1
|
Makowski M, Franco OL, Santos NC, Melo MN. Lipid Shape as a Membrane Activity Modulator of a Fusogenic Antimicrobial Peptide. J Chem Inf Model 2025; 65:4554-4567. [PMID: 40110793 DOI: 10.1021/acs.jcim.4c02020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
An intriguing feature of many bacterial membranes is their prevalence of non-bilayer-forming lipids, such as the cone-shaped phosphatidylethanolamines and cardiolipins. Many membrane-active antimicrobial peptides lower the bilayer-to-hexagonal phase transition energy barrier in membranes containing such types of cone-shaped lipids. Here, we systematically studied how the molecular shape of lipids affects the activity of antimicrobial peptide EcDBS1R4, which is known to be an efficient fusogenic peptide. Using coarse-grained molecular dynamics simulations, we show the ability of EcDBS1R4 to form "hourglass-shaped" pores, which is inhibited by cone-shaped lipids. The abundance of cone-shaped lipids further correlates with the propensity of this peptide to oligomerize preferentially in antiparallel dimers. We also observe that EcDBS1R4 promotes the segregation of the anionic lipids. When coupled to dimerization, this charge segregation leads to regions in the bilayer that are devoid of peptides and rich in zwitterionic lipids. Our results indicate a protective role of cone-shaped lipids in bacterial membranes against pore-mediated permeabilization by EcDBS1R4.
Collapse
Affiliation(s)
- Marcin Makowski
- GIMM - Gulbenkian Institute for Molecular Medicine, Av. Prof. Egas Moniz, Lisbon 1649-035, Portugal
- Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, Lisbon 1649-028, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras 2780-157, Portugal
- Facultad de Ciencias Químicas, Departamento de Química Física, Universidad Complutense de Madrid, Avda. Complutense s/n, Madrid 28040, Spain
- Instituto de Investigación Biomédica Hospital Doce de Octubre (imas12), Avenida de Córdoba s/n, Madrid 28041, Spain
- Instituto Pluridisciplinar, Paseo Juan XXIII 1, Madrid 28040, Spain
| | - Octávio L Franco
- Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Campus Darcy Ribeiro, Asa Norte, Brasília, Distrito Federal 70910900, Brazil
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, SGAN 916 Módulo B, Asa Norte, Brasília, Distrito Federal 70790160, Brazil
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica, Dom Bosco Avenida Tamandaré 6000, Campo Grande, Mato Grosso do Sul 79117900, Brazil
| | - Nuno C Santos
- GIMM - Gulbenkian Institute for Molecular Medicine, Av. Prof. Egas Moniz, Lisbon 1649-035, Portugal
- Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, Lisbon 1649-028, Portugal
| | - Manuel N Melo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras 2780-157, Portugal
| |
Collapse
|
2
|
DiPasquale M, Dziura M, Gbadamosi O, Castillo SR, Fahim A, Roberto J, Atkinson J, Boccalon N, Campana M, Pingali SV, Chandrasekera PC, Zolnierczuk PA, Nagao M, Kelley EG, Marquardt D. Vitamin E Acetate Causes Softening of Pulmonary Surfactant Membrane Models. Chem Res Toxicol 2025; 38:400-414. [PMID: 39970241 DOI: 10.1021/acs.chemrestox.4c00425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The popularity of electronic cigarettes and vaping products has launched the outbreak of a condition affecting the respiratory system of users, known as electronic-cigarette/vaping-associated lung injury (EVALI). The build-up of vitamin E acetate (VEA), a diluent of some illicit vaping oils, in the bronchoalveolar lavage of patients with EVALI provided circumstantial evidence as a target for investigation. In this work, we provide a fundamental characterization of the interaction of VEA with lung cells and pulmonary surfactant (PS) models to explore the mechanisms by which vaping-related lung injuries may be present. We first confirm the localization and uptake of VEA in pulmonary epithelial cells. Further, as PS is vitally responsible for the biophysical functions of the lungs, we explore the effect of added VEA on three increasingly complex models of PS: dipalmitoylphosphatidylcholine (DPPC), a lipid-only synthetic PS, and the biologically derived extract Curosurf. Using high-resolution techniques of small-angle X-ray scattering, small-angle neutron scattering, neutron spin-echo spectroscopy, and neutron reflectometry, we compare the molecular-scale behaviors of these membranes to the bulk viscoelastic properties of surfactant monolayer films as studied by Langmuir monolayer techniques. While VEA does not obviously alter the structure or organization of PS membranes, a consistent softening of membrane systems─regardless of compositional complexity─provides a biophysical explanation for the respiratory distress associated with EVALI and yields a new perspective on the behavior of the PS system.
Collapse
Affiliation(s)
- Mitchell DiPasquale
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Maksymilian Dziura
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Omotayo Gbadamosi
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Stuart R Castillo
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Ambreen Fahim
- Canadian Centre for Alternatives to Animal Methods, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Justin Roberto
- Canadian Centre for Alternatives to Animal Methods, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Jeffrey Atkinson
- Department of Chemistry, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Natalie Boccalon
- Department of Chemistry, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Mario Campana
- ISIS Pulsed Neutron and Muon Source, STFC Rutherford Appleton Laboratory, Didcot OX11 0QX, U.K
| | - Sai Venkatesh Pingali
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - P Charukeshi Chandrasekera
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON N9B 3P4, Canada
- Canadian Centre for Alternatives to Animal Methods, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Piotr A Zolnierczuk
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Michihiro Nagao
- National Institute of Standards and Technology, Center for Neutron Research, Gaithersburg, Maryland 20899, United States
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, United States
| | - Elizabeth G Kelley
- National Institute of Standards and Technology, Center for Neutron Research, Gaithersburg, Maryland 20899, United States
| | - Drew Marquardt
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON N9B 3P4, Canada
- Department of Physics, University of Windsor, Windsor, ON N9B 3P4, Canada
| |
Collapse
|
3
|
Muñoz-Muñoz PLA, Terán-Ramírez C, Mares-Alejandre RE, Márquez-González AB, Madero-Ayala PA, Meléndez-López SG, Ramos-Ibarra MA. Surface Engineering of Escherichia coli to Display Its Phytase (AppA) and Functional Analysis of Enzyme Activities. Curr Issues Mol Biol 2024; 46:3424-3437. [PMID: 38666945 PMCID: PMC11048855 DOI: 10.3390/cimb46040215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Escherichia coli phytase (AppA) is widely used as an exogenous enzyme in monogastric animal feed mainly because of its ability to degrade phytic acid or its salt (phytate), a natural source of phosphorus. Currently, successful recombinant production of soluble AppA has been achieved by gene overexpression using both bacterial and yeast systems. However, some methods for the biomembrane immobilization of phytases (including AppA), such as surface display on yeast cells and bacterial spores, have been investigated to avoid expensive enzyme purification processes. This study explored a homologous protein production approach for displaying AppA on the cell surface of E. coli by engineering its outer membrane (OM) for extracellular expression. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of total bacterial lysates and immunofluorescence microscopy of non-permeabilized cells revealed protein expression, whereas activity assays using whole cells or OM fractions indicated functional enzyme display, as evidenced by consistent hydrolytic rates on typical substrates (i.e., p-nitrophenyl phosphate and phytic acid). Furthermore, the in vitro results obtained using a simple method to simulate the gastrointestinal tract of poultry suggest that the whole-cell biocatalyst has potential as a feed additive. Overall, our findings support the notion that biomembrane-immobilized enzymes are reliable for the hydrolysis of poorly digestible substrates relevant to animal nutrition.
Collapse
Affiliation(s)
- Patricia L. A. Muñoz-Muñoz
- Biotechnology and Biosciences Research Group, School of Chemical Sciences and Engineering, Autonomous University of Baja California, Tijuana 22390, BCN, Mexico; (P.L.A.M.-M.); (C.T.-R.); (R.E.M.-A.); (A.B.M.-G.); (P.A.M.-A.); (S.G.M.-L.)
| | - Celina Terán-Ramírez
- Biotechnology and Biosciences Research Group, School of Chemical Sciences and Engineering, Autonomous University of Baja California, Tijuana 22390, BCN, Mexico; (P.L.A.M.-M.); (C.T.-R.); (R.E.M.-A.); (A.B.M.-G.); (P.A.M.-A.); (S.G.M.-L.)
- Biochemical Sciences Graduate Program (Doctorate Studies), National Autonomous University of Mexico, Cuernavaca 62210, MOR, Mexico
| | - Rosa E. Mares-Alejandre
- Biotechnology and Biosciences Research Group, School of Chemical Sciences and Engineering, Autonomous University of Baja California, Tijuana 22390, BCN, Mexico; (P.L.A.M.-M.); (C.T.-R.); (R.E.M.-A.); (A.B.M.-G.); (P.A.M.-A.); (S.G.M.-L.)
| | - Ariana B. Márquez-González
- Biotechnology and Biosciences Research Group, School of Chemical Sciences and Engineering, Autonomous University of Baja California, Tijuana 22390, BCN, Mexico; (P.L.A.M.-M.); (C.T.-R.); (R.E.M.-A.); (A.B.M.-G.); (P.A.M.-A.); (S.G.M.-L.)
- Biological and Biomedical Sciences Graduate Program (Doctorate Studies), University of North Carolina, Chapel Hill, NC 27599, USA
| | - Pablo A. Madero-Ayala
- Biotechnology and Biosciences Research Group, School of Chemical Sciences and Engineering, Autonomous University of Baja California, Tijuana 22390, BCN, Mexico; (P.L.A.M.-M.); (C.T.-R.); (R.E.M.-A.); (A.B.M.-G.); (P.A.M.-A.); (S.G.M.-L.)
- Science and Engineering Graduate Program (Doctorate Studies), Autonomous University of Baja California, Tijuana 22390, BCN, Mexico
| | - Samuel G. Meléndez-López
- Biotechnology and Biosciences Research Group, School of Chemical Sciences and Engineering, Autonomous University of Baja California, Tijuana 22390, BCN, Mexico; (P.L.A.M.-M.); (C.T.-R.); (R.E.M.-A.); (A.B.M.-G.); (P.A.M.-A.); (S.G.M.-L.)
| | - Marco A. Ramos-Ibarra
- Biotechnology and Biosciences Research Group, School of Chemical Sciences and Engineering, Autonomous University of Baja California, Tijuana 22390, BCN, Mexico; (P.L.A.M.-M.); (C.T.-R.); (R.E.M.-A.); (A.B.M.-G.); (P.A.M.-A.); (S.G.M.-L.)
| |
Collapse
|
4
|
Ikujuni AP, Budiardjo SJ, Dhar R, Slusky JSG. Detergent headgroups control TolC folding in vitro. Biophys J 2023; 122:1185-1197. [PMID: 36772796 PMCID: PMC10111266 DOI: 10.1016/j.bpj.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 12/29/2022] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
TolC is the trimeric outer membrane component of the efflux pump system in Escherichia coli that is responsible for antibiotic efflux from bacterial cells. Overexpression of efflux pumps has been reported to decrease susceptibility to antibiotics in a variety of bacterial pathogens. Reliable production of membrane proteins allows for the biophysical and structural characterization needed to better understand efflux and for the development of therapeutics. Preparation of recombinant protein for biochemical/structural studies often involves the production of proteins as inclusion body aggregates from which active proteins are recovered. Here, we find that the in vitro folding of TolC into its functional trimeric state from inclusion bodies is dependent on the headgroup composition of detergent micelles used. Nonionic detergent favors the formation of functional trimeric TolC, whereas zwitterionic detergents induce the formation of a non-native, oligomeric TolC fold. We also find that nonionic detergents with shorter alkyl lengths facilitate TolC folding. It remains to be seen whether the charges in lipid headgroups have similar effects on membrane insertion and folding in biological systems.
Collapse
Affiliation(s)
| | - S Jimmy Budiardjo
- Center for Computational Biology, The University of Kansas, Lawrence, Kansas
| | - Rik Dhar
- Department of Molecular Biosciences, The University of Kansas, Lawrence, Kansas
| | - Joanna S G Slusky
- Department of Molecular Biosciences, The University of Kansas, Lawrence, Kansas; Center for Computational Biology, The University of Kansas, Lawrence, Kansas.
| |
Collapse
|
5
|
Wubshet NH, Liu AP. Methods to mechanically perturb and characterize GUV-based minimal cell models. Comput Struct Biotechnol J 2022; 21:550-562. [PMID: 36659916 PMCID: PMC9816913 DOI: 10.1016/j.csbj.2022.12.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/15/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Cells shield organelles and the cytosol via an active boundary predominantly made of phospholipids and membrane proteins, yet allowing communication between the intracellular and extracellular environment. Micron-sized liposome compartments commonly known as giant unilamellar vesicles (GUVs) are used to model the cell membrane and encapsulate biological materials and processes in a cell-like confinement. In the field of bottom-up synthetic biology, many have utilized GUVs as substrates to study various biological processes such as protein-lipid interactions, cytoskeletal assembly, and dynamics of protein synthesis. Like cells, it is ideal that GUVs are also mechanically durable and able to stay intact when the inner and outer environment changes. As a result, studies have demonstrated approaches to tune the mechanical properties of GUVs by modulating membrane composition and lumenal material property. In this context, there have been many different methods developed to test the mechanical properties of GUVs. In this review, we will survey various perturbation techniques employed to mechanically characterize GUVs.
Collapse
Affiliation(s)
- Nadab H. Wubshet
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Allen P. Liu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
6
|
Hermansen S, Ryoo D, Orwick-Rydmark M, Saragliadis A, Gumbart JC, Linke D. The Role of Extracellular Loops in the Folding of Outer Membrane Protein X (OmpX) of Escherichia coli. Front Mol Biosci 2022; 9:918480. [PMID: 35911955 PMCID: PMC9329534 DOI: 10.3389/fmolb.2022.918480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/16/2022] [Indexed: 11/25/2022] Open
Abstract
The outer membrane of Gram-negative bacteria acts as an additional diffusion barrier for solutes and nutrients. It is perforated by outer membrane proteins (OMPs) that function most often as diffusion pores, but sometimes also as parts of larger cellular transport complexes, structural components of the cell wall, or even as enzymes. These OMPs often have large loops that protrude into the extracellular environment, which have promise for biotechnological applications and as therapeutic targets. Thus, understanding how modifications to these loops affect OMP stability and folding is critical for their efficient application. In this work, the small outer membrane protein OmpX was used as a model system to quantify the effects of loop insertions on OMP folding and stability. The insertions were varied according to both hydrophobicity and size, and their effects were determined by assaying folding into detergent micelles in vitro by SDS-PAGE and in vivo by isolating the outer membrane of cells expressing the constructs. The different insertions were also examined in molecular dynamics simulations to resolve how they affect OmpX dynamics in its native outer membrane. The results indicate that folding of OMPs is affected by both the insert length and by its hydrophobic character. Small insertions sometimes even improved the folding efficiency of OmpX, while large hydrophilic inserts reduced it. All the constructs that were found to fold in vitro could also do so in their native environment. One construct that could not fold in vitro was transported to the OM in vivo, but remained unfolded. Our results will help to improve the design and efficiency of recombinant OMPs used for surface display.
Collapse
Affiliation(s)
- Simen Hermansen
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - David Ryoo
- Interdisciplinary Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, GA, United States
| | - Marcella Orwick-Rydmark
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Athanasios Saragliadis
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - James C. Gumbart
- School of Physics, Georgia Institute of Technology, Atlanta, GA, United States
| | - Dirk Linke
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
- *Correspondence: Dirk Linke,
| |
Collapse
|
7
|
Abstract
SignificanceOuter membrane porins play a crucial role in processes as varied as energy production, photosynthesis, and nutrient transport. They act as the gatekeepers between a gram-negative bacterium and its environment. Understanding how these proteins fold and function is important in improving our understanding and control of these processes. Here we use single-molecule methods to help resolve the apparent differences between the fast folding expected on a molecular scale and the slow kinetics observed in ensemble measurements in the laboratory.
Collapse
|
8
|
Hermansen S, Linke D, Leo JC. Transmembrane β-barrel proteins of bacteria: From structure to function. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 128:113-161. [PMID: 35034717 DOI: 10.1016/bs.apcsb.2021.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The outer membrane of Gram-negative bacteria is a specialized organelle conferring protection to the cell against various environmental stresses and resistance to many harmful compounds. The outer membrane has a number of unique features, including an asymmetric lipid bilayer, the presence of lipopolysaccharides and an individual proteome. The vast majority of the integral transmembrane proteins in the outer membrane belongs to the family of β-barrel proteins. These evolutionarily related proteins share a cylindrical, anti-parallel β-sheet core fold spanning the outer membrane. The loops and accessory domains attached to the β-barrel allow for a remarkable versatility in function for these proteins, ranging from diffusion pores and transporters to enzymes and adhesins. We summarize the current knowledge on β-barrel structure and folding and give an overview of their functions, evolution, and potential as drug targets.
Collapse
Affiliation(s)
- Simen Hermansen
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Dirk Linke
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Jack C Leo
- Antimicrobial resistance, Omics and Microbiota Group, Department of Biosciences, Nottingham Trent University, Nottingham, United Kingdom.
| |
Collapse
|
9
|
George A, Ravi R, Tiwari PB, Srivastava SR, Jain V, Mahalakshmi R. Engineering a Hyperstable Yersinia pestis Outer Membrane Protein Ail Using Thermodynamic Design. J Am Chem Soc 2022; 144:1545-1555. [DOI: 10.1021/jacs.1c05964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Anjana George
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal - 462066, India
| | - Roshika Ravi
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal - 462066, India
| | - Pankaj Bharat Tiwari
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal - 462066, India
| | - Shashank Ranjan Srivastava
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal - 462066, India
| | - Vikas Jain
- Microbiology and Molecular Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal - 462066, India
| | - Radhakrishnan Mahalakshmi
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal - 462066, India
| |
Collapse
|
10
|
Tiwari PB, Mahalakshmi R. Interplay of protein primary sequence, lipid membrane, and chaperone in β-barrel assembly. Protein Sci 2021; 30:624-637. [PMID: 33410567 DOI: 10.1002/pro.4022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 12/25/2020] [Accepted: 12/30/2020] [Indexed: 02/06/2023]
Abstract
The outer membrane of a Gram-negative bacterium is a crucial barrier between the external environment and its internal physiology. This barrier is bridged selectively by β-barrel outer membrane proteins (OMPs). The in vivo folding and biogenesis of OMPs necessitates the assistance of the outer membrane chaperone BamA. Nevertheless, OMPs retain the ability of independent self-assembly in vitro. Hence, it is unclear whether substrate-chaperone dynamics is influenced by the intrinsic ability of OMPs to fold, the magnitude of BamA-OMP interdependence, and the contribution of BamA to the kinetics of OMP assembly. We addressed this by monitoring the assembly kinetics of multiple 8-stranded β-barrel OMP substrates with(out) BamA. We also examined whether BamA is species-specific, or nonspecifically accelerates folding kinetics of substrates from independent species. Our findings reveal BamA as a substrate-independent promiscuous molecular chaperone, which assists the unfolded OMP to overcome the kinetic barrier imposed by the bilayer membrane. We additionally show that while BamA kinetically accelerates OMP folding, the OMP primary sequence remains a vital deciding element in its assembly rate. Our study provides unexpected insights on OMP assembly and the functional relevance of BamA in vivo.
Collapse
Affiliation(s)
- Pankaj B Tiwari
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
| | - Radhakrishnan Mahalakshmi
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
| |
Collapse
|
11
|
Characterization of the Relationship between the Chaperone and Lipid-Binding Functions of the 70-kDa Heat-Shock Protein, HspA1A. Int J Mol Sci 2020; 21:ijms21175995. [PMID: 32825419 PMCID: PMC7503672 DOI: 10.3390/ijms21175995] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/14/2020] [Accepted: 08/18/2020] [Indexed: 12/31/2022] Open
Abstract
HspA1A, a molecular chaperone, translocates to the plasma membrane (PM) of stressed and cancer cells. This translocation results in HspA1A’s cell-surface presentation, which renders tumors radiation insensitive. To specifically inhibit the lipid-driven HspA1A’s PM translocation and devise new therapeutics it is imperative to characterize the unknown HspA1A’s lipid-binding regions and determine the relationship between the chaperone and lipid-binding functions. To elucidate this relationship, we determined the effect of phosphatidylserine (PS)-binding on the secondary structure and chaperone functions of HspA1A. Circular dichroism revealed that binding to PS resulted in minimal modification on HspA1A’s secondary structure. Measuring the release of inorganic phosphate revealed that PS-binding had no effect on HspA1A’s ATPase activity. In contrast, PS-binding showed subtle but consistent increases in HspA1A’s refolding activities. Furthermore, using a Lysine-71-Alanine mutation (K71A; a null-ATPase mutant) of HspA1A we show that although K71A binds to PS with affinities similar to the wild-type (WT), the mutated protein associates with lipids three times faster and dissociates 300 times faster than the WT HspA1A. These observations suggest a two-step binding model including an initial interaction of HspA1A with lipids followed by a conformational change of the HspA1A-lipid complex, which accelerates the binding reaction. Together these findings strongly support the notion that the chaperone and lipid-binding activities of HspA1A are dependent but the regions mediating these functions do not overlap and provide the basis for future interventions to inhibit HspA1A’s PM-translocation in tumor cells, making them sensitive to radiation therapy.
Collapse
|
12
|
Torres-Bañaga R, Mares-Alejandre RE, Terán-Ramírez C, Estrada-González AL, Muñoz-Muñoz PLA, Meléndez-López SG, Rivero IA, Ramos-Ibarra MA. Functional Display of an Amoebic Chitinase in Escherichia coli Expressing the Catalytic Domain of EhCHT1 on the Bacterial Cell Surface. Appl Biochem Biotechnol 2020; 192:1255-1269. [PMID: 32715415 DOI: 10.1007/s12010-020-03389-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/16/2020] [Indexed: 11/30/2022]
Abstract
Poor solubility is the main drawback of the direct industrial exploitation of chitin, the second most abundant biopolymer after cellulose. Chemical methods are conventional to solubilize chitin from natural sources. Enzymatic hydrolysis of soluble chitinous substrates is a promising approach to obtain value-added by-products, such as N-acetylglucosamine units or low molecular weight chito-oligomers. Protein display on the bacterial membrane remains attractive to produce active enzymes anchored to a biological surface. The Lpp-OmpA system, a gene fusion of the Lpp signal sequence with the OmpA transmembrane region, represents the traditional system for targeting enzymes to the E. coli surface. EhCHT1, the amoebic chitinase, exhibits an efficient endochitinolytic activity and significant biochemical features, such as stability over a wide range of pH values. Using an extended Lpp-OmpA system as a protein carrier, we engineered E. coli to express the catalytic domain of EhCHT1 on the surface and assess the endochitinase activity as a trait. Engineered bacteria showed a consistent hydrolytic rate over a typical substrate, suggesting that the displayed enzyme has operational stability. This study supports the potential of biomembrane-associated biocatalysts as a reliable technology for the hydrolysis of soluble chitinous substrates.
Collapse
Affiliation(s)
- Ricardo Torres-Bañaga
- Grupo de Investigación en Biotecnología y Biociencias, Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Calzada Universidad 14418, 22390, Tijuana, BCN, Mexico
| | - Rosa E Mares-Alejandre
- Grupo de Investigación en Biotecnología y Biociencias, Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Calzada Universidad 14418, 22390, Tijuana, BCN, Mexico
| | - Celina Terán-Ramírez
- Grupo de Investigación en Biotecnología y Biociencias, Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Calzada Universidad 14418, 22390, Tijuana, BCN, Mexico
| | - Ana L Estrada-González
- Grupo de Investigación en Biotecnología y Biociencias, Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Calzada Universidad 14418, 22390, Tijuana, BCN, Mexico
| | - Patricia L A Muñoz-Muñoz
- Grupo de Investigación en Biotecnología y Biociencias, Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Calzada Universidad 14418, 22390, Tijuana, BCN, Mexico
| | - Samuel G Meléndez-López
- Grupo de Investigación en Biotecnología y Biociencias, Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Calzada Universidad 14418, 22390, Tijuana, BCN, Mexico
| | - Ignacio A Rivero
- Centro de Graduados e Investigación en Química, Instituto Tecnológico de Tijuana, Boulevard Industrial S/N, 22510, Tijuana, BCN, Mexico
| | - Marco A Ramos-Ibarra
- Grupo de Investigación en Biotecnología y Biociencias, Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Calzada Universidad 14418, 22390, Tijuana, BCN, Mexico.
| |
Collapse
|
13
|
Horne JE, Brockwell DJ, Radford SE. Role of the lipid bilayer in outer membrane protein folding in Gram-negative bacteria. J Biol Chem 2020; 295:10340-10367. [PMID: 32499369 PMCID: PMC7383365 DOI: 10.1074/jbc.rev120.011473] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/03/2020] [Indexed: 01/09/2023] Open
Abstract
β-Barrel outer membrane proteins (OMPs) represent the major proteinaceous component of the outer membrane (OM) of Gram-negative bacteria. These proteins perform key roles in cell structure and morphology, nutrient acquisition, colonization and invasion, and protection against external toxic threats such as antibiotics. To become functional, OMPs must fold and insert into a crowded and asymmetric OM that lacks much freely accessible lipid. This feat is accomplished in the absence of an external energy source and is thought to be driven by the high thermodynamic stability of folded OMPs in the OM. With such a stable fold, the challenge that bacteria face in assembling OMPs into the OM is how to overcome the initial energy barrier of membrane insertion. In this review, we highlight the roles of the lipid environment and the OM in modulating the OMP-folding landscape and discuss the factors that guide folding in vitro and in vivo We particularly focus on the composition, architecture, and physical properties of the OM and how an understanding of the folding properties of OMPs in vitro can help explain the challenges they encounter during folding in vivo Current models of OMP biogenesis in the cellular environment are still in flux, but the stakes for improving the accuracy of these models are high. OMP folding is an essential process in all Gram-negative bacteria, and considering the looming crisis of widespread microbial drug resistance it is an attractive target. To bring down this vital OMP-supported barrier to antibiotics, we must first understand how bacterial cells build it.
Collapse
Affiliation(s)
- Jim E Horne
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - David J Brockwell
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
14
|
Iyer BR, Gupta S, Noordeen H, Ravi R, Pawar MD, George A, Mahalakshmi R. Molecular Switch between Structural Compaction and Thermodynamic Stability by the Xxx-Pro Interface in Transmembrane β-Barrels. Biochemistry 2020; 59:303-314. [PMID: 31777252 DOI: 10.1021/acs.biochem.9b00731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Transmembrane β-barrel scaffolds found in outer membrane proteins are formed and stabilized by a defined pattern of interstrand intraprotein H-bonds, in hydrophobic lipid bilayers. Introducing the conformationally constrained proline in β-barrels can cause significant destabilization of these structural regions that require H-bonding, with proline additionally acting as a secondary structure breaker. Membrane protein β-barrels are therefore expected to show poor tolerance to the presence of a transmembrane proline. Here, we assign a thermodynamic measure for the extent to which a single proline can be tolerated at the C-terminal interface of the model transmembrane β-barrel PagP. We find that proline drastically destabilizes PagP by 7.0 kcal mol-1 with respect to wild-type PagP (F161 → P161). Interestingly, strategic modulation of the preceding residue can modify the measured energetics. Placing a hydrophobic or bulky side chain as the preceding residue increases the thermodynamic stability by ≤8.0 kcal mol-1. While polar substituents at the preceding residue decrease the PagP stability, these residues demonstrate stronger tertiary packing interactions in the barrel and retain the catalytic activity of native PagP. This biophysical interplay between enhanced thermodynamic stability and attaining a structurally compact functional β-barrel scaffold highlights the detrimental effect caused by proline incorporation. Our findings also reveal alternative mechanisms that protein sequences can employ to salvage the structural integrity of transmembrane protein structures.
Collapse
Affiliation(s)
- Bharat Ramasubramanian Iyer
- Molecular Biophysics Laboratory, Department of Biological Sciences , Indian Institute of Science Education and Research , Bhopal 462066 , India
| | - Swadha Gupta
- Molecular Biophysics Laboratory, Department of Biological Sciences , Indian Institute of Science Education and Research , Bhopal 462066 , India
| | - Henna Noordeen
- Molecular Biophysics Laboratory, Department of Biological Sciences , Indian Institute of Science Education and Research , Bhopal 462066 , India
| | - Roshika Ravi
- Molecular Biophysics Laboratory, Department of Biological Sciences , Indian Institute of Science Education and Research , Bhopal 462066 , India
| | - Meera Daulatrao Pawar
- Molecular Biophysics Laboratory, Department of Biological Sciences , Indian Institute of Science Education and Research , Bhopal 462066 , India
| | - Anjana George
- Molecular Biophysics Laboratory, Department of Biological Sciences , Indian Institute of Science Education and Research , Bhopal 462066 , India
| | - Radhakrishnan Mahalakshmi
- Molecular Biophysics Laboratory, Department of Biological Sciences , Indian Institute of Science Education and Research , Bhopal 462066 , India
| |
Collapse
|
15
|
Gupta A, Mahalakshmi R. Single-residue physicochemical characteristics kinetically partition membrane protein self-assembly and aggregation. J Biol Chem 2020. [DOI: 10.1016/s0021-9258(17)49878-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
16
|
Gupta A, Mahalakshmi R. Single-residue physicochemical characteristics kinetically partition membrane protein self-assembly and aggregation. J Biol Chem 2019; 295:1181-1194. [PMID: 31844019 PMCID: PMC6996891 DOI: 10.1074/jbc.ra119.011342] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/11/2019] [Indexed: 11/06/2022] Open
Abstract
Ninety-five percent of all transmembrane proteins exist in kinetically trapped aggregation-prone states that have been directly linked to neurodegenerative diseases. Interestingly, the primary sequence almost invariably avoids off-pathway aggregate formation, by folding reliably into its native, thermodynamically stabilized structure. However, with the rising incidence of protein aggregation diseases, it is now important to understand the underlying mechanism(s) of membrane protein aggregation. Micromolecular physicochemical and biochemical alterations in the primary sequence that trigger the formation of macromolecular cross-β aggregates can be measured only through combinatorial spectroscopic experiments. Here, we developed spectroscopic thermal perturbation with 117 experimental variables to assess how subtle protein sequence variations drive the molecular transition of the folded protein to oligomeric aggregates. Using the Yersinia pestis outer transmembrane β-barrel Ail as a model, we delineated how a single-residue substitution that alters the membrane-anchoring ability of Ail significantly contributes to the kinetic component of Ail stability. We additionally observed a stabilizing role for interface aliphatics, and that interface aromatics physicochemically contribute to Ail self-assembly and aggregation. Moreover, our method identified the formation of structured oligomeric intermediates during Ail aggregation. We show that the self-aggregation tendency of Ail is offset by the evolution of a thermodynamically compromised primary sequence that balances folding, stability, and oligomerization. Our approach provides critical information on how subtle changes in protein primary sequence trigger cross-β fibril formation, with insights that have direct implications for deducing the molecular progression of neurodegeneration and amyloidogenesis in humans.
Collapse
Affiliation(s)
- Ankit Gupta
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462066, India
| | - Radhakrishnan Mahalakshmi
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462066, India
| |
Collapse
|
17
|
Hasan M, Patel D, Ellis N, Brown SP, Lewandowski JR, Dixon AM. Modulation of Transmembrane Domain Interactions in Neu Receptor Tyrosine Kinase by Membrane Fluidity and Cholesterol. J Membr Biol 2019; 252:357-369. [DOI: 10.1007/s00232-019-00075-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 06/09/2019] [Indexed: 01/06/2023]
|
18
|
Ricci DP, Silhavy TJ. Outer Membrane Protein Insertion by the β-barrel Assembly Machine. EcoSal Plus 2019; 8:10.1128/ecosalplus.ESP-0035-2018. [PMID: 30869065 PMCID: PMC6419762 DOI: 10.1128/ecosalplus.esp-0035-2018] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
Like all outer membrane (OM) constituents, integral OM β-barrel proteins in Gram-negative bacteria are synthesized in the cytoplasm and trafficked to the OM, where they are locally assembled into the growing OM by the ubiquitous β-barrel assembly machine (Bam). While the identities and structures of all essential and accessory Bam components have been determined, the basic mechanism of Bam-assisted OM protein integration remains elusive. Here we review mechanistic analyses of OM β-barrel protein folding and Bam dynamics and summarize recent insights that inform a general model for OM protein recognition and assembly by the Bam complex.
Collapse
Affiliation(s)
- Dante P Ricci
- Department of Early Research, Achaogen, Inc., South San Francisco, CA 94080
| | - Thomas J Silhavy
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| |
Collapse
|
19
|
Gupta A, Mahalakshmi R. Helix-strand interaction regulates stability and aggregation of the human mitochondrial membrane protein channel VDAC3. J Gen Physiol 2019; 151:489-504. [PMID: 30674561 PMCID: PMC6445588 DOI: 10.1085/jgp.201812272] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/02/2019] [Indexed: 11/25/2022] Open
Abstract
Human mitochondrial VDACs bind amyloidogenic proteins, but do not intrinsically aggregate. Gupta and Mahalakshmi find that an interaction between the N-terminal α-helix and strands β7–β9 regulates VDAC aggregation and stability, providing a plausible mechanism for VDAC coaggregation in cells. Voltage-dependent anion channels (VDACs) are β-sheet–rich transmembrane β-barrels that are vital for metabolite transport across the mitochondrial membrane. Under cellular stress, human VDACs hetero-oligomerize and coaggregate with proteins that can form amyloidogenic and neurodegenerative deposits, implicating a role for VDACs in proteotoxicity. However, whether VDACs possess intrinsic interaction sites that can lead to protein aggregation is not known. Here, we couple a systematic thiol replacement strategy with far-UV circular dichroism spectropolarimetry and UV scattering spectroscopy to map aggregation-prone regions of human VDACs, using isoform 3 as our model VDAC. We show that the region comprising strands β7–β9 is highly aggregation prone. Further, we find that an α1–β7–β9 interaction (involving the hVDAC3 N-terminal α1 helix) can lower protein aggregation, whereas perturbations of this interaction promote VDAC aggregation. We also show that hVDAC3 aggregation proceeds via a partially unfolded structure. Our findings allow us to propose a plausible mechanism for the role of human VDACs in forming proteotoxic aggregates in the cell. The key target sites on VDACs—strands β7–β9—may be useful for developing VDAC aggregation inhibitors.
Collapse
Affiliation(s)
- Ankit Gupta
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
| | - Radhakrishnan Mahalakshmi
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
| |
Collapse
|
20
|
Schüßler A, Herwig S, Kleinschmidt JH. Kinetics of Insertion and Folding of Outer Membrane Proteins by Gel Electrophoresis. Methods Mol Biol 2019; 2003:145-162. [PMID: 31218617 DOI: 10.1007/978-1-4939-9512-7_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
To examine the mechanisms of folding and insertion of TMPs into membranes, kinetic studies are instrumental, for example, for the analysis of folding steps and involved intermediates or for the determination of activation energies. For many β-barrel transmembrane proteins (β-TMPs) it has been shown that the folded, functional form can be separated from the unfolded form by a simple electrophoretic mobility assay. The only requirements for a separation by SDS-polyacrylamide gel electrophoresis (SDS-PAGE) are that the folded form is sufficiently stable and that the samples are not heat-denatured before the electrophoresis is performed. Many folded β-TMPs resist the treatment with SDS at room temperature and are stable against forces during electrophoresis. On the other side, SDS also binds to unfolded forms of β-TMPs and prevents their folding into β-barrel structure. These observations have been used to develop a simple assay to monitor the kinetics of β-barrel tertiary structure formation in a membrane environment by electrophoresis. A folding reaction of a β-TMP is initiated by dilution of the denaturant in the presence of preformed lipid bilayers, proteoliposomes or membrane vesicles. At selected times, samples are taken from the reaction. In these samples, folding is stopped by addition of SDS. At the end of the entire folding reaction, all samples are analyzed by SDS-PAGE and the fractions of folded β-TMP that they contain are determined by densitometry.An advantage of this kinetic assay is that it not only allows a direct determination of fractions of folded and unfolded forms at a selected time during folding of the β-TMP into a membrane, but also facilitates the determination of the impact of folding factors (e.g., molecular chaperones) or folding machinery that most often have a different molecular mass and electrophoretic mobility. The assay has been very useful to examine how folding and insertion is affected by the structure of the phospholipids in the lipid bilayer and how folding machinery compensates for the presence of membrane lipids that retard folding and insertion of β-TMPs.
Collapse
Affiliation(s)
- Andre Schüßler
- Department of Biophysics, Institute of Biology, FB10 and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel, Kassel, Germany
| | - Sascha Herwig
- Department of Biophysics, Institute of Biology, FB10 and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel, Kassel, Germany
| | - Jörg H Kleinschmidt
- Department of Biophysics, Institute of Biology, FB10 and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel, Kassel, Germany.
| |
Collapse
|
21
|
Monoclonal antibody targeting the β-barrel assembly machine of Escherichia coli is bactericidal. Proc Natl Acad Sci U S A 2018; 115:3692-3697. [PMID: 29555747 PMCID: PMC5889671 DOI: 10.1073/pnas.1800043115] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The outer membrane of Gram-negative bacteria presents a formidable barrier to the discovery of new antibiotics needed to combat infections by multidrug-resistant bacteria. Targeting essential proteins or processes directly exposed to the environment could bypass this obstacle. Here, we describe a monoclonal antibody that selectively and potently antagonizes BamA, which folds and inserts integral outer membrane β-barrel proteins, by binding to a surface-exposed BamA epitope and, as a result, inhibits bacterial cell growth. Mechanisms of resistance to the antibody reveal that membrane fluidity affects BamA activity. This antibody validates the potential therapeutic strategy of targeting essential, exposed functions and provides a powerful tool for dissecting the fundamental process of folding integral membrane β-barrel proteins in vivo. The folding and insertion of integral β-barrel membrane proteins into the outer membrane of Gram-negative bacteria is required for viability and bacterial pathogenesis. Unfortunately, the lack of selective and potent modulators to dissect β-barrel folding in vivo has hampered our understanding of this fundamental biological process. Here, we characterize a monoclonal antibody that selectively inhibits an essential component of the Escherichia coli β-barrel assembly machine, BamA. In the absence of complement or other immune factors, the unmodified antibody MAB1 demonstrates bactericidal activity against an E. coli strain with truncated LPS. Direct binding of MAB1 to an extracellular BamA epitope inhibits its β-barrel folding activity, induces periplasmic stress, disrupts outer membrane integrity, and kills bacteria. Notably, resistance to MAB1-mediated killing reveals a link between outer membrane fluidity and protein folding by BamA in vivo, underscoring the utility of this antibody for studying β-barrel membrane protein folding within a living cell. Identification of this BamA antagonist highlights the potential for new mechanisms of antibiotics to inhibit Gram-negative bacterial growth by targeting extracellular epitopes.
Collapse
|
22
|
Chaturvedi D, Mahalakshmi R. Folding Determinants of Transmembrane β-Barrels Using Engineered OMP Chimeras. Biochemistry 2018. [DOI: 10.1021/acs.biochem.8b00012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Deepti Chaturvedi
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal − 462066, India
| | - Radhakrishnan Mahalakshmi
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal − 462066, India
| |
Collapse
|
23
|
Schiffrin B, Brockwell DJ, Radford SE. Outer membrane protein folding from an energy landscape perspective. BMC Biol 2017; 15:123. [PMID: 29268734 PMCID: PMC5740924 DOI: 10.1186/s12915-017-0464-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The cell envelope is essential for the survival of Gram-negative bacteria. This specialised membrane is densely packed with outer membrane proteins (OMPs), which perform a variety of functions. How OMPs fold into this crowded environment remains an open question. Here, we review current knowledge about OMP folding mechanisms in vitro and discuss how the need to fold to a stable native state has shaped their folding energy landscapes. We also highlight the role of chaperones and the β-barrel assembly machinery (BAM) in assisting OMP folding in vivo and discuss proposed mechanisms by which this fascinating machinery may catalyse OMP folding.
Collapse
Affiliation(s)
- Bob Schiffrin
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - David J Brockwell
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
24
|
Chaturvedi D, Mahalakshmi R. Position-Specific contribution of interface tryptophans on membrane protein energetics. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:451-457. [PMID: 29128310 DOI: 10.1016/j.bbamem.2017.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/11/2017] [Accepted: 11/07/2017] [Indexed: 02/06/2023]
Abstract
Interface tryptophans are key residues that facilitate the folding and stability of membrane proteins. Escherichia coli OmpX possesses two unique interface tryptophans, namely Trp76, which is present at the interface and is solvent-exposed, and Trp140, which is relatively more lipid solvated than Trp76 in symmetric lipid membranes. Here, we address the requirement for tryptophan and the consequences of aromatic amino acid substitutions on the folding and stability of OmpX. Using spectroscopic measurements of OmpX-Trp/Tyr/Phe mutants, we show that the specific mutation W76→Y allows barrel assembly >1.5-fold faster than native OmpX, and increases stability by ~0.4kcalmol-1. In contrast, mutating W140→F/Y lowers OmpX thermodynamic stability by ~0.4kcalmol-1, without affecting the folding kinetics. We conclude that the stabilizing effect of tryptophan at the membrane interface can be position-and local environment-specific. We propose that the thermodynamic contributions for interface residues be interpreted with caution.
Collapse
Affiliation(s)
- Deepti Chaturvedi
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462066, India
| | - Radhakrishnan Mahalakshmi
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462066, India.
| |
Collapse
|
25
|
Structural plasticity of T4 transcription co-activator gp33 revealed by a protease-resistant unfolded state. Biochem Biophys Res Commun 2017; 492:61-66. [PMID: 28807826 DOI: 10.1016/j.bbrc.2017.08.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 08/10/2017] [Indexed: 11/24/2022]
Abstract
Gene 33 protein (gp33) is a transcriptional coactivator for late genes of the T4 bacteriophage. gp33 possesses a 5-helix bundle core, with unstructured N- and C-terminal regions that account for >50% of the protein sequence. It plays a unique role of interacting with host RNA polymerase, couples transcription with DNA replication, and plays the dual function as repressor and co-activator in phage transcription. Here, we identify protein structural plasticity as the molecular basis of the dual nature in gp33. We find that gp33 has the peculiar property of remaining protease insensitive in its urea-unfolded state. Using NMR studies with spectroscopic measurements, we propose that intra-protein interactions are replaced by protein-urea interactions in gp33. This process not only unfolds gp33 but also renders it protease-resistant. Our studies shed new light on the unique structural malleability of gp33 that might be important in its transition from a repressor to a late transcription co-activator.
Collapse
|
26
|
Chaturvedi D, Mahalakshmi R. Transmembrane β-barrels: Evolution, folding and energetics. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:2467-2482. [PMID: 28943271 DOI: 10.1016/j.bbamem.2017.09.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/16/2017] [Accepted: 09/19/2017] [Indexed: 12/23/2022]
Abstract
The biogenesis of transmembrane β-barrels (outer membrane proteins, or OMPs) is an elaborate multistep orchestration of the nascent polypeptide with translocases, barrel assembly machinery, and helper chaperone proteins. Several theories exist that describe the mechanism of chaperone-assisted OMP assembly in vivo and unassisted (spontaneous) folding in vitro. Structurally, OMPs of bacterial origin possess even-numbered strands, while mitochondrial β-barrels are even- and odd-stranded. Several underlying similarities between prokaryotic and eukaryotic β-barrels and their folding machinery are known; yet, the link in their evolutionary origin is unclear. While OMPs exhibit diversity in sequence and function, they share similar biophysical attributes and structure. Similarly, it is important to understand the intricate OMP assembly mechanism, particularly in eukaryotic β-barrels that have evolved to perform more complex functions. Here, we deliberate known facets of β-barrel evolution, folding, and stability, and attempt to highlight outstanding questions in β-barrel biogenesis and proteostasis.
Collapse
Affiliation(s)
- Deepti Chaturvedi
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462066, India.
| | - Radhakrishnan Mahalakshmi
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462066, India.
| |
Collapse
|
27
|
Iyer BR, Zadafiya P, Vetal PV, Mahalakshmi R. Energetics of side-chain partitioning of β-signal residues in unassisted folding of a transmembrane β-barrel protein. J Biol Chem 2017; 292:12351-12365. [PMID: 28592485 PMCID: PMC5519381 DOI: 10.1074/jbc.m117.789446] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 06/02/2017] [Indexed: 01/07/2023] Open
Abstract
The free energy of water-to-interface amino acid partitioning is a major contributing factor in membrane protein folding and stability. The interface residues at the C terminus of transmembrane β-barrels form the β-signal motif required for assisted β-barrel assembly in vivo but are believed to be less important for β-barrel assembly in vitro. Here, we experimentally measured the thermodynamic contribution of all 20 amino acids at the β-signal motif to the unassisted folding of the model β-barrel protein PagP. We obtained the partitioning free energy for all 20 amino acids at the lipid-facing interface (ΔΔG0w,i(φ)) and the protein-facing interface (ΔΔG0w,i(π)) residues and found that hydrophobic amino acids are most favorably transferred to the lipid-facing interface, whereas charged and polar groups display the highest partitioning energy. Furthermore, the change in non-polar surface area correlated directly with the partitioning free energy for the lipid-facing residue and inversely with the protein-facing residue. We also demonstrate that the interface residues of the β-signal motif are vital for in vitro barrel assembly, because they exhibit a side chain–specific energetic contribution determined by the change in nonpolar accessible surface. We further establish that folding cooperativity and hydrophobic collapse are balanced at the membrane interface for optimal stability of the PagP β-barrel scaffold. We conclude that the PagP C-terminal β-signal motif influences the folding cooperativity and stability of the folded β-barrel and that the thermodynamic contributions of the lipid- and protein-facing residues in the transmembrane protein β-signal motif depend on the nature of the amino acid side chain.
Collapse
Affiliation(s)
- Bharat Ramasubramanian Iyer
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhauri, Bhopal 462066, India
| | - Punit Zadafiya
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhauri, Bhopal 462066, India
| | - Pallavi Vijay Vetal
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhauri, Bhopal 462066, India
| | - Radhakrishnan Mahalakshmi
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhauri, Bhopal 462066, India.
| |
Collapse
|
28
|
Iyer BR, Mahalakshmi R. Distinct Structural Elements Govern the Folding, Stability, and Catalysis in the Outer Membrane Enzyme PagP. Biochemistry 2016; 55:4960-70. [PMID: 27525547 DOI: 10.1021/acs.biochem.6b00678] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The outer membrane enzyme PagP is indispensable for lipid A palmitoylation in Gram-negative bacteria and has been implicated in resistance to host immune defenses. PagP possesses an unusual structure for an integral membrane protein, with a highly dynamic barrel domain that is tilted with respect to the membrane normal. In addition, it contains an N-terminal amphipathic helix. Recent functional and structural studies have shown that these molecular factors are critical for PagP to carry out its function in the challenging environment of the bacterial outer membrane. However, the precise contributions of the N-helix to folding and stability and residues that can influence catalytic rates remain to be addressed. Here, we identify a sequence-dependent stabilizing role for the N-terminal helix of PagP in the measured thermodynamic stability of the barrel. Using chimeric barrel sequences, we show that the Escherichia coli PagP N-terminal helix confers 2-fold greater stability to the Salmonella typhimurium barrel. Further, we find that the W78F substitution in S. typhimurium causes a nearly 20-fold increase in the specific activity in vitro for the phospholipase reaction, compared to that of E. coli PagP. Here, phenylalanine serves as a key regulator of catalysis, possibly by increasing the reaction rate. Through coevolution analysis, we detect an interaction network between seemingly unrelated segments of this membrane protein. Exchanging the structural and functional features between homologous PagP enzymes from E. coli and S. typhimurium has provided us with an understanding of the molecular factors governing PagP stability and function.
Collapse
Affiliation(s)
- Bharat Ramasubramanian Iyer
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research , Bhopal 462066, India
| | - Radhakrishnan Mahalakshmi
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research , Bhopal 462066, India
| |
Collapse
|
29
|
Lella M, Kamilla S, Jain V, Mahalakshmi R. Molecular Mechanism of Holin Transmembrane Domain I in Pore Formation and Bacterial Cell Death. ACS Chem Biol 2016; 11:910-20. [PMID: 26701742 DOI: 10.1021/acschembio.5b00875] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Bacterial cell lysis during bacteriophage infection is timed by perfect orchestration between components of the holin-endolysin cassette. In bacteria, progressively accumulating holin in the inner membrane, retained in its inactive form by antiholin, is triggered into active hole formation, resulting in the canonical host cell lysis. However, the molecular mechanism of regulation and physical basis of pore formation in the mycobacterial cell membrane by D29 mycobacteriophage holin, particularly in the nonexistence of a known antiholin, is poorly understood. In this study, we report, for the first time, the use of fluorescence resonance transfer measurements to demonstrate that the first transmembrane domain (TM1) of D29 holin undergoes a helix ↔ β-hairpin conformational interconversion. We validate that this structural malleability is mediated by a centrally positioned proline and is responsible for controlled TM1 self-association in membrana, in the presence of a proton gradient across the lipid membrane. We demonstrate that TM1 is sufficient for bacterial growth inhibition. The biological effect of D29 holin structural alteration is presented as a holin self-regulatory mechanism, and its implications are discussed in the context of holin function.
Collapse
Affiliation(s)
- Muralikrishna Lella
- Molecular
Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India 462023
| | - Soumya Kamilla
- Microbiology
and Molecular Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India 462023
| | - Vikas Jain
- Microbiology
and Molecular Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India 462023
| | - Radhakrishnan Mahalakshmi
- Molecular
Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India 462023
| |
Collapse
|
30
|
Raschle T, Rios Flores P, Opitz C, Müller DJ, Hiller S. Monitoring Backbone Hydrogen‐Bond Formation in β‐Barrel Membrane Protein Folding. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201509910] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Thomas Raschle
- Biozentrum University of Basel Klingelbergstrasse 70 4056 Basel Switzerland
| | - Perla Rios Flores
- Biozentrum University of Basel Klingelbergstrasse 70 4056 Basel Switzerland
- Department of Biosystems Science and Engineering Eidgenössische Technische Hochschule Zürich Mattenstrasse 26 4058 Basel Switzerland
| | - Christian Opitz
- Biozentrum University of Basel Klingelbergstrasse 70 4056 Basel Switzerland
| | - Daniel J. Müller
- Department of Biosystems Science and Engineering Eidgenössische Technische Hochschule Zürich Mattenstrasse 26 4058 Basel Switzerland
| | - Sebastian Hiller
- Biozentrum University of Basel Klingelbergstrasse 70 4056 Basel Switzerland
| |
Collapse
|
31
|
Raschle T, Rios Flores P, Opitz C, Müller DJ, Hiller S. Monitoring Backbone Hydrogen‐Bond Formation in β‐Barrel Membrane Protein Folding. Angew Chem Int Ed Engl 2016; 55:5952-5. [DOI: 10.1002/anie.201509910] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 12/16/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Thomas Raschle
- Biozentrum University of Basel Klingelbergstrasse 70 4056 Basel Switzerland
| | - Perla Rios Flores
- Biozentrum University of Basel Klingelbergstrasse 70 4056 Basel Switzerland
- Department of Biosystems Science and Engineering Eidgenössische Technische Hochschule Zürich Mattenstrasse 26 4058 Basel Switzerland
| | - Christian Opitz
- Biozentrum University of Basel Klingelbergstrasse 70 4056 Basel Switzerland
| | - Daniel J. Müller
- Department of Biosystems Science and Engineering Eidgenössische Technische Hochschule Zürich Mattenstrasse 26 4058 Basel Switzerland
| | - Sebastian Hiller
- Biozentrum University of Basel Klingelbergstrasse 70 4056 Basel Switzerland
| |
Collapse
|
32
|
De Pinto V, Reina S, Gupta A, Messina A, Mahalakshmi R. Role of cysteines in mammalian VDAC isoforms' function. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1219-1227. [PMID: 26947058 DOI: 10.1016/j.bbabio.2016.02.020] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 02/24/2016] [Accepted: 02/27/2016] [Indexed: 02/07/2023]
Abstract
In this mini-review, we analyze the influence of cysteines in the structure and activity of mitochondrial outer membrane mammalian VDAC isoforms. The three VDAC isoforms show conserved sequences, similar structures and the same gene organization. The meaning of three proteins encoded in different chromosomes must thus be searched for subtle differences at the amino acid level. Among others, cysteine content is noticeable. In humans, VDAC1 has 2, VDAC2 has 9 and VDAC3 has 6 cysteines. Recent works have shown that, at variance from VDAC1, VDAC2 and VDAC3 exhibit cysteines predicted to protrude towards the intermembrane space, making them a preferred target for oxidation by ROS. Mass spectrometry in VDAC3 revealed that a disulfide bridge can be formed and other cysteine oxidations are also detectable. Both VDAC2 and VDAC3 cysteines were mutagenized to highlight their role in vitro and in complementation assays in Δporin1 yeast. Chemico-physical techniques revealed an important function of cysteines in the structural stabilization of the pore. In conclusion, the works available on VDAC cysteines support the notion that the three proteins are paralogs with a similar pore-function and slightly different, but important, ancillary biological functions. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi.
Collapse
Affiliation(s)
- Vito De Pinto
- Department of Biomedicine and Biotechnology BIOMETEC, Section of Biology and Genetics, University of Catania, Italy; National Institute for Biomembranes and Biosystems, Section of Catania, Italy.
| | - Simona Reina
- Department of Biomedicine and Biotechnology BIOMETEC, Section of Biology and Genetics, University of Catania, Italy; National Institute for Biomembranes and Biosystems, Section of Catania, Italy; Department of Biological, Geological and Environmental Sciences, Section of Molecular Biology, University of Catania, Italy
| | - Ankit Gupta
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
| | - Angela Messina
- National Institute for Biomembranes and Biosystems, Section of Catania, Italy; Department of Biological, Geological and Environmental Sciences, Section of Molecular Biology, University of Catania, Italy
| | - Radhakrishnan Mahalakshmi
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
| |
Collapse
|
33
|
Makwana KM, Mahalakshmi R. Stereopositional Outcome in the Packing of Dissimilar Aromatics in Designed β-Hairpins. Chemistry 2016; 22:4147-56. [DOI: 10.1002/chem.201504428] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 12/15/2015] [Indexed: 01/06/2023]
Affiliation(s)
- Kamlesh Madhusudan Makwana
- Molecular Biophysics Laboratory; Department of Biological Sciences; Indian Institute of Science Education and Research, Bhopal; 462023 Madhya Pradesh India
| | - Radhakrishnan Mahalakshmi
- Molecular Biophysics Laboratory; Department of Biological Sciences; Indian Institute of Science Education and Research, Bhopal; 462023 Madhya Pradesh India
| |
Collapse
|
34
|
Singh MI, Jain V. Molecular Dissection of the Homotrimeric Sliding Clamp of T4 Phage: Two Domains of a Subunit Display Asymmetric Characteristics. Biochemistry 2016; 55:588-96. [DOI: 10.1021/acs.biochem.5b01204] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Manika Indrajit Singh
- Microbiology
and Molecular
Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal 462023, India
| | - Vikas Jain
- Microbiology
and Molecular
Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal 462023, India
| |
Collapse
|
35
|
Watkinson TG, Calabrese AN, Giusti F, Zoonens M, Radford SE, Ashcroft AE. Systematic analysis of the use of amphipathic polymers for studies of outer membrane proteins using mass spectrometry. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2015; 391:54-61. [PMID: 26869850 PMCID: PMC4708066 DOI: 10.1016/j.ijms.2015.06.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 06/19/2015] [Accepted: 06/26/2015] [Indexed: 05/10/2023]
Abstract
Membrane proteins (MPs) are essential for numerous important biological processes. Recently, mass spectrometry (MS), coupled with an array of related techniques, has been used to probe the structural properties of MPs and their complexes. Typically, detergent micelles have been employed for delivering MPs into the gas-phase, but these complexes have intrinsic properties that can limit the utility of structural studies of MPs using MS methods. Amphipols (APols) have advantages over detergent micelles and have been shown to be capable of delivering native MPs into the gas-phase. Comparing six different APols which vary in mass and charge, and the detergent n-dodecyl-β-d-maltopyranoside, we aimed to determine which APols are most efficient for delivery of native outer membrane proteins (OMPs) into the gas-phase. We show that maintaining the solution-phase folding and global structures of three different OMPs (PagP, OmpT and tOmpA) are independent of the APol used, but differences in OMP activity can result from the different APol:OMP complexes. ESI-IMS-MS analysis of OMP:APol complexes shows that the A8-35 APol is most proficient at liberating all three OMPs into the gas-phase, without altering their gas-phase conformations.
Collapse
Affiliation(s)
- Thomas G. Watkinson
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Antonio N. Calabrese
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Fabrice Giusti
- Laboratoire de Physico-Chimie Moléculaire des Protéines Membranaires, UMR 7099, Institut de Biologie Physico-Chimique (FRC 550), Centre National de la Recherche Scientifique/Université Paris-7, 13, rue Pierre-et-Marie-Curie, 75005 Paris, France
| | - Manuela Zoonens
- Laboratoire de Physico-Chimie Moléculaire des Protéines Membranaires, UMR 7099, Institut de Biologie Physico-Chimique (FRC 550), Centre National de la Recherche Scientifique/Université Paris-7, 13, rue Pierre-et-Marie-Curie, 75005 Paris, France
| | - Sheena E. Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Alison E. Ashcroft
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
36
|
Iyer BR, Mahalakshmi R. Residue-Dependent Thermodynamic Cost and Barrel Plasticity Balances Activity in the PhoPQ-Activated Enzyme PagP of Salmonella typhimurium. Biochemistry 2015; 54:5712-22. [PMID: 26334694 DOI: 10.1021/acs.biochem.5b00543] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PagP is an eight-stranded transmembrane β-barrel enzyme indispensable for lipid A palmitoylation in Gram-negative bacteria. The severity of infection by pathogens, including Salmonella, Legionella, and Bordetella, and resistance to antimicrobial peptides, relies on lipid A remodeling by PagP, rendering PagP a sought-after drug target. Despite a conserved sequence, more robust palmitoylation of lipid A is observed in Salmonella typhimurium compared to Escherichia coli, a possible consequence of the differential regulation of PagP expression and/or specific activity. Work here identifies molecular signatures that demarcate thermodynamic stability and variances in catalytic efficiency between S. typhimurium (PagP-St) and E. coli (PagP-Ec) transmembrane PagP barrel variants. We demonstrate that Salmonella PagP displays a 2-fold destabilization of the barrel, while achieving 15-20 magnitude higher lipase efficiency, through subtle alterations of lipid-facing residues distal from the active site. We find that catalytic properties of these homologues are retained across different lipid environments such as micelles, vesicles, and natural extracts. By comparing thermodynamic stability with activity of selectively designed mutants, we conclude that activity-stability trade-offs can be influenced by factors secluded from the catalytic region. Our results provide a compelling correlation of the primary protein structure with enzymatic activity, barrel thermodynamic stability, and scaffold plasticity. Our analysis can open avenues for the development of potent pharmaceuticals against salmonellosis.
Collapse
Affiliation(s)
- Bharat Ramasubramanian Iyer
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research , Bhopal 462023, India
| | - Radhakrishnan Mahalakshmi
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research , Bhopal 462023, India
| |
Collapse
|
37
|
Modulating bilayer mechanical properties to promote the coupled folding and insertion of an integral membrane protein. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2015; 44:503-12. [DOI: 10.1007/s00249-015-1032-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 04/23/2015] [Accepted: 05/05/2015] [Indexed: 12/17/2022]
|
38
|
Kleinschmidt JH. Folding of β-barrel membrane proteins in lipid bilayers - Unassisted and assisted folding and insertion. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1927-43. [PMID: 25983306 DOI: 10.1016/j.bbamem.2015.05.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 05/06/2015] [Accepted: 05/07/2015] [Indexed: 01/08/2023]
Abstract
In cells, β-barrel membrane proteins are transported in unfolded form to an outer membrane into which they fold and insert. Model systems have been established to investigate the mechanisms of insertion and folding of these versatile proteins into detergent micelles, lipid bilayers and even synthetic amphipathic polymers. In these experiments, insertion into lipid membranes is initiated from unfolded forms that do not display residual β-sheet secondary structure. These studies therefore have allowed the investigation of membrane protein folding and insertion in great detail. Folding of β-barrel membrane proteins into lipid bilayers has been monitored from unfolded forms by dilution of chaotropic denaturants that keep the protein unfolded as well as from unfolded forms present in complexes with molecular chaperones from cells. This review is aimed to provide an overview of the principles and mechanisms observed for the folding of β-barrel transmembrane proteins into lipid bilayers, the importance of lipid-protein interactions and the function of molecular chaperones and folding assistants. This article is part of a Special Issue entitled: Lipid-protein interactions.
Collapse
Affiliation(s)
- Jörg H Kleinschmidt
- Abteilung Biophysik, Institut für Biologie, FB 10, Universität Kassel and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), Heinrich-Plett-Str. 40, D-34132 Kassel, Germany.
| |
Collapse
|
39
|
Chaturvedi D, Mahalakshmi R. Juxtamembrane tryptophans have distinct roles in defining the OmpX barrel-micelle boundary and facilitating protein-micelle association. FEBS Lett 2015; 588:4464-71. [PMID: 25448987 DOI: 10.1016/j.febslet.2014.10.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 10/15/2014] [Accepted: 10/16/2014] [Indexed: 10/24/2022]
Abstract
Defining the span of the transmembrane region, a key requirement to ensure correct folding, stability and function of bacterial outer membrane β-barrels, is assisted by the amphipathic property of tryptophan. We demonstrate the unique and distinctive properties of the interface Trp76 and Trp140 of outer membrane protein X, and map their positional relevance to the refolding process, barrel formation and the resulting stability in dodecylphosphocholine micelles. The solvent-exposed Trp76 displays a rigid interfacial localization, whereas Trp140 is relatively micelle-solvated and contributes to barrel folding and global OmpX stability. Kinetic contribution to OmpX stability is influenced by the two tryptophans. Differential associations of the indoles with the detergent milieu therefore contribute to micelle-assisted β-barrel folding and concomitant OmpX stability.
Collapse
Affiliation(s)
- Deepti Chaturvedi
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462023, India
| | | |
Collapse
|
40
|
Gupta A, Iyer BR, Chaturvedi D, Maurya SR, Mahalakshmi R. Thermodynamic, structural and functional properties of membrane protein inclusion bodies are analogous to purified counterparts: case study from bacteria and humans. RSC Adv 2015. [DOI: 10.1039/c4ra11207e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Purification-free transmembrane protein inclusion body preparations for rapid and cost-effective biophysical, functional and structural studies.
Collapse
Affiliation(s)
- Ankit Gupta
- Molecular Biophysics Laboratory
- Department of Biological Sciences
- Indian Institute of Science Education and Research
- Bhopal
- India
| | - Bharat Ramasubramanian Iyer
- Molecular Biophysics Laboratory
- Department of Biological Sciences
- Indian Institute of Science Education and Research
- Bhopal
- India
| | - Deepti Chaturvedi
- Molecular Biophysics Laboratory
- Department of Biological Sciences
- Indian Institute of Science Education and Research
- Bhopal
- India
| | - Svetlana Rajkumar Maurya
- Molecular Biophysics Laboratory
- Department of Biological Sciences
- Indian Institute of Science Education and Research
- Bhopal
- India
| | - Radhakrishnan Mahalakshmi
- Molecular Biophysics Laboratory
- Department of Biological Sciences
- Indian Institute of Science Education and Research
- Bhopal
- India
| |
Collapse
|
41
|
McMorran LM, Brockwell DJ, Radford SE. Mechanistic studies of the biogenesis and folding of outer membrane proteins in vitro and in vivo: what have we learned to date? Arch Biochem Biophys 2014; 564:265-80. [PMID: 24613287 PMCID: PMC4262575 DOI: 10.1016/j.abb.2014.02.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 02/16/2014] [Accepted: 02/20/2014] [Indexed: 11/17/2022]
Abstract
Research into the mechanisms by which proteins fold into their native structures has been on-going since the work of Anfinsen in the 1960s. Since that time, the folding mechanisms of small, water-soluble proteins have been well characterised. By contrast, progress in understanding the biogenesis and folding mechanisms of integral membrane proteins has lagged significantly because of the need to create a membrane mimetic environment for folding studies in vitro and the difficulties in finding suitable conditions in which reversible folding can be achieved. Improved knowledge of the factors that promote membrane protein folding and disfavour aggregation now allows studies of folding into lipid bilayers in vitro to be performed. Consequently, mechanistic details and structural information about membrane protein folding are now emerging at an ever increasing pace. Using the panoply of methods developed for studies of the folding of water-soluble proteins. This review summarises current knowledge of the mechanisms of outer membrane protein biogenesis and folding into lipid bilayers in vivo and in vitro and discusses the experimental techniques utilised to gain this information. The emerging knowledge is beginning to allow comparisons to be made between the folding of membrane proteins with current understanding of the mechanisms of folding of water-soluble proteins.
Collapse
Affiliation(s)
- Lindsay M McMorran
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - David J Brockwell
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
42
|
Bonaventura G, Barcellona ML, Golfetto O, Nourse JL, Flanagan LA, Gratton E. Laurdan monitors different lipids content in eukaryotic membrane during embryonic neural development. Cell Biochem Biophys 2014; 70:785-94. [PMID: 24839062 PMCID: PMC4228983 DOI: 10.1007/s12013-014-9982-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We describe a method based on fluorescence-lifetime imaging microscopy (FLIM) to assess the fluidity of various membranes in neuronal cells at different stages of development [day 12 (E12) and day 16 (E16) of gestation]. For the FLIM measurements, we use the Laurdan probe which is commonly used to assess membrane water penetration in model and in biological membranes using spectral information. Using the FLIM approach, we build a fluidity scale based on calibration with model systems of different lipid compositions. In neuronal cells, we found a marked difference in fluidity between the internal membranes and the plasma membrane, being the plasma membrane the less fluid. However, we found no significant differences between the two cell groups, E12 and E16. Comparison with NIH3T3 cells shows that the plasma membranes of E12 and E16 cells are significantly more fluid than the plasma membrane of the cancer cells.
Collapse
Affiliation(s)
- Gabriele Bonaventura
- Department of Drug Science, Section of Biochemistry, University of Catania, Catania, Italy,
| | | | | | | | | | | |
Collapse
|
43
|
Folding and stability of integral membrane proteins in amphipols. Arch Biochem Biophys 2014; 564:327-43. [PMID: 25449655 DOI: 10.1016/j.abb.2014.10.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 10/11/2014] [Accepted: 10/22/2014] [Indexed: 11/23/2022]
Abstract
Amphipols (APols) are a family of amphipathic polymers designed to keep transmembrane proteins (TMPs) soluble in aqueous solutions in the absence of detergent. APols have proven remarkably efficient at (i) stabilizing TMPs, as compared to detergent solutions, and (ii) folding them from a denatured state to a native, functional one. The underlying physical-chemical mechanisms are discussed.
Collapse
|
44
|
Höhr AIC, Straub SP, Warscheid B, Becker T, Wiedemann N. Assembly of β-barrel proteins in the mitochondrial outer membrane. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:74-88. [PMID: 25305573 DOI: 10.1016/j.bbamcr.2014.10.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 09/25/2014] [Accepted: 10/01/2014] [Indexed: 12/15/2022]
Abstract
Mitochondria evolved through endosymbiosis of a Gram-negative progenitor with a host cell to generate eukaryotes. Therefore, the outer membrane of mitochondria and Gram-negative bacteria contain pore proteins with β-barrel topology. After synthesis in the cytosol, β-barrel precursor proteins are first transported into the mitochondrial intermembrane space. Folding and membrane integration of β-barrel proteins depend on the mitochondrial sorting and assembly machinery (SAM) located in the outer membrane, which is related to the β-barrel assembly machinery (BAM) in bacteria. The SAM complex recognizes β-barrel proteins by a β-signal in the C-terminal β-strand that is required to initiate β-barrel protein insertion into the outer membrane. In addition, the SAM complex is crucial to form membrane contacts with the inner mitochondrial membrane by interacting with the mitochondrial contact site and cristae organizing system (MICOS) and shares a subunit with the endoplasmic reticulum-mitochondria encounter structure (ERMES) that links the outer mitochondrial membrane to the endoplasmic reticulum (ER).
Collapse
Affiliation(s)
- Alexandra I C Höhr
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, 79104 Freiburg, Germany; Fakultät für Biologie, Universität Freiburg, 79104 Freiburg, Germany
| | - Sebastian P Straub
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, 79104 Freiburg, Germany; Fakultät für Biologie, Universität Freiburg, 79104 Freiburg, Germany
| | - Bettina Warscheid
- BIOSS Centre for Biological Signalling Studies, Universität Freiburg, 79104 Freiburg, Germany; Abteilung Biochemie und Funktionelle Proteomik, Institut für Biologie II, Fakultät für Biologie, Universität Freiburg, 79104 Freiburg, Germany
| | - Thomas Becker
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, Universität Freiburg, 79104 Freiburg, Germany
| | - Nils Wiedemann
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, Universität Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
45
|
Differential contribution of tryptophans to the folding and stability of the attachment invasion locus transmembrane β-barrel from Yersinia pestis. Sci Rep 2014; 4:6508. [PMID: 25266561 PMCID: PMC4179465 DOI: 10.1038/srep06508] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 09/15/2014] [Indexed: 11/08/2022] Open
Abstract
Attachment invasion locus (Ail) protein of Yersinia pestis is a crucial outer membrane protein for host invasion and determines bacterial survival within the host. Despite its importance in pathogenicity, surprisingly little is known on Ail biophysical properties. We investigate the contribution of micelle concentrations and interface tryptophans on the Ail β-barrel refolding and unfolding processes. Our results reveal that barrel folding is surprisingly independent of micelle amounts, but proceeds through an on-pathway intermediate that requires the interface W42 for cooperative barrel refolding. On the contrary, the unfolding event is strongly controlled by absolute micelle concentrations. We find that upon Trp → Phe substitution, protein stabilities follow the order W149F>WT>W42F for the refolding, and W42F>WT>W149F for unfolding. W42 confers cooperativity in barrel folding, and W149 clamps the post-folded barrel structure to its micelle environment. Our analyses reveal, for the first time, that interface tryptophan mutation can indeed render greater β-barrel stability. Furthermore, hysteresis in Ail stems from differential barrel-detergent interaction strengths in a micelle concentration-dependent manner, largely mediated by W149. The kinetically stabilized Ail β-barrel has strategically positioned tryptophans to balance efficient refolding and subsequent β-barrel stability, and may be evolutionarily chosen for optimal functioning of Ail during Yersinia pathogenesis.
Collapse
|
46
|
Cysteine residues impact the stability and micelle interaction dynamics of the human mitochondrial β-barrel anion channel hVDAC-2. PLoS One 2014; 9:e92183. [PMID: 24642864 PMCID: PMC3967697 DOI: 10.1371/journal.pone.0092183] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 02/20/2014] [Indexed: 01/06/2023] Open
Abstract
The anti-apoptotic 19-stranded transmembrane human voltage dependent anion channel isoform 2 (hVDAC-2) β-barrel stability is crucial for anion transport in mitochondria. The role of the unusually high number of cysteine residues in this isoform is poorly understood. Using a Cys-less construct of hVDAC-2, we haveinvestigated the contribution of cysteines to channel function, barrel stability and its influence on the strength of protein-micelle interactions. We observe that despite the overall preservation in barrel structure upon cysteine mutation, subtle local variations in the mode of interaction of the barrel with its refolded micellar environment arise, which may manifest itself in the channel activity of both the proteins.Fluorescence measurements of the Trp residues in hVDAC-2 point to possible differences in the association of the barrel with lauryldimethylamine oxide (LDAO) micelles. Upon replacement of cysteines in hVDAC-2, our data suggests greater barrel rigidity by way of intra-protein interactions. This, in turn, lowers the equilibrium barrel thermodynamic parameters in LDAOby perturbingthe stability of the protein-micelle complex. In addition to this, we also find a difference in the cooperativity of unfolding upon increasing the LDAO concentration, implying the importance of micelle concentration and micelle-protein ratios on the stability of this barrel. Our results indicate that the nine cysteine residues of hVDAC-2 are the key in establishing strong(er) barrel interactions with its environment and also impart additional malleability to the barrel scaffold.
Collapse
|
47
|
Maurya SR, Mahalakshmi R. Influence of protein-micelle ratios and cysteine residues on the kinetic stability and unfolding rates of human mitochondrial VDAC-2. PLoS One 2014; 9:e87701. [PMID: 24494036 PMCID: PMC3907894 DOI: 10.1371/journal.pone.0087701] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 01/01/2014] [Indexed: 12/14/2022] Open
Abstract
Delineating the kinetic and thermodynamic factors which contribute to the stability of transmembrane β-barrels is critical to gain an in-depth understanding of membrane protein behavior. Human mitochondrial voltage-dependent anion channel isoform 2 (hVDAC-2), one of the key anti-apoptotic eukaryotic β-barrel proteins, is of paramount importance, owing to its indispensable role in cell survival. We demonstrate here that the stability of hVDAC-2 bears a strong kinetic contribution that is dependent on the absolute micellar concentration used for barrel folding. The refolding efficiency and ensuing stability is sensitive to the lipid-to-protein (LPR) ratio, and displays a non-linear relationship, with both low and high micellar amounts being detrimental to hVDAC-2 structure. Unfolding and aggregation process are sequential events and show strong temperature dependence. We demonstrate that an optimal lipid-to-protein ratio of 2600∶1 – 13000∶1 offers the highest protection against thermal denaturation. Activation energies derived only for lower LPRs are ∼17 kcal mol−1 for full-length hVDAC-2 and ∼23 kcal mol−1 for the Cys-less mutant, suggesting that the nine cysteine residues of hVDAC-2 impart additional malleability to the barrel scaffold. Our studies reveal that cysteine residues play a key role in the kinetic stability of the protein, determine barrel rigidity and thereby give rise to strong micellar association of hVDAC-2. Non-linearity of the Arrhenius plot at high LPRs coupled with observation of protein aggregation upon thermal denaturation indicates that contributions from both kinetic and thermodynamic components stabilize the 19-stranded β-barrel. Lipid-protein interaction and the linked kinetic contribution to free energy of the folded protein are together expected to play a key role in hVDAC-2 recycling and the functional switch at the onset of apoptosis.
Collapse
Affiliation(s)
- Svetlana Rajkumar Maurya
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh, India
| | - Radhakrishnan Mahalakshmi
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh, India
- * E-mail:
| |
Collapse
|
48
|
Hänel K, Möckel L, Brummel M, Peiris K, Hartmann R, Dingley AJ, Willbold D, Loidl-Stahlhofen A. Expression and purification of soluble HIV-2 viral protein R (Vpr) using a sandwich-fusion protein strategy. Protein Expr Purif 2013; 95:156-61. [PMID: 24380802 DOI: 10.1016/j.pep.2013.12.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 12/16/2013] [Accepted: 12/18/2013] [Indexed: 11/16/2022]
Abstract
Viral accessory proteins of the human immunodeficiency virus (HIV), including virus protein R (Vpr), are crucial for the efficient replication of the virus in the host organism. While functional data are available for HIV-1 Vpr, there is a paucity of data describing the function and structure of HIV-2 Vpr. In this report, the construction of a His6-MBP-intein1-Vpr-intein2-Cyt b5-His6 fusion protein is presented. Unlike previous research efforts where only microgram quantities of HIV-1 Vpr could be produced, this construct enabled soluble milligram yields via an Escherichia coli over-expression system. Straightforward protein purification of HIV-2 Vpr was achieved by standard chromatography routines and autocatalytic intein cleavage. Preliminary structural studies by circular dichroism (CD) and NMR spectroscopy revealed that the protein is stable in the presence of micellar concentrations of the detergent DPC and adopts an α-helix secondary structure.
Collapse
Affiliation(s)
- Karen Hänel
- Forschungszentrum Jülich, Institute of Complex Systems (ICS-6), Wilhelm-Johnen-Straße, 52425 Jülich, Germany
| | - Luis Möckel
- Forschungszentrum Jülich, Institute of Complex Systems (ICS-6), Wilhelm-Johnen-Straße, 52425 Jülich, Germany
| | - Monika Brummel
- Westfälische Hochschule, Molekulare Biologie, August-Schmidt-Ring 10, 45665 Recklinghausen, Germany
| | - Katja Peiris
- Westfälische Hochschule, Molekulare Biologie, August-Schmidt-Ring 10, 45665 Recklinghausen, Germany
| | - Rudolf Hartmann
- Forschungszentrum Jülich, Institute of Complex Systems (ICS-6), Wilhelm-Johnen-Straße, 52425 Jülich, Germany
| | - Andrew J Dingley
- Forschungszentrum Jülich, Institute of Complex Systems (ICS-6), Wilhelm-Johnen-Straße, 52425 Jülich, Germany
| | - Dieter Willbold
- Forschungszentrum Jülich, Institute of Complex Systems (ICS-6), Wilhelm-Johnen-Straße, 52425 Jülich, Germany; Heinrich-Heine-Universität Düsseldorf, Institut für Physikalische Biologie, Universitätsstraße 1, 40225 Düsseldorf, Germany.
| | | |
Collapse
|
49
|
Methionine mutations of outer membrane protein X influence structural stability and beta-barrel unfolding. PLoS One 2013; 8:e79351. [PMID: 24265768 PMCID: PMC3827151 DOI: 10.1371/journal.pone.0079351] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 09/26/2013] [Indexed: 12/24/2022] Open
Abstract
We report the biochemical and biophysical characterization of outer membrane protein X (OmpX), an eight-stranded transmembrane β-barrel from E. coli, and compare the barrel behavior with a mutant devoid of methionine residues. Transmembrane outer membrane proteins of bacterial origin are known to display high tolerance to sequence rearrangements and mutations. Our studies with the triple mutant of OmpX that is devoid of all internal methionine residues (M18L; M21L; M118L) indicate that Met replacement has no influence on the refolding efficiency and structural characteristics of the protein. Surprisingly, the conserved substitution of Met→Leu leads to barrel destabilization and causes a lowering of the unfolding free energy by a factor of ∼8.5 kJ/mol, despite the mutations occurring at the loop regions. We report that the barrel destabilization is accompanied by a loss in cooperativity of unfolding in the presence of chemical denaturants. Furthermore, we are able to detect an unfolding intermediate in the Met-less barrel, whereas the parent protein exhibits a classic two-state unfolding. Thermal denaturation measurements also suggest a greater susceptibility of the OmpX barrel to heat, in the Met-less construct. Our studies reveal that even subtle variations in the extra-membrane region of rigid barrel structures such as OmpX, may bear severe implications on barrel stability. We propose that methionines contribute to efficient barrel structuring and protein-lipid interactions, and are therefore important elements of OmpX stability.
Collapse
|
50
|
Maurya SR, Mahalakshmi R. Modulation of human mitochondrial voltage-dependent anion channel 2 (hVDAC-2) structural stability by cysteine-assisted barrel-lipid interactions. J Biol Chem 2013; 288:25584-25592. [PMID: 23873934 DOI: 10.1074/jbc.m113.493692] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human mitochondrial voltage-dependent anion channel 2 (hVDAC-2), the most predominant isoform seen in brain mitochondria, is not only crucial for cell survival but is also implicated in Alzheimer disease. The abundance of cysteines in this isoform is particularly fascinating, as hVDAC-1 cysteines have no associated functional role. We report a detailed biophysical examination of a Cys-less mutant of hVDAC-2, and its behavioral comparison with the wild type protein. Our findings suggest that cysteine mutation results in the formation of a better barrel at the expense of weakened protein-lipid interactions. The wild type protein displays stronger lipid association, despite being less structured. A reversal in behavior of both proteins is observed in the case of chemical denaturation, with the Cys-less mutant exhibiting lowered unfolding free energies. In bicellar systems comprising 14-C phosphocholines, we observe that protein-lipid interactions are weakened in both constructs, resulting in barrel structure destabilization. Our biochemical and biophysical studies together reveal key structural roles for the cysteine residues. We find that minor conformational variations in local residues are sufficient to define the membrane protein dynamics in hVDAC-2. Such subtle sequence variations contribute to differential stability of VDACs and may have implications in their in vivo regulation and recycling.
Collapse
Affiliation(s)
- Svetlana Rajkumar Maurya
- From the Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462023, India
| | - Radhakrishnan Mahalakshmi
- From the Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462023, India.
| |
Collapse
|