu707 at the allosteric site and residues Thr397, Pro398, Thr402, and Gln395 at the ATP binding TXE loop was observed. In summary, this study identified five potential orthosteric inhibitors and five allosteric modulators against PfProRS. Allosteric modulators changed ATP binding site dynamics, as shown by RMSF, PCA, and DRN calculations. Changes in dynamics of the ATP binding site and increased contact frequency between residues at the proposed allosteric site and the ATP binding site may explain how allosteric modulators distort the ATP binding site and thus might inhibit PfProRS. The scaffolds of the identified hits in the study can be used as a starting point for antimalarial inhibitor development with low human cytotoxicity.
Collapse
Affiliation(s)
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa;
| |
Collapse
|
6
|
Mishra S, Malhotra N, Kumari S, Sato M, Kikuchi H, Yogavel M, Sharma A. Conformational heterogeneity in apo and drug-bound structures of Toxoplasma gondii prolyl-tRNA synthetase. Acta Crystallogr F Struct Biol Commun 2019; 75:714-724. [PMID: 31702585 PMCID: PMC6839821 DOI: 10.1107/s2053230x19014808] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/01/2019] [Indexed: 11/11/2022] Open
Abstract
Prolyl-tRNA synthetase (PRS) is a member of the aminoacyl-tRNA synthetase family that drives protein translation in cells. The apicomplexan PRSs are validated targets of febrifugine (FF) and its halogenated derivative halofuginone (HF). PRSs are of great interest for drug development against Plasmodium falciparum and Toxoplasma gondii. In this study, structures of apo and FF-bound T. gondii (TgPRS) are revealed and the dynamic nature of the conformational changes that occur upon FF binding is unraveled. In addition, this study highlights significant conformational plasticity within two different crystal structures of apo PRSs but not within drug-bound PRSs. The apo PRSs exist in multi-conformational states and manifest pseudo-dimeric structures. In contrast, when FF is bound the PRS dimer adopts a highly symmetrical architecture. It is shown that TgPRS does not display extant fold switching, in contrast to P. falciparum PRS, despite having over 65% sequence identity. Finally, structure-comparison analyses suggest the utility of r.m.s.d. per residue (r.m.s.d./res) as a robust tool to detect structural alterations even when the r.m.s.d. is low. Apo TgPRS reveals FF/HF-induced rigidity and this work has implications for drug-design studies that rely on the apo structures of target proteins.
Collapse
Affiliation(s)
- Siddhartha Mishra
- Structural Parasitology, International Centre for Genetic Engineering and Biotechnology, New Delhi, Aruna Asaf Ali Marg, New Delhi, Delhi 110067, India
| | - Nipun Malhotra
- Structural Parasitology, International Centre for Genetic Engineering and Biotechnology, New Delhi, Aruna Asaf Ali Marg, New Delhi, Delhi 110067, India
| | - Shreya Kumari
- Structural Parasitology, International Centre for Genetic Engineering and Biotechnology, New Delhi, Aruna Asaf Ali Marg, New Delhi, Delhi 110067, India
| | - Mizuki Sato
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aza-Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Haruhisa Kikuchi
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aza-Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Manickam Yogavel
- Structural Parasitology, International Centre for Genetic Engineering and Biotechnology, New Delhi, Aruna Asaf Ali Marg, New Delhi, Delhi 110067, India
| | - Amit Sharma
- Structural Parasitology, International Centre for Genetic Engineering and Biotechnology, New Delhi, Aruna Asaf Ali Marg, New Delhi, Delhi 110067, India
| |
Collapse
|
7
|
Chhibber-Goel J, Joshi S, Sharma A. Aminoacyl tRNA synthetases as potential drug targets of the Panthera pathogen Babesia. Parasit Vectors 2019; 12:482. [PMID: 31610802 PMCID: PMC6792207 DOI: 10.1186/s13071-019-3717-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 09/14/2019] [Indexed: 11/18/2022] Open
Abstract
Background A century ago, pantheras were abundant across Asia. Illegal hunting and trading along with loss of habitat have resulted in the designation of Panthera as a genus of endangered species. In addition to the onslaught from humans, pantheras are also susceptible to outbreaks of several infectious diseases, including babesiosis. The latter is a hemoprotozoan disease whose causative agents are the eukaryotic parasites of the apicomplexan genus Babesia. Babesiosis affects a varied range of animals including humans (Homo sapiens), bovines (e.g. Bos taurus), pantheras (e.g. Panthera tigris, P. leo, P. pardus) and equines. Babesia spp. are transmitted by the tick vector Ixodes scapularis or ticks of domestic animals, namely Rhipicephalus (Boophilus) microplus and R. (B.) decoloratus. At the level of protein translation within these organisms, the conserved aminoacyl tRNA synthetase (aaRS) family offers an opportunity to identify the sequence and structural differences in the host (Panthera) and parasites (Babesia spp.) in order to exploit these for drug targeting Babesia spp. Methods Using computational tools we investigated the genomes of Babesia spp. and Panthera tigris so as to annotate their aaRSs. The sequences were analysed and their subcellular localizations were predicted using Target P1.1, SignalP 3.0, TMHMM v.2.0 and Deeploc 1.0 web servers. Structure-based analysis of the aaRSs from P. tigris and its protozoan pathogens Babesia spp. was performed using Phyre2 and chimera. Results We identified 33 (B. bovis), 34 (B. microti), 33 (B. bigemina) and 33 (P. tigris) aaRSs in these respective organisms. Poor sequence identity (~ 20–50%) between aaRSs from Babesia spp. and P. tigris was observed and this merits future experiments to validate new drug targets against Babesia spp. Conclusions Overall this work provides a foundation for experimental investigation of druggable aaRSs from Babesia sp. in an effort to control Babesiosis in Panthera.
Collapse
Affiliation(s)
- Jyoti Chhibber-Goel
- Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Sarthak Joshi
- Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Amit Sharma
- Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.
| |
Collapse
|
8
|
Goel P, Parvez S, Sharma A. Genomic analyses of aminoacyl tRNA synthetases from human-infecting helminths. BMC Genomics 2019; 20:333. [PMID: 31046663 PMCID: PMC6498573 DOI: 10.1186/s12864-019-5679-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/09/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Helminth infections affect ~ 60% of the human population that lives in tropical and subtropical regions worldwide. These infections result in diseases like schistosomiasis, lymphatic filariasis, river blindness and echinococcosis. Here we provide a comprehensive computational analysis of the aminoacyl tRNA synthetase (aaRS) enzyme family from 27 human-infecting helminths. Our analyses support the idea that several helminth aaRSs can be targeted for drug repurposing or for development of new drugs. For experimental validation, we focused on Onchocerciasis (also known as "river blindness"), a filarial vector-borne disease that is prevalent in Africa and Latin America. We show that halofuginone (HF) can act as a potent inhibitor of Onchocerca volvulus prolyl tRNA synthetase (OvPRS). RESULTS The conserved enzyme family of aaRSs has been validated as druggable targets in numerous eukaryotic parasites. We thus embarked on assessing aaRSs from the genomes of 27 helminths that cause infections in humans. In order to delineate the distribution of aaRSs per genome we utilized Hidden Markov Models of aaRS catalytic domains to identify all orthologues. We note that Fasciola hepatica genome encodes the highest number of aaRS-like proteins (69) whereas Taenia asiatica has the lowest count (32). The number of genes for any particular aaRS-like protein varies from 1 to 8 in these 27 studied helminths. Sequence alignments of helminth-encoded lysyl, prolyl, leucyl and threonyl tRNA synthetases suggest that various known aaRS inhibitors like Cladosporin, Halofuginone, Benzoborale and Borrelidin may be of utility against helminths. The recombinantly expressed Onchocerca volvulus PRS was used as proof of concept for targeting aaRS with drug-like molecules like HF. CONCLUSIONS Systematic analysis of unique subdomains within helminth aaRSs reveals the presence of a number of non-canonical domains like PAC3, Utp-14, Pex2_Pex12 fused to catalytic domains in the predicted helminth aaRSs. We have established a platform for biochemical validation of a large number of helminth aaRSs that can be targeted using available inhibitors to jump-start drug repurposing against human helminths.
Collapse
Affiliation(s)
- Preeti Goel
- 0000 0004 0498 7682grid.425195.eStructural Parasitology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, 110067 India ,0000 0004 0498 8167grid.411816.bDepartment of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110063 India
| | - Suhel Parvez
- 0000 0004 0498 8167grid.411816.bDepartment of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110063 India
| | - Amit Sharma
- 0000 0004 0498 7682grid.425195.eStructural Parasitology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, 110067 India
| |
Collapse
|
9
|
Nyamai DW, Tastan Bishop Ö. Aminoacyl tRNA synthetases as malarial drug targets: a comparative bioinformatics study. Malar J 2019; 18:34. [PMID: 30728021 PMCID: PMC6366043 DOI: 10.1186/s12936-019-2665-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/27/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Treatment of parasitic diseases has been challenging due to evolution of drug resistant parasites, and thus there is need to identify new class of drugs and drug targets. Protein translation is important for survival of malarial parasite, Plasmodium, and the pathway is present in all of its life cycle stages. Aminoacyl tRNA synthetases are primary enzymes in protein translation as they catalyse amino acid addition to the cognate tRNA. This study sought to understand differences between Plasmodium and human aminoacyl tRNA synthetases through bioinformatics analysis. METHODS Plasmodium berghei, Plasmodium falciparum, Plasmodium fragile, Plasmodium knowlesi, Plasmodium malariae, Plasmodium ovale, Plasmodium vivax, Plasmodium yoelii and human aminoacyl tRNA synthetase sequences were retrieved from UniProt database and grouped into 20 families based on amino acid specificity. These families were further divided into two classes. Both families and classes were analysed. Motif discovery was carried out using the MEME software, sequence identity calculation was done using an in-house Python script, multiple sequence alignments were performed using PROMALS3D and TCOFFEE tools, and phylogenetic tree calculations were performed using MEGA vs 7.0 tool. Possible alternative binding sites were predicted using FTMap webserver and SiteMap tool. RESULTS Motif discovery revealed Plasmodium-specific motifs while phylogenetic tree calculations showed that Plasmodium proteins have different evolutionary history to the human homologues. Human aaRSs sequences showed low sequence identity (below 40%) compared to Plasmodium sequences. Prediction of alternative binding sites revealed potential druggable sites in PfArgRS, PfMetRS and PfProRS at regions that are weakly conserved when compared to the human homologues. Multiple sequence analysis, motif discovery, pairwise sequence identity calculations and phylogenetic tree analysis showed significant differences between parasite and human aaRSs proteins despite functional and structural conservation. These differences may provide a basis for further exploration of Plasmodium aminoacyl tRNA synthetases as potential drug targets. CONCLUSION This study showed that, despite, functional and structural conservation, Plasmodium aaRSs have key differences from the human homologues. These differences in Plasmodium aaRSs can be targeted to develop anti-malarial drugs with less toxicity to the host.
Collapse
Affiliation(s)
- Dorothy Wavinya Nyamai
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa.
| |
Collapse
|
10
|
Francklyn CS, Mullen P. Progress and challenges in aminoacyl-tRNA synthetase-based therapeutics. J Biol Chem 2019; 294:5365-5385. [PMID: 30670594 DOI: 10.1074/jbc.rev118.002956] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aminoacyl-tRNA synthetases (ARSs) are universal enzymes that catalyze the attachment of amino acids to the 3' ends of their cognate tRNAs. The resulting aminoacylated tRNAs are escorted to the ribosome where they enter protein synthesis. By specifically matching amino acids to defined anticodon sequences in tRNAs, ARSs are essential to the physical interpretation of the genetic code. In addition to their canonical role in protein synthesis, ARSs are also involved in RNA splicing, transcriptional regulation, translation, and other aspects of cellular homeostasis. Likewise, aminoacylated tRNAs serve as amino acid donors for biosynthetic processes distinct from protein synthesis, including lipid modification and antibiotic biosynthesis. Thanks to the wealth of details on ARS structures and functions and the growing appreciation of their additional roles regulating cellular homeostasis, opportunities for the development of clinically useful ARS inhibitors are emerging to manage microbial and parasite infections. Exploitation of these opportunities has been stimulated by the discovery of new inhibitor frameworks, the use of semi-synthetic approaches combining chemistry and genome engineering, and more powerful techniques for identifying leads from the screening of large chemical libraries. Here, we review the inhibition of ARSs by small molecules, including the various families of natural products, as well as inhibitors developed by either rational design or high-throughput screening as antibiotics and anti-parasitic therapeutics.
Collapse
Affiliation(s)
- Christopher S Francklyn
- From the Department of Biochemistry, College of Medicine, University of Vermont, Burlington, Vermont 05405
| | - Patrick Mullen
- From the Department of Biochemistry, College of Medicine, University of Vermont, Burlington, Vermont 05405
| |
Collapse
|
11
|
Das P, Babbar P, Malhotra N, Sharma M, Jachak GR, Gonnade RG, Shanmugam D, Harlos K, Yogavel M, Sharma A, Reddy DS. Specific Stereoisomeric Conformations Determine the Drug Potency of Cladosporin Scaffold against Malarial Parasite. J Med Chem 2018; 61:5664-5678. [DOI: 10.1021/acs.jmedchem.8b00565] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Pronay Das
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi 110025, India
| | - Palak Babbar
- Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi 110067, India
| | - Nipun Malhotra
- Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi 110067, India
| | - Manmohan Sharma
- Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi 110067, India
| | - Goraknath R. Jachak
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi 110025, India
| | - Rajesh G. Gonnade
- Academy of Scientific and Innovative Research (AcSIR), New Delhi 110025, India
- Center for Material Characterization, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - Dhanasekaran Shanmugam
- Academy of Scientific and Innovative Research (AcSIR), New Delhi 110025, India
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - Karl Harlos
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, The Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, U.K
| | - Manickam Yogavel
- Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi 110067, India
| | - Amit Sharma
- Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi 110067, India
| | - D. Srinivasa Reddy
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi 110025, India
| |
Collapse
|
12
|
Luth MR, Gupta P, Ottilie S, Winzeler EA. Using in Vitro Evolution and Whole Genome Analysis To Discover Next Generation Targets for Antimalarial Drug Discovery. ACS Infect Dis 2018; 4:301-314. [PMID: 29451780 PMCID: PMC5848146 DOI: 10.1021/acsinfecdis.7b00276] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
![]()
Although
many new anti-infectives have been discovered and developed solely
using phenotypic cellular screening and assay optimization, most researchers
recognize that structure-guided drug design is more practical and
less costly. In addition, a greater chemical space can be interrogated
with structure-guided drug design. The practicality of structure-guided
drug design has launched a search for the targets of compounds discovered
in phenotypic screens. One method that has been used extensively in
malaria parasites for target discovery and chemical validation is in vitro evolution and whole genome analysis (IVIEWGA).
Here, small molecules from phenotypic screens with demonstrated antiparasitic
activity are used in genome-based target discovery methods. In this
Review, we discuss the newest, most promising druggable targets discovered
or further validated by evolution-based methods, as well as some exceptions.
Collapse
Affiliation(s)
- Madeline R. Luth
- Division of Host Pathogen Systems and Therapeutics, Department of Pediatrics, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Purva Gupta
- Division of Host Pathogen Systems and Therapeutics, Department of Pediatrics, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Sabine Ottilie
- Division of Host Pathogen Systems and Therapeutics, Department of Pediatrics, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Elizabeth A. Winzeler
- Division of Host Pathogen Systems and Therapeutics, Department of Pediatrics, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Skaggs School of Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| |
Collapse
|
13
|
Manickam Y, Chaturvedi R, Babbar P, Malhotra N, Jain V, Sharma A. Drug targeting of one or more aminoacyl-tRNA synthetase in the malaria parasite Plasmodium falciparum. Drug Discov Today 2018; 23:1233-1240. [PMID: 29408369 DOI: 10.1016/j.drudis.2018.01.050] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/02/2018] [Accepted: 01/29/2018] [Indexed: 11/28/2022]
Abstract
Malaria remains a major infectious disease and, despite incidence reduction, it threatens resurgence in drug-resistant forms. Antimalarial drugs remain the mainstay of therapeutic options and hence there is a constant need to identify and validate new druggable targets. Plasmodium falciparum aminoacyl-tRNA synthetases (Pf-aaRSs) drive protein translation and are potent targets for development of next-generation antimalarials. Here, we detail advances made in structural-biology-based investigations in Pf-aaRSs and discuss their distribution of druggable pockets. This review establishes a platform for systematic experimental dissection of malarial parasite aaRSs as a new focus for sustained drug development efforts against malaria.
Collapse
Affiliation(s)
- Yogavel Manickam
- Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi 110067, India
| | - Rini Chaturvedi
- Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi 110067, India
| | - Palak Babbar
- Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi 110067, India
| | - Nipun Malhotra
- Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi 110067, India
| | - Vitul Jain
- Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi 110067, India; Present address: Division of Structural Biology, Wellcome Trust Centre for Human Genetics, The Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Amit Sharma
- Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi 110067, India.
| |
Collapse
|
14
|
Validation of Putative Apicoplast-Targeting Drugs Using a Chemical Supplementation Assay in Cultured Human Malaria Parasites. Antimicrob Agents Chemother 2017; 62:AAC.01161-17. [PMID: 29109165 DOI: 10.1128/aac.01161-17] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 10/18/2017] [Indexed: 11/20/2022] Open
Abstract
Malaria parasites contain a relict plastid, the apicoplast, which is considered an excellent drug target due to its bacterial-like ancestry. Numerous parasiticidals have been proposed to target the apicoplast, but few have had their actual targets substantiated. Isopentenyl pyrophosphate (IPP) production is the sole required function of the apicoplast in the blood stage of the parasite life cycle, and IPP supplementation rescues parasites from apicoplast-perturbing drugs. Hence, any drug that kills parasites when IPP is supplied in culture must have a nonapicoplast target. Here, we use IPP supplementation to discriminate whether 23 purported apicoplast-targeting drugs are on- or off-target. We demonstrate that a prokaryotic DNA replication inhibitor (ciprofloxacin), several prokaryotic translation inhibitors (chloramphenicol, doxycycline, tetracycline, clindamycin, azithromycin, erythromycin, and clarithromycin), a tRNA synthase inhibitor (mupirocin), and two IPP synthesis pathway inhibitors (fosmidomycin and FR900098) have apicoplast targets. Intriguingly, fosmidomycin and FR900098 leave the apicoplast intact, whereas the others eventually result in apicoplast loss. Actinonin, an inhibitor of bacterial posttranslational modification, does not produce a typical delayed-death response but is rescued with IPP, thereby confirming its apicoplast target. Parasites treated with putative apicoplast fatty acid pathway inhibitors could not be rescued, demonstrating that these drugs have their primary targets outside the apicoplast, which agrees with the dispensability of the apicoplast fatty acid synthesis pathways in the blood stage of malaria parasites. IPP supplementation provides a simple test of whether a compound has a target in the apicoplast and can be used to screen novel compounds for mode of action.
Collapse
|
15
|
Targeting Prolyl-tRNA Synthetase to Accelerate Drug Discovery against Malaria, Leishmaniasis, Toxoplasmosis, Cryptosporidiosis, and Coccidiosis. Structure 2017; 25:1495-1505.e6. [PMID: 28867614 DOI: 10.1016/j.str.2017.07.015] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 06/02/2017] [Accepted: 07/26/2017] [Indexed: 11/24/2022]
Abstract
Developing anti-parasitic lead compounds that act on key vulnerabilities are necessary for new anti-infectives. Malaria, leishmaniasis, toxoplasmosis, cryptosporidiosis and coccidiosis together kill >500,000 humans annually. Their causative parasites Plasmodium, Leishmania, Toxoplasma, Cryptosporidium and Eimeria display high conservation in many housekeeping genes, suggesting that these parasites can be attacked by targeting invariant essential proteins. Here, we describe selective and potent inhibition of prolyl-tRNA synthetases (PRSs) from the above parasites using a series of quinazolinone-scaffold compounds. Our PRS-drug co-crystal structures reveal remarkable active site plasticity that accommodates diversely substituted compounds, an enzymatic feature that can be leveraged for refining drug-like properties of quinazolinones on a per parasite basis. A compound we termed In-5 exhibited a unique double conformation, enhanced drug-like properties, and cleared malaria in mice. It thus represents a new lead for optimization. Collectively, our data offer insights into the structure-guided optimization of quinazolinone-based compounds for drug development against multiple human eukaryotic pathogens.
Collapse
|
16
|
Jamwal A, Yogavel M, Abdin MZ, Jain SK, Sharma A. Structural and Biochemical Characterization of Apicomplexan Inorganic Pyrophosphatases. Sci Rep 2017; 7:5255. [PMID: 28701714 PMCID: PMC5507929 DOI: 10.1038/s41598-017-05234-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 05/25/2017] [Indexed: 11/17/2022] Open
Abstract
Inorganic pyrophosphatases (PPase) participate in energy cycling and they are essential for growth and survival of organisms. Here we report extensive structural and functional characterization of soluble PPases from the human parasites Plasmodium falciparum (PfPPase) and Toxoplasma gondii (TgPPase). Our results show that PfPPase is a cytosolic enzyme whose gene expression is upregulated during parasite asexual stages. Cambialistic PfPPase actively hydrolyzes linear short chain polyphosphates like PPi, polyP3 and ATP in the presence of Zn2+. A remarkable new feature of PfPPase is the low complexity asparagine-rich N-terminal region that mediates its dimerization. Deletion of N-region has an unexpected and substantial effect on the stability of PfPPase domain, resulting in aggregation and significant loss of enzyme activity. Significantly, the crystal structures of PfPPase and TgPPase reveal unusual and unprecedented dimeric organizations and provide new fundamental insights into the variety of oligomeric assemblies possible in eukaryotic inorganic PPases.
Collapse
Affiliation(s)
- Abhishek Jamwal
- Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India.,Department of Biotechnology, Jamia Hamdard, New Delhi, 110063, India
| | - Manickam Yogavel
- Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Malik Z Abdin
- Department of Biotechnology, Jamia Hamdard, New Delhi, 110063, India
| | - Swatantra K Jain
- Department of Biotechnology, Jamia Hamdard, New Delhi, 110063, India.,Department of Biochemistry, Hamdard Institute of Medical Sciences, 110063, New Delhi, India
| | - Amit Sharma
- Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
17
|
Jain V, Sharma A, Singh G, Yogavel M, Sharma A. Structure-Based Targeting of Orthologous Pathogen Proteins Accelerates Antiparasitic Drug Discovery. ACS Infect Dis 2017; 3:281-292. [PMID: 28195698 DOI: 10.1021/acsinfecdis.6b00181] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Parasitic diseases caused by eukaryotic pathogens impose significant health and economic burden worldwide. The level of research funding available for many parasitic diseases is insufficient in relation to their adverse social and economic impact. In this article, we discuss that extant 3D structural data on protein-inhibitor complexes can be harnessed to accelerate drug discovery against many related pathogens. Assessment of sequence conservation within drug/inhibitor-binding residues in enzyme-inhibitor complexes can be leveraged to predict and validate both new lead compounds and their molecular targets in multiple parasitic diseases. Hence, structure-based targeting of orthologous pathogen proteins accelerates the discovery of new antiparasitic drugs. This approach offers significant benefits for jumpstarting the discovery of new lead compounds and their molecular targets in diverse human, livestock, and plant pathogens.
Collapse
Affiliation(s)
- Vitul Jain
- Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Road, New Delhi 110067, India
| | - Arvind Sharma
- Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Road, New Delhi 110067, India
| | - Gajinder Singh
- Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Road, New Delhi 110067, India
| | - Manickam Yogavel
- Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Road, New Delhi 110067, India
| | - Amit Sharma
- Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Road, New Delhi 110067, India
| |
Collapse
|
18
|
Habib S, Vaishya S, Gupta K. Translation in Organelles of Apicomplexan Parasites. Trends Parasitol 2016; 32:939-952. [DOI: 10.1016/j.pt.2016.07.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/19/2016] [Accepted: 07/25/2016] [Indexed: 01/27/2023]
|
19
|
Targeting Protein Translation in Organelles of the Apicomplexa. Trends Parasitol 2016; 32:953-965. [DOI: 10.1016/j.pt.2016.09.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 09/21/2016] [Accepted: 09/23/2016] [Indexed: 12/15/2022]
|
20
|
Antimalarial Benzoxaboroles Target Plasmodium falciparum Leucyl-tRNA Synthetase. Antimicrob Agents Chemother 2016; 60:4886-95. [PMID: 27270277 DOI: 10.1128/aac.00820-16] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 05/26/2016] [Indexed: 01/18/2023] Open
Abstract
There is a need for new antimalarials, ideally with novel mechanisms of action. Benzoxaboroles have been shown to be active against bacteria, fungi, and trypanosomes. Therefore, we investigated the antimalarial activity and mechanism of action of 3-aminomethyl benzoxaboroles against Plasmodium falciparum Two 3-aminomethyl compounds, AN6426 and AN8432, demonstrated good potency against cultured multidrug-resistant (W2 strain) P. falciparum (50% inhibitory concentration [IC50] of 310 nM and 490 nM, respectively) and efficacy against murine Plasmodium berghei infection when administered orally once daily for 4 days (90% effective dose [ED90], 7.4 and 16.2 mg/kg of body weight, respectively). To characterize mechanisms of action, we selected parasites with decreased drug sensitivity by culturing with stepwise increases in concentration of AN6426. Resistant clones were characterized by whole-genome sequencing. Three generations of resistant parasites had polymorphisms in the predicted editing domain of the gene encoding a P. falciparum leucyl-tRNA synthetase (LeuRS; PF3D7_0622800) and in another gene (PF3D7_1218100), which encodes a protein of unknown function. Solution of the structure of the P. falciparum LeuRS editing domain suggested key roles for mutated residues in LeuRS editing. Short incubations with AN6426 and AN8432, unlike artemisinin, caused dose-dependent inhibition of [(14)C]leucine incorporation by cultured wild-type, but not resistant, parasites. The growth of resistant, but not wild-type, parasites was impaired in the presence of the unnatural amino acid norvaline, consistent with a loss of LeuRS editing activity in resistant parasites. In summary, the benzoxaboroles AN6426 and AN8432 offer effective antimalarial activity and act, at least in part, against a novel target, the editing domain of P. falciparum LeuRS.
Collapse
|
21
|
Khan S. Recent advances in the biology and drug targeting of malaria parasite aminoacyl-tRNA synthetases. Malar J 2016; 15:203. [PMID: 27068331 PMCID: PMC4828885 DOI: 10.1186/s12936-016-1247-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 03/30/2016] [Indexed: 11/22/2022] Open
Abstract
Escalating drug resistance in malaria parasites and lack of vaccine entails the discovery of novel drug targets and inhibitor molecules. The multi-component protein translation machinery is a rich source of such drug targets. Malaria parasites contain three translational compartments: the cytoplasm, apicoplast and mitochondrion, of which the latter two are of the prokaryotic type. Recent explorations by many groups into the malaria parasite protein translation enzymes, aminoacyl-tRNA synthetases (aaRSs), have yielded many promising inhibitors. The understanding of the biology of this unique set of 36 enzymes has become much clearer in recent times. Current review discusses the advances made in understanding of crucial aaRSs from Plasmodium and also the specific inhibitors found against malaria aaRSs.
Collapse
Affiliation(s)
- Sameena Khan
- Drug Discovery Research Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, PO box #04, Faridabad, 121001, India.
| |
Collapse
|
22
|
Saint-Léger A, Sinadinos C, Ribas de Pouplana L. The growing pipeline of natural aminoacyl-tRNA synthetase inhibitors for malaria treatment. Bioengineered 2016; 7:60-4. [PMID: 26963157 DOI: 10.1080/21655979.2016.1149270] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Malaria remains a major global health problem. Parasite resistance to existing drugs makes development of new antimalarials an urgency. The protein synthesis machinery is an excellent target for the development of new anti-infectives, and aminoacyl-tRNA synthetases (aaRS) have been validated as antimalarial drug targets. However, avoiding the emergence of drug resistance and improving selectivity to target aaRS in apicomplexan parasites, such as Plasmodium falciparum, remain crucial challenges. Here we discuss such issues using examples of known inhibitors of P. falciparum aaRS, namely halofuginone, cladosporin and borrelidin (inhibitors of ProRS, LysRS and ThrRS, respectively). Encouraging recent results provide useful guidelines to facilitate the development of novel drug candidates which are more potent and selective against these essential enzymes.
Collapse
Affiliation(s)
| | | | - Lluís Ribas de Pouplana
- a Omnia Molecular S.L. , Barcelona , Spain.,b Institute for Research in Biomedicine (IRB Barcelona) , Barcelona , Spain.,c Catalan Institution for Research and Advanced Studies (ICREA) , Barcelona , Spain
| |
Collapse
|
23
|
Herman JD, Pepper LR, Cortese JF, Estiu G, Galinsky K, Zuzarte-Luis V, Derbyshire ER, Ribacke U, Lukens AK, Santos SA, Patel V, Clish CB, Sullivan WJ, Zhou H, Bopp SE, Schimmel P, Lindquist S, Clardy J, Mota MM, Keller TL, Whitman M, Wiest O, Wirth DF, Mazitschek R. The cytoplasmic prolyl-tRNA synthetase of the malaria parasite is a dual-stage target of febrifugine and its analogs. Sci Transl Med 2016; 7:288ra77. [PMID: 25995223 DOI: 10.1126/scitranslmed.aaa3575] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The emergence of drug resistance is a major limitation of current antimalarials. The discovery of new druggable targets and pathways including those that are critical for multiple life cycle stages of the malaria parasite is a major goal for developing next-generation antimalarial drugs. Using an integrated chemogenomics approach that combined drug resistance selection, whole-genome sequencing, and an orthogonal yeast model, we demonstrate that the cytoplasmic prolyl-tRNA (transfer RNA) synthetase (PfcPRS) of the malaria parasite Plasmodium falciparum is a biochemical and functional target of febrifugine and its synthetic derivative halofuginone. Febrifugine is the active principle of a traditional Chinese herbal remedy for malaria. We show that treatment with febrifugine derivatives activated the amino acid starvation response in both P. falciparum and a transgenic yeast strain expressing PfcPRS. We further demonstrate in the Plasmodium berghei mouse model of malaria that halofuginol, a new halofuginone analog that we developed, is active against both liver and asexual blood stages of the malaria parasite. Halofuginol, unlike halofuginone and febrifugine, is well tolerated at efficacious doses and represents a promising lead for the development of dual-stage next-generation antimalarials.
Collapse
Affiliation(s)
- Jonathan D Herman
- Infectious Diseases Program, Broad Institute, Cambridge, MA 02142, USA. Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA. Biological and Biomedical Sciences, Boston, MA 02115, USA. Harvard/Massachusetts Institute of Technology (MIT) Division of Health Sciences and Technology, Boston, MA 02115, USA. Harvard/MIT MD-PhD Program, Harvard Medical School, Boston, MA 02115, USA
| | - Lauren R Pepper
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Joseph F Cortese
- Infectious Diseases Program, Broad Institute, Cambridge, MA 02142, USA
| | - Guillermina Estiu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA. Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Kevin Galinsky
- Infectious Diseases Program, Broad Institute, Cambridge, MA 02142, USA
| | - Vanessa Zuzarte-Luis
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa,1649-028 Lisbon, Portugal
| | - Emily R Derbyshire
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Ulf Ribacke
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Amanda K Lukens
- Infectious Diseases Program, Broad Institute, Cambridge, MA 02142, USA. Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Sofia A Santos
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114, USA. Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Professor Gama Pinto, Lisbon 1640-003, Portugal
| | - Vishal Patel
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Clary B Clish
- Infectious Diseases Program, Broad Institute, Cambridge, MA 02142, USA
| | - William J Sullivan
- Departments of Pharmacology and Toxicology and Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Huihao Zhou
- Department of Molecular Biology, Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Selina E Bopp
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Paul Schimmel
- Department of Molecular Biology, Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA. The Scripps Research Institute, Florida, Jupiter, FL 33458, USA
| | - Susan Lindquist
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA. Howard Hughes Medical Institute, Department of Biology, MIT, Cambridge, MA 02139, USA
| | - Jon Clardy
- Infectious Diseases Program, Broad Institute, Cambridge, MA 02142, USA. Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Maria M Mota
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa,1649-028 Lisbon, Portugal
| | - Tracy L Keller
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Malcolm Whitman
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Olaf Wiest
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA. Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, IN 46556, USA. School of Chemical Biology and Biotechnology, Laboratory for Computational Chemistry and Drug Design, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Dyann F Wirth
- Infectious Diseases Program, Broad Institute, Cambridge, MA 02142, USA. Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.
| | - Ralph Mazitschek
- Infectious Diseases Program, Broad Institute, Cambridge, MA 02142, USA. Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA. Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114, USA.
| |
Collapse
|
24
|
Structural and functional attributes of malaria parasite diadenosine tetraphosphate hydrolase. Sci Rep 2016; 6:19981. [PMID: 26829485 PMCID: PMC4734340 DOI: 10.1038/srep19981] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 12/15/2015] [Indexed: 11/09/2022] Open
Abstract
Malaria symptoms are driven by periodic multiplication cycles of Plasmodium parasites in human red blood corpuscles (RBCs). Malaria infection still accounts for ~600,000 annual deaths, and hence discovery of both new drug targets and drugs remains vital. In the present study, we have investigated the malaria parasite enzyme diadenosine tetraphosphate (Ap4A) hydrolase that regulates levels of signalling molecules like Ap4A by hydrolyzing them to ATP and AMP. We have tracked the spatial distribution of parasitic Ap4A hydrolase in infected RBCs, and reveal its unusual localization on the infected RBC membrane in subpopulation of infected cells. Interestingly, enzyme activity assays reveal an interaction between Ap4A hydrolase and the parasite growth inhibitor suramin. We also present a high resolution crystal structure of Ap4A hydrolase in apo- and sulphate- bound state, where the sulphate resides in the enzyme active site by mimicking the phosphate of substrates like Ap4A. The unexpected infected erythrocyte localization of the parasitic Ap4A hydrolase hints at a possible role of this enzyme in purinerigic signaling. In addition, atomic structure of Ap4A hydrolase provides insights for selective drug targeting.
Collapse
|
25
|
Fang P, Guo M. Evolutionary Limitation and Opportunities for Developing tRNA Synthetase Inhibitors with 5-Binding-Mode Classification. Life (Basel) 2015; 5:1703-25. [PMID: 26670257 PMCID: PMC4695845 DOI: 10.3390/life5041703] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 11/24/2015] [Accepted: 11/25/2015] [Indexed: 12/30/2022] Open
Abstract
Aminoacyl-tRNA synthetases (aaRSs) are enzymes that catalyze the transfer of amino acids to their cognate tRNAs as building blocks for translation. Each of the aaRS families plays a pivotal role in protein biosynthesis and is indispensable for cell growth and survival. In addition, aaRSs in higher species have evolved important non-translational functions. These translational and non-translational functions of aaRS are attractive for developing antibacterial, antifungal, and antiparasitic agents and for treating other human diseases. The interplay between amino acids, tRNA, ATP, EF-Tu and non-canonical binding partners, had shaped each family with distinct pattern of key sites for regulation, with characters varying among species across the path of evolution. These sporadic variations in the aaRSs offer great opportunity to target these essential enzymes for therapy. Up to this day, growing numbers of aaRS inhibitors have been discovered and developed. Here, we summarize the latest developments and structural studies of aaRS inhibitors, and classify them with distinct binding modes into five categories.
Collapse
Affiliation(s)
- Pengfei Fang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
- Department of Cancer Biology, The Scripps Research Institute, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, USA.
| | - Min Guo
- Department of Cancer Biology, The Scripps Research Institute, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, USA.
| |
Collapse
|
26
|
Plasmodium falciparum mitochondria import tRNAs along with an active phenylalanyl-tRNA synthetase. Biochem J 2015; 465:459-69. [PMID: 25391660 DOI: 10.1042/bj20140998] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The Plasmodium falciparum protein translation enzymes aminoacyl-tRNA synthetases (aaRSs) are an emergent family of drug targets. The aaRS ensemble catalyses transfer of amino acids to cognate tRNAs, thus providing charged tRNAs for ribosomal consumption. P. falciparum proteome expression relies on a total of 36 aaRSs for the three translationally independent compartments of cytoplasm, apicoplast and mitochondria. In the present study, we show that, of this set of 36, a single genomic copy of mitochondrial phenylalanyl-tRNA synthetase (mFRS) is targeted to the parasite mitochondria, and that the mFRS gene is exclusive to malaria parasites within the apicomplexan phyla. Our protein cellular localization studies based on immunofluorescence data show that, along with mFRS, P. falciparum harbours two more phenylalanyl-tRNA synthetase (FRS) assemblies that are localized to its apicoplast and cytoplasm. The 'extra' mFRS is found in mitochondria of all asexual blood stage parasites and is competent in aminoacylation. We show further that the parasite mitochondria import tRNAs from the cytoplasmic tRNA pool. Hence drug targeting of FRSs presents a unique opportunity to potentially stall protein production in all three parasite translational compartments.
Collapse
|
27
|
Jain V, Yogavel M, Oshima Y, Kikuchi H, Touquet B, Hakimi MA, Sharma A. Structure of Prolyl-tRNA Synthetase-Halofuginone Complex Provides Basis for Development of Drugs against Malaria and Toxoplasmosis. Structure 2015; 23:819-829. [PMID: 25817387 DOI: 10.1016/j.str.2015.02.011] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 02/16/2015] [Accepted: 02/22/2015] [Indexed: 11/25/2022]
Abstract
The Chinese herb Dichroa febrifuga has traditionally treated malaria-associated fever. Its active component febrifugine (FF) and derivatives such as halofuginone (HF) are potent anti-malarials. Here, we show that FF-based derivatives arrest parasite growth by direct interaction with and inhibition of the protein translation enzyme prolyl-tRNA synthetase (PRS). Dual administration of inhibitors that target different tRNA synthetases suggests high utility of these drug targets. We reveal the ternary complex structure of PRS-HF and adenosine 5'-(β,γ-imido)triphosphate where the latter facilitates HF integration into the PRS active site. Structural analyses also highlight spaces within the PRS architecture for HF derivatization of its quinazolinone, but not piperidine, moiety. We also show a remarkable ability of HF to kill the related human parasite Toxoplasma gondii, suggesting wider HF efficacy against parasitic PRSs. Hence, our cell-, enzyme-, and structure-based data on FF-based inhibitors strengthen the case for their inclusion in anti-malarial and anti-toxoplasmosis drug development efforts.
Collapse
Affiliation(s)
- Vitul Jain
- Structural and Computational Biology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Road, New Delhi 110067, India
| | - Manickam Yogavel
- Structural and Computational Biology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Road, New Delhi 110067, India
| | - Yoshiteru Oshima
- Laboratory of Natural Product Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-yama Aoba-ku, Sendai 980-8578, Japan
| | - Haruhisa Kikuchi
- Laboratory of Natural Product Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-yama Aoba-ku, Sendai 980-8578, Japan
| | - Bastien Touquet
- CNRS, UMR5163, LAPM, 38041 Grenoble, France; Université Joseph Fourier, 38000 Grenoble, France
| | - Mohamed-Ali Hakimi
- CNRS, UMR5163, LAPM, 38041 Grenoble, France; Université Joseph Fourier, 38000 Grenoble, France
| | - Amit Sharma
- Structural and Computational Biology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Road, New Delhi 110067, India.
| |
Collapse
|
28
|
Dynamic association of PfEMP1 and KAHRP in knobs mediates cytoadherence during Plasmodium invasion. Sci Rep 2015; 5:8617. [PMID: 25726759 PMCID: PMC4345318 DOI: 10.1038/srep08617] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 01/26/2015] [Indexed: 11/27/2022] Open
Abstract
Plasmodium falciparum infected erythrocytes display membrane knobs that are essential for their adherence to vascular endothelia and for prevention of clearance by the spleen. The knob associated histidine rich protein (KAHRP) is indispensable to knob formation and has been implicated in the recruitment and tethering of P. falciparum erythrocyte membrane protein–1 (PfEMP1) by binding to its cytoplasmic domain termed VARC. However, the precise mechanism of interaction between KAHRP and VARC is not very well understood. Here we report that both the proteins co-localize to membrane knobs of P. falciparum infected erythrocytes and have identified four positively charged linear sequence motifs of high intrinsic mobility on KAHRP that interact electrostatically with VARC in solution to form a fuzzy complex. The current study provides molecular insight into interaction between KAHRP and VARC in solution that takes place at membrane knobs.
Collapse
|
29
|
Inhibition of protein synthesis and malaria parasite development by drug targeting of methionyl-tRNA synthetases. Antimicrob Agents Chemother 2015; 59:1856-67. [PMID: 25583729 DOI: 10.1128/aac.02220-13] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aminoacyl-tRNA synthetases (aaRSs) are housekeeping enzymes that couple cognate tRNAs with amino acids to transmit genomic information for protein translation. The Plasmodium falciparum nuclear genome encodes two P. falciparum methionyl-tRNA synthetases (PfMRS), termed PfMRS(cyt) and PfMRS(api). Phylogenetic analyses revealed that the two proteins are of primitive origin and are related to heterokonts (PfMRS(cyt)) or proteobacteria/primitive bacteria (PfMRS(api)). We show that PfMRS(cyt) localizes in parasite cytoplasm, while PfMRS(api) localizes to apicoplasts in asexual stages of malaria parasites. Two known bacterial MRS inhibitors, REP3123 and REP8839, hampered Plasmodium growth very effectively in the early and late stages of parasite development. Small-molecule drug-like libraries were screened against modeled PfMRS structures, and several "hit" compounds showed significant effects on parasite growth. We then tested the effects of the hit compounds on protein translation by labeling nascent proteins with (35)S-labeled cysteine and methionine. Three of the tested compounds reduced protein synthesis and also blocked parasite growth progression from the ring stage to the trophozoite stage. Drug docking studies suggested distinct modes of binding for the three compounds, compared with the enzyme product methionyl adenylate. Therefore, this study provides new targets (PfMRSs) and hit compounds that can be explored for development as antimalarial drugs.
Collapse
|
30
|
Datt M, Sharma A. Novel and unique domains in aminoacyl-tRNA synthetases from human fungal pathogens Aspergillus niger, Candida albicans and Cryptococcus neoformans. BMC Genomics 2014; 15:1069. [PMID: 25479903 PMCID: PMC4301749 DOI: 10.1186/1471-2164-15-1069] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 11/20/2014] [Indexed: 12/15/2022] Open
Abstract
Background Some species of fungi can cause serious human diseases, particularly to immuno-compromised individuals. Opportunistic fungal infections are a leading cause of mortality, and present an emerging challenge that requires development of new and effective therapeutics. Aminoacyl-tRNA synthetases (aaRSs) are indispensable components of cellular protein translation machinery and can be targeted for discovery of novel anti-fungal agents. Results Validation of aaRSs as potential drug targets in pathogenic microbes prompted us to investigate the genomic distribution of aaRSs within three fungi that infect humans – A. niger, C. albicans and C. neoformans. Hidden Markov Models were built for aaRSs and related proteins to search for homologues in these fungal genomes. Here, we provide a detailed and comprehensive annotation for 3 fungal genome aaRSs and their associated proteins. We delineate predicted localizations, subdomain architectures and prevalence of unusual motifs within these aaRSs. Several fungal aaRSs have unique domain appendages of unknown function e.g. A. niger AsxRS and C. neoformans TyrRS have additional domains that are absent from human homologs. Conclusions Detailed comparisons of fungal aaRSs with human homologs suggest key differences that could be exploited for specific drug targeting. Our cataloging and structural analyses provide a comprehensive foundation for experimentally dissecting fungal aaRSs that may enable development of new anti-fungal agents. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1069) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Amit Sharma
- Structural and Computational Biology group, International Center for Genetic Engineering and Biotechnology (ICGEB), New Delhi 110067, India.
| |
Collapse
|
31
|
Datt M, Sharma A. Evolutionary and structural annotation of disease-associated mutations in human aminoacyl-tRNA synthetases. BMC Genomics 2014; 15:1063. [PMID: 25476837 PMCID: PMC4298046 DOI: 10.1186/1471-2164-15-1063] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 11/20/2014] [Indexed: 11/10/2022] Open
Abstract
Background Mutation(s) in proteins are a natural byproduct of evolution but can also cause serious diseases. Aminoacyl-tRNA synthetases (aaRSs) are indispensable components of all cellular protein translational machineries, and in humans they drive translation in both cytoplasm and mitochondria. Mutations in aaRSs have been implicated in a plethora of diseases including neurological conditions, metabolic disorders and cancer. Results We have developed an algorithmic approach for genome-wide analyses of sequence substitutions that combines evolutionary, structural and functional information. This pipeline enabled us to super-annotate human aaRS mutations and analyze their linkage to health disorders. Our data suggest that in some but not all cases, aaRS mutations occur in functional and structural sectors where they can manifest their pathological effects by altering enzyme activity or causing structural instability. Further, mutations appear in both solvent exposed and buried regions of aaRSs indicating that these alterations could lead to dysfunctional enzymes resulting in abnormal protein translation routines by affecting inter-molecular interactions or by disruption of non-bonded interactions. Overall, the prevalence of mutations is much higher in mitochondrial aaRSs, and the two most often mutated aaRSs are mitochondrial glutamyl-tRNA synthetase and dual localized glycyl-tRNA synthetase. Out of 63 mutations annotated in this work, only 12 (~20%) were observed in regions that could directly affect aminoacylation activity via either binding to ATP/amino-acid, tRNA or by involvement in dimerization. Mutations in structural cores or at potential biomolecular interfaces account for ~55% mutations while remaining mutations (~25%) remain structurally un-annotated. Conclusion This work provides a comprehensive structural framework within which most defective human aaRSs have been structurally analyzed. The methodology described here could be employed to annotate mutations in other protein families in a high-throughput manner. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1063) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Amit Sharma
- Structural and Computational Biology group, International Center for Genetic Engineering and Biotechnology, New Delhi 110067, India.
| |
Collapse
|
32
|
Cui L, Lindner S, Miao J. Translational regulation during stage transitions in malaria parasites. Ann N Y Acad Sci 2014; 1342:1-9. [PMID: 25387887 DOI: 10.1111/nyas.12573] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The complicated life cycle of the malaria parasite involves a vertebrate host and a mosquito vector, and translational regulation plays a prominent role in orchestrating the developmental events in the two transition stages: gametocytes and sporozoites. Translational regulation is executed in both global and transcript-specific manners. Plasmodium uses a conserved mechanism involving phosphorylation of eIF2α to repress global protein synthesis during the latent period of sporozoite development in the mosquito salivary glands. Transcript-specific translational regulation is achieved by a network of RNA-binding proteins (RBPs), among which the Dhh1 RNA helicase DOZI and Puf family RBPs are by far the best studied in Plasmodium. While the DOZI complex defines a new P granule with a role in protecting certain gametocyte mRNAs from degradation, the Puf proteins appear to repress expression of mRNAs in both gametocytes and sporozoites. These examples underscore the significance of translational regulation in Plasmodium development.
Collapse
|
33
|
Jain V, Kikuchi H, Oshima Y, Sharma A, Yogavel M. Structural and functional analysis of the anti-malarial drug target prolyl-tRNA synthetase. ACTA ACUST UNITED AC 2014; 15:181-90. [PMID: 25047712 DOI: 10.1007/s10969-014-9186-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 07/04/2014] [Indexed: 12/21/2022]
Abstract
Aminoacyl-tRNA synthetases (aaRSs) drive protein translation in cells and hence these are essential enzymes across life. Inhibition of these enzymes can halt growth of an organism by stalling protein translation. Therefore, small molecule targeting of aaRS active sites is an attractive avenue from the perspective of developing anti-infectives. Febrifugine and its derivatives like halofuginone (HF) are known to inhibit prolyl-tRNA synthetase of malaria parasite Plasmodium falciparum. Here, we present functional and crystallographic data on P. falciparum prolyl-tRNA synthetase (PfPRS). Using immunofluorescence data, we show that PfPRS is exclusively resident in the parasite cytoplasm within asexual blood stage parasites. The inhibitor HF interacts strongly with PfPRS in a non-competitive binding mode in presence or absence of ATP analog. Intriguingly, the two monomers that constitute dimeric PfPRS display significantly different conformations in their active site regions. The structural analyses presented here provide a framework for development of febrifugine derivatives that can seed development of new anti-malarials.
Collapse
Affiliation(s)
- Vitul Jain
- Structural and Computational Biology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, 110067, India
| | | | | | | | | |
Collapse
|
34
|
Structural basis of malaria parasite lysyl-tRNA synthetase inhibition by cladosporin. ACTA ACUST UNITED AC 2014; 15:63-71. [PMID: 24935905 DOI: 10.1007/s10969-014-9182-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 05/24/2014] [Indexed: 10/25/2022]
Abstract
Malaria parasites inevitably develop drug resistance to anti-malarials over time. Hence the immediacy for discovering new chemical scaffolds to include in combination malaria drug therapy. The desirable attributes of new chemotherapeutic agents currently include activity against both liver and blood stage malaria parasites. One such recently discovered compound called cladosporin abrogates parasite growth via inhibition of Plasmodium falciparum lysyl-tRNA synthetase (PfKRS), an enzyme central to protein translation. Here, we present crystal structure of ternary PfKRS-lysine-cladosporin (PfKRS-K-C) complex that reveals cladosporin's remarkable ability to mimic the natural substrate adenosine and thereby colonize PfKRS active site. The isocoumarin fragment of cladosporin sandwiches between critical adenine-recognizing residues while its pyran ring fits snugly in the ribose-recognizing cavity. PfKRS-K-C structure highlights ample space within PfKRS active site for further chemical derivatization of cladosporin. Such derivatives may be useful against additional human pathogens that retain high conservation in cladosporin chelating residues within their lysyl-tRNA synthetase.
Collapse
|
35
|
A dual-targeted aminoacyl-tRNA synthetase in Plasmodium falciparum charges cytosolic and apicoplast tRNACys. Biochem J 2014; 458:513-23. [PMID: 24428730 DOI: 10.1042/bj20131451] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Plasmodium parasites possess two endosymbiotic organelles: a mitochondrion and a relict plastid called the apicoplast. To accommodate the translational requirements of these organelles in addition to its cytosolic translation apparatus, the parasite must maintain a supply of charged tRNA molecules in each of these compartments. In the present study we investigate how the parasite manages these translational requirements for charged tRNACys with only a single gene for CysRS (cysteinyl-tRNA synthetase). We demonstrate that the single PfCysRS (Plasmodium falciparum CysRS) transcript is alternatively spliced, and, using a combination of endogenous and heterologous tagging experiments in both P. falciparum and Toxoplasma gondii, we show that CysRS isoforms traffic to the cytosol and apicoplast. PfCysRS can recognize and charge the eukaryotic tRNACys encoded by the Plasmodium nucleus as well as the bacterial-type tRNA encoded by the apicoplast genome, albeit with a preference for the eukaryotic type cytosolic tRNA. The results of the present study indicate that apicomplexan parasites have lost their original plastidic cysteinyl-tRNA synthetase, and have replaced it with a dual-targeted eukaryotic type CysRS that recognizes plastid and nuclear tRNACys. Inhibitors of the Plasmodium dual-targeted CysRS would potentially offer a therapy capable of the desirable immediate effects on parasite growth as well as the irreversibility of inhibitors that disrupt apicoplast inheritance.
Collapse
|
36
|
Pham JS, Dawson KL, Jackson KE, Lim EE, Pasaje CFA, Turner KEC, Ralph SA. Aminoacyl-tRNA synthetases as drug targets in eukaryotic parasites. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2013; 4:1-13. [PMID: 24596663 PMCID: PMC3940080 DOI: 10.1016/j.ijpddr.2013.10.001] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 10/24/2013] [Accepted: 10/25/2013] [Indexed: 01/02/2023]
Abstract
Aminoacyl-tRNA synthetases are essential and many aaRS inhibitors kill parasites. We examine compound inhibitors tested experimentally against parasite aaRSs. Successful inhibitors were discovered by both phenotype and target-based approaches. Selectivity and resistance are ongoing challenges for development of parasite drugs.
Aminoacyl-tRNA synthetases are central enzymes in protein translation, providing the charged tRNAs needed for appropriate construction of peptide chains. These enzymes have long been pursued as drug targets in bacteria and fungi, but the past decade has seen considerable research on aminoacyl-tRNA synthetases in eukaryotic parasites. Existing inhibitors of bacterial tRNA synthetases have been adapted for parasite use, novel inhibitors have been developed against parasite enzymes, and tRNA synthetases have been identified as the targets for compounds in use or development as antiparasitic drugs. Crystal structures have now been solved for many parasite tRNA synthetases, and opportunities for selective inhibition are becoming apparent. For different biological reasons, tRNA synthetases appear to be promising drug targets against parasites as diverse as Plasmodium (causative agent of malaria), Brugia (causative agent of lymphatic filariasis), and Trypanosoma (causative agents of Chagas disease and human African trypanosomiasis). Here we review recent developments in drug discovery and target characterisation for parasite aminoacyl-tRNA synthetases.
Collapse
Affiliation(s)
- James S Pham
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia
| | - Karen L Dawson
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia
| | - Katherine E Jackson
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia
| | - Erin E Lim
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia
| | - Charisse Flerida A Pasaje
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia
| | - Kelsey E C Turner
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia
| | - Stuart A Ralph
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
37
|
Khan S, Garg A, Sharma A, Camacho N, Picchioni D, Saint-Léger A, de Pouplana LR, Yogavel M, Sharma A. An appended domain results in an unusual architecture for malaria parasite tryptophanyl-tRNA synthetase. PLoS One 2013; 8:e66224. [PMID: 23776638 PMCID: PMC3680381 DOI: 10.1371/journal.pone.0066224] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 05/02/2013] [Indexed: 01/03/2023] Open
Abstract
Specific activation of amino acids by aminoacyl-tRNA synthetases (aaRSs) is essential for maintaining fidelity during protein translation. Here, we present crystal structure of malaria parasite Plasmodium falciparum tryptophanyl-tRNA synthetase (Pf-WRS) catalytic domain (AAD) at 2.6 Å resolution in complex with L-tryptophan. Confocal microscopy-based localization data suggest cytoplasmic residency of this protein. Pf-WRS has an unusual N-terminal extension of AlaX-like domain (AXD) along with linker regions which together seem vital for enzymatic activity and tRNA binding. Pf-WRS is not proteolytically processed in the parasites and therefore AXD likely provides tRNA binding capability rather than editing activity. The N-terminal domain containing AXD and linker region is monomeric and would result in an unusual overall architecture for Pf-WRS where the dimeric catalytic domains have monomeric AXDs on either side. Our PDB-wide comparative analyses of 47 WRS crystal structures also provide new mechanistic insights into this enzyme family in context conserved KMSKS loop conformations.
Collapse
Affiliation(s)
- Sameena Khan
- Structural and Computational Biology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Ankur Garg
- Structural and Computational Biology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Arvind Sharma
- Structural and Computational Biology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Noelia Camacho
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Catalonia, Spain
| | - Daria Picchioni
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Catalonia, Spain
| | - Adélaïde Saint-Léger
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Catalonia, Spain
| | - Lluís Ribas de Pouplana
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Catalonia, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Catalonia, Spain
| | - Manickam Yogavel
- Structural and Computational Biology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Amit Sharma
- Structural and Computational Biology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
- * E-mail:
| |
Collapse
|
38
|
Khan S, Garg A, Camacho N, Van Rooyen J, Kumar Pole A, Belrhali H, Ribas de Pouplana L, Sharma V, Sharma A. Structural analysis of malaria-parasite lysyl-tRNA synthetase provides a platform for drug development. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:785-95. [PMID: 23633587 DOI: 10.1107/s0907444913001923] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Accepted: 01/18/2013] [Indexed: 01/29/2023]
Abstract
Aminoacyl-tRNA synthetases are essential enzymes that transmit information from the genetic code to proteins in cells and are targets for antipathogen drug development. Elucidation of the crystal structure of cytoplasmic lysyl-tRNA synthetase from the malaria parasite Plasmodium falciparum (PfLysRS) has allowed direct comparison with human LysRS. The authors' data suggest that PfLysRS is dimeric in solution, whereas the human counterpart can also adopt tetrameric forms. It is shown for the first time that PfLysRS is capable of synthesizing the signalling molecule Ap4a (diadenosine tetraphosphate) using ATP as a substrate. The PfLysRS crystal structure is in the apo form, such that binding to ATP will require rotameric changes in four conserved residues. Differences in the active-site regions of parasite and human LysRSs suggest the possibility of exploiting PfLysRS for selective inhibition. These investigations on PfLysRS further validate malarial LysRSs as attractive antimalarial targets and provide new structural space for the development of inhibitors that target pathogen LysRSs selectively.
Collapse
Affiliation(s)
- Sameena Khan
- Structural and Computational Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Road, New Delhi 110 067, India
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Discovery of a novel class of boron-based antibacterials with activity against gram-negative bacteria. Antimicrob Agents Chemother 2013; 57:1394-403. [PMID: 23295920 DOI: 10.1128/aac.02058-12] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gram-negative bacteria cause approximately 70% of the infections in intensive care units. A growing number of bacterial isolates responsible for these infections are resistant to currently available antibiotics and to many in development. Most agents under development are modifications of existing drug classes, which only partially overcome existing resistance mechanisms. Therefore, new classes of Gram-negative antibacterials with truly novel modes of action are needed to circumvent these existing resistance mechanisms. We have previously identified a new a way to inhibit an aminoacyl-tRNA synthetase, leucyl-tRNA synthetase (LeuRS), in fungi via the oxaborole tRNA trapping (OBORT) mechanism. Herein, we show how we have modified the OBORT mechanism using a structure-guided approach to develop a new boron-based antibiotic class, the aminomethylbenzoxaboroles, which inhibit bacterial leucyl-tRNA synthetase and have activity against Gram-negative bacteria by largely evading the main efflux mechanisms in Escherichia coli and Pseudomonas aeruginosa. The lead analogue, AN3365, is active against Gram-negative bacteria, including Enterobacteriaceae bearing NDM-1 and KPC carbapenemases, as well as P. aeruginosa. This novel boron-based antibacterial, AN3365, has good mouse pharmacokinetics and was efficacious against E. coli and P. aeruginosa in murine thigh infection models, which suggest that this novel class of antibacterials has the potential to address this unmet medical need.
Collapse
|
40
|
Gowri VS, Ghosh I, Sharma A, Madhubala R. Unusual domain architecture of aminoacyl tRNA synthetases and their paralogs from Leishmania major. BMC Genomics 2012; 13:621. [PMID: 23151081 PMCID: PMC3532385 DOI: 10.1186/1471-2164-13-621] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 10/30/2012] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Leishmania major, a protozoan parasite, is the causative agent of cutaneous leishmaniasis. Due to the development of resistance against the currently available anti-leishmanial drugs, there is a growing need for specific inhibitors and novel drug targets. In this regards, aminoacyl tRNA synthetases, the linchpins of protein synthesis, have received recent attention among the kinetoplastid research community. This is the first comprehensive survey of the aminoacyl tRNA synthetases, their paralogs and other associated proteins from L. major. RESULTS A total of 26 aminoacyl tRNA synthetases were identified using various computational and bioinformatics tools. Phylogenetic analysis and domain architectures of the L. major aminoacyl tRNA synthetases suggest a probable archaeal/eukaryotic origin. Presence of additional domains or N- or C-terminal extensions in 11 aminoacyl tRNA synthetases from L. major suggests possibilities such as additional tRNA binding or oligomerization or editing activity. Five freestanding editing domains were identified in L. major. Domain assignment revealed a novel asparagine tRNA synthetase paralog, asparagine synthetase A which has been so far reported from prokaryotes and archaea. CONCLUSIONS A comprehensive bioinformatic analysis revealed 26 aminoacyl tRNA synthetases and five freestanding editing domains in L. major. Identification of two EMAP (endothelial monocyte-activating polypeptide) II-like proteins similar to human EMAP II-like proteins suggests their participation in multisynthetase complex formation. While the phylogeny of tRNA synthetases suggests a probable archaeal/eukaryotic origin, phylogeny of asparagine synthetase A strongly suggests a bacterial origin. The unique features identified in this work provide rationale for designing inhibitors against parasite aminoacyl tRNA synthetases and their paralogs.
Collapse
Affiliation(s)
- V S Gowri
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | | | | |
Collapse
|