1
|
de Beer MA, Giepmans BNG. Nanobody-Based Probes for Subcellular Protein Identification and Visualization. Front Cell Neurosci 2020; 14:573278. [PMID: 33240044 PMCID: PMC7667270 DOI: 10.3389/fncel.2020.573278] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/05/2020] [Indexed: 12/14/2022] Open
Abstract
Understanding how building blocks of life contribute to physiology is greatly aided by protein identification and cellular localization. The two main labeling approaches developed over the past decades are labeling with antibodies such as immunoglobulin G (IgGs) or use of genetically encoded tags such as fluorescent proteins. However, IgGs are large proteins (150 kDa), which limits penetration depth and uncertainty of target position caused by up to ∼25 nm distance of the label created by the chosen targeting approach. Additionally, IgGs cannot be easily recombinantly modulated and engineered as part of fusion proteins because they consist of multiple independent translated chains. In the last decade single domain antigen binding proteins are being explored in bioscience as a tool in revealing molecular identity and localization to overcome limitations by IgGs. These nanobodies have several potential benefits over routine applications. Because of their small size (15 kDa), nanobodies better penetrate during labeling procedures and improve resolution. Moreover, nanobodies cDNA can easily be fused with other cDNA. Multidomain proteins can thus be easily engineered consisting of domains for targeting (nanobodies) and visualization by fluorescence microscopy (fluorescent proteins) or electron microscopy (based on certain enzymes). Additional modules for e.g., purification are also easily added. These nanobody-based probes can be applied in cells for live-cell endogenous protein detection or may be purified prior to use on molecules, cells or tissues. Here, we present the current state of nanobody-based probes and their implementation in microscopy, including pitfalls and potential future opportunities.
Collapse
Affiliation(s)
- Marit A de Beer
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Ben N G Giepmans
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
2
|
Hubbard JJ, Pyzik M, Rath T, Kozicky LK, Sand KM, Gandhi AK, Grevys A, Foss S, Menzies SC, Glickman JN, Fiebiger E, Roopenian DC, Sandlie I, Andersen JT, Sly LM, Baker K, Blumberg RS. FcRn is a CD32a coreceptor that determines susceptibility to IgG immune complex-driven autoimmunity. J Exp Med 2020; 217:e20200359. [PMID: 32658257 PMCID: PMC7537387 DOI: 10.1084/jem.20200359] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/21/2020] [Accepted: 05/29/2020] [Indexed: 12/18/2022] Open
Abstract
IgG immune complexes (ICs) promote autoimmunity through binding fragment crystallizable (Fc) γ-receptors (FcγRs). Of these, the highly prevalent FcγRIIa (CD32a) histidine (H)-131 variant (CD32aH) is strongly linked to human autoimmune diseases through unclear mechanisms. We show that, relative to the CD32a arginine (R)-131 (CD32aR) variant, CD32aH more avidly bound human (h) IgG1 IC and formed a ternary complex with the neonatal Fc receptor (FcRn) under acidic conditions. In primary human and mouse cells, both CD32a variants required FcRn to induce innate and adaptive immune responses to hIgG1 ICs, which were augmented in the setting of CD32aH. Conversely, FcRn induced responses to IgG IC independently of classical FcγR, but optimal responses required FcRn and FcγR. Finally, FcRn blockade decreased inflammation in a rheumatoid arthritis model without reducing circulating autoantibody levels, providing support for FcRn's direct role in IgG IC-associated inflammation. Thus, CD32a and FcRn coregulate IgG IC-mediated immunity in a manner favoring the CD32aH variant, providing a novel mechanism for its disease association.
Collapse
Affiliation(s)
- Jonathan J. Hubbard
- Division of Gastroenterology, Hepatology, and Endoscopy, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA
| | - Michal Pyzik
- Division of Gastroenterology, Hepatology, and Endoscopy, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Timo Rath
- Division of Gastroenterology, Hepatology, and Endoscopy, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Lisa K. Kozicky
- Division of Gastroenterology, Hepatology, and Endoscopy, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Kine M.K. Sand
- Department of Biosciences, Centre for Immune Regulation, University of Oslo, Oslo, Norway
- Department of Immunology, Centre for Immune Regulation, Oslo University Hospital Rikshospitalet and University of Oslo, Oslo, Norway
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Amit K. Gandhi
- Division of Gastroenterology, Hepatology, and Endoscopy, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Algirdas Grevys
- Department of Biosciences, Centre for Immune Regulation, University of Oslo, Oslo, Norway
- Department of Immunology, Centre for Immune Regulation, Oslo University Hospital Rikshospitalet and University of Oslo, Oslo, Norway
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Stian Foss
- Department of Biosciences, Centre for Immune Regulation, University of Oslo, Oslo, Norway
- Department of Immunology, Centre for Immune Regulation, Oslo University Hospital Rikshospitalet and University of Oslo, Oslo, Norway
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Susan C. Menzies
- Division of Gastroenterology, Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jonathan N. Glickman
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Edda Fiebiger
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA
| | | | - Inger Sandlie
- Department of Biosciences, Centre for Immune Regulation, University of Oslo, Oslo, Norway
- Department of Immunology, Centre for Immune Regulation, Oslo University Hospital Rikshospitalet and University of Oslo, Oslo, Norway
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Jan Terje Andersen
- Department of Biosciences, Centre for Immune Regulation, University of Oslo, Oslo, Norway
- Department of Immunology, Centre for Immune Regulation, Oslo University Hospital Rikshospitalet and University of Oslo, Oslo, Norway
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Laura M. Sly
- Division of Gastroenterology, Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kristi Baker
- Division of Gastroenterology, Hepatology, and Endoscopy, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Richard S. Blumberg
- Division of Gastroenterology, Hepatology, and Endoscopy, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Harvard Digestive Diseases Center, Boston, MA
| |
Collapse
|
3
|
Loss of expression of the recycling receptor, FcRn, promotes tumor cell growth by increasing albumin consumption. Oncotarget 2018; 8:3528-3541. [PMID: 27974681 PMCID: PMC5356901 DOI: 10.18632/oncotarget.13869] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 10/27/2016] [Indexed: 02/06/2023] Open
Abstract
Tumor cells rely on high concentrations of amino acids to support their growth and proliferation. Although increased macropinocytic uptake and lysosomal degradation of the most abundant serum protein, albumin, in Ras-transformed cells can meet these demands, it is not understood how the majority of tumor cells that express wild type Ras achieve this. In the current study we reveal that the neonatal Fc receptor, FcRn, regulates tumor cell proliferation through the ability to recycle its ligand, albumin. By contrast with normal epithelial cells, we show that human FcRn is present at very low or undetectable levels in the majority of tumor cell lines analyzed. Remarkably, shRNA-mediated ablation of FcRn expression in an FcRn-positive tumor cell line results in a substantial growth increase of tumor xenografts, whereas enforced expression of this receptor by lentiviral transduction has the reverse effect. Moreover, intracellular albumin and glutamate levels are increased by the loss of FcRn-mediated recycling of albumin, combined with hypoalbuminemia in tumor-bearing mice. These studies identify a novel role for FcRn as a suppressor of tumor growth and have implications for the use of this receptor as a prognostic indicator and therapeutic target.
Collapse
|
5
|
Martins JP, Kennedy PJ, Santos HA, Barrias C, Sarmento B. A comprehensive review of the neonatal Fc receptor and its application in drug delivery. Pharmacol Ther 2016; 161:22-39. [PMID: 27016466 DOI: 10.1016/j.pharmthera.2016.03.007] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Advances in the understanding of neonatal Fc receptor (FcRn) biology and function have demonstrated that this receptor, primarily identified for the transfer of passive immunity from mother infant, is involved in several biological and immunological processes. In fact, FcRn is responsible for the long half-life of IgG and albumin in the serum, by creating an intracellular protein reservoir, which is protected from lysosomal degradation and, importantly, trafficked across the cell. Such discovery has led researchers to hypothesize the role for this unique receptor in the controlled delivery of therapeutic agents. A great amount of FcRn-based strategies are already under extensive investigation, in which FcRn reveals to have profound impact on the biodistribution and half-life extension of therapeutic agents. This review summarizes the main findings on FcRn biology, function and distribution throughout different tissues, together with the main advances on the FcRn-based therapeutic opportunities and model systems, which indicate that this receptor is a potential target for therapeutic regimen modification.
Collapse
Affiliation(s)
- João Pedro Martins
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; ICBAS - Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge Viterbo 228, 4150-180 Porto, Portugal
| | - Patrick J Kennedy
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; ICBAS - Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge Viterbo 228, 4150-180 Porto, Portugal; Ipatimup - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Hélder A Santos
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E, FI -00014 Helsinki, Finland
| | - Cristina Barrias
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; CESPU - Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde and Instituto Universitário de Ciências da Saúde, 4585-116 Gandra, Portugal.
| |
Collapse
|
6
|
The neonatal Fc receptor, FcRn, as a target for drug delivery and therapy. Adv Drug Deliv Rev 2015; 91:109-24. [PMID: 25703189 DOI: 10.1016/j.addr.2015.02.005] [Citation(s) in RCA: 174] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 02/10/2015] [Accepted: 02/11/2015] [Indexed: 12/22/2022]
Abstract
Immunoglobulin G (IgG)-based drugs are arguably the most successful class of protein therapeutics due in part to their remarkably long blood circulation. This arises from IgG interaction with the neonatal Fc receptor, FcRn. FcRn is the central regulator of IgG and albumin homeostasis throughout life and is increasingly being recognized as an important player in autoimmune disease, mucosal immunity, and tumor immune surveillance. Various engineering approaches that hijack or disrupt the FcRn-mediated transport pathway have been devised to develop long-lasting and non-invasive protein therapeutics, protein subunit vaccines, and therapeutics for treatment of autoimmune and infectious disease. In this review, we highlight the diverse biological functions of FcRn, emerging therapeutic opportunities, as well as the associated challenges of targeting FcRn for drug delivery and disease therapy.
Collapse
|