1
|
Gao S, Yi D, Zhang S, Fu G, Lu J. Comparison of otolith fluctuating asymmetry in relation to standard length and habitats of three different species in Haizhou Bay, China. MARINE POLLUTION BULLETIN 2025; 217:118056. [PMID: 40328133 DOI: 10.1016/j.marpolbul.2025.118056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 04/22/2025] [Accepted: 04/24/2025] [Indexed: 05/08/2025]
Abstract
Fluctuating asymmetry (FA) in otoliths serves as a sensitive biomarker for assessing developmental instability in fish under environmental stress. This study compared otolith FA across three ecologically distinct species-Thryssa kammalensis, Johnius belangerii, and Cynoglossus joyneri-in relation to standard length groups and habitats (Artificial reef area (ARA), Nori culture area (NCA), Oyster reef area (ORA), and Natural area (NA)). Results revealed significant interspecific differences: C. joyneri exhibited extreme FA (CV2a up to 47.89 for otolith area; >80 % asymmetric individuals), while J. belangerii demonstrated resilience (CV2a < 2 across characters) across habitat adaptations. T. kammalensis showed intermediate FA (CV2a 5.46-10.37), peaking in the 80-90 mm standard length group, reflecting growth-phase-specific metabolic trade-offs. Habitat complexity in ARA reduced FA (e.g., T. kammalensis otolith length CV2a: ARA < NCA, P < 0.05) by mitigating anthropogenic disturbances, whereas intensive aquaculture in NCA amplified stress (C. joyneri otolith area CV2a: NCA > ORA, P < 0.05). FA progression with body size highlighted cumulative stress in C. joyneri (CV2a = 20.15 for perimeter in 150-160 mm group), contrasting with J. belangerii's stable CV2a. The findings underscore species-specific vulnerabilities: C. joyneri's benthic ecology heightens sensitivity to pollutants, while J. belangerii's euryhaline traits buffer habitat flexibility. These results advocate for habitat-specific conservation, prioritizing pollution regulation in benthic zones and leveraging FA as a tool to monitor anthropogenic impacts. Management strategies should focus on protecting high-FA species like C. joyneri while utilizing resilient taxa like J. belangerii as ecological indicators in coastal ecosystems.
Collapse
Affiliation(s)
- Shike Gao
- College of Marine Living Resource Sciences and Management, Shanghai Ocean University, Shanghai 201306, China; Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba 277-8564, Japan.
| | - Dechen Yi
- College of Marine Living Resource Sciences and Management, Shanghai Ocean University, Shanghai 201306, China
| | - Shuo Zhang
- College of Marine Living Resource Sciences and Management, Shanghai Ocean University, Shanghai 201306, China.
| | - Guanghui Fu
- Marine and Fishery Development Promotion Center In Lianyungang, Jiangsu, Lianyungang, 222002, China
| | - Jikun Lu
- Marine and Fishery Development Promotion Center In Lianyungang, Jiangsu, Lianyungang, 222002, China
| |
Collapse
|
2
|
Nadar-Ponniah PT, Lopez-Escamez JA. Preclinical Models to Study the Molecular Pathophysiology of Meniere's Disease: A Pathway to Gene Therapy. J Clin Med 2025; 14:1427. [PMID: 40094841 PMCID: PMC11899769 DOI: 10.3390/jcm14051427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/11/2025] [Accepted: 02/17/2025] [Indexed: 03/19/2025] Open
Abstract
Background: Meniere's disease (MD) is a set of rare disorders that affects >4 million people worldwide. Individuals with MD suffer from episodes of vertigo associated with fluctuating sensorineural hearing loss and tinnitus. Hearing loss can involve one or both ears. Over 10% of the reported cases are observed in families, suggesting its significant genetic contribution. The condition is polygenic with >20 genes, and several patterns of inheritance have been reported, including autosomal dominant, autosomal recessive, and digenic inheritance across multiple MD families. Preclinical research using animal models has been an indispensable tool for studying the neurophysiology of the auditory and vestibular systems and to get a better understanding of the functional role of genes that are involved in the hearing and vestibular dysfunction. While mouse models are the most used preclinical model, this review analyzes alternative animal and non-animal models that can be used to study MD genes. Methods: A literature search of the 21 genes reported for familial MD and the preclinical models used to investigate their functional role was performed. Results: Comparing the homology of proteins encoded by these genes to other model organisms revealed Drosophila and zebrafish as cost-effective models to screen multiple genes and study the pathophysiology of MD. Conclusions: Murine models are preferred for a quantitative neurophysiological assessment of hearing and vestibular functions to develop drug or gene therapy.
Collapse
Affiliation(s)
- Prathamesh T. Nadar-Ponniah
- Meniere Disease Neuroscience Research Program, Faculty of Medicine & Health, School of Medical Sciences, The Kolling Institute, University of Sydney, Sydney, NSW 2065, Australia
| | - Jose A. Lopez-Escamez
- Meniere Disease Neuroscience Research Program, Faculty of Medicine & Health, School of Medical Sciences, The Kolling Institute, University of Sydney, Sydney, NSW 2065, Australia
- Otology & Neurotology Group CTS495, Division of Otolaryngology, Department of Surgery, Instituto de Investigación Biosanitaria, ibs.GRANADA, Universidad de Granada, 18071 Granada, Spain
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, 28029 Madrid, Spain
| |
Collapse
|
3
|
Shipman A, Gao Y, Liu D, Sun S, Zang J, Sun P, Syed Z, Bhagavathi A, Smith E, Erickson T, Hill M, Neuhauss S, Sui SF, Nicolson T. Defects in Exosome Biogenesis Are Associated with Sensorimotor Defects in Zebrafish vps4a Mutants. J Neurosci 2024; 44:e0680242024. [PMID: 39455257 PMCID: PMC11638813 DOI: 10.1523/jneurosci.0680-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Mutations in human VPS4A are associated with neurodevelopmental defects, including motor delays and defective muscle tone. VPS4A encodes a AAA-ATPase required for membrane scission, but how mutations in VPS4A lead to impaired control of motor function is not known. Here we identified a mutation in zebrafish vps4a, T248I, that affects sensorimotor transformation. Biochemical analyses indicate that the T248I mutation reduces the ATPase activity of Vps4a and disassembly of ESCRT filaments, which mediate membrane scission. Consistent with the role for Vps4a in exosome biogenesis, vps4aT248I larvae have enlarged endosomal compartments in the CNS and decreased numbers of circulating exosomes in brain ventricles. Resembling the central form of hypotonia in VPS4A patients, motor neurons and muscle cells are functional in mutant zebrafish. Both somatosensory and vestibular inputs robustly evoke tail and eye movements, respectively. In contrast, optomotor responses, vestibulospinal, and acoustic startle reflexes are absent or strongly impaired in vps4aT248I larvae, indicating a greater sensitivity of these circuits to the T248I mutation. ERG recordings revealed intensity-dependent deficits in the retina, and in vivo calcium imaging of the auditory pathway identified a moderate reduction in afferent neuron activity, partially accounting for the severe motor impairments in mutant larvae. Further investigation of central pathways in vps4aT248I mutants showed that activation of descending vestibulospinal and midbrain motor command neurons by sensory cues is strongly reduced. Our results suggest that defects in sensorimotor transformation underlie the profound yet selective effects on motor reflexes resulting from the loss of membrane scission mediated by Vps4a.
Collapse
Affiliation(s)
- Anna Shipman
- Department of Otolaryngology, Stanford University, Stanford, California
| | - Yan Gao
- Department of Otolaryngology, Stanford University, Stanford, California
| | - Desheng Liu
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Shan Sun
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jingjing Zang
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Peng Sun
- Department of Otolaryngology, Stanford University, Stanford, California
| | - Zoha Syed
- Department of Otolaryngology, Stanford University, Stanford, California
| | - Amol Bhagavathi
- Department of Otolaryngology, Stanford University, Stanford, California
| | - Eliot Smith
- Department of Otolaryngology, Stanford University, Stanford, California
| | - Timothy Erickson
- Department of Biology, University of New Brunswick, Fredericton, New Brunswick, Canada
| | - Matthew Hill
- Department of Otolaryngology, Stanford University, Stanford, California
| | - Stephan Neuhauss
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Sen-Fang Sui
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Teresa Nicolson
- Department of Otolaryngology, Stanford University, Stanford, California
| |
Collapse
|
4
|
Torres-Ruiz M, de Alba Gonzalez M, Cañas Portilla AI, Coronel R, Liste I, González-Caballero MC. Effects of nanomolar methylmercury on developing human neural stem cells and zebrafish Embryo. Food Chem Toxicol 2024; 188:114684. [PMID: 38663761 DOI: 10.1016/j.fct.2024.114684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
Exposure to mercury and its organic form methylmercury (MeHg), is of great concern for the developing nervous system. Despite available literature on MeHg neurotoxicity, there is still uncertainty about its mechanisms of action and the doses that trigger developmental effects. Our study combines two alternative methodologies, the human neural stem cells (NSC) and the zebrafish (ZF) embryo, to address the neurotoxic effects of early exposure to nanomolar concentrations of MeHg. Our results show linear or nonmonotonic (hormetic) responses depending on studied parameters. In ZF, we observed a hormetic response in locomotion and larval rotation, but a concentration-dependent response for sensory organ size and habituation. We also observed a possible delayed response as MeHg had greater effects on larval activity at 5 days than at 24 h. In NSC cells, some parameters show a clear dose dependence, such as increased apoptosis and differentiation to glial cells or decreased neuronal precursors; while others show a hormetic response: neuronal differentiation or cell proliferation. This study shows that the ZF model was more susceptible than NSC to MeHg neurotoxicity. The combination of different models has improved the understanding of the underlying mechanisms of toxicity and possible compensatory mechanisms at the cellular and organismal level.
Collapse
Affiliation(s)
- Mónica Torres-Ruiz
- Environmental Toxicology Unit, Centro Nacional de Sanidad Ambiental (CNSA), Instituto de Salud Carlos III (ISCIII), Ctra. Majadahonda-Pozuelo Km. 2,2., Majadahonda, Madrid, 28220, Spain.
| | - Mercedes de Alba Gonzalez
- Environmental Toxicology Unit, Centro Nacional de Sanidad Ambiental (CNSA), Instituto de Salud Carlos III (ISCIII), Ctra. Majadahonda-Pozuelo Km. 2,2., Majadahonda, Madrid, 28220, Spain
| | - Ana I Cañas Portilla
- Environmental Toxicology Unit, Centro Nacional de Sanidad Ambiental (CNSA), Instituto de Salud Carlos III (ISCIII), Ctra. Majadahonda-Pozuelo Km. 2,2., Majadahonda, Madrid, 28220, Spain
| | - Raquel Coronel
- Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC), Instituto de Salud Carlos III, Madrid, Spain; Departamento de Biología de Sistemas, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, Madrid, Spain
| | - Isabel Liste
- Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Mª Carmen González-Caballero
- Environmental Toxicology Unit, Centro Nacional de Sanidad Ambiental (CNSA), Instituto de Salud Carlos III (ISCIII), Ctra. Majadahonda-Pozuelo Km. 2,2., Majadahonda, Madrid, 28220, Spain.
| |
Collapse
|
5
|
Sun P, Smith E, Nicolson T. Transmembrane Channel-Like (Tmc) Subunits Contribute to Frequency Sensitivity in the Zebrafish Utricle. J Neurosci 2024; 44:e1298232023. [PMID: 37952940 PMCID: PMC10851681 DOI: 10.1523/jneurosci.1298-23.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/25/2023] [Accepted: 09/16/2023] [Indexed: 11/14/2023] Open
Abstract
Information about dynamic head motion is conveyed by a central "striolar" zone of vestibular hair cells and afferent neurons in the inner ear. How vestibular hair cells are tuned to transduce dynamic stimuli at the molecular level is not well understood. Here we take advantage of the differential expression pattern of tmc1, tmc2a, and tmc2b, which encode channel subunits of the mechanotransduction complex in zebrafish vestibular hair cells. To test the role of various combinations of Tmc subunits in transducing dynamic head movements, we measured reflexive eye movements induced by high-frequency stimuli in single versus double tmc mutants. We found that Tmc2a function correlates with the broadest range of frequency sensitivity, whereas Tmc2b mainly contributes to lower-frequency responses. Tmc1, which is largely excluded from the striolar zone, plays a minor role in sensing lower-frequency stimuli. Our study suggests that the Tmc subunits impart functional differences to the mechanotransduction of dynamic stimuli.Significance Statement Information about dynamic head movements is transmitted by sensory receptors, known as hair cells, in the labyrinth of the inner ear. The sensitivity of hair cells to fast or slow movements of the head differs according to cell type. Whether the mechanotransduction complex that converts mechanical stimuli into electrical signals in hair cells participates in conveying frequency information is not clear. Here we find that the transmembrane channel-like 1/2 genes, which encode a central component of the complex, are differentially expressed in the utricle and contribute to frequency sensitivity in zebrafish.
Collapse
Affiliation(s)
- Peng Sun
- Department of Otolaryngology, Stanford University, Stanford, California 94304
| | - Eliot Smith
- Department of Otolaryngology, Stanford University, Stanford, California 94304
| | - Teresa Nicolson
- Department of Otolaryngology, Stanford University, Stanford, California 94304
| |
Collapse
|
6
|
Smith ET, Sun P, Yu SK, Raible DW, Nicolson T. Differential expression of mechanotransduction complex genes in auditory/vestibular hair cells in zebrafish. Front Mol Neurosci 2023; 16:1274822. [PMID: 38035267 PMCID: PMC10682102 DOI: 10.3389/fnmol.2023.1274822] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/23/2023] [Indexed: 12/02/2023] Open
Abstract
Ciliated sensory cells such as photo- and olfactory receptors employ multiple types of opsins or hundreds of unique olfactory G-protein coupled receptors to respond to various wavelengths of light or odorants. With respect to hearing and balance, the mechanotransduction machinery involves fewer variants; however, emerging evidence suggests that specialization occurs at the molecular level. To address how the mechanotransduction complex varies in the inner ear, we characterized the expression of paralogous genes that encode components required for mechanotransduction in zebrafish hair cells using RNA-FISH and bioinformatic analysis. Our data indicate striking zonal differences in the expression of two components of the mechanotransduction complex which are known to physically interact, the transmembrane channel-like 1 and 2 (tmc1/2) family members and the calcium and integrin binding 2 and 3 (cib2/3) paralogues. tmc1, tmc2b, and cib3 are largely expressed in peripheral or extrastriolar hair cells, whereas tmc2a and cib2 are enriched in central or striolar hair cells. In addition, a gene implicated in deaf-blindness, ush1c, is highly enriched in a subset of extrastriolar hair cells. These results indicate that specific combinations of these components may optimize responses to mechanical stimuli in subtypes of sensory receptors within the inner ear.
Collapse
Affiliation(s)
- Eliot T. Smith
- Department of Otolaryngology-HNS, Stanford University, Stanford, CA, United States
| | - Peng Sun
- Department of Otolaryngology-HNS, Stanford University, Stanford, CA, United States
| | - Shengyang Kevin Yu
- Department of Otolaryngology-HNS and Biological Structure, Viginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA, United States
| | - David W. Raible
- Department of Otolaryngology-HNS and Biological Structure, Viginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA, United States
| | - Teresa Nicolson
- Department of Otolaryngology-HNS, Stanford University, Stanford, CA, United States
| |
Collapse
|
7
|
Ahkin Chin Tai JK, Horzmann KA, Jenkins TL, Akoro IN, Stradtman S, Aryal UK, Freeman JL. Adverse developmental impacts in progeny of zebrafish exposed to the agricultural herbicide atrazine during embryogenesis. ENVIRONMENT INTERNATIONAL 2023; 180:108213. [PMID: 37774458 PMCID: PMC10613503 DOI: 10.1016/j.envint.2023.108213] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 10/01/2023]
Abstract
Atrazine (ATZ) is an herbicide commonly used on crops in the Midwestern US and other select global regions. The US Environmental Protection Agency ATZ regulatory limit is 3 parts per billion (ppb; µg/L), but this limit is often exceeded. ATZ has a long half-life, is a common contaminant of drinking water sources, and is indicated as an endocrine disrupting chemical in multiple species. The zebrafish was used to test the hypothesis that an embryonic parental ATZ exposure alters protein levels leading to modifications in morphology and behavior in developing progeny. Zebrafish embryos (F1) were collected from adults (F0) exposed to 0, 0.3, 3, or 30 ppb ATZ during embryogenesis. Differential proteomics, morphology, and behavior assays were completed with offspring aged 120 or 144 h with no additional chemical treatment. Proteomic analysis identified differential expression of proteins associated with neurological development and disease; and organ and organismal morphology, development, and injury, specifically the skeletomuscular system. Head length and ratio of head length to total length was significantly increased in the F1 of 0.3 and 30 ppb ATZ groups (p < 0.05). Based on molecular pathway alterations, further craniofacial morphology assessment found decreased distance for cartilaginous structures, decreased surface area and distance between saccular otoliths, and a more posteriorly positioned notochord (p < 0.05), indicating delayed ossification and skeletal growth. The visual motor response assay showed hyperactivity in progeny of the 30 ppb treatment group for distance moved and of the 0.3 and 30 ppb treatment groups for time spent moving (p < 0.05). Due to the changes in saccular otoliths, an acoustic startle assay was completed and showed decreased response in the 0.3 and 30 ppb treatments (p < 0.05). These findings suggest that a single embryonic parental exposure alters cellular pathways in their progeny that lead to perturbations in craniofacial development and behavior.
Collapse
Affiliation(s)
| | - Katharine A Horzmann
- School of Health Sciences, Purdue University, West Lafayette, IN, USA; Department of Pathobiology, Auburn University, Auburn, AL, USA
| | - Thomas L Jenkins
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Isabelle N Akoro
- School of Health Sciences, Purdue University, West Lafayette, IN, USA
| | - Sydney Stradtman
- School of Health Sciences, Purdue University, West Lafayette, IN, USA
| | - Uma K Aryal
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA; Bindley Bioscience Center, Discovery Park, Purdue University, West Lafayette, IN, USA
| | | |
Collapse
|
8
|
Sauer DJ, Radford CA, Mull CG, Yopak KE. Quantitative assessment of inner ear variation in elasmobranchs. Sci Rep 2023; 13:11939. [PMID: 37488259 PMCID: PMC10366120 DOI: 10.1038/s41598-023-39151-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/20/2023] [Indexed: 07/26/2023] Open
Abstract
Considerable diversity has been documented in most sensory systems of elasmobranchs (sharks, rays, and skates); however, relatively little is known about morphological variation in the auditory system of these fishes. Using magnetic resonance imaging (MRI), the inner ear structures of 26 elasmobranchs were assessed in situ. The inner ear end organs (saccule, lagena, utricle, and macula neglecta), semi-circular canals (horizontal, anterior, and posterior), and endolymphatic duct were compared using phylogenetically-informed, multivariate analyses. Inner ear variation can be characterised by three primary axes that are influenced by diet and habitat, where piscivorous elasmobranchs have larger inner ears compared to non-piscivorous species, and reef-associated species have larger inner ears than oceanic species. Importantly, this variation may reflect differences in auditory specialisation that could be tied to the functional requirements and environmental soundscapes of different species.
Collapse
Affiliation(s)
- Derek J Sauer
- Leigh Marine Laboratory, Institute of Marine Science, University of Auckland, Leigh, New Zealand.
| | - Craig A Radford
- Leigh Marine Laboratory, Institute of Marine Science, University of Auckland, Leigh, New Zealand
| | - Christopher G Mull
- Integrated Fisheries Laboratory, Department of Biology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Kara E Yopak
- Department of Biology and Marine Biology and the Center for Marine Science, University of North Carolina Wilmington, Wilmington, NC, USA
| |
Collapse
|
9
|
Green AJ, Wall AR, Weeks RD, Mattingly CJ, Marsden KC, Planchart A. Developmental cadmium exposure disrupts zebrafish vestibular calcium channels interfering with otolith formation and inner ear function. Neurotoxicology 2023; 96:129-139. [PMID: 37060951 PMCID: PMC10518193 DOI: 10.1016/j.neuro.2023.04.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/17/2023]
Abstract
Dizziness or balance problems are estimated to affect approximately 3.3 million children aged three to 17 years. These disorders develop from a breakdown in the balance control system and can be caused by anything that affects the inner ear or the brain, including exposure to environmental toxicants. One potential environmental toxicant linked to balance disorders is cadmium, an extremely toxic metal that occurs naturally in the earth's crust and is released as a byproduct of industrial processes. Cadmium is associated with balance and vestibular dysfunction in adults exposed occupationally, but little is known about the developmental effects of low-concentration cadmium exposure. Our findings indicate that zebrafish exposed to 10-60 parts per billion (ppb) cadmium from four hours post-fertilization (hpf) to seven days post-fertilization (dpf) exhibit abnormal behaviors, including pronounced increases in auditory sensitivity and circling behavior, both of which are linked to reductions in otolith growth and are rescued by the addition of calcium to the media. Pharmacological intervention shows that agonist-induced activation of the P2X calcium ion channel in the presence of cadmium restores otolith size. In conclusion, cadmium-induced ototoxicity is linked to vestibular-based behavioral abnormalities and auditory sensitivity following developmental exposure, and calcium ion channel function is associated with these defects.
Collapse
Affiliation(s)
- Adrian J Green
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA; Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27695, USA.
| | - Alex R Wall
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Ryan D Weeks
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Carolyn J Mattingly
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA; Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695, USA
| | - Kurt C Marsden
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA; Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695, USA
| | - Antonio Planchart
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA; Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
10
|
Baeza-Loya S, Raible DW. Vestibular physiology and function in zebrafish. Front Cell Dev Biol 2023; 11:1172933. [PMID: 37143895 PMCID: PMC10151581 DOI: 10.3389/fcell.2023.1172933] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/06/2023] [Indexed: 05/06/2023] Open
Abstract
The vestibular system of the inner ear provides information about head motion and spatial orientation relative to gravity to ensure gaze stability, balance, and postural control. Zebrafish, like humans, have five sensory patches per ear that serve as peripheral vestibular organs, with the addition of the lagena and macula neglecta. The zebrafish inner ear can be easily studied due to its accessible location, the transparent tissue of larval fish, and the early development of vestibular behaviors. Thus, zebrafish are an excellent model for studying the development, physiology, and function of the vestibular system. Recent work has made great strides to elucidate vestibular neural circuitry in fish, tracing sensory transmission from receptors in the periphery to central computational circuits driving vestibular reflexes. Here we highlight recent work that illuminates the functional organization of vestibular sensory epithelia, innervating first-order afferent neurons, and second-order neuronal targets in the hindbrain. Using a combination of genetic, anatomical, electrophysiological, and optical techniques, these studies have probed the roles of vestibular sensory signals in fish gaze, postural, and swimming behaviors. We discuss remaining questions in vestibular development and organization that are tractable in the zebrafish model.
Collapse
Affiliation(s)
| | - David W. Raible
- Virginia Merrill Bloedel Hearing Research Center, Department of Otolaryngology-HNS and Biological Structure, University of Washington, Seattle, WA, United States
| |
Collapse
|
11
|
Tanimoto M, Watakabe I, Higashijima SI. Tiltable objective microscope visualizes selectivity for head motion direction and dynamics in zebrafish vestibular system. Nat Commun 2022; 13:7622. [PMID: 36543769 PMCID: PMC9772181 DOI: 10.1038/s41467-022-35190-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 11/16/2022] [Indexed: 12/24/2022] Open
Abstract
Spatio-temporal information about head orientation and movement is fundamental to the sense of balance and motion. Hair cells (HCs) in otolith organs of the vestibular system transduce linear acceleration, including head tilt and vibration. Here, we build a tiltable objective microscope in which an objective lens and specimen tilt together. With in vivo Ca2+ imaging of all utricular HCs and ganglion neurons during 360° static tilt and vibration in pitch and roll axes, we reveal the direction- and static/dynamic stimulus-selective topographic responses in larval zebrafish. We find that head vibration is preferentially received by striolar HCs, whereas static tilt is preferentially transduced by extrastriolar HCs. Spatially ordered direction preference in HCs is consistent with hair-bundle polarity and is preserved in ganglion neurons through topographic innervation. Together, these results demonstrate topographically organized selectivity for direction and dynamics of head orientation/movement in the vestibular periphery.
Collapse
Affiliation(s)
- Masashi Tanimoto
- Division of Behavioral Neurobiology, National Institute for Basic Biology, Okazaki, Aichi, 444-8787, Japan.
- Neuronal Networks Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), Okazaki, Aichi, 444-8787, Japan.
| | - Ikuko Watakabe
- Division of Behavioral Neurobiology, National Institute for Basic Biology, Okazaki, Aichi, 444-8787, Japan
- Neuronal Networks Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), Okazaki, Aichi, 444-8787, Japan
| | - Shin-Ichi Higashijima
- Division of Behavioral Neurobiology, National Institute for Basic Biology, Okazaki, Aichi, 444-8787, Japan.
- Neuronal Networks Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), Okazaki, Aichi, 444-8787, Japan.
| |
Collapse
|
12
|
Rogers LS, Coffin AB, Sisneros JA. Reproductive state modulates utricular auditory sensitivity in a vocal fish. J Neurophysiol 2022; 128:1344-1354. [PMID: 36286323 PMCID: PMC9678424 DOI: 10.1152/jn.00315.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/22/2022] Open
Abstract
The plainfin midshipman, Porichthys notatus, is a seasonally breeding vocal fish that relies on acoustic communication to mediate nocturnal reproductive behaviors. Reproductive females use their auditory senses to detect and localize "singing" males that produce multiharmonic advertisement (mate) calls during the breeding season. Previous work showed that the midshipman saccule, which is considered the primary end organ used for hearing in midshipman and most other fishes, exhibits reproductive state and hormone-dependent changes that enhance saccular auditory sensitivity. In contrast, the utricle was previously posited to serve primarily a vestibular function, but recent evidence in midshipman and related toadfish suggests that it may also serve an auditory function and aid in the detection of behaviorally relevant acoustic stimuli. Here, we characterized the auditory-evoked potentials recorded from utricular hair cells in reproductive and nonreproductive female midshipman in response to underwater sound to test the hypothesis that variation in reproductive state affects utricular auditory sensitivity. We show that utricular hair cells in reproductive females exhibit up to a sixfold increase in the utricular potential magnitude and have thresholds based on measures of particle acceleration (re: 1 ms-2) that are 7-10 dB lower than nonreproductive females across a broad range of frequencies, which include the dominant harmonics of male advertisement calls. This enhanced auditory sensitivity of the utricle likely plays an essential role in facilitating midshipman social and reproductive acoustic communication.NEW & NOTEWORTHY In many animals, vocal-acoustic communication is fundamental for facilitating social behaviors. For the vocal plainfin midshipman fish, the detection and localization of social acoustic signals are critical to the species' reproductive success. Here, we show that the utricle, an inner ear end organ often thought to primarily serve a vestibular function, serves an auditory function that is seasonally plastic and modulated by the animal's reproductive state effectively enhancing auditory sensitivity to courting male advertisement calls.
Collapse
Affiliation(s)
- Loranzie S Rogers
- Department of Psychology, University of Washington, Seattle, Washington
| | - Allison B Coffin
- Department of Integrative Physiology and Neuroscience, Washington State University, Vancouver, Washington
| | - Joseph A Sisneros
- Department of Psychology, University of Washington, Seattle, Washington
- Department of Biology, University of Washington, Seattle, Washington
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, Washington
| |
Collapse
|
13
|
Jia Y, Bagnall MW. Monosynaptic targets of utricular afferents in the larval zebrafish. Front Neurol 2022; 13:937054. [PMID: 35937055 PMCID: PMC9355653 DOI: 10.3389/fneur.2022.937054] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/30/2022] [Indexed: 12/27/2022] Open
Abstract
The larval zebrafish acquires a repertoire of vestibular-driven behaviors that aid survival early in development. These behaviors rely mostly on the utricular otolith, which senses inertial (tilt and translational) head movements. We previously characterized the known central brainstem targets of utricular afferents using serial-section electron microscopy of a larval zebrafish brain. Here we describe the rest of the central targets of utricular afferents, focusing on the neurons whose identities are less certain in our dataset. We find that central neurons with commissural projections have a wide range of predicted directional tuning, just as in other vertebrates. In addition, somata of central neurons with inferred responses to contralateral tilt are located more laterally than those with inferred responses to ipsilateral tilt. Many dorsally located central utricular neurons are unipolar, with an ipsilateral dendritic ramification and commissurally projecting axon emerging from a shared process. Ventrally located central utricular neurons tended to receive otolith afferent synaptic input at a shorter distance from the soma than in dorsally located neurons. Finally, we observe an unexpected synaptic target of utricular afferents: afferents from the medial (horizontal) semicircular canal. Collectively, these data provide a better picture of the gravity-sensing circuit. Furthermore, we suggest that vestibular circuits important for survival behaviors develop first, followed by the circuits that refine these behaviors.
Collapse
Affiliation(s)
| | - Martha W. Bagnall
- Department of Neuroscience, Washington University, St. Louis, MO, United States
| |
Collapse
|
14
|
Rogers LS, Van Wert JC, Mensinger AF. Response of toadfish ( Opsanus tau) utricular afferents to multimodal inputs. J Neurophysiol 2022; 128:364-377. [PMID: 35830608 DOI: 10.1152/jn.00483.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The inner ear of teleost fishes is composed of three paired multimodal otolithic end organs (saccule, utricle, and lagena), which encode auditory and vestibular inputs via the deflection of hair cells contained within the sensory epithelia of each organ. However, it remains unclear how the multimodal otolithic end organs of the teleost inner ear simultaneously integrate vestibular and auditory inputs. Therefore, microwire electrodes were chronically implanted using a 3D printed micromanipulator into the utricular nerve of oyster toadfish (Opsanus tau) to determine how utricular afferents respond to conspecific mate vocalizations termed boatwhistles (180 Hz fundamental frequency) during movement. Utricular afferents were recorded while fish were passively moved using a sled system along an underwater track at variable speeds (velocity: 4.0 - 12.5 cm/s; acceleration: 0.2 - 2.6 cm/s2) and while fish freely swam (velocity: 3.5 - 18.6 cm/s; acceleration: 0.8 - 29.8 cm/s2). Afferent fiber activities (spikes/s) increased in response to the onset of passive and active movements; however, afferent fibers differentially adapted to sustained movements. Additionally, utricular afferent fibers remained sensitive to playbacks of conspecific male boatwhistle vocalizations during both passive and active movements. Here, we demonstrate in alert toadfish that utricular afferents exhibit enhanced activity levels (spikes/s) in response to behaviorally-relevant acoustic stimuli during swimming.
Collapse
Affiliation(s)
- Loranzie S Rogers
- Biology Department, University of Minnesota Duluth, Duluth, MN, United States.,Marine Biological Laboratory, Woods Hole, MA, United States
| | | | - Allen F Mensinger
- Biology Department, University of Minnesota Duluth, Duluth, MN, United States.,Marine Biological Laboratory, Woods Hole, MA, United States
| |
Collapse
|
15
|
Comparative Otolith Morphology of Two Morphs of Schizopygopsis thermalis Herzenstein 1891 (Pisces, Cyprinidae) in a Headwater Lake on the Qinghai-Tibet Plateau. FISHES 2022. [DOI: 10.3390/fishes7030099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Teleost otoliths provide a pivotal medium for studying changes in population structure and population dynamics of fish. Understanding the otolith-fish size relationship and intraspecies variation in otolith morphology is essential for the accurate assessment and management of fishery resources. In our study, we aimed to estimate the relationships between otolith morphological measurements and fish length, and detect differences in the otolith morphology of planktivorous and benthivorous morphs of Schizopygopsis thermalis in Lake Amdo Tsonak Co on the Qinghai-Tibet Plateau (QTP). Both morphs exhibited strong linear otolith-fish size relationships; otolith morphology was sexually dimorphic in each morph; the morphs differed significantly in otolith shape and size (e.g., posterior side, the region between the posterior and ventral otolith, otolith length, circularity, and surface density). In addition, we found that the differences in otolith morphology between morphs are related to habitat preferences, diet, and growth. Basic data on the biology of S. thermalis are essential for poorly studied Lake Amdo Tsonak Co, and our study emphasizes that intraspecific variation in otolith morphology should be taken into consideration when differentiating stocks, populations, and age classes based on otolith morphology.
Collapse
|
16
|
Popper AN, Sisneros JA. The Sound World of Zebrafish: A Critical Review of Hearing Assessment. Zebrafish 2022; 19:37-48. [PMID: 35439045 DOI: 10.1089/zeb.2021.0063] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Zebrafish, like all fish species, use sound to learn about their environment. Thus, human-generated (anthropogenic) sound added to the environment has the potential to disrupt the detection of biologically relevant sounds, alter behavior, impact fitness, and produce stress and other effects that can alter the well-being of animals. This review considers the bioacoustics of zebrafish in the laboratory with two goals. First, we discuss zebrafish hearing and the problems and issues that must be considered in any studies to get a clear understanding of hearing capabilities. Second, we focus on the potential effects of sounds in the tank environment and its impact on zebrafish physiology and health. To do this, we discuss underwater acoustics and the very specialized acoustics of fish tanks, in which zebrafish live and are studied. We consider what is known about zebrafish hearing and what is known about the potential impacts of tank acoustics on zebrafish and their well-being. We conclude with suggestions regarding the major gaps in what is known about zebrafish hearing as well as questions that must be explored to better understand how well zebrafish tolerate and deal with the acoustic world they live in within laboratories.
Collapse
Affiliation(s)
- Arthur N Popper
- Department of Biology, University of Maryland, College Park, Maryland, USA
| | - Joseph A Sisneros
- Department of Psychology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
17
|
Design of a Novel Medical Acoustic Sensor Based on MEMS Bionic Fish Ear Structure. MICROMACHINES 2022; 13:mi13020163. [PMID: 35208288 PMCID: PMC8880548 DOI: 10.3390/mi13020163] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/14/2022] [Accepted: 01/20/2022] [Indexed: 02/01/2023]
Abstract
High-performance medical acoustic sensors are essential in medical equipment and diagnosis. Commercially available medical acoustic sensors are capacitive and piezoelectric types. When they are used to detect heart sound signals, there is attenuation and distortion due to the sound transmission between different media. This paper proposes a new bionic acoustic sensor based on the fish ear structure. Through theoretical analysis and finite element simulation, the optimal parameters of the sensitive structure are determined. The sensor is fabricated using microelectromechanical systems (MEMS) technology, and is encapsulated in castor oil, which has an acoustic impedance close to the human body. An electroacoustic test platform is built to test the performance of the sensor. The results showed that the MEMS bionic sensor operated with a bandwidth of 20–2k Hz. Its linearity and frequency responses were better than the electret microphone. In addition, the sensor was tested for heart sound collection application to verify its effectiveness. The proposed sensor can be effectively used in clinical auscultation and has a high SNR.
Collapse
|
18
|
Chen Z, Zhu S, Kindig K, Wang S, Chou SW, Davis RW, Dercoli MR, Weaver H, Stepanyan R, McDermott BM. Tmc proteins are essential for zebrafish hearing where Tmc1 is not obligatory. Hum Mol Genet 2021; 29:2004-2021. [PMID: 32167554 DOI: 10.1093/hmg/ddaa045] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 02/13/2020] [Indexed: 12/19/2022] Open
Abstract
Perception of sound is initiated by mechanically gated ion channels at the tips of stereocilia. Mature mammalian auditory hair cells require transmembrane channel-like 1 (TMC1) for mechanotransduction, and mutations of the cognate genetic sequences result in dominant or recessive heritable deafness forms in humans and mice. In contrast, zebrafish lateral line hair cells, which detect water motion, require Tmc2a and Tmc2b. Here, we use standard and multiplex genome editing in conjunction with functional and behavioral assays to determine the reliance of zebrafish hearing and vestibular organs on Tmc proteins. Surprisingly, our approach using multiple mutant alleles demonstrates that hearing in zebrafish is not dependent on Tmc1, nor is it fully dependent on Tmc2a and Tmc2b. Hearing however is absent in triple-mutant zebrafish that lack Tmc1, Tmc2a and Tmc2b. These outcomes reveal a striking resemblance of Tmc protein reliance in the vestibular sensory epithelia of mammals to the maculae of zebrafish. Moreover, our findings disclose a logic of Tmc use where hearing depends on a complement of Tmc proteins beyond those employed to sense water motion.
Collapse
Affiliation(s)
- Zongwei Chen
- Department of Otolaryngology-Head and Neck Surgery, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.,Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Shaoyuan Zhu
- Department of Otolaryngology-Head and Neck Surgery, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.,Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Kayla Kindig
- Department of Otolaryngology-Head and Neck Surgery, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.,Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Shengxuan Wang
- Department of Otolaryngology-Head and Neck Surgery, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.,Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Shih-Wei Chou
- Department of Otolaryngology-Head and Neck Surgery, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.,Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Robin Woods Davis
- Department of Otolaryngology-Head and Neck Surgery, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.,Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Michael R Dercoli
- Department of Otolaryngology-Head and Neck Surgery, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.,Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Hannah Weaver
- Department of Otolaryngology-Head and Neck Surgery, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.,Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Ruben Stepanyan
- Department of Otolaryngology-Head and Neck Surgery, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.,Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Brian M McDermott
- Department of Otolaryngology-Head and Neck Surgery, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.,Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA.,Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.,Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
19
|
Sheets L, Holmgren M, Kindt KS. How Zebrafish Can Drive the Future of Genetic-based Hearing and Balance Research. J Assoc Res Otolaryngol 2021; 22:215-235. [PMID: 33909162 PMCID: PMC8110678 DOI: 10.1007/s10162-021-00798-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/23/2021] [Indexed: 02/06/2023] Open
Abstract
Over the last several decades, studies in humans and animal models have successfully identified numerous molecules required for hearing and balance. Many of these studies relied on unbiased forward genetic screens based on behavior or morphology to identify these molecules. Alongside forward genetic screens, reverse genetics has further driven the exploration of candidate molecules. This review provides an overview of the genetic studies that have established zebrafish as a genetic model for hearing and balance research. Further, we discuss how the unique advantages of zebrafish can be leveraged in future genetic studies. We explore strategies to design novel forward genetic screens based on morphological alterations using transgenic lines or behavioral changes following mechanical or acoustic damage. We also outline how recent advances in CRISPR-Cas9 can be applied to perform reverse genetic screens to validate large sequencing datasets. Overall, this review describes how future genetic studies in zebrafish can continue to advance our understanding of inherited and acquired hearing and balance disorders.
Collapse
Affiliation(s)
- Lavinia Sheets
- Department of Otolaryngology-Head & Neck Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Melanie Holmgren
- Department of Otolaryngology-Head & Neck Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Katie S Kindt
- Section On Sensory Cell Development and Function, National Institutes On Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, USA.
| |
Collapse
|
20
|
Zhu S, Chen Z, Wang H, McDermott BM. Tmc Reliance Is Biased by the Hair Cell Subtype and Position Within the Ear. Front Cell Dev Biol 2021; 8:570486. [PMID: 33490059 PMCID: PMC7817542 DOI: 10.3389/fcell.2020.570486] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 10/21/2020] [Indexed: 12/04/2022] Open
Abstract
Hair cells are heterogenous, enabling varied roles in sensory systems. An emerging hypothesis is that the transmembrane channel-like (Tmc) proteins of the hair cell’s mechanotransduction apparatus vary within and between organs to permit encoding of different mechanical stimuli. Five anatomical variables that may coincide with different Tmc use by a hair cell within the ear are the containing organ, cell morphology, cell position within an organ, axis of best sensitivity for the cell, and the hair bundle’s orientation within this axis. Here, we test this hypothesis in the organs of the zebrafish ear using a suite of genetic mutations. Transgenesis and quantitative measurements demonstrate two morphologically distinct hair cell types in the central thickness of a vestibular organ, the lateral crista: short and tall. In contrast to what has been observed, we find that tall hair cells that lack Tmc1 generally have substantial reductions in mechanosensitivity. In short hair cells that lack Tmc2 isoforms, mechanotransduction is largely abated. However, hair cell Tmc dependencies are not absolute, and an exceptional class of short hair cell that depends on Tmc1 is present, termed a short hair cell erratic. To further test anatomical variables that may influence Tmc use, we map Tmc1 function in the saccule of mutant larvae that depend just on this Tmc protein to hear. We demonstrate that hair cells that use Tmc1 are found in the posterior region of the saccule, within a single axis of best sensitivity, and hair bundles with opposite orientations retain function. Overall, we determine that Tmc reliance in the ear is dependent on the organ, subtype of hair cell, position within the ear, and axis of best sensitivity.
Collapse
Affiliation(s)
- Shaoyuan Zhu
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, Case Western Reserve University, Cleveland, OH, United States.,Department of Biology, Case Western Reserve University, Cleveland, OH, United States
| | - Zongwei Chen
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, Case Western Reserve University, Cleveland, OH, United States.,Department of Biology, Case Western Reserve University, Cleveland, OH, United States
| | - Haoming Wang
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, Case Western Reserve University, Cleveland, OH, United States.,Department of Biology, Case Western Reserve University, Cleveland, OH, United States
| | - Brian M McDermott
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, Case Western Reserve University, Cleveland, OH, United States.,Department of Biology, Case Western Reserve University, Cleveland, OH, United States.,Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, United States.,Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
21
|
Zhang XH, Tao Y, Zhou YL, Tang LG, Liu M, Xu XM. Acoustic Properties of the Otolith of the Large Yellow Croaker Larimichthys crocea (Perciformes: Sciaenidae). Zool Stud 2021; 60:e64. [PMID: 35665089 PMCID: PMC9121364 DOI: 10.6620/zs.2021.60-64] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 07/28/2021] [Indexed: 05/19/2023]
Abstract
The inner ears of fish contain three pairs of otoliths-lapilli, asterisci and sagittae-which play important roles in hearing and balance. However, acoustic properties and dynamic responses of fish otoliths are poorly understood. The large yellow croaker (Larimichthys crocea), like many species in the family Sciaenidae, is extremely sensitive to sound. The present study used L. crocea sagittae as the research subject and examined the variation in shear stress on sagittae under different acoustic stimuli. For the first time, the sound speed of the sagitta was measured using ultrasonic pulse-echo techniques, and the acoustic impedance and natural frequency of the sagitta were calculated. Larimichthys crocea adults (20-22 cm standard length, n = 10) had a sagitta density of 2781.5 ± 28.06 kg/m3, sound speed of 4828-6000 m/s and acoustic impedance range of 13.4-16.7 MPa·s/m, approximately 9-11 times that of seawater (1.48 MPa·s/m). The natural frequency of the sagitta was 76.4-95.5 kHz. The shape and structural details of sagittae were reconstructed by 3D scanner and the shear stress responses of sagittae under different acoustic stimulus were investigated based on a finite element model. The simulation results showed that the shear stress responses tended to increase and then decrease in the range of sciaenid hearing frequency from 200 to 1300 Hz, peaking at 800 Hz. The shear stress responses varied with the direction of acoustic stimulus and peaked when the incident direction was perpendicular to the inner surface of the otolith. These results provide important parameters that may be used to protect L. crocea from possible underwater noise damage, particularly during their spawning aggregations and over-wintering aggregations.
Collapse
Affiliation(s)
- Xin-Hai Zhang
- Key Laboratory of Underwater Acoustic Communication and Marine Information Technology of Ministry of Education, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian Province, China. E-mail: (Tao); (Zhang); (Zhou); (Tang); (Xu)
| | - Yi Tao
- Key Laboratory of Underwater Acoustic Communication and Marine Information Technology of Ministry of Education, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian Province, China. E-mail: (Tao); (Zhang); (Zhou); (Tang); (Xu)
| | - Yang-Liang Zhou
- Key Laboratory of Underwater Acoustic Communication and Marine Information Technology of Ministry of Education, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian Province, China. E-mail: (Tao); (Zhang); (Zhou); (Tang); (Xu)
| | - Li-Guo Tang
- Key Laboratory of Underwater Acoustic Communication and Marine Information Technology of Ministry of Education, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian Province, China. E-mail: (Tao); (Zhang); (Zhou); (Tang); (Xu)
| | - Min Liu
- Dongshan Swire Marine Station, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian Province, China. E-mail: (Liu)
| | - Xiao-Mei Xu
- Key Laboratory of Underwater Acoustic Communication and Marine Information Technology of Ministry of Education, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian Province, China. E-mail: (Tao); (Zhang); (Zhou); (Tang); (Xu)
| |
Collapse
|
22
|
Favre-Bulle IA, Taylor MA, Marquez-Legorreta E, Vanwalleghem G, Poulsen RE, Rubinsztein-Dunlop H, Scott EK. Sound generation in zebrafish with Bio-Opto-Acoustics. Nat Commun 2020; 11:6120. [PMID: 33257652 PMCID: PMC7705743 DOI: 10.1038/s41467-020-19982-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 11/05/2020] [Indexed: 12/11/2022] Open
Abstract
Hearing is a crucial sense in underwater environments for communication, hunting, attracting mates, and detecting predators. However, the tools currently used to study hearing are limited, as they cannot controllably stimulate specific parts of the auditory system. To date, the contributions of hearing organs have been identified through lesion experiments that inactivate an organ, making it difficult to gauge the specific stimuli to which each organ is sensitive, or the ways in which inputs from multiple organs are combined during perception. Here, we introduce Bio-Opto-Acoustic (BOA) stimulation, using optical forces to generate localized vibrations in vivo, and demonstrate stimulation of the auditory system of zebrafish larvae with precise control. We use a rapidly oscillated optical trap to generate vibrations in individual otolith organs that are perceived as sound, while adjacent otoliths are either left unstimulated or similarly stimulated with a second optical laser trap. The resulting brain-wide neural activity is characterized using fluorescent calcium indicators, thus linking each otolith organ to its individual neuronal network in a way that would be impossible using traditional sound delivery methods. The results reveal integration and cooperation of the utricular and saccular otoliths, which were previously described as having separate biological functions, during hearing.
Collapse
Affiliation(s)
- Itia A Favre-Bulle
- School of Mathematics and Physics, The University of Queensland, Brisbane, Australia.
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia.
| | - Michael A Taylor
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia
| | | | - Gilles Vanwalleghem
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Rebecca E Poulsen
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | | | - Ethan K Scott
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
23
|
Ringers C, Olstad EW, Jurisch-Yaksi N. The role of motile cilia in the development and physiology of the nervous system. Philos Trans R Soc Lond B Biol Sci 2019; 375:20190156. [PMID: 31884916 DOI: 10.1098/rstb.2019.0156] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Motile cilia are miniature, whip-like organelles whose beating generates a directional fluid flow. The flow generated by ciliated epithelia is a subject of great interest, as defective ciliary motility results in severe human diseases called motile ciliopathies. Despite the abundance of motile cilia in diverse organs including the nervous system, their role in organ development and homeostasis remains poorly understood. Recently, much progress has been made regarding the identity of motile ciliated cells and the role of motile-cilia-mediated flow in the development and physiology of the nervous system. In this review, we will discuss these recent advances from sensory organs, specifically the nose and the ear, to the spinal cord and brain ventricles. This article is part of the Theo Murphy meeting issue 'Unity and diversity of cilia in locomotion and transport'.
Collapse
Affiliation(s)
- Christa Ringers
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030 Trondheim, Norway
| | - Emilie W Olstad
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030 Trondheim, Norway
| | - Nathalie Jurisch-Yaksi
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030 Trondheim, Norway.,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030 Trondheim, Norway.,Department of Neurology and Clinical Neurophysiology, St Olavs University Hospital, Edvard Griegs Gate 8, 7030 Trondheim, Norway
| |
Collapse
|
24
|
Privat M, Romano SA, Pietri T, Jouary A, Boulanger-Weill J, Elbaz N, Duchemin A, Soares D, Sumbre G. Sensorimotor Transformations in the Zebrafish Auditory System. Curr Biol 2019; 29:4010-4023.e4. [PMID: 31708392 PMCID: PMC6892253 DOI: 10.1016/j.cub.2019.10.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/27/2019] [Accepted: 10/15/2019] [Indexed: 11/25/2022]
Abstract
Organisms use their sensory systems to acquire information from their environment and integrate this information to produce relevant behaviors. Nevertheless, how sensory information is converted into adequate motor patterns in the brain remains an open question. Here, we addressed this question using two-photon and light-sheet calcium imaging in intact, behaving zebrafish larvae. We monitored neural activity elicited by auditory stimuli while simultaneously recording tail movements. We observed a spatial organization of neural activity according to four different response profiles (frequency tuning curves), suggesting a low-dimensional representation of frequency information, maintained throughout the development of the larvae. Low frequencies (150-450 Hz) were locally processed in the hindbrain and elicited motor behaviors. In contrast, higher frequencies (900-1,000 Hz) rarely induced motor behaviors and were also represented in the midbrain. Finally, we found that the sensorimotor transformations in the zebrafish auditory system are a continuous and gradual process that involves the temporal integration of the sensory response in order to generate a motor behavior.
Collapse
Affiliation(s)
- Martin Privat
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Sebastián A Romano
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France; Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck Society, Godoy Cruz 2390, C1425FQD Buenos Aires, Argentina
| | - Thomas Pietri
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Adrien Jouary
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France; Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon 1400-038, Portugal
| | - Jonathan Boulanger-Weill
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France; Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Nicolas Elbaz
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Auriane Duchemin
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Daphne Soares
- Department of Biological Sciences, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Germán Sumbre
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France.
| |
Collapse
|
25
|
Girotto G, Morgan A, Krishnamoorthy N, Cocca M, Brumat M, Bassani S, La Bianca M, Di Stazio M, Gasparini P. Next Generation Sequencing and Animal Models Reveal SLC9A3R1 as a New Gene Involved in Human Age-Related Hearing Loss. Front Genet 2019; 10:142. [PMID: 30863428 PMCID: PMC6399162 DOI: 10.3389/fgene.2019.00142] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 02/11/2019] [Indexed: 01/29/2023] Open
Abstract
Age-related hearing loss (ARHL) is the most common sensory impairment in the elderly affecting millions of people worldwide. To shed light on the genetics of ARHL, a large cohort of 464 Italian patients has been deeply characterized at clinical and molecular level. In particular, 46 candidate genes, selected on the basis of genome-wide association studies (GWAS), animal models and literature updates, were analyzed by targeted re-sequencing. After filtering and prioritization steps, SLC9A3R1 has been identified as a strong candidate and then validated by "in vitro" and "in vivo" studies. Briefly, a rare (MAF: 2.886e-5) missense variant c.539G > A, p.(R180Q) was detected in two unrelated male patients affected by ARHL characterized by a severe to profound high-frequency hearing loss. The variant, predicted as damaging, was not present in healthy matched controls. Protein modeling confirmed the pathogenic effect of p.(R180Q) variant on protein's structure leading to a change in the total number of hydrogen bonds. In situ hybridization showed slc9a3r1 expression in zebrafish inner ear. A zebrafish knock-in model, generated by CRISPR-Cas9 technology, revealed a reduced auditory response at all frequencies in slc9a3r1 R180Q/R180Q mutants compared to slc9a3r1 +/+ and slc9a3r1 +/R180Q animals. Moreover, a significant reduction (5.8%) in the total volume of the saccular otolith (which is responsible for sound detection) was observed in slc9a3r1 R180Q/R180Q compared to slc9a3r1 +/+ (P = 0.0014), while the utricular otolith, necessary for balance, was not affected in agreement with the human phenotype. Overall, these data strongly support the role of SLC9A3R1 gene in the pathogenesis of ARHL opening new perspectives in terms of diagnosis, prevention and treatment.
Collapse
Affiliation(s)
- Giorgia Girotto
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy.,Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy
| | - Anna Morgan
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy.,Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy
| | - Navaneethakrishnan Krishnamoorthy
- Sidra Medical and Research Center, Doha, Qatar.,Heart Science Centre, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Massimiliano Cocca
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy
| | - Marco Brumat
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy.,Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy
| | - Sissy Bassani
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy.,Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy
| | - Martina La Bianca
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy
| | - Mariateresa Di Stazio
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy.,Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy
| | - Paolo Gasparini
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy.,Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy
| |
Collapse
|
26
|
Bhandiwad AA, Raible DW, Rubel EW, Sisneros JA. Noise-Induced Hypersensitization of the Acoustic Startle Response in Larval Zebrafish. J Assoc Res Otolaryngol 2018; 19:741-752. [PMID: 30191425 PMCID: PMC6249159 DOI: 10.1007/s10162-018-00685-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 01/21/2018] [Indexed: 01/28/2023] Open
Abstract
Overexposure to loud noise is known to lead to deficits in auditory sensitivity and perception. We studied the effects of noise exposure on sensorimotor behaviors of larval (5-7 days post-fertilization) zebrafish (Danio rerio), particularly the auditory-evoked startle response and hearing sensitivity to acoustic startle stimuli. We observed a temporary 10-15 dB decrease in startle response threshold after 18 h of flat-spectrum noise exposure at 20 dB re·1 ms-2. Larval zebrafish also exhibited decreased habituation to startle-inducing stimuli following noise exposure. The noise-induced sensitization was not due to changes in absolute hearing thresholds, but was specific to the auditory-evoked escape responses. The observed noise-induced sensitization was disrupted by AMPA receptor blockade using DNQX, but not NMDA receptor blockade. Together, these experiments suggest a complex effect of noise exposure on the neural circuits mediating auditory-evoked behaviors in larval zebrafish.
Collapse
Affiliation(s)
| | - David W. Raible
- Department of Biological Structure, University of Washington, Seattle, WA 98195 USA
- Department of Biology, University of Washington, Seattle, WA 98195 USA
- Virginia M. Bloedel Hearing Research Center, University of Washington, Seattle, WA 98195 USA
| | - Edwin W. Rubel
- Department of Psychology, University of Washington, Seattle, WA 98195 USA
- Virginia M. Bloedel Hearing Research Center, University of Washington, Seattle, WA 98195 USA
| | - Joseph A. Sisneros
- Department of Psychology, University of Washington, Seattle, WA 98195 USA
- Department of Biology, University of Washington, Seattle, WA 98195 USA
- Virginia M. Bloedel Hearing Research Center, University of Washington, Seattle, WA 98195 USA
| |
Collapse
|
27
|
Favre-Bulle IA, Vanwalleghem G, Taylor MA, Rubinsztein-Dunlop H, Scott EK. Cellular-Resolution Imaging of Vestibular Processing across the Larval Zebrafish Brain. Curr Biol 2018; 28:3711-3722.e3. [PMID: 30449665 DOI: 10.1016/j.cub.2018.09.060] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 07/26/2018] [Accepted: 09/26/2018] [Indexed: 12/20/2022]
Abstract
The vestibular system, which reports on motion and gravity, is essential to postural control, balance, and egocentric representations of movement and space. The motion needed to stimulate the vestibular system complicates studying its circuitry, so we previously developed a method for fictive vestibular stimulation in zebrafish, using optical trapping to apply physical forces to the otoliths. Here, we combine this approach with whole-brain calcium imaging at cellular resolution, delivering a comprehensive map of the brain regions and cellular responses involved in basic vestibular processing. We find responses broadly distributed across the brain, with unique profiles of cellular responses and topography in each region. The most widespread and abundant responses involve excitation that is graded to the stimulus strength. Other responses, localized to the telencephalon and habenulae, show excitation that is only weakly correlated to stimulus strength and that is sensitive to weak stimuli. Finally, numerous brain regions contain neurons that are inhibited by vestibular stimuli, and these neurons are often tightly localized spatially within their regions. By exerting separate control over the left and right otoliths, we explore the laterality of brain-wide vestibular processing, distinguishing between neurons with unilateral and bilateral vestibular sensitivity and revealing patterns whereby conflicting signals from the ears mutually cancel. Our results confirm previously identified vestibular responses in specific regions of the larval zebrafish brain while revealing a broader and more extensive network of vestibular responsive neurons than has previously been described. This provides a departure point for more targeted studies of the underlying functional circuits.
Collapse
Affiliation(s)
- Itia A Favre-Bulle
- School of Mathematics and Physics, The University of Queensland, Brisbane, QLD 4072, Australia; School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Gilles Vanwalleghem
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Michael A Taylor
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | | | - Ethan K Scott
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia; Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
28
|
Migault G, van der Plas TL, Trentesaux H, Panier T, Candelier R, Proville R, Englitz B, Debrégeas G, Bormuth V. Whole-Brain Calcium Imaging during Physiological Vestibular Stimulation in Larval Zebrafish. Curr Biol 2018; 28:3723-3735.e6. [PMID: 30449666 PMCID: PMC6288061 DOI: 10.1016/j.cub.2018.10.017] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/25/2018] [Accepted: 10/04/2018] [Indexed: 12/27/2022]
Abstract
The vestibular apparatus provides animals with postural and movement-related information that is essential to adequately execute numerous sensorimotor tasks. In order to activate this sensory system in a physiological manner, one needs to macroscopically rotate or translate the animal's head, which in turn renders simultaneous neural recordings highly challenging. Here we report on a novel miniaturized, light-sheet microscope that can be dynamically co-rotated with a head-restrained zebrafish larva, enabling controlled vestibular stimulation. The mechanical rigidity of the microscope allows one to perform whole-brain functional imaging with state-of-the-art resolution and signal-to-noise ratio while imposing up to 25° in angular position and 6,000°/s2 in rotational acceleration. We illustrate the potential of this novel setup by producing the first whole-brain response maps to sinusoidal and stepwise vestibular stimulation. The responsive population spans multiple brain areas and displays bilateral symmetry, and its organization is highly stereotypic across individuals. Using Fourier and regression analysis, we identified three major functional clusters that exhibit well-defined phasic and tonic response patterns to vestibular stimulation. Our rotatable light-sheet microscope provides a unique tool for systematically studying vestibular processing in the vertebrate brain and extends the potential of virtual-reality systems to explore complex multisensory and motor integration during simulated 3D navigation.
Collapse
Affiliation(s)
- Geoffrey Migault
- Laboratoire Jean Perrin, Sorbonne Université, UMR 8237, 75005 Paris, France; Laboratoire Jean Perrin, CNRS, UMR 8237, 75005 Paris, France
| | - Thijs L van der Plas
- Laboratoire Jean Perrin, Sorbonne Université, UMR 8237, 75005 Paris, France; Donders Centre for Neuroscience, Department of Neurophysiology, Radboud University, Nijmegen, the Netherlands
| | - Hugo Trentesaux
- Laboratoire Jean Perrin, Sorbonne Université, UMR 8237, 75005 Paris, France; Laboratoire Jean Perrin, CNRS, UMR 8237, 75005 Paris, France
| | - Thomas Panier
- Laboratoire Jean Perrin, Sorbonne Université, UMR 8237, 75005 Paris, France; Laboratoire Jean Perrin, CNRS, UMR 8237, 75005 Paris, France
| | - Raphaël Candelier
- Laboratoire Jean Perrin, Sorbonne Université, UMR 8237, 75005 Paris, France; Laboratoire Jean Perrin, CNRS, UMR 8237, 75005 Paris, France
| | - Rémi Proville
- Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, INSERM, U1215, 33077 Bordeaux Cedex, France
| | - Bernhard Englitz
- Donders Centre for Neuroscience, Department of Neurophysiology, Radboud University, Nijmegen, the Netherlands
| | - Georges Debrégeas
- Laboratoire Jean Perrin, Sorbonne Université, UMR 8237, 75005 Paris, France; Laboratoire Jean Perrin, CNRS, UMR 8237, 75005 Paris, France
| | - Volker Bormuth
- Laboratoire Jean Perrin, Sorbonne Université, UMR 8237, 75005 Paris, France; Laboratoire Jean Perrin, CNRS, UMR 8237, 75005 Paris, France.
| |
Collapse
|
29
|
Schulz-Mirbach T, Ladich F, Plath M, Heß M. Enigmatic ear stones: what we know about the functional role and evolution of fish otoliths. Biol Rev Camb Philos Soc 2018; 94:457-482. [DOI: 10.1111/brv.12463] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 08/16/2018] [Accepted: 08/20/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Tanja Schulz-Mirbach
- Department Biology II, Zoology; Ludwig-Maximilians-University; Großhaderner Strasse 2, 82152 Planegg-Martinsried Germany
| | - Friedrich Ladich
- Department of Behavioural Biology; University of Vienna; Althanstrasse 14, 1090 Vienna Austria
| | - Martin Plath
- College of Animal Science & Technology; Northwest A&F University; 22 Xinong Road, Yangling Shaanxi China
| | - Martin Heß
- Department Biology II, Zoology; Ludwig-Maximilians-University; Großhaderner Strasse 2, 82152 Planegg-Martinsried Germany
| |
Collapse
|
30
|
Sun P, Zhang Y, Zhao F, Wu JP, Pun SH, Peng C, Du M, Vai MI, Liu D, Chen F. An Assay for Systematically Quantifying the Vestibulo-Ocular Reflex to Assess Vestibular Function in Zebrafish Larvae. Front Cell Neurosci 2018; 12:257. [PMID: 30186115 PMCID: PMC6113563 DOI: 10.3389/fncel.2018.00257] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 07/27/2018] [Indexed: 12/25/2022] Open
Abstract
Zebrafish (Danio rerio) larvae are widely used to study otic functions because they possess all five typical vertebrate senses including hearing and balance. Powerful genetic tools and the transparent body of the embryo and larva also make zebrafish a unique vertebrate model to study otic development. Due to its small larval size and moisture requirement during experiments, accurately acquiring the vestibulo-ocular reflex (VOR) of zebrafish larva is challenging. In this report, a new VOR testing device has been developed for quantifying linear VOR (LVOR) in zebrafish larva, evoked by the head motion about the earth horizontal axis. The system has a newly designed larva-shaped chamber, by which live fish can be steadily held without anesthesia, and the system is more compact and easier to use than its predecessors. To demonstrate the efficacy of the system, the LVORs in wild-type (WT), dlx3b and dlx4b morphant zebrafish larvae were measured and the results showed that LVOR amplitudes were consistent with the morphological changes of otoliths induced by morpholino oligonucleotides (MO). Our study represents an important advance to obtain VOR and predict the vestibular conditions in zebrafish.
Collapse
Affiliation(s)
- Peng Sun
- State Key Laboratory of Analog and Mixed-Signal VLSI, University of Macau, Taipa, China.,Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Taipa, China.,Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Yingla Zhang
- School of Life Sciences, Peking University, Beijing, China
| | - Feng Zhao
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Jian-Ping Wu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China.,SUSTech Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, China
| | - Sio Hang Pun
- State Key Laboratory of Analog and Mixed-Signal VLSI, University of Macau, Taipa, China
| | - Cheng Peng
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Meide Du
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Mang I Vai
- State Key Laboratory of Analog and Mixed-Signal VLSI, University of Macau, Taipa, China.,Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Taipa, China
| | - Dong Liu
- School of Life Sciences, Peking University, Beijing, China.,Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Fangyi Chen
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
31
|
Zebrafish skeleton development: High resolution micro-CT and FIB-SEM block surface serial imaging for phenotype identification. PLoS One 2017; 12:e0177731. [PMID: 29220379 PMCID: PMC5722281 DOI: 10.1371/journal.pone.0177731] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 05/02/2017] [Indexed: 12/03/2022] Open
Abstract
Although bone is one of the most studied living materials, many questions about the manner in which bones form remain unresolved, including fine details of the skeletal structure during development. In this study, we monitored skeleton development of zebrafish larvae, using calcein fluorescence, high-resolution micro-CT 3D images and FIB-SEM in the block surface serial imaging mode. We compared calcein staining of the skeletons of the wild type and nacre mutants, which are transparent zebrafish, with micro-CT for the first 30 days post fertilization embryos, and identified significant differences. We quantified the bone volumes and mineral contents of bones, including otoliths, during development, and showed that such developmental differences, including otolith development, could be helpful in identifying phenotypes. In addition, high-resolution imaging revealed the presence of mineralized aggregates in the notochord, before the formation of the first bone in the axial skeleton. These structures might play a role in the storage of the mineral. Our results highlight the potential of these high-resolution 3D approaches to characterize the zebrafish skeleton, which in turn could prove invaluable information for better understanding the development and the characterization of skeletal phenotypes.
Collapse
|
32
|
Favre-Bulle IA, Stilgoe AB, Rubinsztein-Dunlop H, Scott EK. Optical trapping of otoliths drives vestibular behaviours in larval zebrafish. Nat Commun 2017; 8:630. [PMID: 28931814 PMCID: PMC5606998 DOI: 10.1038/s41467-017-00713-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 07/18/2017] [Indexed: 11/22/2022] Open
Abstract
The vestibular system, which detects gravity and motion, is crucial to survival, but the neural circuits processing vestibular information remain incompletely characterised. In part, this is because the movement needed to stimulate the vestibular system hampers traditional neuroscientific methods. Optical trapping uses focussed light to apply forces to targeted objects, typically ranging from nanometres to a few microns across. In principle, optical trapping of the otoliths (ear stones) could produce fictive vestibular stimuli in a stationary animal. Here we use optical trapping in vivo to manipulate 55-micron otoliths in larval zebrafish. Medial and lateral forces on the otoliths result in complementary corrective tail movements, and lateral forces on either otolith are sufficient to cause a rolling correction in both eyes. This confirms that optical trapping is sufficiently powerful and precise to move large objects in vivo, and sets the stage for the functional mapping of the resulting vestibular processing.The neural circuits of the vestibular system, which detects gravity and motion, remain incompletely characterised. Here the authors use an optical trap to manipulate otoliths (ear stones) in zebrafish larvae, and elicit corrective tail movements and eye rolling, thus establishing a method for mapping vestibular processing.
Collapse
Affiliation(s)
- Itia A Favre-Bulle
- School of Mathematics and Physics, The University of Queensland, St. Lucia, QLD, 4072, Australia
- School of Biomedical Sciences, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Alexander B Stilgoe
- School of Mathematics and Physics, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | | | - Ethan K Scott
- School of Biomedical Sciences, The University of Queensland, St. Lucia, QLD, 4072, Australia.
- Queensland Brain Institute, The University of Queensland, St. Lucia, QLD, 4072, Australia.
| |
Collapse
|
33
|
Takahashi M, Inoue M, Tanimoto M, Kohashi T, Oda Y. Short-term desensitization of fast escape behavior associated with suppression of Mauthner cell activity in larval zebrafish. Neurosci Res 2017; 121:29-36. [DOI: 10.1016/j.neures.2017.03.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/13/2017] [Accepted: 03/21/2017] [Indexed: 01/12/2023]
|
34
|
Ferreira RR, Vilfan A, Jülicher F, Supatto W, Vermot J. Physical limits of flow sensing in the left-right organizer. eLife 2017; 6. [PMID: 28613157 PMCID: PMC5544429 DOI: 10.7554/elife.25078] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 06/13/2017] [Indexed: 12/20/2022] Open
Abstract
Fluid flows generated by motile cilia are guiding the establishment of the left-right asymmetry of the body in the vertebrate left-right organizer. Competing hypotheses have been proposed: the direction of flow is sensed either through mechanosensation, or via the detection of chemical signals transported in the flow. We investigated the physical limits of flow detection to clarify which mechanisms could be reliably used for symmetry breaking. We integrated parameters describing cilia distribution and orientation obtained in vivo in zebrafish into a multiscale physical study of flow generation and detection. Our results show that the number of immotile cilia is too small to ensure robust left and right determination by mechanosensing, given the large spatial variability of the flow. However, motile cilia could sense their own motion by a yet unknown mechanism. Finally, transport of chemical signals by the flow can provide a simple and reliable mechanism of asymmetry establishment. DOI:http://dx.doi.org/10.7554/eLife.25078.001
Collapse
Affiliation(s)
- Rita R Ferreira
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | | | - Frank Jülicher
- Max-Planck-Institute for the Physics of Complex Systems, Dresden, Germany
| | - Willy Supatto
- Laboratory for Optics and Biosciences, Ecole Polytechnique, Centre National de la Recherche Scientifique (UMR7645), Institut National de la Santé et de la Recherche Médicale (U1182) and Paris Saclay University, Palaiseau, France
| | - Julien Vermot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, Illkirch, France.,Université de Strasbourg, Illkirch, France
| |
Collapse
|
35
|
Zamora LY, Miguel KC, Lu Z. The alcohol-sensitive period during early octavolateral organ development in zebrafish (Danio rerio). J Neurosci Res 2017; 95:1194-1203. [PMID: 28105691 DOI: 10.1002/jnr.24017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 11/30/2016] [Accepted: 12/19/2016] [Indexed: 12/15/2022]
Abstract
Fetal alcohol exposure can cause Fetal Alcohol Spectrum Disorders (FASD), completely preventable developmental disabilities characterized by permanent birth defects. However, specific gestational timing when developing organs are most sensitive to alcohol exposure is unclear. In this study, we examined the temporal effects of embryonic alcohol exposure on octavolateral organs in zebrafish (Danio rerio), including inner ears and lateral line neuromasts that function in hearing, balance, and hydrodynamic detection, respectively. To determine an alcohol-sensitive period in the first 24 hours post fertilization (hpf), Et(krt4:EGFP)sqet4 zebrafish that express green fluorescent protein in sensory hair cells were treated in 2% alcohol for 2, 3, and 5-hours. Octavolateral organs of control and alcohol-exposed larvae were examined at 3, 5, and 7 days post fertilization (dpf). Using confocal and light microscopy, we found that alcohol-exposed larvae had significantly smaller otic vesicles and saccular otoliths than control larvae at 3 dpf. Only alcohol-exposed larvae from 12-17 hpf had smaller otic vesicles at 5 dpf, smaller saccular otoliths at 7 dpf and fewer saccular hair cells, neuromasts and hair cells per neuromast at 3 dpf. In addition, auditory function was assessed by microphonic potential recordings from inner ear hair cells in response to 200-Hz stimulation. Hearing sensitivity was reduced for alcohol-exposed larvae from 7-12 and 12-17 hpf. Our results show that 12-17 hpf is an alcohol-sensitive time window when morphology and function of zebrafish octavolateral organs are most vulnerable to alcohol exposure. This study implies that embryonic alcohol exposure timing during early development can influence severity of hearing deficits. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lilliann Y Zamora
- University of Miami, Department of Biology, Coral Gables, Florida.,University of Miami, Neuroscience Program, Miami, Florida
| | - Kayla C Miguel
- University of Miami, Neuroscience Program, Miami, Florida
| | - Zhongmin Lu
- University of Miami, Department of Biology, Coral Gables, Florida.,University of Miami, Neuroscience Program, Miami, Florida.,International Center for Marine Studies, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
36
|
Ehrlich DE, Schoppik D. Control of Movement Initiation Underlies the Development of Balance. Curr Biol 2017; 27:334-344. [PMID: 28111151 DOI: 10.1016/j.cub.2016.12.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 10/13/2016] [Accepted: 12/05/2016] [Indexed: 11/29/2022]
Abstract
Balance arises from the interplay of external forces acting on the body and internally generated movements. Many animal bodies are inherently unstable, necessitating corrective locomotion to maintain stability. Understanding how developing animals come to balance remains a challenge. Here we study the interplay among environment, sensation, and action as balance develops in larval zebrafish. We first model the physical forces that challenge underwater balance and experimentally confirm that larvae are subject to constant destabilization. Larvae propel in swim bouts that, we find, tend to stabilize the body. We confirm the relationship between locomotion and balance by changing larval body composition, exacerbating instability and eliciting more frequent swimming. Intriguingly, developing zebrafish come to control the initiation of locomotion, swimming preferentially when unstable, thus restoring preferred postures. To test the sufficiency of locomotor-driven stabilization and the developing control of movement timing, we incorporate both into a generative model of swimming. Simulated larvae recapitulate observed postures and movement timing across early development, but only when locomotor-driven stabilization and control of movement initiation are both utilized. We conclude the ability to move when unstable is the key developmental improvement to balance in larval zebrafish. Our work informs how emerging sensorimotor ability comes to impact how and why animals move when they do.
Collapse
Affiliation(s)
- David E Ehrlich
- Department of Otolaryngology, Department of Neuroscience and Physiology, and the Neuroscience Institute, New York University Langone School of Medicine, New York, NY 10016, USA
| | - David Schoppik
- Department of Otolaryngology, Department of Neuroscience and Physiology, and the Neuroscience Institute, New York University Langone School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
37
|
High magnetic field induced otolith fusion in the zebrafish larvae. Sci Rep 2016; 6:24151. [PMID: 27063288 PMCID: PMC4827070 DOI: 10.1038/srep24151] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 03/21/2016] [Indexed: 01/07/2023] Open
Abstract
Magnetoreception in animals illustrates the interaction of biological systems with the geomagnetic field (geoMF). However, there are few studies that identified the impact of high magnetic field (MF) exposure from Magnetic Resonance Imaging (MRI) scanners (>100,000 times of geoMF) on specific biological targets. Here, we investigated the effects of a 14 Tesla MRI scanner on zebrafish larvae. All zebrafish larvae aligned parallel to the B0 field, i.e. the static MF, in the MRI scanner. The two otoliths (ear stones) in the otic vesicles of zebrafish larvae older than 24 hours post fertilization (hpf) fused together after the high MF exposure as short as 2 hours, yielding a single-otolith phenotype with aberrant swimming behavior. The otolith fusion was blocked in zebrafish larvae under anesthesia or embedded in agarose. Hair cells may play an important role on the MF-induced otolith fusion. This work provided direct evidence to show that high MF interacts with the otic vesicle of zebrafish larvae and causes otolith fusion in an "all-or-none" manner. The MF-induced otolith fusion may facilitate the searching for MF sensors using genetically amenable vertebrate animal models, such as zebrafish.
Collapse
|
38
|
Yao Q, DeSmidt AA, Tekin M, Liu X, Lu Z. Hearing Assessment in Zebrafish During the First Week Postfertilization. Zebrafish 2016; 13:79-86. [PMID: 26982161 DOI: 10.1089/zeb.2015.1166] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The zebrafish (Danio rerio) is a valuable vertebrate model for human hearing disorders because of many advantages in genetics, embryology, and in vivo visualization. In this study, we investigated auditory function of zebrafish during the first week postfertilization using microphonic potential recording. Extracellular microphonic potentials were recorded from hair cells in the inner ear of wild-type AB and transgenic Et(krt4:GFP)(sqet4) zebrafish at 3, 5, and 7 days postfertilization in response to 20, 50, 100, 200, 300, and 400-Hz acoustic stimulation. We found that microphonic threshold significantly decreased with age in zebrafish. However, there was no significant difference of microphonic responses between wild-type and transgenic zebrafish, indicating that the transgenic zebrafish have normal hearing like wild-type zebrafish. In addition, we observed that microphonic threshold did not change with the recording electrode location. Furthermore, microphonic threshold increased significantly at all tested stimulus frequencies after displacement of the saccular otolith but only increased at low frequencies after displacement of the utricular otolith, showing that the saccule rather than the utricle plays the major role in larval zebrafish hearing. These results enhance our knowledge of early development of auditory function in zebrafish and the factors affecting hearing assessment with microphonic potential recording.
Collapse
Affiliation(s)
- Qi Yao
- 1 Department of Biology, University of Miami , Coral Gables, Florida
- 2 Department of Otolaryngology, University of Miami Miller School of Medicine , Miami, Florida
| | | | - Mustafa Tekin
- 2 Department of Otolaryngology, University of Miami Miller School of Medicine , Miami, Florida
- 3 Dr. John T. Macdonald Foundation Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine , Miami, Florida
| | - Xuezhong Liu
- 2 Department of Otolaryngology, University of Miami Miller School of Medicine , Miami, Florida
- 3 Dr. John T. Macdonald Foundation Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine , Miami, Florida
- 4 Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Zhongmin Lu
- 1 Department of Biology, University of Miami , Coral Gables, Florida
- 5 Neuroscience Program, University of Miami , Miami, Florida
- 6 International Center for Marine Studies, Shanghai Ocean University , Shanghai, People's Republic of China
| |
Collapse
|
39
|
Vasconcelos RO, Alderks PW, Sisneros JA. Development of Structure and Sensitivity of the Fish Inner Ear. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 877:291-318. [PMID: 26515320 DOI: 10.1007/978-3-319-21059-9_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Fish represent the largest group of vertebrates and display the greatest diversity of auditory structures. However, studies addressing how the form and function of the auditory system change during development to enhance perception of the acoustic environment are rather sparse in this taxon compared to other vertebrate groups. An ontogenetic perspective of the auditory system in fishes provides a readily testable framework for understanding structure-function relationships. Additionally, studying ancestral models such as fish can convey valuable comparable information across vertebrates, as early developmental events are often evolutionary conserved. This chapter reviews the literature on the morphological development of the fish auditory system, with particular focus on the inner ear structures that evolve from an otic placode during early embryonic development and then continue to undergo differentiation and maturation in the postembryonic phase. Moreover, the chapter provides a systematic overview of how auditory sensitivity develops during ontogeny. Although most studies indicate a developmental improvement in auditory sensitivity, there is considerably species-specific variation. Lastly, the paucity of information and literature concerning the development of auditory capabilities for social communication in fishes is also discussed. Further investigation on the development of structure and function of the fish auditory system is recommended in order to obtain a deeper understanding of how ontogenetic morphological changes in the auditory pathway relate to modifications in acoustic reception, auditory processing, and the capacity to communicate acoustically.
Collapse
Affiliation(s)
- Raquel O Vasconcelos
- Institute of Science and Environment, University of Saint Joseph, Macau, S.A.R., China.
| | - Peter W Alderks
- Department of Psychology, University of Washington, Seattle, WA, 98195, USA
| | - Joseph A Sisneros
- Department of Psychology, University of Washington, Seattle, WA, 98195, USA.,Department of Biology, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
40
|
Bhandiwad AA, Sisneros JA. Revisiting Psychoacoustic Methods for the Assessment of Fish Hearing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 877:157-84. [PMID: 26515314 DOI: 10.1007/978-3-319-21059-9_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Behavioral methods have been critical in the study of auditory perception and discrimination in fishes. In this chapter, we review some of the common methods used in fish psychoacoustics. We discuss associative methods, such as operant, avoidance, and classical conditioning, and their use in constructing audiograms, measuring frequency selectivity, and auditory stream segregation. We also discuss the measurement of innate behavioral responses, such as the acoustic startle response (ASR), prepulse inhibition (PPI), and phonotaxis, and their use in the assessment of fish hearing to determine auditory thresholds and in the testing of mechanisms for sound source localization. For each psychoacoustic method, we provide examples of their use and discuss the parameters and situations where such methods can be best utilized. In the case of the ASR, we show how this method can be used to construct and compare audiograms between two species of larval fishes, the three-spined stickleback (Gasterosteus aculeatus) and the zebrafish (Danio rerio). We also discuss considerations for experimental design with respect to stimulus presentation and threshold criteria and how these techniques can be used in future studies to investigate auditory perception in fishes.
Collapse
Affiliation(s)
- Ashwin A Bhandiwad
- Department of Psychology, University of Washington, Seattle, WA, 98103, USA.
| | - Joseph A Sisneros
- Department of Psychology, University of Washington, Seattle, WA, 98103, USA.,Department of Biology, University of Washington, Seattle, WA, 98103, USA
| |
Collapse
|
41
|
Monroe JD, Rajadinakaran G, Smith ME. Sensory hair cell death and regeneration in fishes. Front Cell Neurosci 2015; 9:131. [PMID: 25954154 PMCID: PMC4404912 DOI: 10.3389/fncel.2015.00131] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 03/21/2015] [Indexed: 01/31/2023] Open
Abstract
Sensory hair cells are specialized mechanotransductive receptors required for hearing and vestibular function. Loss of hair cells in humans and other mammals is permanent and causes reduced hearing and balance. In the early 1980’s, it was shown that hair cells continue to be added to the inner ear sensory epithelia in cartilaginous and bony fishes. Soon thereafter, hair cell regeneration was documented in the chick cochlea following acoustic trauma. Since then, research using chick and other avian models has led to great insights into hair cell death and regeneration. However, with the rise of the zebrafish as a model organism for studying disease and developmental processes, there has been an increased interest in studying sensory hair cell death and regeneration in its lateral line and inner ears. Advances derived from studies in zebrafish and other fish species include understanding the effect of ototoxins on hair cells and finding otoprotectants to mitigate ototoxin damage, the role of cellular proliferation vs. direct transdifferentiation during hair cell regeneration, and elucidating cellular pathways involved in the regeneration process. This review will summarize research on hair cell death and regeneration using fish models, indicate the potential strengths and weaknesses of these models, and discuss several emerging areas of future studies.
Collapse
Affiliation(s)
- Jerry D Monroe
- Department of Biology, Western Kentucky University Bowling Green, KY, USA
| | - Gopinath Rajadinakaran
- Department of Genetics and Genome Sciences, University of Connecticut Health Center Farmington, CT, USA
| | - Michael E Smith
- Department of Biology, Western Kentucky University Bowling Green, KY, USA
| |
Collapse
|