1
|
Starke L, Millward JM, Prinz C, Sherazi F, Waiczies H, Lippert C, Nazaré M, Paul F, Niendorf T, Waiczies S. First in vivo fluorine-19 magnetic resonance imaging of the multiple sclerosis drug siponimod. Theranostics 2023; 13:1217-1234. [PMID: 36923535 PMCID: PMC10008739 DOI: 10.7150/thno.77041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 01/10/2023] [Indexed: 02/17/2023] Open
Abstract
Theranostic imaging methods could greatly enhance our understanding of the distribution of CNS-acting drugs in individual patients. Fluorine-19 magnetic resonance imaging (19F MRI) offers the opportunity to localize and quantify fluorinated drugs non-invasively, without modifications and without the application of ionizing or other harmful radiation. Here we investigated siponimod, a sphingosine 1-phosphate (S1P) receptor antagonist indicated for secondary progressive multiple sclerosis (SPMS), to determine the feasibility of in vivo 19F MR imaging of a disease modifying drug. Methods: The 19F MR properties of siponimod were characterized using spectroscopic techniques. Four MRI methods were investigated to determine which was the most sensitive for 19F MR imaging of siponimod under biological conditions. We subsequently administered siponimod orally to 6 mice and acquired 19F MR spectra and images in vivo directly after administration, and in ex vivo tissues. Results: The 19F transverse relaxation time of siponimod was 381 ms when dissolved in dimethyl sulfoxide, and substantially reduced to 5 ms when combined with serum, and to 20 ms in ex vivo liver tissue. Ultrashort echo time (UTE) imaging was determined to be the most sensitive MRI technique for imaging siponimod in a biological context and was used to map the drug in vivo in the stomach and liver. Ex vivo images in the liver and brain showed an inhomogeneous distribution of siponimod in both organs. In the brain, siponimod accumulated predominantly in the cerebrum but not the cerebellum. No secondary 19F signals were detected from metabolites. From a translational perspective, we found that acquisitions done on a 3.0 T clinical MR scanner were 2.75 times more sensitive than acquisitions performed on a preclinical 9.4 T MR setup when taking changes in brain size across species into consideration and using equivalent relative spatial resolution. Conclusion: Siponimod can be imaged non-invasively using 19F UTE MRI in the form administered to MS patients, without modification. This study lays the groundwork for more extensive preclinical and clinical investigations. With the necessary technical development, 19F MRI has the potential to become a powerful theranostic tool for studying the time-course and distribution of CNS-acting drugs within the brain, especially during pathology.
Collapse
Affiliation(s)
- Ludger Starke
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility, Berlin, Germany.,Hasso Plattner Institute for Digital Engineering, University of Potsdam, Germany
| | - Jason M Millward
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility, Berlin, Germany.,Experimental and Clinical Research Center, a joint cooperation between the Charité Universitätsmedizin Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Christian Prinz
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility, Berlin, Germany.,SRH Fernhochschule - The Mobile University, Riedlingen, Germany
| | - Fatima Sherazi
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility, Berlin, Germany
| | | | - Christoph Lippert
- Hasso Plattner Institute for Digital Engineering, University of Potsdam, Germany
| | - Marc Nazaré
- Medicinal Chemistry, Leibniz-Institut fϋr Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Friedemann Paul
- Experimental and Clinical Research Center, a joint cooperation between the Charité Universitätsmedizin Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Thoralf Niendorf
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility, Berlin, Germany.,Experimental and Clinical Research Center, a joint cooperation between the Charité Universitätsmedizin Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Sonia Waiczies
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility, Berlin, Germany.,Experimental and Clinical Research Center, a joint cooperation between the Charité Universitätsmedizin Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| |
Collapse
|
2
|
Hof S, Marcus C, Kuebart A, Schulz J, Truse R, Raupach A, Bauer I, Flögel U, Picker O, Herminghaus A, Temme S. A Toolbox to Investigate the Impact of Impaired Oxygen Delivery in Experimental Disease Models. Front Med (Lausanne) 2022; 9:869372. [PMID: 35652064 PMCID: PMC9149176 DOI: 10.3389/fmed.2022.869372] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/25/2022] [Indexed: 12/29/2022] Open
Abstract
Impaired oxygen utilization is the underlying pathophysiological process in different shock states. Clinically most important are septic and hemorrhagic shock, which comprise more than 75% of all clinical cases of shock. Both forms lead to severe dysfunction of the microcirculation and the mitochondria that can cause or further aggravate tissue damage and inflammation. However, the detailed mechanisms of acute and long-term effects of impaired oxygen utilization are still elusive. Importantly, a defective oxygen exploitation can impact multiple organs simultaneously and organ damage can be aggravated due to intense organ cross-talk or the presence of a systemic inflammatory response. Complexity is further increased through a large heterogeneity in the human population, differences in genetics, age and gender, comorbidities or disease history. To gain a deeper understanding of the principles, mechanisms, interconnections and consequences of impaired oxygen delivery and utilization, interdisciplinary preclinical as well as clinical research is required. In this review, we provide a "tool-box" that covers widely used animal disease models for septic and hemorrhagic shock and methods to determine the structure and function of the microcirculation as well as mitochondrial function. Furthermore, we suggest magnetic resonance imaging as a multimodal imaging platform to noninvasively assess the consequences of impaired oxygen delivery on organ function, cell metabolism, alterations in tissue textures or inflammation. Combining structural and functional analyses of oxygen delivery and utilization in animal models with additional data obtained by multiparametric MRI-based techniques can help to unravel mechanisms underlying immediate effects as well as long-term consequences of impaired oxygen delivery on multiple organs and may narrow the gap between experimental preclinical research and the human patient.
Collapse
Affiliation(s)
- Stefan Hof
- Department of Anaesthesiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Carsten Marcus
- Department of Anaesthesiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Anne Kuebart
- Department of Anaesthesiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Jan Schulz
- Department of Anaesthesiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Richard Truse
- Department of Anaesthesiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Annika Raupach
- Department of Anaesthesiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Inge Bauer
- Department of Anaesthesiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Ulrich Flögel
- Experimental Cardiovascular Imaging, Department of Molecular Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Olaf Picker
- Department of Anaesthesiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Anna Herminghaus
- Department of Anaesthesiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Sebastian Temme
- Department of Anaesthesiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
3
|
Prinz C, Starke L, Ramspoth TF, Kerkering J, Martos Riaño V, Paul J, Neuenschwander M, Oder A, Radetzki S, Adelhoefer S, Ramos Delgado P, Aravina M, Millward JM, Fillmer A, Paul F, Siffrin V, von Kries JP, Niendorf T, Nazaré M, Waiczies S. Pentafluorosulfanyl (SF 5) as a Superior 19F Magnetic Resonance Reporter Group: Signal Detection and Biological Activity of Teriflunomide Derivatives. ACS Sens 2021; 6:3948-3956. [PMID: 34666481 PMCID: PMC8630787 DOI: 10.1021/acssensors.1c01024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 09/24/2021] [Indexed: 12/30/2022]
Abstract
Fluorine (19F) magnetic resonance imaging (MRI) is severely limited by a low signal-to noise ratio (SNR), and tapping it for 19F drug detection in vivo still poses a significant challenge. However, it bears the potential for label-free theranostic imaging. Recently, we detected the fluorinated dihydroorotate dehydrogenase (DHODH) inhibitor teriflunomide (TF) noninvasively in an animal model of multiple sclerosis (MS) using 19F MR spectroscopy (MRS). In the present study, we probed distinct modifications to the CF3 group of TF to improve its SNR. This revealed SF5 as a superior alternative to the CF3 group. The value of the SF5 bioisostere as a 19F MRI reporter group within a biological or pharmacological context is by far underexplored. Here, we compared the biological and pharmacological activities of different TF derivatives and their 19F MR properties (chemical shift and relaxation times). The 19F MR SNR efficiency of three MRI methods revealed that SF5-substituted TF has the highest 19F MR SNR efficiency in combination with an ultrashort echo-time (UTE) MRI method. Chemical modifications did not reduce pharmacological or biological activity as shown in the in vitro dihydroorotate dehydrogenase enzyme and T cell proliferation assays. Instead, SF5-substituted TF showed an improved capacity to inhibit T cell proliferation, indicating better anti-inflammatory activity and its suitability as a viable bioisostere in this context. This study proposes SF5 as a novel superior 19F MR reporter group for the MS drug teriflunomide.
Collapse
Affiliation(s)
- Christian Prinz
- Berlin
Ultrahigh Field Facility (B.U.F.F.), Max
Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert Rössle Straße
10, 13125 Berlin, Germany
- Experimental
and Clinical Research Center, a joint cooperation between the Charité
- Universitätsmedizin Berlin and the Max Delbrück Center
for Molecular Medicine in the Helmholtz Association, Robert Rössle Straße 10, 13125 Berlin, Germany
| | - Ludger Starke
- Berlin
Ultrahigh Field Facility (B.U.F.F.), Max
Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert Rössle Straße
10, 13125 Berlin, Germany
| | - Tizian-Frank Ramspoth
- Medicinal
Chemistry, Leibniz-Institut für Molekulare
Pharmakologie (FMP), Robert Rössle Straße 10, 13125 Berlin, Germany
| | - Janis Kerkering
- Experimental
and Clinical Research Center, a joint cooperation between the Charité
- Universitätsmedizin Berlin and the Max Delbrück Center
for Molecular Medicine in the Helmholtz Association, Robert Rössle Straße 10, 13125 Berlin, Germany
| | - Vera Martos Riaño
- Medicinal
Chemistry, Leibniz-Institut für Molekulare
Pharmakologie (FMP), Robert Rössle Straße 10, 13125 Berlin, Germany
| | - Jérôme Paul
- Medicinal
Chemistry, Leibniz-Institut für Molekulare
Pharmakologie (FMP), Robert Rössle Straße 10, 13125 Berlin, Germany
| | - Martin Neuenschwander
- Screening
Unit, Leibniz-Institut für Molekulare
Pharmakologie (FMP), Robert Rössle Straße 10, 13125 Berlin, Germany
| | - Andreas Oder
- Screening
Unit, Leibniz-Institut für Molekulare
Pharmakologie (FMP), Robert Rössle Straße 10, 13125 Berlin, Germany
| | - Silke Radetzki
- Screening
Unit, Leibniz-Institut für Molekulare
Pharmakologie (FMP), Robert Rössle Straße 10, 13125 Berlin, Germany
| | - Siegfried Adelhoefer
- Berlin
Ultrahigh Field Facility (B.U.F.F.), Max
Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert Rössle Straße
10, 13125 Berlin, Germany
| | - Paula Ramos Delgado
- Berlin
Ultrahigh Field Facility (B.U.F.F.), Max
Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert Rössle Straße
10, 13125 Berlin, Germany
- Experimental
and Clinical Research Center, a joint cooperation between the Charité
- Universitätsmedizin Berlin and the Max Delbrück Center
for Molecular Medicine in the Helmholtz Association, Robert Rössle Straße 10, 13125 Berlin, Germany
| | - Mariya Aravina
- Berlin
Ultrahigh Field Facility (B.U.F.F.), Max
Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert Rössle Straße
10, 13125 Berlin, Germany
| | - Jason M. Millward
- Berlin
Ultrahigh Field Facility (B.U.F.F.), Max
Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert Rössle Straße
10, 13125 Berlin, Germany
- Experimental
and Clinical Research Center, a joint cooperation between the Charité
- Universitätsmedizin Berlin and the Max Delbrück Center
for Molecular Medicine in the Helmholtz Association, Robert Rössle Straße 10, 13125 Berlin, Germany
| | - Ariane Fillmer
- Physikalisch-Technische
Bundesanstalt (PTB), Abbestraße 2-12, 10587 Berlin, Germany
| | - Friedemann Paul
- Experimental
and Clinical Research Center, a joint cooperation between the Charité
- Universitätsmedizin Berlin and the Max Delbrück Center
for Molecular Medicine in the Helmholtz Association, Robert Rössle Straße 10, 13125 Berlin, Germany
- Charité
− Universitätsmedizin Berlin, corporate member of Freie
Universität Berlin, Humboldt-Universität zu Berlin,
and Berlin Institute of Health (BIH), Charitéplatz 1, 10117 Berlin, Germany
| | - Volker Siffrin
- Experimental
and Clinical Research Center, a joint cooperation between the Charité
- Universitätsmedizin Berlin and the Max Delbrück Center
for Molecular Medicine in the Helmholtz Association, Robert Rössle Straße 10, 13125 Berlin, Germany
| | - Jens-Peter von Kries
- Screening
Unit, Leibniz-Institut für Molekulare
Pharmakologie (FMP), Robert Rössle Straße 10, 13125 Berlin, Germany
| | - Thoralf Niendorf
- Berlin
Ultrahigh Field Facility (B.U.F.F.), Max
Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert Rössle Straße
10, 13125 Berlin, Germany
- Experimental
and Clinical Research Center, a joint cooperation between the Charité
- Universitätsmedizin Berlin and the Max Delbrück Center
for Molecular Medicine in the Helmholtz Association, Robert Rössle Straße 10, 13125 Berlin, Germany
| | - Marc Nazaré
- Medicinal
Chemistry, Leibniz-Institut für Molekulare
Pharmakologie (FMP), Robert Rössle Straße 10, 13125 Berlin, Germany
| | - Sonia Waiczies
- Berlin
Ultrahigh Field Facility (B.U.F.F.), Max
Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert Rössle Straße
10, 13125 Berlin, Germany
- Experimental
and Clinical Research Center, a joint cooperation between the Charité
- Universitätsmedizin Berlin and the Max Delbrück Center
for Molecular Medicine in the Helmholtz Association, Robert Rössle Straße 10, 13125 Berlin, Germany
| |
Collapse
|
4
|
Delgado PR, Kuehne A, Aravina M, Millward JM, Vázquez A, Starke L, Waiczies H, Pohlmann A, Niendorf T, Waiczies S. B 1 inhomogeneity correction of RARE MRI at low SNR: Quantitative in vivo 19 F MRI of mouse neuroinflammation with a cryogenically-cooled transceive surface radiofrequency probe. Magn Reson Med 2021; 87:1952-1970. [PMID: 34812528 DOI: 10.1002/mrm.29094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 12/26/2022]
Abstract
PURPOSE Low SNR in fluorine-19 (19 F) MRI benefits from cryogenically-cooled transceive surface RF probes (CRPs), but strong B1 inhomogeneities hinder quantification. Rapid acquisition with refocused echoes (RARE) is an SNR-efficient method for MRI of neuroinflammation with perfluorinated compounds but lacks an analytical signal intensity equation to retrospectively correct B1 inhomogeneity. Here, a workflow was proposed and validated to correct and quantify 19 F-MR signals from the inflamed mouse brain using a 19 F-CRP. METHODS In vivo 19 F-MR images were acquired in a neuroinflammation mouse model with a quadrature 19 F-CRP using an imaging setup including 3D-printed components to acquire co-localized anatomical and 19 F images. Model-based corrections were validated on a uniform 19 F phantom and in the neuroinflammatory model. Corrected 19 F-MR images were benchmarked against reference images and overlaid on in vivo 1 H-MR images. Computed concentration uncertainty maps using Monte Carlo simulations served as a measure of performance of the B1 corrections. RESULTS Our study reports on the first quantitative in vivo 19 F-MR images of an inflamed mouse brain using a 19 F-CRP, including in vivo T1 calculations for 19 F-nanoparticles during pathology and B1 corrections for 19 F-signal quantification. Model-based corrections markedly improved 19 F-signal quantification from errors > 50% to < 10% in a uniform phantom (p < 0.001). Concentration uncertainty maps ex vivo and in vivo yielded uncertainties that were generally < 25%. Monte Carlo simulations prescribed SNR ≥ 10.1 to reduce uncertainties < 10%, and SNR ≥ 4.25 to achieve uncertainties < 25%. CONCLUSION Our model-based correction method facilitated 19 F signal quantification in the inflamed mouse brain when using the SNR-boosting 19 F-CRP technology, paving the way for future low-SNR 19 F-MRI applications in vivo.
Collapse
Affiliation(s)
- Paula Ramos Delgado
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility, Berlin, Germany.,Experimental and Clinical Research Center, a cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | - Mariya Aravina
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility, Berlin, Germany
| | - Jason M Millward
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility, Berlin, Germany
| | | | - Ludger Starke
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility, Berlin, Germany
| | | | - Andreas Pohlmann
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility, Berlin, Germany
| | - Thoralf Niendorf
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility, Berlin, Germany.,Experimental and Clinical Research Center, a cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité-Universitätsmedizin Berlin, Berlin, Germany.,MRI.TOOLS, Berlin, Germany
| | - Sonia Waiczies
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility, Berlin, Germany
| |
Collapse
|
5
|
Vít M, Burian M, Berková Z, Lacik J, Sedlacek O, Hoogenboom R, Raida Z, Jirak D. A broad tuneable birdcage coil for mouse 1H/ 19F MR applications. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2021; 329:107023. [PMID: 34147024 DOI: 10.1016/j.jmr.2021.107023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/19/2021] [Accepted: 06/07/2021] [Indexed: 06/12/2023]
Abstract
In this paper, we present the design and implementation of a 1H/19F volume coil for mouse body magnetic resonance (MR) imaging and spectroscopy using a high magnetic field (4.7 T). By changing the geometry of the coil rungs to include both nuclei for MR experiments, this innovative coil can be tuned over an extremely wide range of frequency. The coil, 45 mm in diameter and 55 mm in length, consists of a 12-rung birdcage-like structure. Using two types of tuning, the coil can generate a sufficiently homogeneous B1+ electromagnetic field within a working volume optimized for laboratory mouse. The first tuning involves changing the resonance frequency over a large frequency range. The electrical capacitance between the wires can be adjusted to reflect changes in the length of the coil. The second tuning comprises a habitual tuning transformer for precise detection in a narrow band. In contrast to widely used multinuclear coils, the coil presented here features only one resonance peak and can be manipulated according to the Larmor frequencies given for 1H and 19F. The coil was successfully tested using full-wave simulations of magnetic and electric field distributions under in vivo MR conditions.
Collapse
Affiliation(s)
- M Vít
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic; Technical University of Liberec, Liberec, Czech Republic
| | - M Burian
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Z Berková
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - J Lacik
- Brno University of Technology, Brno, Czech Republic
| | - O Sedlacek
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague, Czech Republic; Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - R Hoogenboom
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Z Raida
- Brno University of Technology, Brno, Czech Republic
| | - D Jirak
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic; Department of Science and Research, Faculty of Health Studies, Technical University of Liberec, Liberec, Czech Republic.
| |
Collapse
|
6
|
Chirizzi C, Morasso C, Caldarone AA, Tommasini M, Corsi F, Chaabane L, Vanna R, Bombelli FB, Metrangolo P. A Bioorthogonal Probe for Multiscale Imaging by 19F-MRI and Raman Microscopy: From Whole Body to Single Cells. J Am Chem Soc 2021; 143:12253-12260. [PMID: 34320323 PMCID: PMC8397317 DOI: 10.1021/jacs.1c05250] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Molecular imaging
techniques are essential tools for better investigating
biological processes and detecting disease biomarkers with improvement
of both diagnosis and therapy monitoring. Often, a single imaging
technique is not sufficient to obtain comprehensive information at
different levels. Multimodal diagnostic probes are key tools to enable
imaging across multiple scales. The direct registration of in vivo imaging markers with ex vivo imaging
at the cellular level with a single probe is still challenging. Fluorinated
(19F) probes have been increasingly showing promising potentialities
for in vivo cell tracking by 19F-MRI.
Here we present the unique features of a bioorthogonal 19F-probe that enables direct signal correlation of MRI with Raman
imaging. In particular, we reveal the ability of PERFECTA, a superfluorinated
molecule, to exhibit a remarkable intense Raman signal distinct from
cell and tissue fingerprints. Therefore, PERFECTA combines in a single
molecule excellent characteristics for both macroscopic in
vivo19F-MRI, across the whole body, and microscopic
imaging at tissue and cellular levels by Raman imaging.
Collapse
Affiliation(s)
- Cristina Chirizzi
- Laboratory of Supramolecular and Bio-Nanomaterials (SupraBioNanoLab), Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Luigi Mancinelli 7, 20131 Milan, Italy
| | - Carlo Morasso
- Istituti Clinici Scientifici Maugeri IRCCS, Via S. Maugeri 4, 27100 Pavia, Italy
| | | | - Matteo Tommasini
- Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Luigi Mancinelli 7, 20131 Milan, Italy
| | - Fabio Corsi
- Istituti Clinici Scientifici Maugeri IRCCS, Via S. Maugeri 4, 27100 Pavia, Italy.,Department of Biomedical and Clinical Sciences "Luigi Sacco", Università di Milano, Via G. B. Grassi 74, 20157 Milan, Italy
| | - Linda Chaabane
- Experimental Neurology (INSPE) and Experimental Imaging Center (CIS), Neuroscience Division, IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132 Milan, Italy
| | - Renzo Vanna
- CNR-Institute for Photonics and Nanotechnologies (IFN-CNR), Department of Physics, Politecnico di Milano, Piazza Leonardo Da Vinci 32, 20133 Milan, Italy
| | - Francesca Baldelli Bombelli
- Laboratory of Supramolecular and Bio-Nanomaterials (SupraBioNanoLab), Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Luigi Mancinelli 7, 20131 Milan, Italy
| | - Pierangelo Metrangolo
- Laboratory of Supramolecular and Bio-Nanomaterials (SupraBioNanoLab), Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Luigi Mancinelli 7, 20131 Milan, Italy
| |
Collapse
|
7
|
Kaberov LI, Kaberova Z, Murmiliuk A, Trousil J, Sedláček O, Konefal R, Zhigunov A, Pavlova E, Vít M, Jirák D, Hoogenboom R, Filippov SK. Fluorine-Containing Block and Gradient Copoly(2-oxazoline)s Based on 2-(3,3,3-Trifluoropropyl)-2-oxazoline: A Quest for the Optimal Self-Assembled Structure for 19F Imaging. Biomacromolecules 2021; 22:2963-2975. [PMID: 34180669 DOI: 10.1021/acs.biomac.1c00367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The use of fluorinated contrast agents in magnetic resonance imaging (MRI) facilitates improved image quality due to the negligible amount of endogenous fluorine atoms in the body. In this work, we present a comprehensive study of the influence of the amphiphilic polymer structure and composition on its applicability as contrast agents in 19F MRI. Three series of novel fluorine-containing poly(2-oxazoline) copolymers and terpolymers, hydrophilic-fluorophilic, hydrophilic-lipophilic-fluorophilic, and hydrophilic-thermoresponsive-fluorophilic, with block and gradient distributions of the fluorinated units, were synthesized. It was discovered that the CF3 in the 2-(3,3,3-trifluoropropyl)-2-oxazoline (CF3EtOx) group activated the cationic chain end, leading to faster copolymerization kinetics, whereby spontaneous monomer gradients were formed with accelerated incorporation of 2-methyl-2-oxazoline or 2-n-propyl-2-oxazoline with a gradual change to the less-nucleophilic CF3EtOx monomer. The obtained amphiphilic copolymers and terpolymers form spherical or wormlike micelles in water, which was confirmed using transmission electron microscopy (TEM), while small-angle X-ray scattering (SAXS) revealed the core-shell or core-double-shell morphologies of these nanoparticles. The core and shell sizes obey the scaling laws for starlike micelles predicted by the scaling theory. Biocompatibility studies confirm that all copolymers obtained are noncytotoxic and, at the same time, exhibit high sensitivity during in vitro 19F MRI studies. The gradient copolymers provide the best 19F MRI signal-to-noise ratio in comparison with the analogue block copolymer structures, making them most promising as 19F MRI contrast agents.
Collapse
Affiliation(s)
- Leonid I Kaberov
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague, Czech Republic
| | - Zhansaya Kaberova
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague, Czech Republic
| | - Anastasiia Murmiliuk
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 40 Prague, Czech Republic
| | - Jiří Trousil
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague, Czech Republic
| | - Ondřej Sedláček
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 40 Prague, Czech Republic.,Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Rafal Konefal
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague, Czech Republic
| | - Alexander Zhigunov
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague, Czech Republic
| | - Ewa Pavlova
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague, Czech Republic
| | - Martin Vít
- Faculty of Mechatronics Informatics and Interdisciplinary Studies, Technical University of Liberec, Studentská 1402/2, 461 17 Liberec, Czech Republic
| | - Daniel Jirák
- Institute for Clinical and Experimental Medicine, Vídeňská 9, 140 21 Prague, Czech Republic.,Institute of Biophysics and Informatics, First Faculty of Medicine, Charles University in Prague, Salmovská 1, 120 00 Prague, Czech Republic
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Sergey K Filippov
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland.,Department of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, 050040 Almaty, Kazakhstan
| |
Collapse
|
8
|
Herrmann CJJ, Els A, Boehmert L, Periquito J, Eigentler TW, Millward JM, Waiczies S, Kuchling J, Paul F, Niendorf T. Simultaneous T 2 and T 2 ∗ mapping of multiple sclerosis lesions with radial RARE-EPI. Magn Reson Med 2021; 86:1383-1402. [PMID: 33951214 DOI: 10.1002/mrm.28811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 12/26/2022]
Abstract
PURPOSE The characteristic MRI features of multiple sclerosis (MS) lesions make it conceptually appealing to pursue parametric mapping techniques that support simultaneous generation of quantitative maps of 2 or more MR contrast mechanisms. We present a modular rapid acquisition with relaxation enhancement (RARE)-EPI hybrid that facilitates simultaneous T2 and T 2 ∗ mapping (2in1-RARE-EPI). METHODS In 2in1-RARE-EPI the first echoes in the echo train are acquired with a RARE module, later echoes are acquired with an EPI module. To define the fraction of echoes covered by the RARE and EPI module, an error analysis of T2 and T 2 ∗ was conducted with Monte Carlo simulations. Radial k-space (under)sampling was implemented for acceleration (R = 2). The feasibility of 2in1-RARE-EPI for simultaneous T2 and T 2 ∗ mapping was examined in a phantom study mimicking T2 and T 2 ∗ relaxation times of the brain. For validation, 2in1-RARE-EPI was benchmarked versus multi spin-echo (MSE) and multi gradient-echo (MGRE) techniques. The clinical applicability of 2in1-RARE-EPI was demonstrated in healthy subjects and MS patients. RESULTS There was a good agreement between T2 / T 2 ∗ values derived from 2in1-RARE-EPI and T2 / T 2 ∗ reference values obtained from MSE and MGRE in both phantoms and healthy subjects. In patients, MS lesions in T2 and T 2 ∗ maps deduced from 2in1-RARE-EPI could be just as clearly delineated as in reference maps calculated from MSE/MGRE. CONCLUSION This work demonstrates the feasibility of radially (under)sampled 2in1-RARE-EPI for simultaneous T2 and T 2 ∗ mapping in MS patients.
Collapse
Affiliation(s)
- Carl J J Herrmann
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Department of Physics, Humboldt University of Berlin, Berlin, Germany
| | - Antje Els
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Laura Boehmert
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Joao Periquito
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Thomas Wilhelm Eigentler
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Chair of Medical Engineering, Technical University of Berlin, Berlin, Germany
| | - Jason M Millward
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Sonia Waiczies
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Joseph Kuchling
- Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine, Berlin, Germany.,NeuroCure Clinical Research Center, Charité-Universitätsmedizin, Berlin, Germany.,Department of Neurology, Charité-Universitätsmedizin, Berlin, Germany
| | - Friedemann Paul
- Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine, Berlin, Germany.,NeuroCure Clinical Research Center, Charité-Universitätsmedizin, Berlin, Germany.,Department of Neurology, Charité-Universitätsmedizin, Berlin, Germany
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine, Berlin, Germany
| |
Collapse
|
9
|
Imaging of Inflammation in Spinal Cord Injury: Novel Insights on the Usage of PFC-Based Contrast Agents. Biomedicines 2021; 9:biomedicines9040379. [PMID: 33916774 PMCID: PMC8065995 DOI: 10.3390/biomedicines9040379] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 12/04/2022] Open
Abstract
Labeling of macrophages with perfluorocarbon (PFC)-based compounds allows the visualization of inflammatory processes by 19F-magnetic resonance imaging (19F-MRI), due to the absence of endogenous background. Even if PFC-labeling of monocytes/macrophages has been largely investigated and used, information is lacking about the impact of these agents over the polarization towards one of their cell subsets and on the best way to image them. In the present work, a PFC-based nanoemulsion was developed to monitor the course of inflammation in a model of spinal cord injury (SCI), a pathology in which the understanding of immunological events is of utmost importance to select the optimal therapeutic strategies. The effects of PFC over macrophage polarization were studied in vitro, on cultured macrophages, and in vivo, in a mouse SCI model, by testing and comparing various cell tracking protocols, including single and multiple administrations, the use of MRI or Point Resolved Spectroscopy (PRESS), and application of pre-saturation of Kupffer cells. The blood half-life of nanoemulsion was also investigated by 19F Magnetic Resonance Spectroscopy (MRS). In vitro and in vivo results indicate the occurrence of a switch towards the M2 (anti-inflammatory) phenotype, suggesting a possible theranostic function of these nanoparticles. The comparative work presented here allows the reader to select the most appropriate protocol according to the research objectives (quantitative data acquisition, visual monitoring of macrophage recruitment, theranostic purpose, rapid MRI acquisition, etc.). Finally, the method developed here to determine the blood half-life of the PFC nanoemulsion can be extended to other fluorinated compounds.
Collapse
|
10
|
Modo M. 19F Magnetic Resonance Imaging and Spectroscopy in Neuroscience. Neuroscience 2021; 474:37-50. [PMID: 33766776 DOI: 10.1016/j.neuroscience.2021.03.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 12/23/2022]
Abstract
1H magnetic resonance imaging (MRI) has established itself as a key diagnostic technique, affording the visualization of brain anatomy, blood flow, activity and connectivity. The detection of other atoms (e.g. 19F, 23Na, 31P), so called hetero-nuclear MRI and spectroscopy (MRS), provides investigative avenues that complement and extend the richness of information that can be gained from 1H MRI. Especially 19F MRI is increasingly emerging as a multi-nuclear (1H/19F) technique that can be exploited to visualize cell migration and trafficking. The lack of a 19F background signal in the brain affords an unequivocal detection suitable for quantification. Fluorine-based contrast material can be engineered as nanoemulsions, nanocapsules, or nanoparticles to label cells in vitro or in vivo. Fluorinated blood substitutes, typically nanoemulsions, can also carry oxygen and serve as a theranostic in poorly perfused brain regions. Brain tissue concentrations of fluorinated pharmaceuticals, including inhalation anesthetics (e.g. isoflurane) and anti-depressants (e.g. fluoxetine), can also be measured using MRS. However, the low signal from these compounds provides a challenge for imaging. Further methodological advances that accelerate signal acquisition (e.g. compressed sensing, cryogenic coils) are required to expand the applications of 19F MR imaging to, for instance, determine the regional pharmacokinetics of novel fluorine-based drugs. Improvements in 19F signal detection and localization, combined with the development of novel sensitive probes, will increase the utility of these multi-nuclear studies. These advances will provide new insights into cellular and molecular processes involved in neurodegenerative disease, as well as the mode of action of pharmaceutical compounds.
Collapse
Affiliation(s)
- Michel Modo
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
11
|
Waiczies S, Prinz C, Starke L, Millward JM, Delgado PR, Rosenberg J, Nazaré M, Waiczies H, Pohlmann A, Niendorf T. Functional Imaging Using Fluorine ( 19F) MR Methods: Basic Concepts. Methods Mol Biol 2021; 2216:279-299. [PMID: 33476007 PMCID: PMC9703275 DOI: 10.1007/978-1-0716-0978-1_17] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Kidney-associated pathologies would greatly benefit from noninvasive and robust methods that can objectively quantify changes in renal function. In the past years there has been a growing incentive to develop new applications for fluorine (19F) MRI in biomedical research to study functional changes during disease states. 19F MRI represents an instrumental tool for the quantification of exogenous 19F substances in vivo. One of the major benefits of 19F MRI is that fluorine in its organic form is absent in eukaryotic cells. Therefore, the introduction of exogenous 19F signals in vivo will yield background-free images, thus providing highly selective detection with absolute specificity in vivo. Here we introduce the concept of 19F MRI, describe existing challenges, especially those pertaining to signal sensitivity, and give an overview of preclinical applications to illustrate the utility and applicability of this technique for measuring renal function in animal models.This chapter is based upon work from the COST Action PARENCHIMA, a community-driven network funded by the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers. This introduction chapter is complemented by two separate chapters describing the experimental procedure and data analysis.
Collapse
Affiliation(s)
- Sonia Waiczies
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany.
| | - Christian Prinz
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany
| | - Ludger Starke
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany
| | - Jason M Millward
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany
| | - Paula Ramos Delgado
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany
| | - Jens Rosenberg
- The National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA
| | - Marc Nazaré
- Medicinal Chemistry, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | | | - Andreas Pohlmann
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany
- Siemens Healthcare, Berlin, Germany
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany
| |
Collapse
|
12
|
Darçot E, Yerly J, Hilbert T, Colotti R, Najdenovska E, Kober T, Stuber M, van Heeswijk RB. Compressed sensing with signal averaging for improved sensitivity and motion artifact reduction in fluorine-19 MRI. NMR IN BIOMEDICINE 2021; 34:e4418. [PMID: 33002268 DOI: 10.1002/nbm.4418] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 09/09/2020] [Accepted: 09/11/2020] [Indexed: 06/11/2023]
Abstract
Fluorine-19 (19 F) MRI of injected perfluorocarbon emulsions (PFCs) allows for the non-invasive quantification of inflammation and cell tracking, but suffers from a low signal-to-noise ratio and extended scan time. To address this limitation, we tested the hypotheses that a 19 F MRI pulse sequence that combines a specific undersampling regime with signal averaging has both increased sensitivity and robustness against motion artifacts compared with a non-averaged fully sampled pulse sequence, when both datasets are reconstructed with compressed sensing. As a proof of principle, numerical simulations and phantom experiments were performed on selected variable ranges to characterize the point spread function of undersampling patterns, as well as the vulnerability to noise of undersampling and reconstruction parameters with paired numbers of x signal averages and acceleration factor x (NAx-AFx). The numerical simulations demonstrated that a probability density function that uses 25% of the samples to fully sample the k-space central area allowed for an optimal balance between limited blurring and artifact incoherence. At all investigated noise levels, the Dice similarity coefficient (DSC) strongly depended on the regularization parameters and acceleration factor. In phantoms, the motion robustness of an NA8-AF8 undersampling pattern versus NA1-AF1 was evaluated with simulated and real motion patterns. Differences were assessed with the DSC, which was consistently higher for the NA8-AF8 compared with the NA1-AF1 strategy, for both simulated and real cyclic motion patterns (P < 0.001). Both strategies were validated in vivo in mice (n = 2) injected with perfluoropolyether. Here, the images displayed a sharper delineation of the liver with the NA8-AF8 strategy than with the NA1-AF1 strategy. In conclusion, we validated the hypotheses that in 19 F MRI the combination of undersampling and averaging improves both the sensitivity and the robustness against motion artifacts.
Collapse
Affiliation(s)
- Emeline Darçot
- Department of Radiology, University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Jérôme Yerly
- Department of Radiology, University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Lausanne and Geneva, Switzerland
| | - Tom Hilbert
- Department of Radiology, University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Advanced Clinical Imaging Technology (HC CMEA SUI DI PI), Siemens Healthcare AG, Lausanne, Switzerland
- Signal Processing Laboratory 5 (LTS5), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Roberto Colotti
- Department of Radiology, University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Elena Najdenovska
- Department of Radiology, University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Lausanne and Geneva, Switzerland
| | - Tobias Kober
- Department of Radiology, University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Advanced Clinical Imaging Technology (HC CMEA SUI DI PI), Siemens Healthcare AG, Lausanne, Switzerland
- Signal Processing Laboratory 5 (LTS5), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Matthias Stuber
- Department of Radiology, University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Lausanne and Geneva, Switzerland
| | - Ruud B van Heeswijk
- Department of Radiology, University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Lausanne and Geneva, Switzerland
| |
Collapse
|
13
|
Prinz C, Starke L, Millward JM, Fillmer A, Delgado PR, Waiczies H, Pohlmann A, Rothe M, Nazaré M, Paul F, Niendorf T, Waiczies S. In vivo detection of teriflunomide-derived fluorine signal during neuroinflammation using fluorine MR spectroscopy. Theranostics 2021; 11:2490-2504. [PMID: 33456555 PMCID: PMC7806491 DOI: 10.7150/thno.47130] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 11/17/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Magnetic resonance imaging (MRI) is indispensable for diagnosing neurological conditions such as multiple sclerosis (MS). MRI also supports decisions regarding the choice of disease-modifying drugs (DMDs). Determining in vivo tissue concentrations of DMDs has the potential to become an essential clinical tool for therapeutic drug monitoring (TDM). The aim here was to examine the feasibility of fluorine-19 (19F) MR methods to detect the fluorinated DMD teriflunomide (TF) during normal and pathological conditions. Methods: We used 19F MR spectroscopy to detect TF in the experimental autoimmune encephalomyelitis (EAE) mouse model of multiple sclerosis (MS) in vivo. Prior to the in vivo investigations we characterized the MR properties of TF in vitro. We studied the impact of pH and protein binding as well as MR contrast agents. Results: We could detect TF in vivo and could follow the 19F MR signal over different time points of disease. We quantified TF concentrations in different tissues using HPLC/MS and showed a significant correlation between ex vivo TF levels in serum and the ex vivo19F MR signal. Conclusion: This study demonstrates the feasibility of 19F MR methods to detect TF during neuroinflammation in vivo. It also highlights the need for further technological developments in this field. The ultimate goal is to add 19F MR protocols to conventional 1H MRI protocols in clinical practice to guide therapy decisions.
Collapse
|
14
|
Choi CH, Hong SM, Felder J, Shah NJ. The state-of-the-art and emerging design approaches of double-tuned RF coils for X-nuclei, brain MR imaging and spectroscopy: A review. Magn Reson Imaging 2020; 72:103-116. [DOI: 10.1016/j.mri.2020.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/16/2020] [Accepted: 07/01/2020] [Indexed: 12/18/2022]
|
15
|
Kolouchova K, Jirak D, Groborz O, Sedlacek O, Ziolkowska N, Vit M, Sticova E, Galisova A, Svec P, Trousil J, Hajek M, Hruby M. Implant-forming polymeric 19F MRI-tracer with tunable dissolution. J Control Release 2020; 327:50-60. [PMID: 32730953 DOI: 10.1016/j.jconrel.2020.07.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 12/29/2022]
Abstract
Magnetic resonance imaging (MRI) using 19F-based tracers has emerged as a promising multi-purpose noninvasive diagnostic tool and its application requires the use of various 19F-based tracers for the intended diagnostic purpose. In this study, we report a series of double-stimuli-responsive polymers for use as injectable implants, which were designed to form implants under physiological conditions, and to subsequently dissolve with different dissolution rates (t1/2 ranges from 30 to more than 250 days). Our polymers contain a high concentration of fluorine atoms, providing remarkable signal detectability, and both a hydrophilic monomer and a pH-responsive monomer that alter the biodistribution properties of the implant. The implant location and dissolution were observed using 19F MRI, which allows the anatomic extent of the implant to be monitored. The dissolution kinetics and biocompatibility of these materials were thoroughly analyzed. No sign of toxicity in vitro or in vivo or pathology in vivo was observed, even in chronic administration. The clinical applicability of our polymers was further confirmed via imaging of a rat model by employing an instrument currently used in human medicine.
Collapse
Affiliation(s)
- Kristyna Kolouchova
- Institute of Macromolecular Chemistry CAS, Heyrovsky Square 2, 162 06 Prague 6, Czech Republic; Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, Prague 2 128 00, Czech Republic
| | - Daniel Jirak
- Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 140 21 Prague 4, Czech Republic; Department of Science and Research, Faculty of Health Studies, Technical University of Liberec, Studentska 1402/2, 461 17 Liberec, Czech Republic.
| | - Ondrej Groborz
- Institute of Macromolecular Chemistry CAS, Heyrovsky Square 2, 162 06 Prague 6, Czech Republic; Department of Organic Chemistry, Charles University, Faculty of Science, Hlavova 8, 128 43 Prague 2, Czech Republic; Institute of Biophysics and Informatics, Charles University, First Faculty of Medicine, Salmovská 1, 120 00 Prague 2, Czech Republic; Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo square 542/2, 162 06 Prague 6, Czech Republic
| | - Ondrej Sedlacek
- Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Ghent, Belgium
| | - Natalia Ziolkowska
- Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 140 21 Prague 4, Czech Republic; Institute of Biophysics and Informatics, Charles University, First Faculty of Medicine, Salmovská 1, 120 00 Prague 2, Czech Republic
| | - Martin Vit
- Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 140 21 Prague 4, Czech Republic; Technical University of Liberec, Faculty of Mechatronics Informatics and Interdisciplinary Studies, Studentska 1402/2, 461 17 Liberec, Czech Republic
| | - Eva Sticova
- Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 140 21 Prague 4, Czech Republic
| | - Andrea Galisova
- Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 140 21 Prague 4, Czech Republic
| | - Pavel Svec
- Institute of Macromolecular Chemistry CAS, Heyrovsky Square 2, 162 06 Prague 6, Czech Republic; Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, Prague 2 128 00, Czech Republic
| | - Jiri Trousil
- Institute of Macromolecular Chemistry CAS, Heyrovsky Square 2, 162 06 Prague 6, Czech Republic
| | - Milan Hajek
- Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 140 21 Prague 4, Czech Republic
| | - Martin Hruby
- Institute of Macromolecular Chemistry CAS, Heyrovsky Square 2, 162 06 Prague 6, Czech Republic.
| |
Collapse
|
16
|
Delgado PR, Kuehne A, Periquito JS, Millward JM, Pohlmann A, Waiczies S, Niendorf T. B 1 inhomogeneity correction of RARE MRI with transceive surface radiofrequency probes. Magn Reson Med 2020; 84:2684-2701. [PMID: 32447779 DOI: 10.1002/mrm.28307] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/27/2020] [Accepted: 04/13/2020] [Indexed: 12/17/2022]
Abstract
PURPOSE The use of surface radiofrequency (RF) coils is common practice to boost sensitivity in (pre)clinical MRI. The number of transceive surface RF coils is rapidly growing due to the surge in cryogenically cooled RF technology and ultrahigh-field MRI. Consequently, there is an increasing need for effective correction of the excitation field ( B 1 + ) inhomogeneity inherent in these coils. Retrospective B1 correction permits quantitative MRI, but this usually requires a pulse sequence-specific analytical signal intensity (SI) equation. Such an equation is not available for fast spin-echo (Rapid Acquisition with Relaxation Enhancement, RARE) MRI. Here we present, test, and validate retrospective B1 correction methods for RARE. METHODS We implemented the commonly used sensitivity correction and developed an empirical model-based method and a hybrid combination of both. Tests and validations were performed with a cryogenically cooled RF probe and a single-loop RF coil. Accuracy of SI quantification and T1 contrast were evaluated after correction. RESULTS The three described correction methods achieved dramatic improvements in B1 homogeneity and significantly improved SI quantification and T1 contrast, with mean SI errors reduced from >40% to >10% following correction in all cases. Upon correction, images of phantoms and mouse heads demonstrated homogeneity comparable to that of images acquired with a volume resonator. This was quantified by SI profile, SI ratio (error < 10%), and percentage of integral uniformity (PIU > 80% in vivo and ex vivo compared to PIU > 87% with the reference RF coil). CONCLUSION This work demonstrates the efficacy of three B1 correction methods tailored for transceive surface RF probes and RARE MRI. The corrected images are suitable for quantification and show comparable results between the three methods, opening the way for T1 measurements and X-nuclei quantification using surface transceiver RF coils. This approach is applicable to other MR techniques for which no analytical SI exists.
Collapse
Affiliation(s)
- Paula Ramos Delgado
- Berlin Ultrahigh Field Facility (B.U.F.F), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | | | - João S Periquito
- Berlin Ultrahigh Field Facility (B.U.F.F), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Jason M Millward
- Berlin Ultrahigh Field Facility (B.U.F.F), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Andreas Pohlmann
- Berlin Ultrahigh Field Facility (B.U.F.F), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Sonia Waiczies
- Berlin Ultrahigh Field Facility (B.U.F.F), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,MRI.TOOLS GmbH, Berlin, Germany
| |
Collapse
|
17
|
Darçot E, Colotti R, Brennan D, Deuchar GA, Santosh C, van Heeswijk RB. A characterization of ABL-101 as a potential tracer for clinical fluorine-19 MRI. NMR IN BIOMEDICINE 2020; 33:e4212. [PMID: 31724252 DOI: 10.1002/nbm.4212] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 10/10/2019] [Accepted: 10/18/2019] [Indexed: 06/10/2023]
Abstract
The two main challenges that prevent the translation of fluorine-19 (19 F) MRI for inflammation monitoring or cell tracking into clinical practice are (i) the relatively low signal-to-noise ratio generated by the injected perfluorocarbon (PFC), which necessitates long scan times, and (ii) the need for regulatory approval and a high biocompatibility of PFCs that are also suitable for MRI. ABL-101, an emulsion of perfluoro(t-butylcyclohexane), is a third-generation PFC that is already used in clinical trials, but has not yet been used for 19 F MRI. The objective of this study was therefore to assess the performance of ABL-101 as a 19 F MRI tracer. At magnetic field strengths of 3, 9.4 and 14.1 T, the CF3 groups of ABL-101 generated a large well-separated singlet with T2 /T1 ratios of >0.27, >0.14 and > 0.05, respectively. All relaxation times decreased with the increase in magnetic field strength. The detection limit of ABL-101 in a 0.25 mm3 voxel at 3 T, 37°C and with a 3-minute acquisition time was 7.21mM. After intravenous injection, the clearance half-lives of the ABL-101 19 F MR signal in mouse (n = 3) spleen and liver were 6.85 ± 0.45 and 3.20 ± 0.35 days, respectively. These results demonstrate that ABL-101 has 19 F MR characteristics that are similar to those of PFCs developed specifically for MRI, while it has clearance half-lives similar to PFCs that have previously been used in large doses in non-MRI clinical trials. Overall, ABL-101 is thus a very promising candidate tracer for future clinical trials that use 19 F MRI for cell tracking or the monitoring of inflammation.
Collapse
Affiliation(s)
- Emeline Darçot
- Department of Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Roberto Colotti
- Department of Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - David Brennan
- Department of Neuroradiology, Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow, UK
- Aurum Biosciences Ltd, Glasgow, UK
| | | | - Celestine Santosh
- Department of Neuroradiology, Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow, UK
- Aurum Biosciences Ltd, Glasgow, UK
| | - Ruud B van Heeswijk
- Department of Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Center for Biomedical Imaging (CIBM), Lausanne and Geneva, Switzerland
| |
Collapse
|
18
|
Starke L, Pohlmann A, Prinz C, Niendorf T, Waiczies S. Performance of compressed sensing for fluorine-19 magnetic resonance imaging at low signal-to-noise ratio conditions. Magn Reson Med 2019; 84:592-608. [PMID: 31863516 DOI: 10.1002/mrm.28135] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/19/2019] [Accepted: 11/27/2019] [Indexed: 12/27/2022]
Abstract
PURPOSE To examine the performance of compressed sensing (CS) in reconstructing low signal-to-noise ratio (SNR) 19 F MR signals that are close to the detection threshold and originate from small signal sources with no a priori known location. METHODS Regularization strength was adjusted automatically based on noise level. As performance metrics, root-mean-square deviations, true positive rates (TPRs), and false discovery rates were computed. CS and conventional reconstructions were compared at equal measurement time and evaluated in relation to high-SNR reference data. 19 F MR data were generated from a purpose-built phantom and benchmarked against simulations, as well as from the experimental autoimmune encephalomyelitis mouse model. We quantified the signal intensity bias and introduced an intensity calibration for in vivo data using high-SNR ex vivo data. RESULTS Low-SNR 19 F MR data could be reliably reconstructed. Detection sensitivity was consistently improved and data fidelity was preserved for undersampling and averaging factors of α = 2 or = 3. Higher α led to signal blurring in the mouse model. The improved TPRs at α = 3 were comparable to a 2.5-fold increase in measurement time. Whereas CS resulted in a downward bias of the 19 F MR signal, Fourier reconstructions resulted in an unexpected upward bias of similar magnitude. The calibration corrected signal-intensity deviations for all reconstructions. CONCLUSION CS is advantageous whenever image features are close to the detection threshold. It is a powerful tool, even for low-SNR data with sparsely distributed 19 F signals, to improve spatial and temporal resolution in 19 F MR applications.
Collapse
Affiliation(s)
- Ludger Starke
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Andreas Pohlmann
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Christian Prinz
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Sonia Waiczies
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| |
Collapse
|
19
|
Ghuman H, Hitchens TK, Modo M. A systematic optimization of 19F MR image acquisition to detect macrophage invasion into an ECM hydrogel implanted in the stroke-damaged brain. Neuroimage 2019; 202:116090. [PMID: 31408717 DOI: 10.1016/j.neuroimage.2019.116090] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 08/06/2019] [Accepted: 08/08/2019] [Indexed: 02/08/2023] Open
Abstract
19F-MR imaging of perfluorocarbon (PFC)-labeled macrophages can provide a unique insight into their participation and spatio-temporal dynamics of inflammatory events, such as the biodegradation of an extracellular matrix (ECM) hydrogel implanted into a stroke cavity. To determine the most efficient acquisition strategy for 19F-MR imaging, five commonly used sequences were optimized using a design of experiment (DoE) approach and compared based on their signal-to-noise ratio (SNR). The fast imaging with steady-state precession (FISP) sequence produced the most efficient detection of a 19F signal followed by the rapid acquisition with relaxation enhancement (RARE) sequence. The multi-slice multi-echo (MSME), fast low angle shot (FLASH), and zero echo time (ZTE) sequences were significantly less efficient. Imaging parameters (matrix/voxel size; slice thickness, number of averages) determined the accuracy (i.e. trueness and precision) of object identification by reducing partial volume effects, as determined by analysis of the point spread function (PSF). A 96 × 96 matrix size (0.35 mm3) produced the lowest limit of detection (LOD) for RARE (2.85 mM PFPE; 119 mM 19F) and FISP (0.43 mM PFPE; 18.1 mM 19F), with an SNR of 2 as the detection threshold. Imaging of a brain phantom with PFC-labeled macrophages invading an ECM hydrogel further illustrated the impact of these parameter changes. The systematic optimization of sequence and imaging parameters provides the framework for an accurate visualization of 19F-labeled macrophage distribution and density in the brain. This will enhance our understanding of the contribution of periphery-derived macrophages in bioscaffold degradation and its role in brain tissue regeneration.
Collapse
Affiliation(s)
- Harmanvir Ghuman
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - T Kevin Hitchens
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michel Modo
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
20
|
Chirizzi C, De Battista D, Tirotta I, Metrangolo P, Comi G, Bombelli FB, Chaabane L. Multispectral MRI with Dual Fluorinated Probes to Track Mononuclear Cell Activity in Mice. Radiology 2019; 291:351-357. [PMID: 30888930 DOI: 10.1148/radiol.2019181073] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background MRI with fluorine 19 (19F) probes has shown an ability to track immune cell activity with a specific, stable, and quantitative signal. In addition, the chemical shift differences of selected 19F probes make dual-probe imaging possible. To improve 19F MRI sensitivity for dual-probe imaging, optimal fluorine probes are needed. Purpose To develop multispectral 19F MRI to image immune cell activity in vivo using 19F nanoparticles of two distinct fluorocarbons. Materials and Methods Both 19F nanoparticles formulated with two fluorocarbons with distinct resonance frequencies and a high fluorine payload were characterized in terms of size, stability, MR profile, and relaxation times at 7 T. 19F MRI sensitivity was tested on labeling cells both in vitro and in vivo in C57BL/6 mice after conditional ablation of myeloid cells through the inhibition of colony-stimulating factor-1 receptor (CSF1Ri) to monitor the change of immune cells phagocytosis. Fluorine MRI data were acquired at the resonance frequency of each fluorocarbon by using a three-dimensional fast spin-echo sequence. Fluorescent dyes were also inserted into 19F nanoparticles to allow flow-cytometric and confocal microscopy analysis of labeled cells. Fluorine signal-to-noise ratio (SNR) was compared by using two-way repeated measures analysis of variance with Bonferroni post hoc correction. Results Fluorine MRI demonstrated high sensitivity and high specificity in the imaging of mononuclear cells both in vitro and in vivo. In combination with proton MRI, a map of 19F nuclei from each fluorocarbon was obtained without overlaps or artifacts. In vitro cell viability was unchanged, and 8000 cells with a high SNR (>8) were detected. In vivo high fluorine signal was observed in the bone marrow (SNR > 15) immediately after CSF1Ri treatment interruption, which correlated with high uptake by neutrophils and monocytes at flow cytometry. Conclusion By assessing in vivo MRI of mononuclear cell phagocytic ability with 19F nanoparticles, MRI with dual 19F probes can effectively track immune cell activity in combination with current MRI protocols. © RSNA, 2019 Online supplemental material is available for this article. See also the editorial by Bulte in this issue.
Collapse
Affiliation(s)
- Cristina Chirizzi
- From the Institute of Experimental Neurology (INSPE) and Experimental Imaging Center (CIS), INSPE-DiBiT2, IRCCS Ospedale San Raffaele, via Olgettina 60, Milan 20132, Italy (C.C., D.D.B., G.C., L.C.); and SupraBioNano Laboratory, Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta" Politecnico di Milano, Milan, Italy (I.T., P.M., F.B.B.)
| | - Davide De Battista
- From the Institute of Experimental Neurology (INSPE) and Experimental Imaging Center (CIS), INSPE-DiBiT2, IRCCS Ospedale San Raffaele, via Olgettina 60, Milan 20132, Italy (C.C., D.D.B., G.C., L.C.); and SupraBioNano Laboratory, Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta" Politecnico di Milano, Milan, Italy (I.T., P.M., F.B.B.)
| | - Ilaria Tirotta
- From the Institute of Experimental Neurology (INSPE) and Experimental Imaging Center (CIS), INSPE-DiBiT2, IRCCS Ospedale San Raffaele, via Olgettina 60, Milan 20132, Italy (C.C., D.D.B., G.C., L.C.); and SupraBioNano Laboratory, Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta" Politecnico di Milano, Milan, Italy (I.T., P.M., F.B.B.)
| | - Pierangelo Metrangolo
- From the Institute of Experimental Neurology (INSPE) and Experimental Imaging Center (CIS), INSPE-DiBiT2, IRCCS Ospedale San Raffaele, via Olgettina 60, Milan 20132, Italy (C.C., D.D.B., G.C., L.C.); and SupraBioNano Laboratory, Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta" Politecnico di Milano, Milan, Italy (I.T., P.M., F.B.B.)
| | - Giancarlo Comi
- From the Institute of Experimental Neurology (INSPE) and Experimental Imaging Center (CIS), INSPE-DiBiT2, IRCCS Ospedale San Raffaele, via Olgettina 60, Milan 20132, Italy (C.C., D.D.B., G.C., L.C.); and SupraBioNano Laboratory, Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta" Politecnico di Milano, Milan, Italy (I.T., P.M., F.B.B.)
| | - Francesca Baldelli Bombelli
- From the Institute of Experimental Neurology (INSPE) and Experimental Imaging Center (CIS), INSPE-DiBiT2, IRCCS Ospedale San Raffaele, via Olgettina 60, Milan 20132, Italy (C.C., D.D.B., G.C., L.C.); and SupraBioNano Laboratory, Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta" Politecnico di Milano, Milan, Italy (I.T., P.M., F.B.B.)
| | - Linda Chaabane
- From the Institute of Experimental Neurology (INSPE) and Experimental Imaging Center (CIS), INSPE-DiBiT2, IRCCS Ospedale San Raffaele, via Olgettina 60, Milan 20132, Italy (C.C., D.D.B., G.C., L.C.); and SupraBioNano Laboratory, Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta" Politecnico di Milano, Milan, Italy (I.T., P.M., F.B.B.)
| |
Collapse
|
21
|
Waiczies S, Rosenberg JT, Kuehne A, Starke L, Delgado PR, Millward JM, Prinz C, Dos Santos Periquito J, Pohlmann A, Waiczies H, Niendorf T. Fluorine-19 MRI at 21.1 T: enhanced spin-lattice relaxation of perfluoro-15-crown-5-ether and sensitivity as demonstrated in ex vivo murine neuroinflammation. MAGMA (NEW YORK, N.Y.) 2019; 32:37-49. [PMID: 30421250 PMCID: PMC6514110 DOI: 10.1007/s10334-018-0710-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 10/16/2018] [Accepted: 10/18/2018] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Fluorine MR would benefit greatly from enhancements in signal-to-noise ratio (SNR). This study examines the sensitivity gain of 19F MR that can be practically achieved when moving from 9.4 to 21.1 T. MATERIALS AND METHODS We studied perfluoro-15-crown-5-ether (PFCE) at both field strengths (B0), as a pure compound, in the form of nanoparticles (NP) as employed to study inflammation in vivo, as well as in inflamed tissue. Brains, lymph nodes (LNs) and spleens were obtained from mice with experimental autoimmune encephalomyelitis (EAE) that had been administered PFCE NPs. All samples were measured at both B0 with 2D-RARE and 2D-FLASH using 19F volume radiofrequency resonators together. T1 and T2 of PFCE were measured at both B0 strengths. RESULTS Compared to 9.4 T, an SNR gain of > 3 was observed for pure PFCE and > 2 for PFCE NPs at 21.1 T using 2D-FLASH. A dependency of 19F T1 and T2 relaxation on B0 was demonstrated. High spatially resolved 19F MRI of EAE brains and LNs at 21.1 T revealed signals not seen at 9.4 T. DISCUSSION Enhanced SNR and T1 shortening indicate the potential benefit of in vivo 19F MR at higher B0 to study inflammatory processes with greater detail.
Collapse
Affiliation(s)
- Sonia Waiczies
- Experimental Ultrahigh Field MRI, Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Roessle-Str. 10, 13125, Berlin, Germany.
| | - Jens T Rosenberg
- The National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA
| | | | - Ludger Starke
- Experimental Ultrahigh Field MRI, Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Roessle-Str. 10, 13125, Berlin, Germany
| | - Paula Ramos Delgado
- Experimental Ultrahigh Field MRI, Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Roessle-Str. 10, 13125, Berlin, Germany
| | - Jason M Millward
- Experimental Ultrahigh Field MRI, Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Roessle-Str. 10, 13125, Berlin, Germany
| | - Christian Prinz
- Experimental Ultrahigh Field MRI, Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Roessle-Str. 10, 13125, Berlin, Germany
| | - Joao Dos Santos Periquito
- Experimental Ultrahigh Field MRI, Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Roessle-Str. 10, 13125, Berlin, Germany
| | - Andreas Pohlmann
- Experimental Ultrahigh Field MRI, Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Roessle-Str. 10, 13125, Berlin, Germany
| | | | - Thoralf Niendorf
- Experimental Ultrahigh Field MRI, Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Roessle-Str. 10, 13125, Berlin, Germany
- MRI TOOLS GmbH, Berlin, Germany
- Experimental and Clinical Research Center, A Joint Cooperation Between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| |
Collapse
|
22
|
Jirak D, Galisova A, Kolouchova K, Babuka D, Hruby M. Fluorine polymer probes for magnetic resonance imaging: quo vadis? MAGMA (NEW YORK, N.Y.) 2019; 32:173-185. [PMID: 30498886 PMCID: PMC6514090 DOI: 10.1007/s10334-018-0724-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 11/19/2018] [Accepted: 11/21/2018] [Indexed: 12/26/2022]
Abstract
Over the last few years, the development and relevance of 19F magnetic resonance imaging (MRI) for use in clinical practice has emerged. MRI using fluorinated probes enables the achievement of a specific signal with high contrast in MRI images. However, to ensure sufficient sensitivity of 19F MRI, fluorine probes with a high content of chemically equivalent fluorine atoms are required. The majority of 19F MRI agents are perfluorocarbon emulsions, which have a broad range of applications in molecular imaging, although the content of fluorine atoms in these molecules is limited. In this review, we focus mainly on polymer probes that allow higher fluorine content and represent versatile platforms with properties tailorable to a plethora of biomedical in vivo applications. We discuss the chemical development, up to the first imaging applications, of these promising fluorine probes, including injectable polymers that form depots that are intended for possible use in cancer therapy.
Collapse
Affiliation(s)
- Daniel Jirak
- Institute for Clinical and Experimental Medicine, Vídeňská 9, 140 21, Prague 4, Czech Republic.
- Institute of Biophysics and Informatics, 1st Medicine Faculty, Charles University, Salmovská 1, 120 00, Prague, Czech Republic.
- Faculty of Health Studies, Technical University of Liberec, Studentská 1402/2, 461 17, Liberec 1, Czech Republic.
| | - Andrea Galisova
- Institute for Clinical and Experimental Medicine, Vídeňská 9, 140 21, Prague 4, Czech Republic
| | - Kristyna Kolouchova
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského sq. 2, 162 06, Prague 6, Czech Republic
| | - David Babuka
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského sq. 2, 162 06, Prague 6, Czech Republic
| | - Martin Hruby
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského sq. 2, 162 06, Prague 6, Czech Republic
| |
Collapse
|
23
|
Toward 19F magnetic resonance thermometry: spin-lattice and spin-spin-relaxation times and temperature dependence of fluorinated drugs at 9.4 T. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2018; 32:51-61. [PMID: 30515642 DOI: 10.1007/s10334-018-0722-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 10/11/2018] [Accepted: 11/21/2018] [Indexed: 12/26/2022]
Abstract
OBJECTIVE This study examines the influence of the environmental factor temperature on the 19F NMR characteristics of fluorinated compounds in phantom studies and in tissue. MATERIALS AND METHODS 19F MR mapping and MR spectroscopy techniques were used to characterize the 19F NMR characteristics of perfluoro-crown ether (PFCE), isoflurane, teriflunomide, and flupentixol. T1 and T2 mapping were performed, while temperature in the samples was changed (T = 20-60 °C) and monitored using fiber optic measurements. In tissue, T1 of PFCE nanoparticles was determined at physiological temperatures and compared with the T1-measured at room temperature. RESULTS Studies on PFCE, isoflurane, teriflunomide, and flupentixol showed a relationship between temperature and their physicochemical characteristics, namely, chemical shift, T1 and T2. T1 of PFCE nanoparticles was higher at physiological body temperatures compared to room temperature. DISCUSSION The impact of temperature on the 19F NMR parameters of fluorinated compounds demonstrated in this study not only opens a trajectory toward 19F MR-based thermometry, but also indicates the need for adapting MR sequence parameters according to environmental changes such as temperature. This will be an absolute requirement for detecting fluorinated compounds by 19F MR techniques in vivo.
Collapse
|
24
|
Khalil AA, Mueller S, Foddis M, Mosch L, Lips J, Przesdzing I, Temme S, Flögel U, Dirnagl U, Boehm-Sturm P. Longitudinal 19F magnetic resonance imaging of brain oxygenation in a mouse model of vascular cognitive impairment using a cryogenic radiofrequency coil. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2018; 32:105-114. [DOI: 10.1007/s10334-018-0712-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/14/2018] [Accepted: 10/22/2018] [Indexed: 12/20/2022]
|
25
|
Park BS, Ma G, Koch WT, Rajan SS, Mastromanolis M, Lam J, Sung K, McCright B. Improvement of 19F MR image uniformity in a mouse model of cellular therapy using inductive coupling. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2018; 32:15-23. [PMID: 29948237 DOI: 10.1007/s10334-018-0693-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/10/2018] [Accepted: 05/21/2018] [Indexed: 10/28/2022]
Abstract
OBJECTIVE Improve 19F magnetic resonance imaging uniformity of perfluorocarbon (PFC)-labeled cells by using a secondary inductive resonator tuned to 287 MHz to enhance the induced radio frequency (RF) magnetic field (B1) at 7.05 T. MATERIALS AND METHODS Following Faraday's induction law, the sign of induced B1 made by the secondary resonator can be changed depending on the tuning of the resonator. A secondary resonator located on the opposite side of the phantom of the 19F surface coil can be shown to enhance or subtract the induced B1 field, depending upon its tuning. RESULTS The numerical simulation results of rotating transmit B1 magnitude (|B 1 + |) and corresponding experimental 19F images were compared without and with the secondary resonator. With the secondary resonator tuned to 287 MHz, improvements of |B 1 + | and 19F image uniformity were demonstrated. The use of the secondary resonator improved our ability to visualize transplanted cell location non-invasively over a period of 6 weeks. CONCLUSION The secondary resonator tuned to enhance the induced B1 results in improved image uniformity in a pre-clinical application, enabling cell tracking of PFC-labeled cells with the secondary resonator.
Collapse
Affiliation(s)
- Bu S Park
- Division of Cellular and Gene Therapies (DCGT)/OTAT/CBER, Food and Drug Administration, Silver Spring, MD, 20993-0002, USA.
| | - Ge Ma
- Division of Cellular and Gene Therapies (DCGT)/OTAT/CBER, Food and Drug Administration, Silver Spring, MD, 20993-0002, USA
| | - William T Koch
- Division of Cellular and Gene Therapies (DCGT)/OTAT/CBER, Food and Drug Administration, Silver Spring, MD, 20993-0002, USA
| | - Sunder S Rajan
- Division of Biomedical Physics (DBP)/OSEL/CDRH, Food and Drug Administration, Silver Spring, MD, 20993-0002, USA
| | - Manuel Mastromanolis
- Division of Cellular and Gene Therapies (DCGT)/OTAT/CBER, Food and Drug Administration, Silver Spring, MD, 20993-0002, USA
| | - Johnny Lam
- Division of Cellular and Gene Therapies (DCGT)/OTAT/CBER, Food and Drug Administration, Silver Spring, MD, 20993-0002, USA
| | - Kyung Sung
- Division of Cellular and Gene Therapies (DCGT)/OTAT/CBER, Food and Drug Administration, Silver Spring, MD, 20993-0002, USA
| | - Brent McCright
- Division of Cellular and Gene Therapies (DCGT)/OTAT/CBER, Food and Drug Administration, Silver Spring, MD, 20993-0002, USA
| |
Collapse
|
26
|
Waiczies S, Millward JM, Starke L, Delgado PR, Huelnhagen T, Prinz C, Marek D, Wecker D, Wissmann R, Koch SP, Boehm-Sturm P, Waiczies H, Niendorf T, Pohlmann A. Enhanced Fluorine-19 MRI Sensitivity using a Cryogenic Radiofrequency Probe: Technical Developments and Ex Vivo Demonstration in a Mouse Model of Neuroinflammation. Sci Rep 2017; 7:9808. [PMID: 28851959 PMCID: PMC5575026 DOI: 10.1038/s41598-017-09622-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 07/19/2017] [Indexed: 11/10/2022] Open
Abstract
Neuroinflammation can be monitored using fluorine-19 (19F)-containing nanoparticles and 19F MRI. Previously we studied neuroinflammation in experimental autoimmune encephalomyelitis (EAE) using room temperature (RT) 19F radiofrequency (RF) coils and low spatial resolution 19F MRI to overcome constraints in signal-to-noise ratio (SNR). This yielded an approximate localization of inflammatory lesions. Here we used a new 19F transceive cryogenic quadrature RF probe ( 19 F-CRP) that provides the SNR necessary to acquire superior spatially-resolved 19F MRI. First we characterized the signal-transmission profile of the 19 F-CRP. The 19 F-CRP was then benchmarked against a RT 19F/1H RF coil. For SNR comparison we used reference compounds including 19F-nanoparticles and ex vivo brains from EAE mice administered with 19F-nanoparticles. The transmit/receive profile of the 19 F-CRP diminished with increasing distance from the surface. This was counterbalanced by a substantial SNR gain compared to the RT coil. Intraparenchymal inflammation in the ex vivo EAE brains was more sharply defined when using 150 μm isotropic resolution with the 19 F-CRP, and reflected the known distribution of EAE histopathology. At this spatial resolution, most 19F signals were undetectable using the RT coil. The 19 F-CRP is a valuable tool that will allow us to study neuroinflammation with greater detail in future in vivo studies.
Collapse
Affiliation(s)
- Sonia Waiczies
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.
| | - Jason M Millward
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Ludger Starke
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Paula Ramos Delgado
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Till Huelnhagen
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Christian Prinz
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | | | | | | | - Stefan P Koch
- Department of Experimental Neurology, Center for Stroke Research Berlin (CSB), Charité Core Facility 7T Experimental MRIs, and NeuroCure, Charité University Medicine Berlin, Berlin, Germany
| | - Philipp Boehm-Sturm
- Department of Experimental Neurology, Center for Stroke Research Berlin (CSB), Charité Core Facility 7T Experimental MRIs, and NeuroCure, Charité University Medicine Berlin, Berlin, Germany
| | | | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- MRI TOOLS GmbH, Berlin, Germany
- Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Andreas Pohlmann
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| |
Collapse
|
27
|
Choi CH, Hong SM, Ha Y, Shah NJ. Design and construction of a novel 1H/ 19F double-tuned coil system using PIN-diode switches at 9.4T. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2017; 279:11-15. [PMID: 28411437 DOI: 10.1016/j.jmr.2017.04.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/09/2017] [Accepted: 04/05/2017] [Indexed: 06/07/2023]
Abstract
A double-tuned 1H/19F coil using PIN-diode switches was developed and its performance evaluated. The is a key difference from the previous developments being that this design used a PIN-diode switch in series with an additionally inserted inductor in parallel to one of the capacitors on the loop. The probe was adjusted to 19F when the reverse bias voltage was applied (PIN-diode OFF), whilst it was switched to 1H when forward current was flowing (PIN-diode ON). S-parameters and Q-factors of single- and double-tuned coils were examined and compared with/without a phantom on the bench. Imaging experiments were carried out on a 9.4T preclinical scanner. All coils were tuned at resonance frequencies and matched well. It is shown that the Q-ratio and SNR of double-tuned coil at 19F frequency are nearly as good as those of a single-tuned coil. Since the operating frequency was tuned to 19F when the PIN-diodes were turned off, losses due to PIN-diodes were substantially lower resulting in the provision of excellent image quality of X-nuclei.
Collapse
Affiliation(s)
- Chang-Hoon Choi
- Institute of Neuroscience and Medicine - 4, Forschungszentrum Juelich, 52425 Juelich, Germany.
| | - Suk-Min Hong
- Institute of Neuroscience and Medicine - 4, Forschungszentrum Juelich, 52425 Juelich, Germany
| | - YongHyun Ha
- Institute of Neuroscience and Medicine - 4, Forschungszentrum Juelich, 52425 Juelich, Germany
| | - N Jon Shah
- Institute of Neuroscience and Medicine - 4, Forschungszentrum Juelich, 52425 Juelich, Germany; Faculty of Medicine, Department of Neurology, RWTH Aachen University, JARA, Aachen, Germany; Department of Electrical and Computer Systems Engineering, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia; Monash Biomedical Imaging, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
28
|
Ku MC, Edes I, Bendix I, Pohlmann A, Waiczies H, Prozorovski T, Günther M, Martin C, Pagès G, Wolf SA, Kettenmann H, Uckert W, Niendorf T, Waiczies S. ERK1 as a Therapeutic Target for Dendritic Cell Vaccination against High-Grade Gliomas. Mol Cancer Ther 2016; 15:1975-87. [PMID: 27256374 DOI: 10.1158/1535-7163.mct-15-0850] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 05/23/2016] [Indexed: 11/16/2022]
Abstract
Glioma regression requires the recruitment of potent antitumor immune cells into the tumor microenvironment. Dendritic cells (DC) play a role in immune responses to these tumors. The fact that DC vaccines do not effectively combat high-grade gliomas, however, suggests that DCs need to be genetically modified specifically to promote their migration to tumor relevant sites. Previously, we identified extracellular signal-regulated kinase (ERK1) as a regulator of DC immunogenicity and brain autoimmunity. In the current study, we made use of modern magnetic resonance methods to study the role of ERK1 in regulating DC migration and tumor progression in a model of high-grade glioma. We found that ERK1-deficient mice are more resistant to the development of gliomas, and tumor growth in these mice is accompanied by a higher infiltration of leukocytes. ERK1-deficient DCs exhibit an increase in migration that is associated with sustained Cdc42 activation and increased expression of actin-associated cytoskeleton-organizing proteins. We also demonstrated that ERK1 deletion potentiates DC vaccination and provides a survival advantage in high-grade gliomas. Considering the therapeutic significance of these results, we propose ERK1-deleted DC vaccines as an additional means of eradicating resilient tumor cells and preventing tumor recurrence. Mol Cancer Ther; 15(8); 1975-87. ©2016 AACR.
Collapse
Affiliation(s)
- Min-Chi Ku
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrueck Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Inan Edes
- Department of Molecular Cell Biology and Gene Therapy, Humboldt-University Berlin and Max Delbrueck Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Ivo Bendix
- Department of Pediatrics I, Neonatology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Andreas Pohlmann
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrueck Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | | | - Tim Prozorovski
- Department of Neurology, Heinrich Heine University, Düsseldorf, Germany
| | - Martin Günther
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrueck Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | | | - Gilles Pagès
- University Nice-Sophia Antipolis, Institute for Research on Cancer and Aging of Nice (IRCAN), Nice, France
| | - Susanne A Wolf
- Department of Cellular Neurosciences, Max Delbrueck Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Helmut Kettenmann
- Department of Cellular Neurosciences, Max Delbrueck Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Wolfgang Uckert
- Department of Molecular Cell Biology and Gene Therapy, Humboldt-University Berlin and Max Delbrueck Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrueck Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Sonia Waiczies
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrueck Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.
| |
Collapse
|
29
|
Fox MS, Gaudet JM, Foster PJ. Fluorine-19 MRI Contrast Agents for Cell Tracking and Lung Imaging. MAGNETIC RESONANCE INSIGHTS 2016; 8:53-67. [PMID: 27042089 PMCID: PMC4807887 DOI: 10.4137/mri.s23559] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 01/24/2016] [Accepted: 01/31/2016] [Indexed: 02/06/2023]
Abstract
Fluorine-19 (19F)-based contrast agents for magnetic resonance imaging stand to revolutionize imaging-based research and clinical trials in several fields of medical intervention. First, their use in characterizing in vivo cell behavior may help bring cellular therapy closer to clinical acceptance. Second, their use in lung imaging provides novel noninvasive interrogation of the ventilated airspaces without the need for complicated, hard-to-distribute hardware. This article reviews the current state of 19F-based cell tracking and lung imaging using magnetic resonance imaging and describes the link between the methods across these fields and how they may mutually benefit from solutions to mutual problems encountered when imaging 19F-containing compounds, as well as hardware and software advancements.
Collapse
Affiliation(s)
- Matthew S Fox
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada.; Imaging Research Laboratories, Robarts Research Institute, London, ON, Canada
| | - Jeffrey M Gaudet
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada.; Imaging Research Laboratories, Robarts Research Institute, London, ON, Canada
| | - Paula J Foster
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada.; Imaging Research Laboratories, Robarts Research Institute, London, ON, Canada
| |
Collapse
|
30
|
Niendorf T, Pohlmann A, Reimann HM, Waiczies H, Peper E, Huelnhagen T, Seeliger E, Schreiber A, Kettritz R, Strobel K, Ku MC, Waiczies S. Advancing Cardiovascular, Neurovascular, and Renal Magnetic Resonance Imaging in Small Rodents Using Cryogenic Radiofrequency Coil Technology. Front Pharmacol 2015; 6:255. [PMID: 26617515 PMCID: PMC4642111 DOI: 10.3389/fphar.2015.00255] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 10/19/2015] [Indexed: 12/11/2022] Open
Abstract
Research in pathologies of the brain, heart and kidney have gained immensely from the plethora of studies that have helped shape new methods in magnetic resonance (MR) for characterizing preclinical disease models. Methodical probing into preclinical animal models by MR is invaluable since it allows a careful interpretation and extrapolation of data derived from these models to human disease. In this review we will focus on the applications of cryogenic radiofrequency (RF) coils in small animal MR as a means of boosting image quality (e.g., by supporting MR microscopy) and making data acquisition more efficient (e.g., by reducing measuring time); both being important constituents for thorough investigational studies on animal models of disease. This review attempts to make the (bio)medical imaging, molecular medicine, and pharmaceutical communities aware of this productive ferment and its outstanding significance for anatomical and functional MR in small rodents. The goal is to inspire a more intense interdisciplinary collaboration across the fields to further advance and progress non-invasive MR methods that ultimately support thorough (patho)physiological characterization of animal disease models. In this review, current and potential future applications for the RF coil technology in cardiovascular, neurovascular, and renal disease will be discussed.
Collapse
Affiliation(s)
- Thoralf Niendorf
- Berlin Ultrahigh Field Facility, Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlin, Germany
- German Centre for Cardiovascular ResearchBerlin, Germany
| | - Andreas Pohlmann
- Berlin Ultrahigh Field Facility, Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlin, Germany
| | - Henning M. Reimann
- Berlin Ultrahigh Field Facility, Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlin, Germany
| | | | - Eva Peper
- Berlin Ultrahigh Field Facility, Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlin, Germany
| | - Till Huelnhagen
- Berlin Ultrahigh Field Facility, Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlin, Germany
| | - Erdmann Seeliger
- Center for Cardiovascular Research, Institute of Physiology, Charité—Universitätsmedizin BerlinBerlin, Germany
| | - Adrian Schreiber
- Clinic for Nephrology and Intensive Care Medicine, Charité Medical Faculty and Experimental and Clinical Research CenterBerlin, Germany
| | - Ralph Kettritz
- Clinic for Nephrology and Intensive Care Medicine, Charité Medical Faculty and Experimental and Clinical Research CenterBerlin, Germany
| | | | - Min-Chi Ku
- Berlin Ultrahigh Field Facility, Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlin, Germany
| | - Sonia Waiczies
- Berlin Ultrahigh Field Facility, Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlin, Germany
| |
Collapse
|
31
|
Ji Y, Waiczies H, Winter L, Neumanova P, Hofmann D, Rieger J, Mekle R, Waiczies S, Niendorf T. Eight-channel transceiver RF coil array tailored for ¹H/¹⁹F MR of the human knee and fluorinated drugs at 7.0 T. NMR IN BIOMEDICINE 2015; 28:726-737. [PMID: 25916199 DOI: 10.1002/nbm.3300] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 03/09/2015] [Accepted: 03/11/2015] [Indexed: 06/04/2023]
Abstract
The purpose of this study was to evaluate the feasibility of an eight-channel dual-tuned transceiver surface RF coil array for combined (1)H/(19)F MR of the human knee at 7.0 T following application of (19)F-containing drugs. The (1)H/(19)F RF coil array includes a posterior module with two (1)H loop elements and two anterior modules, each consisting of one (1)H and two (19)F elements. The decoupling of neighbor elements is achieved by a shared capacitor. Electromagnetic field simulations were performed to afford uniform transmission fields and to be in accordance with RF safety guidelines. Localized (19)F MRS was conducted with 47 and 101 mmol/L of flufenamic acid (FA) – a (19)F-containing non-steroidal anti-inflammatory drug – to determine T1 and T2 and to study the (19)F signal-to-dose relationship. The suitability of the proposed approach for (1)H/(19)F MR was examined in healthy subjects. Reflection coefficients of each channel were less than -17 dB and coupling between channels was less than -11 dB. Q(L)/Q(U) was less than 0.5 for all elements. MRS results demonstrated signal stability with 1% variation. T1 and T2 relaxation times changed with concentration of FA: T1 /T2 = 673/31 ms at 101 mmol/L and T1 /T2 = 616/26 ms at 47 mmol/L. A uniform signal and contrast across the patella could be observed in proton imaging. The sensitivity of the RF coil enabled localization of FA ointment administrated to the knee with an in-plane spatial resolution of (1.5 × 1.5) mm(2) achieved in a total scan time of approximately three minutes, which is well suited for translational human studies. This study shows the feasibility of combined (1)H/(19)F MRI of the knee at 7.0 T and proposes T1 and T2 mapping methods for quantifying fluorinated drugs in vivo. Further technological developments are necessary to promote real-time bioavailability studies and quantification of (19)F-containing medicinal compounds in vivo.
Collapse
Affiliation(s)
- Yiyi Ji
- Berlin Ultrahigh Field Facility (BUFF), Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Institute of Biophysics and Biomedical Engineering, Faculty of Sciences of the University of Lisbon, Lisbon, Portugal
| | - Helmar Waiczies
- Berlin Ultrahigh Field Facility (BUFF), Max Delbrück Center for Molecular Medicine, Berlin, Germany
- MRI.TOOLS GmbH, Berlin, Germany
| | - Lukas Winter
- Berlin Ultrahigh Field Facility (BUFF), Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Pavla Neumanova
- Berlin Ultrahigh Field Facility (BUFF), Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Daniela Hofmann
- Berlin Ultrahigh Field Facility (BUFF), Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | | | - Ralf Mekle
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Sonia Waiczies
- Berlin Ultrahigh Field Facility (BUFF), Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (BUFF), Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine, Berlin, Germany
| |
Collapse
|
32
|
Waiczies S, Lepore S, Sydow K, Drechsler S, Ku MC, Martin C, Lorenz D, Schütz I, Reimann HM, Purfürst B, Dieringer MA, Waiczies H, Dathe M, Pohlmann A, Niendorf T. Anchoring dipalmitoyl phosphoethanolamine to nanoparticles boosts cellular uptake and fluorine-19 magnetic resonance signal. Sci Rep 2015; 5:8427. [PMID: 25673047 PMCID: PMC5389132 DOI: 10.1038/srep08427] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 01/15/2015] [Indexed: 01/19/2023] Open
Abstract
Magnetic resonance (MR) methods to detect and quantify fluorine (19F) nuclei provide the opportunity to study the fate of cellular transplants in vivo. Cells are typically labeled with 19F nanoparticles, introduced into living organisms and tracked by 19F MR methods. Background-free imaging and quantification of cell numbers are amongst the strengths of 19F MR-based cell tracking but challenges pertaining to signal sensitivity and cell detection exist. In this study we aimed to overcome these limitations by manipulating the aminophospholipid composition of 19F nanoparticles in order to promote their uptake by dendritic cells (DCs). As critical components of biological membranes, phosphatidylethanolamines (PE) were studied. Both microscopy and MR spectroscopy methods revealed a striking (at least one order of magnitude) increase in cytoplasmic uptake of 19F nanoparticles in DCs following enrichment with 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE). The impact of enriching 19F nanoparticles with PE on DC migration was also investigated. By manipulating the nanoparticle composition and as a result the cellular uptake we provide here one way of boosting 19F signal per cell in order to overcome some of the limitations related to 19F MR signal sensitivity. The boost in signal is ultimately necessary to detect and track cells in vivo.
Collapse
Affiliation(s)
- Sonia Waiczies
- Berlin Ultrahigh Field Facility, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Stefano Lepore
- Berlin Ultrahigh Field Facility, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Karl Sydow
- Leibniz-Institut für Molekulare Pharmakologie, Berlin, Germany
| | - Susanne Drechsler
- Berlin Ultrahigh Field Facility, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Min-Chi Ku
- Berlin Ultrahigh Field Facility, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Conrad Martin
- Berlin Ultrahigh Field Facility, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Dorothea Lorenz
- Leibniz-Institut für Molekulare Pharmakologie, Berlin, Germany
| | - Irene Schütz
- Leibniz-Institut für Molekulare Pharmakologie, Berlin, Germany
| | - Henning M Reimann
- Berlin Ultrahigh Field Facility, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Bettina Purfürst
- Electron Microscopy Core Facility, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Matthias A Dieringer
- 1] Berlin Ultrahigh Field Facility, Max Delbrück Center for Molecular Medicine, Berlin, Germany [2] Experimental and Clinical Research Center, Berlin, Germany
| | | | - Margitta Dathe
- Leibniz-Institut für Molekulare Pharmakologie, Berlin, Germany
| | - Andreas Pohlmann
- Berlin Ultrahigh Field Facility, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| |
Collapse
|
33
|
Niendorf T, Pohlmann A, Arakelyan K, Flemming B, Cantow K, Hentschel J, Grosenick D, Ladwig M, Reimann H, Klix S, Waiczies S, Seeliger E. How bold is blood oxygenation level-dependent (BOLD) magnetic resonance imaging of the kidney? Opportunities, challenges and future directions. Acta Physiol (Oxf) 2015; 213:19-38. [PMID: 25204811 DOI: 10.1111/apha.12393] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 07/04/2014] [Accepted: 09/04/2014] [Indexed: 12/11/2022]
Abstract
Renal tissue hypoperfusion and hypoxia are key elements in the pathophysiology of acute kidney injury and its progression to chronic kidney disease. Yet, in vivo assessment of renal haemodynamics and tissue oxygenation remains a challenge. Many of the established approaches are invasive, hence not applicable in humans. Blood oxygenation level-dependent (BOLD) magnetic resonance imaging (MRI) offers an alternative. BOLD-MRI is non-invasive and indicative of renal tissue oxygenation. Nonetheless, recent (pre-) clinical studies revived the question as to how bold renal BOLD-MRI really is. This review aimed to deliver some answers. It is designed to inspire the renal physiology, nephrology and imaging communities to foster explorations into the assessment of renal oxygenation and haemodynamics by exploiting the powers of MRI. For this purpose, the specifics of renal oxygenation and perfusion are outlined. The fundamentals of BOLD-MRI are summarized. The link between tissue oxygenation and the oxygenation-sensitive MR biomarker T2∗ is outlined. The merits and limitations of renal BOLD-MRI in animal and human studies are surveyed together with their clinical implications. Explorations into detailing the relation between renal T2∗ and renal tissue partial pressure of oxygen (pO2 ) are discussed with a focus on factors confounding the T2∗ vs. tissue pO2 relation. Multi-modality in vivo approaches suitable for detailing the role of the confounding factors that govern T2∗ are considered. A schematic approach describing the link between renal perfusion, oxygenation, tissue compartments and renal T2∗ is proposed. Future directions of MRI assessment of renal oxygenation and perfusion are explored.
Collapse
Affiliation(s)
- T. Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.); Max Delbrück Center for Molecular Medicine; Berlin Germany
| | - A. Pohlmann
- Berlin Ultrahigh Field Facility (B.U.F.F.); Max Delbrück Center for Molecular Medicine; Berlin Germany
| | - K. Arakelyan
- Berlin Ultrahigh Field Facility (B.U.F.F.); Max Delbrück Center for Molecular Medicine; Berlin Germany
- Institute of Physiology and Center for Cardiovascular Research (CCR); Charité - Universitätsmedizin Berlin; Berlin Germany
| | - B. Flemming
- Institute of Physiology and Center for Cardiovascular Research (CCR); Charité - Universitätsmedizin Berlin; Berlin Germany
| | - K. Cantow
- Institute of Physiology and Center for Cardiovascular Research (CCR); Charité - Universitätsmedizin Berlin; Berlin Germany
| | - J. Hentschel
- Berlin Ultrahigh Field Facility (B.U.F.F.); Max Delbrück Center for Molecular Medicine; Berlin Germany
| | - D. Grosenick
- Physikalisch-Technische Bundesanstalt (PTB); Berlin Germany
| | - M. Ladwig
- Institute of Physiology and Center for Cardiovascular Research (CCR); Charité - Universitätsmedizin Berlin; Berlin Germany
| | - H. Reimann
- Berlin Ultrahigh Field Facility (B.U.F.F.); Max Delbrück Center for Molecular Medicine; Berlin Germany
| | - S. Klix
- Berlin Ultrahigh Field Facility (B.U.F.F.); Max Delbrück Center for Molecular Medicine; Berlin Germany
| | - S. Waiczies
- Berlin Ultrahigh Field Facility (B.U.F.F.); Max Delbrück Center for Molecular Medicine; Berlin Germany
| | - E. Seeliger
- Institute of Physiology and Center for Cardiovascular Research (CCR); Charité - Universitätsmedizin Berlin; Berlin Germany
| |
Collapse
|
34
|
Cell tracking using 19F magnetic resonance imaging: Technical aspects and challenges towards clinical applications. Eur Radiol 2014; 25:726-35. [DOI: 10.1007/s00330-014-3474-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 10/03/2014] [Accepted: 10/16/2014] [Indexed: 01/03/2023]
|
35
|
Lepore S, Waiczies H, Hentschel J, Ji Y, Skodowski J, Pohlmann A, Millward JM, Paul F, Wuerfel J, Niendorf T, Waiczies S. Enlargement of cerebral ventricles as an early indicator of encephalomyelitis. PLoS One 2013; 8:e72841. [PMID: 23991157 PMCID: PMC3750011 DOI: 10.1371/journal.pone.0072841] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 07/15/2013] [Indexed: 01/01/2023] Open
Abstract
Inflammatory disorders of the central nervous system such as multiple sclerosis and acute disseminated encephalomyelitis involve an invasion of immune cells that ultimately leads to white matter demyelination, neurodegeneration and development of neurological symptoms. A clinical diagnosis is often made when neurodegenerative processes are already ongoing. In an attempt to seek early indicators of disease, we studied the temporal and spatial distribution of brain modifications in experimental autoimmune encephalomyelitis (EAE). In a thorough magnetic resonance imaging study performed with EAE mice, we observed significant enlargement of the ventricles prior to disease clinical manifestation and an increase in free water content within the cerebrospinal fluid as demonstrated by changes in T2 relaxation times. The increase in ventricle size was seen in the lateral, third and fourth ventricles. In some EAE mice the ventricle size started returning to normal values during disease remission. In parallel to this macroscopic phenomenon, we studied the temporal evolution of microscopic lesions commonly observed in the cerebellum also starting prior to disease onset. Our data suggest that changes in ventricle size during the early stages of brain inflammation could be an early indicator of the events preceding neurological disease and warrant further exploration in preclinical and clinical studies.
Collapse
Affiliation(s)
- Stefano Lepore
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrueck Center for Molecular Medicine, Berlin, Germany
- Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Universitätsmedizin Berlin and the Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Helmar Waiczies
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrueck Center for Molecular Medicine, Berlin, Germany
- Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Universitätsmedizin Berlin and the Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Jan Hentschel
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Yiyi Ji
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Julia Skodowski
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrueck Center for Molecular Medicine, Berlin, Germany
- Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Universitätsmedizin Berlin and the Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Andreas Pohlmann
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Jason M. Millward
- Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Universitätsmedizin Berlin and the Max Delbrueck Center for Molecular Medicine, Berlin, Germany
- Institute for Medical Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Friedemann Paul
- NeuroCure Clinical Research Center, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Jens Wuerfel
- NeuroCure Clinical Research Center, Charité Universitätsmedizin Berlin, Berlin, Germany
- Institute of Neuroradiology, University Medicine, Göttingen, Göttingen, Germany
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrueck Center for Molecular Medicine, Berlin, Germany
- Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Universitätsmedizin Berlin and the Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Sonia Waiczies
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrueck Center for Molecular Medicine, Berlin, Germany
- Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Universitätsmedizin Berlin and the Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| |
Collapse
|