1
|
Li L, Zhang M, Sun X, Zhang Y, Su Y, Dong R, Zhang T, Wang Z, Ding Y. GLI1 amplification and fusion in MDM2-amplified low-grade osteosarcoma. J Clin Pathol 2025:jcp-2024-209813. [PMID: 40318859 DOI: 10.1136/jcp-2024-209813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 04/03/2025] [Indexed: 05/07/2025]
Abstract
AIMS Glioma-associated oncogene homologue 1 (GLI1) was recently shown to be coamplified with mouse double minute 2 (MDM2), cyclin-dependent kinase 4 (CDK4) and some other adjacent genes in a significant subset of GLI1-altered mesenchymal tumours and well-differentiated/dedifferentiated liposarcomas, which are characterised by MDM2 amplification. Given that MDM2 is also amplified in low-grade osteosarcoma (LGOS), we investigated the prevalence of GLI1 amplifications/fusions in a series of 15 cases of MDM2-amplified LGOS, an area that has not been previously explored. METHODS This study conducted a retrospective analysis and examined GLI1 amplifications/fusions in 15 cases of MDM2-amplified LGOS and 46 cases of other bone tumours and tumour-like lesions using fluorescence in situ hybridisation with a GLI1 amplification probe and a GLI1 break-apart probe. Six cases of LGOS were also tested by next-generation sequencing. RESULTS Fluorescence in situ hybridisation analysis revealed that 13 of 15 (87%) LGOS cases exhibited GLI1 amplification; no fusion gene was found. Next-generation sequencing revealed that all six tested cases showed GLI1 amplification and one case had both GLI1 amplification and GLI1 gene fusion (PPM1H::GLI1). All 46 cases of other bone tumours and tumour-like lesions were negative for GLI1 amplification and GLI1 fusion. CONCLUSION These results indicate that GLI1 amplification is common in LGOS, and GLI1 fusion could occur in LGOS.
Collapse
Affiliation(s)
- Lan Li
- Pathology, Beijing Jishuitan Hospital Affiliated to Capital Medical University, Beijing, China
| | - Ming Zhang
- Pathology, Beijing Jishuitan Hospital Affiliated to Capital Medical University, Beijing, China
| | - Xiaoqi Sun
- Pathology, Beijing Jishuitan Hospital Affiliated to Capital Medical University, Beijing, China
| | - Yuzi Zhang
- Burning Rock Biotech Limited, Guangzhou, Guangdong, China
| | - Yongbin Su
- Radiology, Beijing Jishuitan Hospital Affiliated to Capital Medical University, Beijing, China
| | - Rongfang Dong
- Pathology, Beijing Jishuitan Hospital Affiliated to Capital Medical University, Beijing, China
| | - Tingting Zhang
- Pathology, Beijing Jishuitan Hospital Affiliated to Capital Medical University, Beijing, China
| | - Ziyi Wang
- Pathology, Beijing Jishuitan Hospital Affiliated to Capital Medical University, Beijing, China
| | - Yi Ding
- Pathology, Beijing Jishuitan Hospital Affiliated to Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Husremović T, Meier V, Piëch L, Siess KM, Antonioli S, Grishkovskaya I, Kircheva N, Angelova SE, Wenzl K, Brandstätter A, Veis J, Miočić-Stošić F, Anrather D, Hartl M, Truebestein L, Cerron-Alvan LM, Leeb M, Žagrović B, Hann S, Bock C, Ogris E, Dudev T, Irwin NAT, Haselbach D, Leonard TA. PHLPP2 is a pseudophosphatase that lost activity in the metazoan ancestor. Proc Natl Acad Sci U S A 2025; 122:e2417218122. [PMID: 40168118 PMCID: PMC12002173 DOI: 10.1073/pnas.2417218122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 02/28/2025] [Indexed: 04/03/2025] Open
Abstract
The phosphoinositide 3-kinase (PI3K) pathway is a major regulator of cell and organismal growth. Consequently, hyperactivation of PI3K and its downstream effector kinase, Akt, is observed in many human cancers. Pleckstrin homology domain leucine-rich repeat-containing protein phosphatases (PHLPP), two paralogous members of the metal-dependent protein phosphatase family, have been reported as negative regulators of Akt signaling and, therefore, tumor suppressors. However, the stoichiometry and identity of the bound metal ion(s), mechanism of action, and enzymatic specificity of these proteins are not known. Seeking to fill these gaps in our understanding of PHLPP biology, we unexpectedly found that PHLPP2 has no catalytic activity in vitro. Instead, we found that PHLPP2 is a pseudophosphatase with a single zinc ion bound in its catalytic center. Furthermore, we found that cancer genomics data do not support the proposed role of PHLPP1 or PHLPP2 as tumor suppressors. Phylogenetic analyses revealed an ancestral phosphatase that arose more than 1,000 Mya, but that lost activity at the base of the metazoan lineage. Surface conservation indicates that while PHLPP2 has lost catalytic activity, it may have retained substrate binding. Finally, using phylogenomics, we identify coevolving genes consistent with a scaffolding role for PHLPP2 on membranes. In summary, our results provide a molecular explanation for the inconclusive results that have hampered research on PHLPP and argue for a focus on the noncatalytic roles of PHLPP1 and PHLPP2.
Collapse
Affiliation(s)
- Tarik Husremović
- Max Perutz Labs, University of Vienna and Medical University of Vienna, Vienna1030, Austria
| | - Vanessa Meier
- Max Perutz Labs, University of Vienna and Medical University of Vienna, Vienna1030, Austria
| | - Lucas Piëch
- Max Perutz Labs, University of Vienna and Medical University of Vienna, Vienna1030, Austria
- Vienna BioCenter PhD Program, a Doctoral School of the University of Vienna and the Medical University of Vienna, ViennaA-1030, Austria
| | - Katharina M. Siess
- Max Perutz Labs, University of Vienna and Medical University of Vienna, Vienna1030, Austria
| | - Sumire Antonioli
- Max Perutz Labs, University of Vienna and Medical University of Vienna, Vienna1030, Austria
- Vienna BioCenter PhD Program, a Doctoral School of the University of Vienna and the Medical University of Vienna, ViennaA-1030, Austria
| | - Irina Grishkovskaya
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna1030, Austria
| | - Nikoleta Kircheva
- Institute of Optical Materials and Technologies “Acad. J. Malinowski”, Bulgarian Academy of Sciences, Sofia1113, Bulgaria
| | - Silvia E. Angelova
- Institute of Optical Materials and Technologies “Acad. J. Malinowski”, Bulgarian Academy of Sciences, Sofia1113, Bulgaria
- University of Chemical Technology and Metallurgy, Sofia1756, Bulgaria
| | - Karoline Wenzl
- Max Perutz Labs, University of Vienna and Medical University of Vienna, Vienna1030, Austria
| | - Andreas Brandstätter
- Department of Chemistry, Institute of Analytical Chemistry, University of Natural Resources and Life Sciences, Vienna1190, Austria
| | - Jiri Veis
- Max Perutz Labs, University of Vienna and Medical University of Vienna, Vienna1030, Austria
| | - Fran Miočić-Stošić
- Max Perutz Labs, University of Vienna and Medical University of Vienna, Vienna1030, Austria
- Vienna BioCenter PhD Program, a Doctoral School of the University of Vienna and the Medical University of Vienna, ViennaA-1030, Austria
- Department of Structural and Computational Biology, Center for Molecular Biology, University of Vienna, Vienna1030, Austria
| | - Dorothea Anrather
- Max Perutz Labs, Mass Spectrometry Facility, Vienna Biocenter Campus, Vienna1030, Austria
- Department of Biochemistry and Cell Biology, Center for Molecular Biology, University of Vienna, Vienna1030, Austria
| | - Markus Hartl
- Max Perutz Labs, Mass Spectrometry Facility, Vienna Biocenter Campus, Vienna1030, Austria
- Department of Biochemistry and Cell Biology, Center for Molecular Biology, University of Vienna, Vienna1030, Austria
| | - Linda Truebestein
- Max Perutz Labs, University of Vienna and Medical University of Vienna, Vienna1030, Austria
| | - Luis M. Cerron-Alvan
- Max Perutz Labs, University of Vienna and Medical University of Vienna, Vienna1030, Austria
- Vienna BioCenter PhD Program, a Doctoral School of the University of Vienna and the Medical University of Vienna, ViennaA-1030, Austria
- Department of Microbiology, Immunobiology and Genetics, Center for Molecular Biology, University of Vienna, Vienna1030, Austria
| | - Martin Leeb
- Max Perutz Labs, University of Vienna and Medical University of Vienna, Vienna1030, Austria
- Department of Microbiology, Immunobiology and Genetics, Center for Molecular Biology, University of Vienna, Vienna1030, Austria
| | - Bojan Žagrović
- Max Perutz Labs, University of Vienna and Medical University of Vienna, Vienna1030, Austria
- Department of Structural and Computational Biology, Center for Molecular Biology, University of Vienna, Vienna1030, Austria
| | - Stephan Hann
- Department of Chemistry, Institute of Analytical Chemistry, University of Natural Resources and Life Sciences, Vienna1190, Austria
| | - Christoph Bock
- Research Center for Molecular Medicine, Austrian Academy of Sciences, Vienna1090, Austria
- Center for Medical Data Science, Institute of Artificial Intelligence, Medical University of Vienna, Vienna1090, Austria
| | - Egon Ogris
- Max Perutz Labs, University of Vienna and Medical University of Vienna, Vienna1030, Austria
| | - Todor Dudev
- Faculty of Chemistry and Pharmacy, Sofia University “St. Kliment Ohridski”, Sofia1164, Bulgaria
| | - Nicholas A. T. Irwin
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna1030, Austria
| | - David Haselbach
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna1030, Austria
| | - Thomas A. Leonard
- Max Perutz Labs, University of Vienna and Medical University of Vienna, Vienna1030, Austria
| |
Collapse
|
3
|
Hussain A, Saeed A. Hazardous or Advantageous: Uncovering the Roles of Heavy Metals and Humic Substances in Shilajit (Phyto-mineral) with Emphasis on Heavy Metals Toxicity and Their Detoxification Mechanisms. Biol Trace Elem Res 2024; 202:5794-5814. [PMID: 38393486 DOI: 10.1007/s12011-024-04109-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024]
Abstract
Shilajit is a phyto-mineral diffusion and semi-solid matter used as traditional medicine with extraordinary health benefits. This study provides a comprehensive data on Shilajit with emphasis on heavy metal profile, associated toxicities, and metal detoxification mechanisms by humic substances present in Shilajit. Data was searched across papers and traditional books using Google Scholar, PubMed, Science Direct, Medline, SciELO, Web of Science, and Scopus as key scientific databases. Findings showed that Shilajit is distributed in almost 20 regions of the world with uses against 20 health problems as traditional medicine. With various humic substances, almost 11 biological activities were reported in Shilajit. This phyto-mineral diffusion possesses around 65 heavy metals including the toxic heavy metals like Cu, Al, Pb, As, Cd, and Hg. However, humic substances in Shilajit actively detoxify around 12 heavy metals. The recommended levels of heavy metals by WHO and FDA in herbal drugs is 0.20 and 0.30 ppm for Cd, 1 ppm for Hg, 10.00 ppm for As and Pb, 20 ppm for Cu, and 50 ppm for Zn. The levels of reported metals in Shilajit were found to be lower than the permissible limits set by WHO and FDA, except in few studies where exceeded levels were reported. Shilajit consumption without knowing permissible levels of metals is not safe and could pose serious health problems. Although the humic substances and few metals in Shilajit are beneficial in terms of chelating toxic heavy metals, the data on metal detoxification still needs to be clarified.
Collapse
Affiliation(s)
- Adil Hussain
- Food and Biotechnology Research Centre, Pakistan Council of Scientific and Industrial Research (PCSIR) Laboratories Complex, Ferozepur Road, Lahore, 54600, Punjab, Pakistan.
| | - Asma Saeed
- Food and Biotechnology Research Centre, Pakistan Council of Scientific and Industrial Research (PCSIR) Laboratories Complex, Ferozepur Road, Lahore, 54600, Punjab, Pakistan
| |
Collapse
|
4
|
Kumar JP, Kosek D, Durell SR, Miller Jenkins LM, Debnath S, Coussens NP, Hall MD, Appella DH, Dyda F, Mazur SJ, Appella E. Crystal structure and mechanistic studies of the PPM1D serine/threonine phosphatase catalytic domain. J Biol Chem 2024; 300:107561. [PMID: 39002674 PMCID: PMC11342775 DOI: 10.1016/j.jbc.2024.107561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/15/2024] Open
Abstract
Protein phosphatase 1D (PPM1D, Wip1) is induced by the tumor suppressor p53 during DNA damage response signaling and acts as an oncoprotein in several human cancers. Although PPM1D is a potential therapeutic target, insights into its atomic structure were challenging due to flexible regions unique to this family member. Here, we report the first crystal structure of the PPM1D catalytic domain to 1.8 Å resolution. The structure reveals the active site with two Mg2+ ions bound, similar to other structures. The flap subdomain and B-loop, which are crucial for substrate recognition and catalysis, were also resolved, with the flap forming two short helices and three short β-strands that are followed by an irregular loop. Unexpectedly, a nitrogen-oxygen-sulfur bridge was identified in the catalytic domain. Molecular dynamics simulations and kinetic studies provided further mechanistic insights into the regulation of PPM1D catalytic activity. In particular, the kinetic experiments demonstrated a magnesium concentration-dependent lag in PPM1D attaining steady-state velocity, a feature of hysteretic enzymes that show slow transitions compared with catalytic turnover. All combined, these results advance the understanding of PPM1D function and will support the development of PPM1D-targeted therapeutics.
Collapse
Affiliation(s)
- Jay Prakash Kumar
- Laboratory of Cell Biology, NCI, National Institutes of Health, Bethesda, Maryland, United States
| | - Dalibor Kosek
- Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland, United States
| | - Stewart R Durell
- Laboratory of Cell Biology, NCI, National Institutes of Health, Bethesda, Maryland, United States
| | - Lisa M Miller Jenkins
- Laboratory of Cell Biology, NCI, National Institutes of Health, Bethesda, Maryland, United States
| | - Subrata Debnath
- Laboratory of Cell Biology, NCI, National Institutes of Health, Bethesda, Maryland, United States
| | - Nathan P Coussens
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States
| | - Matthew D Hall
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States
| | - Daniel H Appella
- Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, Bethesda, Maryland, United States
| | - Fred Dyda
- Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland, United States
| | - Sharlyn J Mazur
- Laboratory of Cell Biology, NCI, National Institutes of Health, Bethesda, Maryland, United States
| | - Ettore Appella
- Laboratory of Cell Biology, NCI, National Institutes of Health, Bethesda, Maryland, United States.
| |
Collapse
|
5
|
Sun Y, Cao Y, Wan H, Memetimin A, Cao Y, Li L, Wu C, Wang M, Chen S, Li Q, Ma Y, Dong M, Jiang H. A mitophagy sensor PPTC7 controls BNIP3 and NIX degradation to regulate mitochondrial mass. Mol Cell 2024; 84:327-344.e9. [PMID: 38151018 DOI: 10.1016/j.molcel.2023.11.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/15/2023] [Accepted: 11/29/2023] [Indexed: 12/29/2023]
Abstract
Mitophagy mediated by BNIP3 and NIX critically regulates mitochondrial mass. Cellular BNIP3 and NIX levels are tightly controlled by SCFFBXL4-mediated ubiquitination to prevent excessive mitochondrial loss and lethal disease. Here, we report that knockout of PPTC7, a mitochondrial matrix protein, hyperactivates BNIP3-/NIX-mediated mitophagy and causes perinatal lethality that is rescued by NIX knockout in mice. Biochemically, the PPTC7 precursor is trapped by BNIP3 and NIX to the mitochondrial outer membrane, where PPTC7 scaffolds assembly of a substrate-PPTC7-SCFFBXL4 holocomplex to degrade BNIP3 and NIX, forming a homeostatic regulatory loop. PPTC7 possesses an unusually weak mitochondrial targeting sequence to facilitate its outer membrane retention and mitophagy control. Starvation upregulates PPPTC7 expression in mouse liver to repress mitophagy, which critically maintains hepatic mitochondrial mass, bioenergetics, and gluconeogenesis. Collectively, PPTC7 functions as a mitophagy sensor that integrates homeostatic and physiological signals to dynamically control BNIP3 and NIX degradation, thereby maintaining mitochondrial mass and cellular homeostasis.
Collapse
Affiliation(s)
- Yuqiu Sun
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China; National Institute of Biological Sciences, Beijing 102206, China; Beijing Key Laboratory of Cell Biology for Animal Aging, Beijing 102206, China
| | - Yu Cao
- College of Life Sciences, Beijing Normal University, Beijing 100875, China; National Institute of Biological Sciences, Beijing 102206, China; Beijing Key Laboratory of Cell Biology for Animal Aging, Beijing 102206, China
| | - Huayun Wan
- National Institute of Biological Sciences, Beijing 102206, China; Beijing Key Laboratory of Cell Biology for Animal Aging, Beijing 102206, China
| | - Adalet Memetimin
- National Institute of Biological Sciences, Beijing 102206, China
| | - Yang Cao
- National Institute of Biological Sciences, Beijing 102206, China
| | - Lin Li
- National Institute of Biological Sciences, Beijing 102206, China
| | - Chongyang Wu
- National Institute of Biological Sciences, Beijing 102206, China
| | - Meng Wang
- National Institute of Biological Sciences, Beijing 102206, China
| | - She Chen
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China; National Institute of Biological Sciences, Beijing 102206, China
| | - Qi Li
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China; National Institute of Biological Sciences, Beijing 102206, China
| | - Yan Ma
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China; National Institute of Biological Sciences, Beijing 102206, China
| | - Mengqiu Dong
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China; National Institute of Biological Sciences, Beijing 102206, China; Beijing Key Laboratory of Cell Biology for Animal Aging, Beijing 102206, China
| | - Hui Jiang
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China; National Institute of Biological Sciences, Beijing 102206, China; Beijing Key Laboratory of Cell Biology for Animal Aging, Beijing 102206, China.
| |
Collapse
|
6
|
Henriques MC, Carvalho I, Santos C, Herdeiro MT, Fardilha M, Pavlaki MD, Loureiro S. Unveiling the molecular mechanisms and developmental consequences of mercury (Hg) toxicity in zebrafish embryo-larvae: A comprehensive approach. Neurotoxicol Teratol 2023; 100:107302. [PMID: 37739188 DOI: 10.1016/j.ntt.2023.107302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023]
Abstract
Mercury (Hg) is a global contaminant affecting aquatic ecosystems' health. Chronic exposure to Hg has shown that the normal development of zebrafish embryo-larvae is affected. However, the molecular mechanisms behind the toxicity of Hg on fish embryonic development are still poorly understood. This work aimed to investigate the effects of Hg exposure on zebrafish embryo-larvae using a combined approach at individual (mortality, embryo development and locomotor behavior) and biochemical (neurotoxicity and oxidative stress enzymatic activities and protein phosphatase expression) levels. The Fish Embryo Toxicity assay followed the Organization for Economic Cooperation and Development Guideline 236 and used a concentration range between 13 and 401 μg Hg/L. Lethal and developmental endpoints were examined at 24, 48, 72 and 96 hpf. Biochemical markers, including Acetylcholinesterase (AChE), Catalase (CAT), Glutathione Reductase (GR), and Glutathione-S-Transferase (GST) activities and, for the first time, the expression of the protein phosphatase 1 gamma (PP1γ) was assessed after 24, 48, 72 and 96 h of exposure to 10 and 100 μg Hg/L. The behavioral effects of a sublethal range of Hg (from 0.8 to 13 μg Hg/L) were assessed using an automated video tracking system at 120 hpf. Several developmental abnormalities on zebrafish embryos and larvae, including pericardial edema, spin and tail deformities and reduced rate of consumption of the yolk sac, were found after exposure to Hg (LC50 at 96 hpf of 139 μg Hg/L) with EC50 values for total malformations ranging from 22 to 264 μg Hg/L. After 96 hpf, no significant effects were observed in the CAT and GR activities. However, an increase in the GST activity in a concentration and time-dependent manner was found, denoting possible stress-related adaptation of zebrafish embryos to deleterious effects of Hg exposure. The AchE activity showed a response pattern in line with the behavioral responses. At the lowest concentration tested, no significant effects were found for the AChE activity, whereas a decrease in AChE activity was observed at 100 μg Hg/L, suggesting that exposure to Hg induced neurotoxic effects in zebrafish embryos which in turn may explain the lack of equilibrium found in this study (EC50 at 96 hpf of 83 μg Hg/L). Moreover, a decrease in the PP1γ expression was found after 96 h of exposure to 10 and 100 μg Hg/L. Thus, we suggest that Hg may be an inhibitor of PP1γ in zebrafish embryos-larvae and thus, along with the alterations in the enzymatic activity of GST, explain some of the developmental malformations observed, as well as the lack of equilibrium. Hence, in this study, we propose the use of PP1 expression, in combination with apical and biochemical endpoints, as a precursor for assessing Hg's toxic mechanism on embryonic development.
Collapse
Affiliation(s)
- Magda Carvalho Henriques
- Institute of Biomedicine (iBiMED) & Department of Medical Sciences, University of Aveiro, Aveiro, Portugal; CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Inês Carvalho
- Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Cátia Santos
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Maria Teresa Herdeiro
- Institute of Biomedicine (iBiMED) & Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Margarida Fardilha
- Institute of Biomedicine (iBiMED) & Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Maria Dimitriou Pavlaki
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Aveiro, Portugal.
| | - Susana Loureiro
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
7
|
Kaspers MS, Pogenberg V, Pett C, Ernst S, Ecker F, Ochtrop P, Groll M, Hedberg C, Itzen A. Dephosphocholination by Legionella effector Lem3 functions through remodelling of the switch II region of Rab1b. Nat Commun 2023; 14:2245. [PMID: 37076474 PMCID: PMC10115812 DOI: 10.1038/s41467-023-37621-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/22/2023] [Indexed: 04/21/2023] Open
Abstract
Bacterial pathogens often make use of post-translational modifications to manipulate host cells. Legionella pneumophila, the causative agent of Legionnaires disease, secretes the enzyme AnkX that uses cytidine diphosphate-choline to post-translationally modify the human small G-Protein Rab1 with a phosphocholine moiety at Ser76. Later in the infection, the Legionella enzyme Lem3 acts as a dephosphocholinase, hydrolytically removing the phosphocholine. While the molecular mechanism for Rab1 phosphocholination by AnkX has recently been resolved, structural insights into the activity of Lem3 remained elusive. Here, we stabilise the transient Lem3:Rab1b complex by substrate mediated covalent capture. Through crystal structures of Lem3 in the apo form and in complex with Rab1b, we reveal Lem3's catalytic mechanism, showing that it acts on Rab1 by locally unfolding it. Since Lem3 shares high structural similarity with metal-dependent protein phosphatases, our Lem3:Rab1b complex structure also sheds light on how these phosphatases recognise protein substrates.
Collapse
Affiliation(s)
- Marietta S Kaspers
- Institute of Biochemistry and Signal Transduction, University Medical Centre Hamburg-Eppendorf (UKE), Martinistr. 52, 20246, Hamburg, Germany
| | - Vivian Pogenberg
- Institute of Biochemistry and Signal Transduction, University Medical Centre Hamburg-Eppendorf (UKE), Martinistr. 52, 20246, Hamburg, Germany
| | - Christian Pett
- Chemical Biology Center (KBC), Department of Chemistry, Umeå University, Linnaeus väg 10, 90187, Umeå, Sweden
| | - Stefan Ernst
- Center for Integrated Protein Science Munich (CIPSM), Department Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85747, Garching, Germany
| | - Felix Ecker
- Center for Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer-Str. 8, 85748, Garching, Germany
| | - Philipp Ochtrop
- Chemical Biology Center (KBC), Department of Chemistry, Umeå University, Linnaeus väg 10, 90187, Umeå, Sweden
| | - Michael Groll
- Center for Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer-Str. 8, 85748, Garching, Germany
| | - Christian Hedberg
- Chemical Biology Center (KBC), Department of Chemistry, Umeå University, Linnaeus väg 10, 90187, Umeå, Sweden
| | - Aymelt Itzen
- Institute of Biochemistry and Signal Transduction, University Medical Centre Hamburg-Eppendorf (UKE), Martinistr. 52, 20246, Hamburg, Germany.
- Centre for Structural Systems Biology, University Medical Centre Hamburg-Eppendorf (UKE), Martinistr. 52, 20246, Hamburg, Germany.
| |
Collapse
|
8
|
Vinayagam V, Murugan S, Kumaresan R, Narayanan M, Sillanpää M, Vo DVN, Kushwaha OS. Protein nanofibrils as versatile and sustainable adsorbents for an effective removal of heavy metals from wastewater: A review. CHEMOSPHERE 2022; 301:134635. [PMID: 35447212 DOI: 10.1016/j.chemosphere.2022.134635] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/26/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
Water is a valuable natural resource, which plays a crucial role in ecological survival as well as economic progress. However, the water quality has deteriorated in recent years as a result of urbanization, industrialization and human activities due to the uncontrolled release of industrial wastes, which can be extremely carcinogenic and non-degradable, in air, water and soil bodies. Such wastes showed the presence of organic and inorganic pollutants in high dosages. Heavy metals are the most obstinate contaminants, and they can be harmful because of having a variety of detrimental consequences to the ecosystem. The existing water treatment methods in many situations may not be sustainable or effective because of their high energy requirements and ecological impacts. In this review, state-of-the-art water treatment methods for the elimination of heavy metals with the help of protein nanofibrils are covered featuring a discussion on the strategies and possibilities of developing protein nanofibrils for the active elimination of heavy metals using kitchen waste as well as residues from the cattle, agriculture, and dairy industries. Further, the emphasis has been given to their environmental sustainability and economical aspects are also discussed.
Collapse
Affiliation(s)
- Vignesh Vinayagam
- Department of Chemical Engineering, Sri Venkateswara College of Engineering, Chennai, Tamil Nadu, 602117, India
| | - Shrima Murugan
- Department of Chemical Engineering, Sri Venkateswara College of Engineering, Chennai, Tamil Nadu, 602117, India
| | - Rishikeswaran Kumaresan
- Department of Chemical Engineering, Sri Venkateswara College of Engineering, Chennai, Tamil Nadu, 602117, India
| | - Meyyappan Narayanan
- Department of Chemical Engineering, Sri Venkateswara College of Engineering, Chennai, Tamil Nadu, 602117, India
| | - Mika Sillanpää
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein, 2028, South Africa; Department of Biological and Chemical Engineering, Aarhus University, Nørrebrogade 44, 8000, Aarhus C, Denmark; Sustainable Membrane Technology Research Group (SMTRG), Chemical Engineering Department, Persian Gulf University, P.O. Box 75169-13817, Bushehr, Iran; Zhejiang Rongsheng Environmental Protection Paper Co. Ltd, No. 588 East Zhennan Road, Pinghu Economic Development Zone, Zhejiang, 314213, PR China
| | - Dai-Viet N Vo
- Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, 755414, Viet Nam.
| | - Omkar Singh Kushwaha
- Department of Chemical Engineering, Indian Institute of Technology, Madras, Chennai, Tamil Nadu, 600036, India.
| |
Collapse
|
9
|
Sharma P, Dutta D, Udayan A, Nadda AK, Lam SS, Kumar S. Role of microbes in bioaccumulation of heavy metals in municipal solid waste: Impacts on plant and human being. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119248. [PMID: 35395353 DOI: 10.1016/j.envpol.2022.119248] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/15/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
The presence of heavy metals in municipal solid waste (MSW) is considered as prevalent global pollutants that cause serious risks to the environment and living organisms. Due to industrial and anthropogenic activities, the accumulation of heavy metals in the environmental matrices is increasing alarmingly. MSW causes several adverse environmental impacts, including greenhouse gas (GHG) emissions, river plastic accumulation, and other environmental pollution. Indigenous microorganisms (Pseudomonas, Flavobacterium, Bacillus, Nitrosomonas, etc.) with the help of new pathways and metabolic channels can offer the potential approaches for the treatment of pollutants. Microorganisms, that exhibit the ability of bioaccumulation and sequestration of metal ions in their intracellular spaces, can be utilized further for the cellular processes like enzyme signaling, catalysis, stabilizing charges on biomolecules, etc. Microbiological techniques for the treatment and remediation of heavy metals provide a new prospects for MSW management. This review provides the key insights on profiling of heavy metals in MSW, tolerance of microorganisms, and application of indigenous microorganisms in bioremediation. The literatures revealed that indigenous microbes can be exploited as potential agents for bioremediation.
Collapse
Affiliation(s)
- Pooja Sharma
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, India
| | - Deblina Dutta
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, India
| | - Aswathy Udayan
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, India
| | - Ashok Kumar Nadda
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh, 173 234, India
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Sunil Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, India.
| |
Collapse
|
10
|
Detrimental health relationship between blood lead and cadmium and the red blood cell folate level. Sci Rep 2022; 12:6628. [PMID: 35459281 PMCID: PMC9033805 DOI: 10.1038/s41598-022-10562-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 04/11/2022] [Indexed: 11/15/2022] Open
Abstract
Increasing studies have demonstrated the association between heavy metal pollution and micronutrients, especially folate. However, the relationship between cadmium and folate remains rarely discussed. In this study, we aim to explore the potential correlation between cadmium and folate in human population and highlight the possible mechanism of cadmium impacting human health. We utilized the National Health and Nutrition Examination Survey (NHANES) 2017–2018 data with 5690 participants in this study. Multivariable linear regression models were adopted to investigate the serum lead and cadmium levels and RBC folate concentration. A significant reverse relationship was found between serum lead and cadmium and RBC folate. A negative relationship between serum lead and cadmium levels and the levels of RBC folate in the U.S. adult population was found in this study. Nevertheless, due to the general limitations of the NHANES data, as a cross-sectional study, a further prospective investigation is needed to discover the causality of lead and cadmium in folate status and to determine whether the folate supplement has a beneficial influence against heavy metal toxicities.
Collapse
|
11
|
Grimm TM, Herbinger M, Krüger L, Müller S, Mayer TU, Hauck CR. Lockdown, a selective small-molecule inhibitor of the integrin phosphatase PPM1F, blocks cancer cell invasion. Cell Chem Biol 2022; 29:930-946.e9. [PMID: 35443151 DOI: 10.1016/j.chembiol.2022.03.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 03/04/2022] [Accepted: 03/23/2022] [Indexed: 12/18/2022]
Abstract
Phosphatase PPM1F is a regulator of cell adhesion by fine-tuning integrin activity and actin cytoskeleton structures. Elevated expression of this enzyme in human tumors is associated with high invasiveness, enhanced metastasis, and poor prognosis. Thus, PPM1F is a target for pharmacological intervention, yet inhibitors of this enzyme are lacking. Here, we use high-throughput screening to identify Lockdown, a reversible and non-competitive PPM1F inhibitor. Lockdown is selective for PPM1F, because this compound does not inhibit other protein phosphatases in vitro and does not induce additional phenotypes in PPM1F knockout cells. Importantly, Lockdown-treated glioblastoma cells fully re-capitulate the phenotype of PPM1F-deficient cells as assessed by increased phosphorylation of PPM1F substrates and corruption of integrin-dependent cellular processes. Ester modification yields LockdownPro with increased membrane permeability and prodrug-like properties. LockdownPro suppresses tissue invasion by PPM1F-overexpressing human cancer cells, validating PPM1F as a therapeutic target and providing an access point to control tumor cell dissemination.
Collapse
Affiliation(s)
- Tanja M Grimm
- Lehrstuhl Zellbiologie, Department of Biology, University of Konstanz, Maildrop 621, Universitätsstrasse 10, 78467 Konstanz, Germany; Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstrasse 10, 78467 Konstanz, Germany
| | - Marleen Herbinger
- Lehrstuhl Zellbiologie, Department of Biology, University of Konstanz, Maildrop 621, Universitätsstrasse 10, 78467 Konstanz, Germany
| | - Lena Krüger
- Department of Chemistry, University of Konstanz, Universitätsstrasse 10, 78467 Konstanz, Germany; Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstrasse 10, 78467 Konstanz, Germany
| | - Silke Müller
- Lehrstuhl Molekulare Genetik, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78467 Konstanz, Germany; Screening Center, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78467 Konstanz, Germany
| | - Thomas U Mayer
- Lehrstuhl Molekulare Genetik, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78467 Konstanz, Germany; Screening Center, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78467 Konstanz, Germany; Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstrasse 10, 78467 Konstanz, Germany
| | - Christof R Hauck
- Lehrstuhl Zellbiologie, Department of Biology, University of Konstanz, Maildrop 621, Universitätsstrasse 10, 78467 Konstanz, Germany; Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstrasse 10, 78467 Konstanz, Germany.
| |
Collapse
|
12
|
Nandi N, Zaidi Z, Tracy C, Krämer H. A phospho-switch at Acinus-Serine 437 controls autophagic responses to Cadmium exposure and neurodegenerative stress. eLife 2022; 11:72169. [PMID: 35037620 PMCID: PMC8794470 DOI: 10.7554/elife.72169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 01/14/2022] [Indexed: 12/09/2022] Open
Abstract
Neuronal health depends on quality control functions of autophagy, but mechanisms regulating neuronal autophagy are poorly understood. Previously, we showed that in Drosophila starvation-independent quality control autophagy is regulated by acinus (acn) and the Cdk5-dependent phosphorylation of its serine437 (Nandi et al., 2017). Here, we identify the phosphatase that counterbalances this activity and provides for the dynamic nature of acinus-serine437 (acn-S437) phosphorylation. A genetic screen identified six phosphatases that genetically interacted with an acn gain-of-function model. Among these, loss of function of only one, the PPM-type phosphatase Nil (CG6036), enhanced pS437-acn levels. Cdk5-dependent phosphorylation of acn-S437 in nil1 animals elevates neuronal autophagy and reduces the accumulation of polyQ proteins in a Drosophila Huntington’s disease model. Consistent with previous findings that Cd2+ inhibits PPM-type phosphatases, Cd2+ exposure elevated acn-S437 phosphorylation which was necessary for increased neuronal autophagy and protection against Cd2+-induced cytotoxicity. Together, our data establish the acn-S437 phosphoswitch as critical integrator of multiple stress signals regulating neuronal autophagy.
Collapse
Affiliation(s)
- Nilay Nandi
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, United States
| | - Zuhair Zaidi
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, United States
| | - Charles Tracy
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, United States
| | - Helmut Krämer
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
13
|
Heavy Metal Contamination of Natural Foods Is a Serious Health Issue: A Review. SUSTAINABILITY 2021. [DOI: 10.3390/su14010161] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Heavy metals play an important role in the homeostasis of living cells. However, these elements induce several adverse environmental effects and toxicities, and therefore seriously affect living cells and organisms. In recent years, some heavy metal pollutants have been reported to cause harmful effects on crop quality, and thus affect both food security and human health. For example, chromium, cadmium, copper, lead, and mercury were detected in natural foods. Evidence suggests that these elements are environmental contaminants in natural foods. Consequently, this review highlights the risks of heavy metal contamination of the soil and food crops, and their impact on human health. The data were retrieved from different databases such as Science Direct, PubMed, Google scholar, and the Directory of Open Access Journals. Results show that vegetable and fruit crops grown in polluted soil accumulate higher levels of heavy metals than crops grown in unpolluted soil. Moreover, heavy metals in water, air, and soil can reduce the benefits of eating fruits and vegetables. A healthy diet requires a rational consumption of foods. Physical, chemical, and biological processes have been developed to reduce heavy metal concentration and bioavailability to reduce heavy metal aggregation in the ecosystem. However, mechanisms by which these heavy metals exhibit their action on human health are not well elucidated. In addition, the positive and negative effects of heavy metals are not very well established, suggesting the need for further investigation.
Collapse
|
14
|
Li M, Xu X, Su Y, Shao X, Zhou Y, Yan J. A comprehensive overview of PPM1A: From structure to disease. Exp Biol Med (Maywood) 2021; 247:453-461. [PMID: 34861123 DOI: 10.1177/15353702211061883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
PPM1A (magnesium-dependent phosphatase 1 A, also known as PP2Cα) is a member of the Ser/Thr protein phosphatase family. Protein phosphatases catalyze the removal of phosphate groups from proteins via hydrolysis, thus opposing the role of protein kinases. The PP2C family is generally considered a negative regulator in the eukaryotic stress response pathway. PPM1A can bind and dephosphorylate various proteins and is therefore involved in the regulation of a wide range of physiological processes. It plays a crucial role in transcriptional regulation, cell proliferation, and apoptosis and has been suggested to be closely related to the occurrence and development of cancers of the lung, bladder, and breast, amongst others. Moreover, it is closely related to certain autoimmune diseases and neurodegenerative diseases. In this review, we provide an insight into currently available knowledge of PPM1A, including its structure, biological function, involvement in signaling pathways, and association with diseases. Lastly, we discuss whether PPM1A could be targeted for therapy of certain human conditions.
Collapse
Affiliation(s)
- Mao Li
- Department of Physiology, Guilin Medical University, Guilin 541004, China.,Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin 541004, China
| | - Xingfeng Xu
- Department of Physiology, Guilin Medical University, Guilin 541004, China.,Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin 541004, China
| | - Yan Su
- Department of Physiology, Guilin Medical University, Guilin 541004, China.,Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin 541004, China
| | - Xiaoyun Shao
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin 541004, China
| | - Yali Zhou
- Department of Microbiology, Guilin Medical University, Guilin 541004, China
| | - Jianguo Yan
- Department of Physiology, Guilin Medical University, Guilin 541004, China.,Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin 541004, China
| |
Collapse
|
15
|
Role of active site arginine residues in substrate recognition by PPM1A. Biochem Biophys Res Commun 2021; 581:1-5. [PMID: 34637963 DOI: 10.1016/j.bbrc.2021.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/29/2021] [Accepted: 10/04/2021] [Indexed: 11/21/2022]
Abstract
Reversible protein phosphorylation is a key mechanism for regulating numerous cellular events. The metal-dependent protein phosphatases (PPM) are a family of Ser/Thr phosphatases, which uniquely recognize their substrate as a monomeric enzyme. In the case of PPM1A, it has the capacity to dephosphorylate a variety of substrates containing different sequences, but it is not yet fully understood how it recognizes its substrates. Here we analyzed the role of Arg33 and Arg186, two residues near the active site, on the dephosphorylation activity of PPM1A. The results showed that both Arg residues were critical for enzymatic activity and docking-model analysis revealed that Arg186 is positioned to interact with the substrate phosphate group. In addition, our results suggest that which Arg residue plays a more significant role in the catalysis depends directly on the substrate.
Collapse
|
16
|
Clay Minerals Change the Toxic Effect of Cadmium on the Activities of Leucine Aminopeptidase. ADSORPT SCI TECHNOL 2021. [DOI: 10.1155/2021/1024085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Soil leucine aminopeptidase (LAP) is a hydrolytic enzyme involved in the acquisition of nitrogen by microorganisms. In contaminated soils, LAP activity is affected not only by the type and concentration of heavy metals but also by the form of enzyme. Here, we investigated the degree and mechanism of cadmium (Cd) inhibition of soil LAP and purified LAP. We also examined the effect of montmorillonite and kaolinite on LAP and LAP contaminated with Cd. The results showed that Cd inhibition of LAP activity increased with increasing Cd concentration and that Cd exerted noncompetitive inhibition of LAP. The addition of clay minerals decreases LAP activity and the maximum reaction rate (
), regardless of the presence of Cd. Montmorillonite decreases the affinity of LAP to the substrate (
), while kaolinite increases the affinity of LAP to the substrate. The clay mineral-immobilized LAP showed an increase in resistance to Cd contamination compared with the free LAP. The results obtained in this study may aid in understanding the toxic effects of heavy metals on soil enzymes.
Collapse
|
17
|
Lin YR, Yang WJ, Yang GW. Prognostic and immunological potential of PPM1G in hepatocellular carcinoma. Aging (Albany NY) 2021; 13:12929-12954. [PMID: 33952716 PMCID: PMC8148464 DOI: 10.18632/aging.202964] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 04/02/2021] [Indexed: 12/13/2022]
Abstract
Liver hepatocellular carcinoma (LIHC) remains one of the most common causes of cancer death. Prior research suggested that the PPM1G gene is involved in LIHC. To explore the role of PPM1G in LIHC, we used several online databases. Expression profiling was performed via the Gene Expression Profiling Interactive Analysis (GEPIA), Hepatocellular Carcinoma Database (HCCDB), Oncomine and Human Protein Atlas (HPA) platforms. Mutation profiles were investigated via cBio Cancer Genomics Portal (cBioPortal). Survival analysis was performed via the Kaplan-Meier (KM) plotter and International Cancer Genome Consortium (ICGC) platforms. The biological function of PPM1G was analyzed via the Enrichr database. The influence of PPM1G expression in the tumor immune microenvironment was assessed via Tumor Immune Estimation Resource (TIMER). PPM1G expression was upregulated in various tumors, including LIHC. Overexpression of PPM1G was associated with poor prognosis in LIHC. PPM1G expression might be regulated by promoter methylation, copy number variations (CNVs) and kinases and correlate with immune infiltration. The gene ontology (GO) terms associated with high PPM1G expression were mRNA splicing and the cell cycle. The results suggest that PPM1G is correlated with the prognosis of LIHC patients and associated with the tumor immune microenvironment in LIHC.
Collapse
Affiliation(s)
- Yi-Ren Lin
- Department of Oncology, Shunyi Hospital of Beijing Traditional Chinese Medicine Hospital, Beijing, China
| | - Wen-Jing Yang
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Dongcheng, Beijing, China
| | - Guo-Wang Yang
- Department of Oncology, Shunyi Hospital of Beijing Traditional Chinese Medicine Hospital, Beijing, China
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Dongcheng, Beijing, China
| |
Collapse
|
18
|
Balali-Mood M, Naseri K, Tahergorabi Z, Khazdair MR, Sadeghi M. Toxic Mechanisms of Five Heavy Metals: Mercury, Lead, Chromium, Cadmium, and Arsenic. Front Pharmacol 2021; 12:643972. [PMID: 33927623 PMCID: PMC8078867 DOI: 10.3389/fphar.2021.643972] [Citation(s) in RCA: 833] [Impact Index Per Article: 208.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 01/26/2021] [Indexed: 12/14/2022] Open
Abstract
The industrial activities of the last century have caused massive increases in human exposure to heavy metals. Mercury, lead, chromium, cadmium, and arsenic have been the most common heavy metals that induced human poisonings. Here, we reviewed the mechanistic action of these heavy metals according to the available animal and human studies. Acute or chronic poisonings may occur following exposure through water, air, and food. Bioaccumulation of these heavy metals leads to a diversity of toxic effects on a variety of body tissues and organs. Heavy metals disrupt cellular events including growth, proliferation, differentiation, damage-repairing processes, and apoptosis. Comparison of the mechanisms of action reveals similar pathways for these metals to induce toxicity including ROS generation, weakening of the antioxidant defense, enzyme inactivation, and oxidative stress. On the other hand, some of them have selective binding to specific macromolecules. The interaction of lead with aminolevulinic acid dehydratase and ferrochelatase is within this context. Reactions of other heavy metals with certain proteins were discussed as well. Some toxic metals including chromium, cadmium, and arsenic cause genomic instability. Defects in DNA repair following the induction of oxidative stress and DNA damage by the three metals have been considered as the cause of their carcinogenicity. Even with the current knowledge of hazards of heavy metals, the incidence of poisoning remains considerable and requires preventive and effective treatment. The application of chelation therapy for the management of metal poisoning could be another aspect of heavy metals to be reviewed in the future.
Collapse
Affiliation(s)
- Mahdi Balali-Mood
- Medical Toxicology and Drug Abuse Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Kobra Naseri
- Medical Toxicology and Drug Abuse Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Zoya Tahergorabi
- Medical Toxicology and Drug Abuse Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Reza Khazdair
- Cardiovascular Disease Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Mahmood Sadeghi
- Medical Toxicology and Drug Abuse Research Center, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
19
|
Ibrahim ATA, Banaee M, Sureda A. Genotoxicity, oxidative stress, and biochemical biomarkers of exposure to green synthesized cadmium nanoparticles in Oreochromis niloticus (L.). Comp Biochem Physiol C Toxicol Pharmacol 2021; 242:108942. [PMID: 33220515 DOI: 10.1016/j.cbpc.2020.108942] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/10/2020] [Accepted: 11/14/2020] [Indexed: 01/12/2023]
Abstract
The considerable increment in the use of Nanoparticles in the industry has been recognized as an environmental concern today. Therefore, this study aimed to investigate the toxicity effects of green synthesized cadmium nanoparticles [Cd]NPs using Moringa oleifera leaves extract on multi-biomarkers in Oreochromis niloticus after four weeks of exposure. The results showed that LC50 values of [Cd]NPs for 24, 48, 72 and 96 h were 2.17, 1.75, 1.49 and 1.22 mg l-1, respectively. There was a significant decrease in the number of white and red blood cells, hemoglobin, hematocrit, mean corpuscular hemoglobin concentration value in fish exposed to [Cd]NPs. The mean corpuscular volume and neutrophils were increased. [Cd]NPs exposure to fish has led to cytotoxic and genotoxic changes in the erythrocytes. Significant changes were observed in the cortisol, triiodothyronine, and thyroxine levels of the fish exposed to [Cd]NPs. The activities of aspartate aminotransferase and alanine aminotransferase increased. Glucose, total lipids, urea, and creatinine levels increased in the serum of fish exposed to [Cd]NPs, whereas total protein contents and alkaline phosphatase activity decreased. A significant reduction was observed in glycogen, total antioxidant levels, and superoxide dismutase, catalase and glutathione S-transferase activities of fish exposed to [Cd]NPs. In contrast, the [Cd]NPs exposure resulted in a significant increase in DNA fragmentation percentages, lipid peroxidation, and carbonyl protein levels in different tissues. The results of the present study confirmed that [Cd]NPs has the toxicity potential to cause Cyto-genotoxicity, oxidative damages, changes in the hematological and biochemical changes, and endocrine disruptor in the fish.
Collapse
Affiliation(s)
| | - Mahdi Banaee
- Department of Aquaculture, Faculty of Natural Resources and Environment, Behbahan Khatam Alanbia University of Technology, Iran.
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress, Department of Fundamental Biology and Health Sciences, and CIBEROBN Fisiopatología de la Obesidad la Nutrición, University of Balearic Islands, 07122 Palma de Mallorca, Spain.
| |
Collapse
|
20
|
Xu YF, Chen X, Yang Z, Xiao P, Liu CH, Li KS, Yang XZ, Wang YJ, Zhu ZL, Xu ZG, Zhang S, Wang C, Song YC, Zhao WD, Wang CH, Ji ZL, Zhang ZY, Cui M, Sun JP, Yu X. PTP-MEG2 regulates quantal size and fusion pore opening through two distinct structural bases and substrates. EMBO Rep 2021; 22:e52141. [PMID: 33764618 DOI: 10.15252/embr.202052141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/26/2021] [Accepted: 02/18/2021] [Indexed: 02/02/2023] Open
Abstract
Tyrosine phosphorylation of secretion machinery proteins is a crucial regulatory mechanism for exocytosis. However, the participation of protein tyrosine phosphatases (PTPs) in different exocytosis stages has not been defined. Here we demonstrate that PTP-MEG2 controls multiple steps of catecholamine secretion. Biochemical and crystallographic analyses reveal key residues that govern the interaction between PTP-MEG2 and its substrate, a peptide containing the phosphorylated NSF-pY83 site, specify PTP-MEG2 substrate selectivity, and modulate the fusion of catecholamine-containing vesicles. Unexpectedly, delineation of PTP-MEG2 mutants along with the NSF binding interface reveals that PTP-MEG2 controls the fusion pore opening through NSF independent mechanisms. Utilizing bioinformatics search and biochemical and electrochemical screening approaches, we uncover that PTP-MEG2 regulates the opening and extension of the fusion pore by dephosphorylating the DYNAMIN2-pY125 and MUNC18-1-pY145 sites. Further structural and biochemical analyses confirmed the interaction of PTP-MEG2 with MUNC18-1-pY145 or DYNAMIN2-pY125 through a distinct structural basis compared with that of the NSF-pY83 site. Our studies thus provide mechanistic insights in complex exocytosis processes.
Collapse
Affiliation(s)
- Yun-Fei Xu
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, China.,Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Xu Chen
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, Shandong University School of Medicine, Jinan, China
| | - Zhao Yang
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, China
| | - Peng Xiao
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, China
| | - Chun-Hua Liu
- Department of Physiology, Shandong First Medical University, Taian, China
| | - Kang-Shuai Li
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, China.,Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Xiao-Zhen Yang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yi-Jing Wang
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, China
| | - Zhong-Liang Zhu
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Zhi-Gang Xu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, China
| | - Sheng Zhang
- Departments of Medicinal Chemistry and Molecular Pharmacology and of Chemistry, Center for Cancer Research, and Institute for Drug Discovery, Purdue University, West Lafayette, IN, USA
| | - Chuan Wang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
| | - You-Chen Song
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Wei-Dong Zhao
- Department of Developmental Cell Biology, China Medical University, Shenyang, China
| | - Chang-He Wang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Zhi-Liang Ji
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Zhong-Yin Zhang
- Departments of Medicinal Chemistry and Molecular Pharmacology and of Chemistry, Center for Cancer Research, and Institute for Drug Discovery, Purdue University, West Lafayette, IN, USA
| | - Min Cui
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, Shandong University School of Medicine, Jinan, China
| | - Jin-Peng Sun
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, China
| | - Xiao Yu
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, Shandong University School of Medicine, Jinan, China
| |
Collapse
|
21
|
Metal-dependent Ser/Thr protein phosphatase PPM family: Evolution, structures, diseases and inhibitors. Pharmacol Ther 2020; 215:107622. [PMID: 32650009 DOI: 10.1016/j.pharmthera.2020.107622] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/29/2020] [Indexed: 02/06/2023]
Abstract
Protein phosphatases and kinases control multiple cellular events including proliferation, differentiation, and stress responses through regulating reversible protein phosphorylation, the most important post-translational modification. Members of metal-dependent protein phosphatase (PPM) family, also known as PP2C phosphatases, are Ser/Thr phosphatases that bind manganese/magnesium ions (Mn2+/Mg2+) in their active center and function as single subunit enzymes. In mammals, there are 20 isoforms of PPM phosphatases: PPM1A, PPM1B, PPM1D, PPM1E, PPM1F, PPM1G, PPM1H, PPM1J, PPM1K, PPM1L, PPM1M, PPM1N, ILKAP, PDP1, PDP2, PHLPP1, PHLPP2, PP2D1, PPTC7, and TAB1, whereas there are only 8 in yeast. Phylogenetic analysis of the DNA sequences of vertebrate PPM isoforms revealed that they can be divided into 12 different classes: PPM1A/PPM1B/PPM1N, PPM1D, PPM1E/PPM1F, PPM1G, PPM1H/PPM1J/PPM1M, PPM1K, PPM1L, ILKAP, PDP1/PDP2, PP2D1/PHLPP1/PHLPP2, TAB1, and PPTC7. PPM-family members have a conserved catalytic core region, which contains the metal-chelating residues. The different isoforms also have isoform specific regions within their catalytic core domain and terminal domains, and these regions may be involved in substrate recognition and/or functional regulation of the phosphatases. The twenty mammalian PPM phosphatases are involved in regulating diverse cellular functions, such as cell cycle control, cell differentiation, immune responses, and cell metabolism. Mutation, overexpression, or deletion of the PPM phosphatase gene results in abnormal cellular responses, which lead to various human diseases. This review focuses on the structures and biological functions of the PPM-phosphatase family and their associated diseases. The development of specific inhibitors against the PPM phosphatase family as a therapeutic strategy will also be discussed.
Collapse
|
22
|
Ebrahimi M, Khalili N, Razi S, Keshavarz-Fathi M, Khalili N, Rezaei N. Effects of lead and cadmium on the immune system and cancer progression. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2020; 18:335-343. [PMID: 32399244 PMCID: PMC7203386 DOI: 10.1007/s40201-020-00455-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 02/05/2020] [Indexed: 05/09/2023]
Abstract
In our daily life, we are surrounded by harmful pollutants, including heavy metals that are not visible in the macroscopic view easily. Heavy metals can disrupt different aspects of human health, such as the immune system which has gained a lot of attention in recent decades. This had led to its rapid progression and new insights into its alterations in different diseases especially cancer. Heavy metals are non-biodegradable materials that exist in different parts of the food cycle, such as fruits and vegetables as commonly consumed foods and also unexpected sources such as street dust, that exists in the streets that we pass every day, soil, air, and water. These heavy metals can enter the human body through respiratory, cutaneous, and gastrointestinal pathways and then accumulate in different organs, leading to their encountering with various parts of the body. These sources and natural characteristics of heavy metals facilitate their interaction with the immune system. In this review, we investigated the effect of lead and cadmium, as pollutants that exist in many different parts of the human environment, on the immune system which is known to have a key role in the pathophysiology of cancer.
Collapse
Affiliation(s)
- Maryam Ebrahimi
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, Tehran, Iran
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Neda Khalili
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Razi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahsa Keshavarz-Fathi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nastaran Khalili
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Southampton, UK
| |
Collapse
|
23
|
Hou X, Sun JP, Ge L, Liang X, Li K, Zhang Y, Fang H. Inhibition of striatal-enriched protein tyrosine phosphatase by targeting computationally revealed cryptic pockets. Eur J Med Chem 2020; 190:112131. [PMID: 32078861 PMCID: PMC7163917 DOI: 10.1016/j.ejmech.2020.112131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 01/21/2020] [Accepted: 02/06/2020] [Indexed: 11/21/2022]
Abstract
Cryptic pockets, which are not apparent in crystallographic structures, provide promising alternatives to traditional binding sites for drug development. However, identifying cryptic pockets is extremely challenging and the therapeutic potential of cryptic pockets remains unclear. Here, we reported the discovery of novel inhibitors for striatal-enriched protein tyrosine phosphatase (STEP), a potential drug target for multiple neuropsychiatric disorders, based on cryptic pocket detection. By combining the use of molecular dynamics simulations and fragment-centric topographical mapping, we identified transiently open cryptic pockets and identified 12 new STEP inhibition scaffolds through structure-based virtual screening. Site-directed mutagenesis verified the binding of ST3 with the predicted cryptic pockets. Moreover, the most potent and selective inhibitors could modulate the phosphorylation of both ERK1/2 and Pyk2 in PC12 cells.
Collapse
Affiliation(s)
- Xuben Hou
- Department of Medicinal Chemistry and Key Laboratory of Chemical Biology of Natural Products (MOE), School of Pharmaceutical Science, Shandong University, Jinan, Shandong, 250012, China; Department of Chemistry, New York University, New York, NY, 10003, United States
| | - Jin-Peng Sun
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Lin Ge
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Xiao Liang
- Department of Medicinal Chemistry and Key Laboratory of Chemical Biology of Natural Products (MOE), School of Pharmaceutical Science, Shandong University, Jinan, Shandong, 250012, China
| | - Kangshuai Li
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yingkai Zhang
- Department of Chemistry, New York University, New York, NY, 10003, United States; NYU-ECNU Center for Computational Chemistry, New York University-Shanghai, Shanghai, 200122, China
| | - Hao Fang
- Department of Medicinal Chemistry and Key Laboratory of Chemical Biology of Natural Products (MOE), School of Pharmaceutical Science, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
24
|
Ge MX, Liu HT, Zhang N, Niu WX, Lu ZN, Bao YY, Huang R, Yu DK, Shao RG, He HW. Costunolide represses hepatic fibrosis through WW domain-containing protein 2-mediated Notch3 degradation. Br J Pharmacol 2019; 177:372-387. [PMID: 31621893 DOI: 10.1111/bph.14873] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/09/2019] [Accepted: 09/14/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND AND PURPOSE This study investigates the antifibrotic activities and potential mechanisms of costunolide (COS), a natural sesquiterpene compound. EXPERIMENTAL APPROACH Rats subjected to bile duct ligation and mice challenged with CCl4 were used to study the antifibrotic effects of COS in vivo. Mouse primary hepatic stellate cells (pHSCs) and human HSC line LX-2 also served as an in vitro liver fibrosis models. The expression of fibrogenic genes and signaling proteins in the neurogenic locus notch homologue protein 3 (Notch3)-hairy/enhancer of split-1 (HES1) pathway was examined using western blot and/or real-time PCR. Notch3 degradation was analysed using immunofluorescence and coimmunoprecipitation. KEY RESULTS In animals, COS administration attenuated hepatic histopathological injury and collagen accumulation and reduced the expression of fibrogenic genes. COS time- and dose-dependently suppressed the levels of fibrotic markers in LX-2 cells and mouse pHSCs. Mechanistic studies showed COS destabilized Notch3 and subsequently inhibited the Notch3-HES1 pathway, thus inhibiting HSC activation. Furthermore, COS blocked the WW domain-containing protein 2 (WWP2)/protein phosphatase 1G (PPM1G) interaction and enhanced the effect of WWP2 on Notch3 degradation. CONCLUSIONS AND IMPLICATIONS COS exerted potent antifibrotic effects in vitro and in vivo by disrupting the WWP2/PPM1G complex, promoting Notch3 degradation and inhibiting the Notch3/HES1 pathway. This indicates that COS may be a potential therapeutic candidate for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Mao-Xu Ge
- Key Laboratory of Biotechnology of Antibiotics, the National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hong-Tao Liu
- Department of Pharmacy, Hebei General Hospital, Shijiazhuang, China
| | - Na Zhang
- Key Laboratory of Biotechnology of Antibiotics, the National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei-Xiao Niu
- Key Laboratory of Biotechnology of Antibiotics, the National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhen-Ning Lu
- Key Laboratory of Biotechnology of Antibiotics, the National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yun-Yang Bao
- Key Laboratory of Biotechnology of Antibiotics, the National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rui Huang
- Department of digestive surgery, Hospital of the University of Electronic Science and Technology of China and Sichuan Provincial People's Hospital, Chengdu, China
| | - Dong-Ke Yu
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Hospital of the University of Electronic Science and Technology of China and Sichuan Provincial People's Hospital, Chengdu, China
| | - Rong-Guang Shao
- Key Laboratory of Biotechnology of Antibiotics, the National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hong-Wei He
- Key Laboratory of Biotechnology of Antibiotics, the National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
25
|
Zhang X, Shen Q, Lei Z, Wang Q, Zheng J, Jia Z. Characterization of metal binding of bifunctional kinase/phosphatase AceK and implication in activity modulation. Sci Rep 2019; 9:9198. [PMID: 31235769 PMCID: PMC6591243 DOI: 10.1038/s41598-019-45704-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 06/11/2019] [Indexed: 12/20/2022] Open
Abstract
A unique bifunctional enzyme, isocitrate dehydrogenase kinase/phosphatase (AceK) regulates isocitrate dehydrogenase (IDH) by phosphorylation and dephosphorylation in response to nutrient availability. Herein we report the crystal structure of AceK in complex with ADP and Mn2+ ions. Although the overall structure is similar to the previously reported structures which contain only one Mg2+ ion, surprisingly, two Mn2+ ions are found in the catalytic center of the AceK-Mn2+ structure. Our enzymatic assays demonstrate that AceK-Mn2+ showed higher phosphatase activity than AceK-Mg2+, whereas the kinase activity was relatively unaffected. We created mutants of AceK for all metal-coordinating residues. The phosphatase activities of these mutants were significantly impaired, suggesting the pivotal role of the binuclear (M1-M2) core in AceK phosphatase catalysis. Moreover, we have studied the interactions of Mn2+ and Mg2+ with wild-type and mutant AceK and found that the number of metal ions bound to AceK is in full agreement with the crystal structures. Combined with the enzymatic results, we demonstrate that AceK exhibits phosphatase activity in the presence of two, but not one, Mn2+ ions, similar to PPM phosphatases. Taken together, we suggest that metal ions help AceK to balance and fine tune its kinase and phosphatase activities.
Collapse
Affiliation(s)
- Xiaoying Zhang
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Qingya Shen
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Zhen Lei
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Qianyi Wang
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Jimin Zheng
- College of Chemistry, Beijing Normal University, Beijing, 100875, China.
| | - Zongchao Jia
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L3N6, Canada.
| |
Collapse
|
26
|
Li K, Hou X, Li R, Bi W, Yang F, Chen X, Xiao P, Liu T, Lu T, Zhou Y, Tian Z, Shen Y, Zhang Y, Wang J, Fang H, Sun J, Yu X. Identification and structure-function analyses of an allosteric inhibitor of the tyrosine phosphatase PTPN22. J Biol Chem 2019; 294:8653-8663. [PMID: 30979725 DOI: 10.1074/jbc.ra118.007129] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/23/2019] [Indexed: 01/08/2023] Open
Abstract
Protein-tyrosine phosphatase nonreceptor type 22 (PTPN22) is a lymphoid-specific tyrosine phosphatase (LYP), and mutations in the PTPN22 gene are highly correlated with a spectrum of autoimmune diseases. However, compounds and mechanisms that specifically inhibit LYP enzymes to address therapeutic needs to manage these diseases remain to be discovered. Here, we conducted a similarity search of a commercial database for PTPN22 inhibitors and identified several LYP inhibitor scaffolds, which helped identify one highly active inhibitor, NC1. Using noncompetitive inhibition curve and phosphatase assays, we determined NC1's inhibition mode toward PTPN22 and its selectivity toward a panel of phosphatases. We found that NC1 is a noncompetitive LYP inhibitor and observed that it exhibits selectivity against other protein phosphatases and effectively inhibits LYP activity in lymphoid T cells and modulates T-cell receptor signaling. Results from site-directed mutagenesis, fragment-centric topographic mapping, and molecular dynamics simulation experiments suggested that NC1, unlike other known LYP inhibitors, concurrently binds to a "WPD" pocket and a second pocket surrounded by an LYP-specific insert, which contributes to its selectivity against other phosphatases. Moreover, using a newly developed method to incorporate the unnatural amino acid 2-fluorine-tyrosine and 19F NMR spectroscopy, we provide direct evidence that NC1 allosterically regulates LYP activity by restricting WPD-loop movement. In conclusion, our approach has identified a new allosteric binding site in LYP useful for selective LYP inhibitor development; we propose that the 19F NMR probe developed here may also be useful for characterizing allosteric inhibitors of other tyrosine phosphatases.
Collapse
Affiliation(s)
- Kangshuai Li
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xuben Hou
- Department of Medicinal Chemistry and Key Laboratory of Chemical Biology of Natural Products (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China; Department of Chemistry, New York University, New York, New York 10003
| | - Ruirui Li
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Wenxiang Bi
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Fan Yang
- Department of Physiology, School of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xu Chen
- Department of Physiology, School of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Peng Xiao
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Tiantian Liu
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Tiange Lu
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yuan Zhou
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Zhaomei Tian
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yuemao Shen
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Yingkai Zhang
- Department of Chemistry, New York University, New York, New York 10003; NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
| | - Jiangyun Wang
- Laboratory of Quantum Biophysics and Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, 100101, China
| | - Hao Fang
- Department of Medicinal Chemistry and Key Laboratory of Chemical Biology of Natural Products (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| | - Jinpeng Sun
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Xiao Yu
- Department of Physiology, School of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
27
|
Luparello C. Effect of Manganese Chloride and of Cotreatment with Cadmium Chloride on the In Vitro Proliferative, Motile and Invasive Behavior of MDA-MB231 Breast Cancer Cells. Molecules 2019; 24:E1205. [PMID: 30934784 PMCID: PMC6480135 DOI: 10.3390/molecules24071205] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 03/21/2019] [Accepted: 03/25/2019] [Indexed: 12/14/2022] Open
Abstract
We examined the dose⁻response effect of MnCl₂ on the proliferative behavior of triple-negative breast cancer MDA-M231 cells vs. immortalized HB2 cells from breast epithelium taken as nontumoral counterparts. We also tested the effect of MnCl₂ on tumor cell invasiveness in vitro by evaluating the relative invasion indexes through Boyden chamber assays. Moreover, we checked whether cotreatment with both MnCl₂ and CdCl₂ could modify the observed biological response by MDA-MB231 cells. Our results show a promotional impact of MnCl₂ on cell proliferation, with 5 µM concentration inducing the more pronounced increase after 96-h exposure, which is not shared by HB2 cells. Exposure to 5 µM MnCl₂ induced also an elevation of the relative invasion index of cancer cells. The Mn-mediated stimulatory effects were counteracted by cotreatment with CdCl₂. These data support the concept that human exposure to high environmental concentrations of Mn may increase the risk of carcinogenesis and metastasis by prompting the expansion and dissemination of triple-negative breast cancer cells. On the other hand, the Mn-counteracting anticancer property of Cd looks promising and deserves a more detailed characterization of the involved intracellular targets aimed to the molecular modeling of specific antineoplastic agents against malignant breast cancer spreading.
Collapse
Affiliation(s)
- Claudio Luparello
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, 90128 Palermo, Italy.
| |
Collapse
|
28
|
Mahameed M, Obiedat A, Beck G, Johnson JC, Tirosh B. Low concentrations of cadmium chloride promotes protein translation and improve cell line productivity. Biotechnol Bioeng 2019; 116:569-580. [DOI: 10.1002/bit.26888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/15/2018] [Accepted: 11/29/2018] [Indexed: 01/06/2023]
Affiliation(s)
- Mohamed Mahameed
- Institute for Drug ResearchThe School of PharmacyThe Hebrew University of JerusalemJerusalem Israel
| | - Akram Obiedat
- Institute for Drug ResearchThe School of PharmacyThe Hebrew University of JerusalemJerusalem Israel
| | - Gad Beck
- Molecular Biology and Fermentation Unit, Valin TechnologiesYavne Israel
| | | | - Boaz Tirosh
- Institute for Drug ResearchThe School of PharmacyThe Hebrew University of JerusalemJerusalem Israel
| |
Collapse
|
29
|
Dolatabad MR, Guo LL, Xiao P, Zhu Z, He QT, Yang DX, Qu CX, Guo SC, Fu XL, Li RR, Ge L, Hu KJ, Liu HD, Shen YM, Yu X, Sun JP, Zhang PJ. Crystal structure and catalytic activity of the PPM1K N94K mutant. J Neurochem 2019; 148:550-560. [DOI: 10.1111/jnc.14631] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 11/02/2018] [Accepted: 11/06/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Meisam Rostaminasab Dolatabad
- Key Laboratory Experimental Teratology of the Ministry of Education; Department of Biochemistry and Molecular Biology; Shandong University School of Medicine; Jinan Shandong China
| | - Lu-lu Guo
- Key Laboratory Experimental Teratology of the Ministry of Education; Department of Biochemistry and Molecular Biology; Shandong University School of Medicine; Jinan Shandong China
| | - Peng Xiao
- Key Laboratory Experimental Teratology of the Ministry of Education; Department of Biochemistry and Molecular Biology; Shandong University School of Medicine; Jinan Shandong China
- Key Laboratory of Chemical Biology; Ministry of Education; Shandong University School of Pharmaceutical Science; Jinan Shandong China
| | - Zhongliang Zhu
- School of Life Sciences; University of Science and Technology of China; Hefei Anhui China
| | - Qing-tao He
- Key Laboratory Experimental Teratology of the Ministry of Education; Department of Biochemistry and Molecular Biology; Shandong University School of Medicine; Jinan Shandong China
| | - Du-xiao Yang
- Key Laboratory Experimental Teratology of the Ministry of Education; Department of Biochemistry and Molecular Biology; Shandong University School of Medicine; Jinan Shandong China
| | - Chang-xiu Qu
- Key Laboratory Experimental Teratology of the Ministry of Education; Department of Biochemistry and Molecular Biology; Shandong University School of Medicine; Jinan Shandong China
| | - Sheng-chao Guo
- Key Laboratory Experimental Teratology of the Ministry of Education; Department of Biochemistry and Molecular Biology; Shandong University School of Medicine; Jinan Shandong China
| | - Xiao-lei Fu
- Key Laboratory Experimental Teratology of the Ministry of Education; Department of Biochemistry and Molecular Biology; Shandong University School of Medicine; Jinan Shandong China
| | - Rui-rui Li
- Key Laboratory Experimental Teratology of the Ministry of Education; Department of Biochemistry and Molecular Biology; Shandong University School of Medicine; Jinan Shandong China
| | - Lin Ge
- Key Laboratory Experimental Teratology of the Ministry of Education; Department of Biochemistry and Molecular Biology; Shandong University School of Medicine; Jinan Shandong China
| | - Ke-jia Hu
- Key Laboratory Experimental Teratology of the Ministry of Education; Department of Biochemistry and Molecular Biology; Shandong University School of Medicine; Jinan Shandong China
| | - Hong-da Liu
- Key Laboratory Experimental Teratology of the Ministry of Education; Department of Biochemistry and Molecular Biology; Shandong University School of Medicine; Jinan Shandong China
- Department of Pharmacology and Chemical Biology; School of Medicine; University of Pittsburgh; Pittsburgh Pennsylvania USA
| | - Yue-mao Shen
- Key Laboratory of Chemical Biology; Ministry of Education; Shandong University School of Pharmaceutical Science; Jinan Shandong China
| | - Xiao Yu
- Department of Physiology; Shandong University; School of Medicine; Jinan Shandong China
| | - Jin-peng Sun
- Key Laboratory Experimental Teratology of the Ministry of Education; Department of Biochemistry and Molecular Biology; Shandong University School of Medicine; Jinan Shandong China
- Department of Physiology and Pathophysiology; School of Basic Medical Sciences; Peking University; Key Laboratory of Molecular Cardiovascular Science; Ministry of Education; Beijing China
| | - Peng-ju Zhang
- Key Laboratory Experimental Teratology of the Ministry of Education; Department of Biochemistry and Molecular Biology; Shandong University School of Medicine; Jinan Shandong China
| |
Collapse
|
30
|
Liu S, Chen L, Xu Y. Significance of PYK2 level as a prognosis predictor in patients with colon adenocarcinoma after surgical resection. Onco Targets Ther 2018; 11:7625-7634. [PMID: 30464511 PMCID: PMC6217216 DOI: 10.2147/ott.s169531] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Proline-rich/Ca2+-activated tyrosine kinase 2 (PYK2) belongs to the non-receptor tyrosine kinase family, regulates downstream signaling via catalyzing protein phosphorylation. We aimed to investigate clinical significance and mechanisms of PYK2 in colon adenocarcinoma (CAC). Methods Real time quantitative PCR and immunohistochemistry staining was used to evaluate the expression of PYK2 in clinical CAC tissues. Its association with clinicopathologic characteristics was analyzed by Chi-square test. Kaplan-Meier univariate survival analysis and multivariate Cox regression analysis were used to identify clinical significance of PYK2 in the overall survival of CAC patients. Transfection of PYK2 were conducted to reveal the underlying mechanism in regulating CAC progression. Results We found that PYK2 was upregulated in CAC tissues compared with normal colon tissues on both RNA and protein levels. Higher tissue PYK2 expression level was closely associated with lymph node metastasis. Statistical analyses indicated PYK2 as an independent prognostic biomarker for CAC. Cellular studies demonstrated that PYK2 enhanced the capacities of tumor proliferation and invasion. Moreover, the phosphorylation level of AKT was positively correlated with PYK2 expression, subsequently modulate expression of c-Myc and Cyclin D1, suggesting that PYK2 may promote tumor progression through activating AKT signaling. Conclusion High PYK2 in CAC tissues indicate poor prognosis.
Collapse
Affiliation(s)
- Shufang Liu
- Department of Laboratory Medicine, Linyi Central Hospital, Linyi, Shandong 276400, China
| | - Lingling Chen
- Department of Laboratory Medicine, Linyi Central Hospital, Linyi, Shandong 276400, China
| | - Yunfei Xu
- Department of General Surgery, Qilu Hospital Affiliated to Shandong University, Jinan, Shandong 250012, China,
| |
Collapse
|
31
|
Hou X, Rooklin D, Yang D, Liang X, Li K, Lu J, Wang C, Xiao P, Zhang Y, Sun JP, Fang H. Computational Strategy for Bound State Structure Prediction in Structure-Based Virtual Screening: A Case Study of Protein Tyrosine Phosphatase Receptor Type O Inhibitors. J Chem Inf Model 2018; 58:2331-2342. [PMID: 30299094 DOI: 10.1021/acs.jcim.8b00548] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Accurate protein structure in the ligand-bound state is a prerequisite for successful structure-based virtual screening (SBVS). Therefore, applications of SBVS against targets for which only an apo structure is available may be severely limited. To address this constraint, we developed a computational strategy to explore the ligand-bound state of a target protein, by combined use of molecular dynamics simulation, MM/GBSA binding energy calculation, and fragment-centric topographical mapping. Our computational strategy is validated against low-molecular weight protein tyrosine phosphatase (LMW-PTP) and then successfully employed in the SBVS against protein tyrosine phosphatase receptor type O (PTPRO), a potential therapeutic target for various diseases. The most potent hit compound GP03 showed an IC50 value of 2.89 μM for PTPRO and possessed a certain degree of selectivity toward other protein phosphatases. Importantly, we also found that neglecting the ligand energy penalty upon binding partially accounts for the false positive SBVS hits. The preliminary structure-activity relationships of GP03 analogs are also reported.
Collapse
Affiliation(s)
- Xuben Hou
- Department of Medicinal Chemistry and Key Laboratory of Chemical Biology of Natural Products (MOE), School of Pharmacy , Shandong University , Jinan , Shandong 250012 , China.,Department of Chemistry , New York University , New York , New York 10003 , United States
| | - David Rooklin
- Department of Chemistry , New York University , New York , New York 10003 , United States
| | - Duxiao Yang
- Key Laboratory of Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Medicine , Shandong University , Jinan , Shandong 250012 , China
| | - Xiao Liang
- Department of Medicinal Chemistry and Key Laboratory of Chemical Biology of Natural Products (MOE), School of Pharmacy , Shandong University , Jinan , Shandong 250012 , China
| | - Kangshuai Li
- Key Laboratory of Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Medicine , Shandong University , Jinan , Shandong 250012 , China
| | - Jianing Lu
- Department of Chemistry , New York University , New York , New York 10003 , United States
| | - Cheng Wang
- Department of Chemistry , New York University , New York , New York 10003 , United States
| | - Peng Xiao
- Key Laboratory of Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Medicine , Shandong University , Jinan , Shandong 250012 , China
| | - Yingkai Zhang
- Department of Chemistry , New York University , New York , New York 10003 , United States.,NYU-ECNU Center for Computational Chemistry , New York University-Shanghai , Shanghai 200122 , China
| | - Jin-Peng Sun
- Key Laboratory of Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Medicine , Shandong University , Jinan , Shandong 250012 , China
| | - Hao Fang
- Department of Medicinal Chemistry and Key Laboratory of Chemical Biology of Natural Products (MOE), School of Pharmacy , Shandong University , Jinan , Shandong 250012 , China
| |
Collapse
|
32
|
Yang D, Xiao P, Li Q, Fu X, Pan C, Lu D, Wen S, Xia W, He D, Li H, Fang H, Shen Y, Xu Z, Lin A, Wang C, Yu X, Wu J, Sun J. Allosteric modulation of the catalytic VYD loop in Slingshot by its N-terminal domain underlies both Slingshot auto-inhibition and activation. J Biol Chem 2018; 293:16226-16241. [PMID: 30154244 DOI: 10.1074/jbc.ra118.004175] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/21/2018] [Indexed: 12/22/2022] Open
Abstract
Slingshots are phosphatases that modulate cytoskeleton dynamics, and their activities are tightly regulated in different physiological contexts. Recently, abnormally elevated Slingshot activity has been implicated in many human diseases, such as cancer, Alzheimer's disease, and vascular diseases. Therefore, Slingshot-specific inhibitors have therapeutic potential. However, an enzymological understanding of the catalytic mechanism of Slingshots and of their activation by actin is lacking. Here, we report that the N-terminal region of human Slingshot2 auto-inhibits its phosphatase activity in a noncompetitive manner. pH-dependent phosphatase assays and leaving-group dependence studies suggested that the N-terminal domain of Slingshot2 regulates the stability of the leaving group of the product during catalysis by modulating the general acid Asp361 in the catalytic VYD loop. F-actin binding relieved this auto-inhibition and restored the function of the general acid. Limited tryptic digestion and biophysical studies identified large conformational changes in Slingshot2 after the F-actin binding. The dissociation of N-terminal structural elements, including Leu63, and the exposure of the loop between α-helix-2 and β-sheet-3 of the phosphatase domain served as the structural basis for Slingshot activation via F-actin binding in vitro and via neuregulin stimulation in cells. Moreover, we designed a FlAsH-BRET-based Slingshot2 biosensor whose readout was highly correlated with the in vivo phosphatase activities of Slingshot2. Our results reveal the auto-inhibitory mechanism and allosteric activation mechanisms of a human Slingshot phosphatase. They also contribute to the design of new strategies to study Slingshot regulation in various cellular contexts and to screen for new activators/inhibitors of Slingshot activity.
Collapse
Affiliation(s)
- Duxiao Yang
- From the Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, and
| | - Peng Xiao
- From the Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, and.,the School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Qing Li
- the Department of Physiology, Shandong University School of Medicine, Jinan, Shandong 250012, China
| | - Xiaolei Fu
- From the Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, and
| | - Chang Pan
- From the Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, and
| | - Di Lu
- From the Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, and
| | - Shishuai Wen
- the School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Wanying Xia
- From the Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, and
| | - Dongfang He
- From the Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, and
| | - Hui Li
- the Department of Physiology, Shandong University School of Medicine, Jinan, Shandong 250012, China
| | - Hao Fang
- the School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Yuemao Shen
- the School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Zhigang Xu
- the School of Life Science, Shandong University, Jinan, Shandong 250003, China
| | - Amy Lin
- the School of Medicine, Duke University, Durham, North Carolina 27705
| | - Chuan Wang
- the Department of Pharmacology, Hebei Medical University, Shijiazhuang 050017, China
| | - Xiao Yu
- the Department of Physiology, Shandong University School of Medicine, Jinan, Shandong 250012, China
| | - Jiawei Wu
- the MOE Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jinpeng Sun
- From the Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, and .,the Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China, and.,the Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing 100191, China
| |
Collapse
|
33
|
Thornhill SG, Kumar M, Vega LM, McLean RJC. Cadmium ion inhibition of quorum signalling in Chromobacterium violaceum. MICROBIOLOGY-SGM 2017; 163:1429-1435. [PMID: 28895513 DOI: 10.1099/mic.0.000531] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Single-celled bacteria are capable of acting as a community by sensing and responding to population density via quorum signalling. Quorum signalling in Chromobacterium violaceum, mediated by the luxI/R homologue, cviI/R, regulates a variety of phenotypes including violacein pigmentation, virulence and biofilm formation. A number of biological and organic molecules have been described as quorum signalling inhibitors but, to date, metal-based inhibitors have not been widely tested. In this study, we show that quorum sensing is inhibited in C. violaceum in the presence of sub-lethal concentrations of cadmium salts. Notable Cd2+-inhibition was seen against pigmentation, motility, chitinase production and biofilm formation. Cd-inhibition of quorum-signalling genes occurred at the level of transcription. There was no direct inhibition of chitinase activity by Cd2+ at the concentrations tested. Addition of the cognate quorum signals, N-hexanoyl homoserine lactone or N-decanoyl homoserine lactone, even at concentrations in excess of physiological levels, did not reverse the inhibition, suggesting that Cd-inhibition of quorum signaling is irreversible. This study represents the first description of heavy metal-based quorum inhibition in C. violaceum.
Collapse
Affiliation(s)
- Starla G Thornhill
- Department of Biology, Texas State University, 601 University Drive, San Marcos, TX 78666, USA
| | - Manish Kumar
- Department of Biology, Texas State University, 601 University Drive, San Marcos, TX 78666, USA
| | - Leticia M Vega
- NASA Human Research Program (HRP) NASA-Johnson Space Center, 2101 E NASA Pkwy, Houston, TX 77058, USA
| | - Robert J C McLean
- Department of Biology, Texas State University, 601 University Drive, San Marcos, TX 78666, USA
| |
Collapse
|
34
|
Chen Y, Tian P, Liu Y. P53 and Protein Phosphorylation Regulate the Oncogenic Role of Epithelial Cell Transforming 2 (ECT2). Med Sci Monit 2017; 23:3154-3160. [PMID: 28654632 PMCID: PMC5498131 DOI: 10.12659/msm.905388] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Gastric cancer (GC) is the second leading cause of cancer-related death worldwide, but little progress has been achieved in the treatment of advanced or metastatic GC. GC is highly heterogeneous and more studies are needed to elucidate the metastatic mechanisms. Epithelial cell transforming 2 (ECT2) has been reported to be up-regulated in GC tissues, but its signaling mechanisms remain unclear. MATERIAL AND METHODS In this study, we used Western blot analysis to compare the expression level of ECT2 in 2 GC cell lines: MKN1 and MKN45. Mutagenesis and transfections were conducted to investigate the oncogenic mechanisms of ECT2 in GC cells. RESULTS ECT2 was expressed at higher levels in MKN1 than in MKN45. Immunoblotting results showed that MKN1 expression was suppressed by p53-WT but was enhanced by p53-mutant. In addition, in vitro experiments showed that ECT2 positively regulated the proliferation and invasion of GC cells. To better explore the mechanisms of ECT2 in promoting GC progression, we introduced site-directed mutants of ECT2, and found that the phosphor-mimic mutant T359D enhanced its oncogenic activity. In contrast, activation of RhoA was inhibited in cells transfected with ECT2 phosphor-deficient mutant T359A. We found that the epithelial cell biomarker E-cadherin was down-regulated by ECT2-T359D, highlighting the role of phosphorylation in regulating epithelial-mesenchymal transition. CONCLUSIONS Our results identified p53 as a novel up-stream signaling molecule of ECT2 in GC cells, and the post-translational modifications of ECT2 play important roles in regulating cancer development and progression.
Collapse
Affiliation(s)
- Yan Chen
- Department of Gastroenterology, Yidu Central Hospital of Weifang, Weifang, Shandong, China (mainland)
| | - Ping Tian
- Department of Gastroenterology, Yidu Central Hospital of Weifang, Weifang, Shandong, China (mainland)
| | - Yi Liu
- Department of General Surgery, Qilu Hospital Affiliated to Shandong University, Jinan, Shandong, China (mainland)
| |
Collapse
|
35
|
PPA1 regulates tumor malignant potential and clinical outcome of colon adenocarcinoma through JNK pathways. Oncotarget 2017; 8:58611-58624. [PMID: 28938583 PMCID: PMC5601679 DOI: 10.18632/oncotarget.17381] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/27/2017] [Indexed: 11/25/2022] Open
Abstract
Colorectal cancer (CRC) represents one of the most prevalent malignancies and the third leading cause of cancer death worldwide. Inorganic pyrophosphatase (PPA1) is an enzyme that catalyzes the hydrolysis of pyrophosphate to inorganic phosphate, therefore participates in the energy metabolism. Proteomic studies have demonstrated the up-regulated expression of PPA1 in various tumors, however, its expression pattern in CRC hasn't been reported. In the current study, we used RT-qCR, Western Blot and immunohistochemical (IHC) staining to explore the expression of PPA1 in 113 paired colon cancer tissues and adjacent normal tissues, which revealed that PPA1 was correlated with lymph node metastasis. The prognostic value of PPA1 was confirmed by Kaplan-Meier survival analysis and Cox regression analysis. We further purified PPA1 and obtained the phosphor-JNK1 protein and performed enzymatic studies, which identified that PPA1 can directly dephosphorylate pJNK1, while showed no catalytic activity towards pERK or p-p38 proteins. Moreover, overexpression of PPA1 enhanced cell viability through JNK-p53 signaling pathways, and it may also prevent cell apoptosis by inhibiting Bcl-2 and Caspase-3 cleavage. To our knowledge, this is the first study demonstrated the expression and clinical significance of PPA1 in colon cancer, which also provided evidence that figuring out PPA1 specific inhibitors can be invaluable in the future chemotherapy development towards colon cancer.
Collapse
|
36
|
Li H, Xiao N, Li Z, Wang Q. Expression of Inorganic Pyrophosphatase (PPA1) Correlates with Poor Prognosis of Epithelial Ovarian Cancer. TOHOKU J EXP MED 2017; 241:165-173. [PMID: 28202851 DOI: 10.1620/tjem.241.165] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Ovarian serous carcinoma (OSC) is the most common epithelial ovarian cancer. Inorganic pyrophosphatase (PPA1) catalyzes the hydrolysis of pyrophosphate to inorganic phosphate, thereby providing extra energy for metabolism. The significance of PPA1 in the prognosis of OSC has not been investigated. Our study aimed to explore the expression and predictive role of PPA1 in OSC progression. We screened the expression of PPA1 protein in OSC tissues from 139 patients by immunohistochemistry, and evaluated its correlation with clinicopathological characteristics. PPA1 was categorized as high expression in 58 OSC cases (41.7%), which was correlated with poor differentiation, positive lymph node (LN) metastasis and advanced FIGO (The International Federation of Gynecology and Obstetrics) stages. Univariate and multivariate analyses identified PPA1 as a novel independent prognostic biomarker in OSC patients; meanwhile, conventional factors such as LN status and FIGO stages also showed statistical significance. Moreover, the expression levels of PPA1 protein were higher in A2780 and OVCAR3 human ovarian cancer cell lines than those in normal ovarian surface epithelial cells. Using these ovarian cancer cell lines, we showed that PPA1 overexpression caused the decrease in the expression level of p53, the tumor suppressor, with the increase in β-catenin level, as determined by Western blot analysis. Conversely, knockdown of PPAI expression was associated with the increase of p53 level and the decreased of β-catenin level. Consistently, the proliferation and invasion capacities of ovarian cancer cells were enhanced upon PPA1 overexpression. In conclusion, PPA1 serves as a potential prognostic biomarker for patients with OSC.
Collapse
Affiliation(s)
- Hui Li
- Nursing Department, Linyi People's Hospital
| | | | | | | |
Collapse
|
37
|
Correlations between TBL1XR1 and recurrence of colorectal cancer. Sci Rep 2017; 7:44275. [PMID: 28295012 PMCID: PMC5353619 DOI: 10.1038/srep44275] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 02/06/2017] [Indexed: 12/13/2022] Open
Abstract
More than 25% localized CRC patients died from post-operative metastasis, and risk of metastasis varies among individuals due to the high heterogeneity of CRC. Therefore, figuring out potential biomarkers for disease recurrence would be invaluable to improve the follow-up efficiency and clinical treatment. Transducin (β)-like 1 X-linked receptor 1 (TBL1XR1) is a core component of the nuclear receptor corepressor complex, which functions as a repressive coregulatory factor for multiple transcription factors. The clinical significance of TBL1XR1 in CRC hasn’t been fully elucidated. In this study, we investigated the expression of TBL1XR1 in primary CRC tissues and liver metastases from TNM stage IV CRC patients, and found that its expression in primary tumor tissues was an independent prognostic factor for tumor recurrence. Thus, we enrolled another cohort including TNM stage I-III patients to further evaluate the relationship between TBL1XR1 expression and disease recurrence. Accordingly, high TBL1XR1 expression indicates poor disease-free survival of stage I-III CRC patients. Furthermore, we confirmed the importance of β-catenin signaling pathways in TBL1XR1-mediated CRC cell oncogenicity by clinical and cellular results. Our results emphasize the necessity of individual therapy decisions based on clinical biomarkers, especially for localized CRC patients who are not routinely treated with adjunctive chemotherapy.
Collapse
|
38
|
Bellomo E, Birla Singh K, Massarotti A, Hogstrand C, Maret W. The metal face of protein tyrosine phosphatase 1B. Coord Chem Rev 2016; 327-328:70-83. [PMID: 27890939 PMCID: PMC5115158 DOI: 10.1016/j.ccr.2016.07.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 07/01/2016] [Accepted: 07/01/2016] [Indexed: 01/12/2023]
Abstract
A new paradigm in metallobiochemistry describes the activation of inactive metalloenzymes by metal ion removal. Protein tyrosine phosphatases (PTPs) do not seem to require a metal ion for enzymatic activity. However, both metal cations and metal anions modulate their enzymatic activity. One binding site is the phosphate binding site at the catalytic cysteine residue. Oxyanions with structural similarity to phosphate, such as vanadate, inhibit the enzyme with nanomolar to micromolar affinities. In addition, zinc ions (Zn2+) inhibit with picomolar to nanomolar affinities. We mapped the cation binding site close to the anion binding site and established a specific mechanism of inhibition occurring only in the closed conformation of the enzyme when the catalytic cysteine is phosphorylated and the catalytic aspartate moves into the active site. We discuss this dual inhibition by anions and cations here for PTP1B, the most thoroughly investigated protein tyrosine phosphatase. The significance of the inhibition in phosphorylation signaling is becoming apparent only from the functions of PTP1B in the biological context of metal cations as cellular signaling ions. Zinc ion signals complement redox signals but provide a different type of control and longer lasting inhibition on a biological time scale owing to the specificity and affinity of zinc ions for coordination environments. Inhibitor design for PTP1B and other PTPs is a major area of research activity and interest owing to their prominent roles in metabolic regulation in health and disease, in particular cancer and diabetes. Our results explain the apparent dichotomy of both cations (Zn2+) and oxyanions such as vanadate inhibiting PTP1B and having insulin-enhancing ("anti-diabetic") effects and suggest different approaches, namely targeting PTPs in the cell by affecting their physiological modulators and considering a metallodrug approach that builds on the knowledge of the insulin-enhancing effects of both zinc and vanadium compounds.
Collapse
Affiliation(s)
- Elisa Bellomo
- Metal Metabolism Group, Division of Diabetes and Nutritional Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, UK
| | - Kshetrimayum Birla Singh
- Metal Metabolism Group, Division of Diabetes and Nutritional Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, UK
| | - Alberto Massarotti
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale “A. Avogadro”, Novara, Italy
| | - Christer Hogstrand
- Metal Metabolism Group, Division of Diabetes and Nutritional Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, UK
| | - Wolfgang Maret
- Metal Metabolism Group, Division of Diabetes and Nutritional Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, UK
| |
Collapse
|
39
|
Reyes-Zárate E, Sánchez-Pérez Y, Gutiérrez-Ruiz MC, Chirino YI, Osornio-Vargas ÁR, Morales-Bárcenas R, Souza-Arroyo V, García-Cuellar CM. Atmospheric particulate matter (PM10) exposure-induced cell cycle arrest and apoptosis evasion through STAT3 activation via PKCζ and Src kinases in lung cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 214:646-656. [PMID: 27131825 DOI: 10.1016/j.envpol.2016.04.072] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 04/18/2016] [Accepted: 04/19/2016] [Indexed: 06/05/2023]
Abstract
Atmospheric particulate matter with aerodynamic diameter ≤10 μm (PM10) is a risk factor for the development of lung cancer, but cellular pathways are not completely understood. STAT3 is a p21(Waf1/Cip1) transcription factor and is associated with proliferation and cell survival and is upregulated in lung cancer. PM10 exposure induces p21(Waf1/Cip1) expression, which could be related to STAT3 activation. The aims of this work were to investigate whether STAT3 was activated on lung epithelial cells after PM10 exposure and to determine whether or not STAT3 could have an impact on cell cycle distribution and cell survival. Our results showed that PM10 induced STAT3 activation through Src and PKCζ kinases, and it is partially responsible for the p21(Waf1/Cip1) induction that was also observed. Moreover, PM10 induced G1-G0 cell cycle arrest. The inhibition of STAT3 phosphorylation prevented cell cycle arrest and triggered apoptosis. These results suggest that PM10 exposure might activate a survival pathway related to STAT3 activation, similar to what has been described as part of the immune system and apoptosis evasion during tumor promotion and development.
Collapse
Affiliation(s)
- Elizabeth Reyes-Zárate
- Posgrado en Biología Experimental, Universidad Autónoma Metropolitana-Iztapalapa, Mexico; Departamento de Ciencias de la Salud, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, 09340, México DF, Mexico
| | - Yesennia Sánchez-Pérez
- Instituto Nacional de Cancerología, Subdirección de Investigación Básica, San Fernando No. 22, Tlalpan, 14080, México DF, Mexico
| | - María Concepción Gutiérrez-Ruiz
- Departamento de Ciencias de la Salud, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, 09340, México DF, Mexico
| | - Yolanda I Chirino
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, UNAM, Tlalnepantla, 54059, Estado de México, Mexico
| | | | - Rocío Morales-Bárcenas
- Instituto Nacional de Cancerología, Subdirección de Investigación Básica, San Fernando No. 22, Tlalpan, 14080, México DF, Mexico
| | - Verónica Souza-Arroyo
- Departamento de Ciencias de la Salud, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, 09340, México DF, Mexico.
| | - Claudia María García-Cuellar
- Instituto Nacional de Cancerología, Subdirección de Investigación Básica, San Fernando No. 22, Tlalpan, 14080, México DF, Mexico.
| |
Collapse
|
40
|
Zhang M, Mishra S, Sakthivel R, Fontoura BMA, Nussenzweig V. UIS2: A Unique Phosphatase Required for the Development of Plasmodium Liver Stages. PLoS Pathog 2016; 12:e1005370. [PMID: 26735921 PMCID: PMC4712141 DOI: 10.1371/journal.ppat.1005370] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 12/07/2015] [Indexed: 12/28/2022] Open
Abstract
Plasmodium salivary sporozoites are the infectious form of the malaria parasite and are dormant inside salivary glands of Anopheles mosquitoes. During dormancy, protein translation is inhibited by the kinase UIS1 that phosphorylates serine 59 in the eukaryotic initiation factor 2α (eIF2α). De-phosphorylation of eIF2α-P is required for the transformation of sporozoites into the liver stage. In mammalian cells, the de-phosphorylation of eIF2α-P is mediated by the protein phosphatase 1 (PP1). Using a series of genetically knockout parasites we showed that in malaria sporozoites, contrary to mammalian cells, the eIF2α-P phosphatase is a member of the PP2C/PPM phosphatase family termed UIS2. We found that eIF2α was highly phosphorylated in uis2 conditional knockout sporozoites. These mutant sporozoites maintained the crescent shape after delivery into mammalian host and lost their infectivity. Both uis1 and uis2 were highly transcribed in the salivary gland sporozoites but uis2 expression was inhibited by the Pumilio protein Puf2. The repression of uis2 expression was alleviated when sporozoites developed into liver stage. While most eukaryotic phosphatases interact transiently with their substrates, UIS2 stably bound to phosphorylated eIF2α, raising the possibility that high-throughput searches may identify chemicals that disrupt this interaction and prevent malaria infection. Malaria is transmitted to humans by female mosquitoes as they take a blood meal. Plasmodium sporozoites are the infectious and quiescent forms of malaria parasites, which reside in the salivary glands of mosquitoes. Global protein synthesis is inhibited in sporozoites through phosphorylation of the translational factor eIF2α. However, the development of the parasites in the host liver requires de-phosphorylation of eIF2α-P. We find that a unique Plasmodium phosphatase termed UIS2 de-phosphorylates eIF2α-P in malaria. The eIF2α is highly phosphorylated in the uis2 mutant sporozoites. The uis2 mutant parasites did not change their morphology after delivery into the host and could not properly infect the host. We also showed that UIS2 expression was inhibited by the Pumilio protein Puf2. However, this repression was relieved when sporozoites developed into liver stage. In sum, our findings revealed a new mechanism that evolved to control eIF2α dephosphorylation and suggest that identification of UIS2 inhibitors may be useful in anti-malaria therapy.
Collapse
Affiliation(s)
- Min Zhang
- Department of Pathology, New York University School of Medicine, New York, New York, United States of America
- HIV and Malaria Vaccine Program, Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, New York, United States of America
- * E-mail:
| | - Satish Mishra
- Division of Parasitology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Ramanavelan Sakthivel
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Beatriz M. A. Fontoura
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Victor Nussenzweig
- Department of Pathology, New York University School of Medicine, New York, New York, United States of America
| |
Collapse
|
41
|
Li KS, Xiao P, Zhang DL, Hou XB, Ge L, Yang DX, Liu HD, He DF, Chen X, Han KR, Song XY, Yu X, Fang H, Sun JP. Identification of para-Substituted Benzoic Acid Derivatives as Potent Inhibitors of the Protein Phosphatase Slingshot. ChemMedChem 2015; 10:1980-1987. [PMID: 26553423 DOI: 10.1002/cmdc.201500454] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Indexed: 12/31/2022]
Abstract
Slingshot proteins form a small group of dual-specific phosphatases that modulate cytoskeleton dynamics through dephosphorylation of cofilin and Lim kinases (LIMK). Small chemical compounds with Slingshot-inhibiting activities have therapeutic potential against cancers or infectious diseases. However, only a few Slingshot inhibitors have been investigated and reported, and their cellular activities have not been examined. In this study, we identified two rhodanine-scaffold-based para-substituted benzoic acid derivatives as competitive Slingshot inhibitors. The top compound, (Z)-4-((4-((4-oxo-2-thioxo-3-(o-tolyl)thiazolidin-5-ylidene)methyl)phenoxy)methyl)benzoic acid (D3) had an inhibition constant (Ki) of around 4 μm and displayed selectivity over a panel of other phosphatases. Moreover, compound D3 inhibited cell migration and cofilin dephosphorylation after nerve growth factor (NGF) or angiotensin II stimulation. Therefore, our newly identified Slingshot inhibitors provide a starting point for developing Slingshot-targeted therapies.
Collapse
Affiliation(s)
- Kang-shuai Li
- Key Laboratory Experimental Teratology of the Ministry of Education (MOE) and, Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, Shandong, 250012, China
- Department of Physiology, School of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Peng Xiao
- Key Laboratory Experimental Teratology of the Ministry of Education (MOE) and, Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, Shandong, 250012, China
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology of Natural Products (MOE), School of Pharmacy, Shandong University, Jinan, Shandong, 250012, China
| | - Dao-lai Zhang
- Key Laboratory Experimental Teratology of the Ministry of Education (MOE) and, Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, Shandong, 250012, China
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Xu-Ben Hou
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology of Natural Products (MOE), School of Pharmacy, Shandong University, Jinan, Shandong, 250012, China
| | - Lin Ge
- Key Laboratory Experimental Teratology of the Ministry of Education (MOE) and, Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Du-xiao Yang
- Key Laboratory Experimental Teratology of the Ministry of Education (MOE) and, Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Hong-da Liu
- Key Laboratory Experimental Teratology of the Ministry of Education (MOE) and, Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Dong-fang He
- Key Laboratory Experimental Teratology of the Ministry of Education (MOE) and, Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Xu Chen
- Department of Physiology, School of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Ke-rui Han
- Mailman School of Public Health, Columbia University, New York, NY, 10032, USA
| | - Xiao-yuan Song
- Key Laboratory of Brain Function and Disease, Chinese Academy of Sciences (CAS) and, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Xiao Yu
- Department of Physiology, School of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Hao Fang
- Key Laboratory Experimental Teratology of the Ministry of Education (MOE) and, Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Jin-peng Sun
- Key Laboratory Experimental Teratology of the Ministry of Education (MOE) and, Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
42
|
Hou X, Li K, Yu X, Sun JP, Fang H. Protein Flexibility in Docking-Based Virtual Screening: Discovery of Novel Lymphoid-Specific Tyrosine Phosphatase Inhibitors Using Multiple Crystal Structures. J Chem Inf Model 2015; 55:1973-83. [PMID: 26360643 DOI: 10.1021/acs.jcim.5b00344] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Xuben Hou
- Department
of Medicinal Chemistry, Key Laboratory of Chemical Biology
of Natural Products (MOE), School of Pharmacy, ‡Department of Physiology, School
of Medicine, and §Key Laboratory Experimental Teratology of the Ministry of Education
and Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Kangshuai Li
- Department
of Medicinal Chemistry, Key Laboratory of Chemical Biology
of Natural Products (MOE), School of Pharmacy, ‡Department of Physiology, School
of Medicine, and §Key Laboratory Experimental Teratology of the Ministry of Education
and Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xiao Yu
- Department
of Medicinal Chemistry, Key Laboratory of Chemical Biology
of Natural Products (MOE), School of Pharmacy, ‡Department of Physiology, School
of Medicine, and §Key Laboratory Experimental Teratology of the Ministry of Education
and Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Jin-peng Sun
- Department
of Medicinal Chemistry, Key Laboratory of Chemical Biology
of Natural Products (MOE), School of Pharmacy, ‡Department of Physiology, School
of Medicine, and §Key Laboratory Experimental Teratology of the Ministry of Education
and Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Hao Fang
- Department
of Medicinal Chemistry, Key Laboratory of Chemical Biology
of Natural Products (MOE), School of Pharmacy, ‡Department of Physiology, School
of Medicine, and §Key Laboratory Experimental Teratology of the Ministry of Education
and Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
43
|
Liu L, Zhang J, Chen C, Teng J, Wang C, Luo D. Structure and biosynthesis of fumosorinone, a new protein tyrosine phosphatase 1B inhibitor firstly isolated from the entomogenous fungus Isaria fumosorosea. Fungal Genet Biol 2015; 81:191-200. [DOI: 10.1016/j.fgb.2015.03.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 03/26/2015] [Accepted: 03/30/2015] [Indexed: 11/24/2022]
|
44
|
Pan C, Tang JY, Xu YF, Xiao P, Liu HD, Wang HA, Wang WB, Meng FG, Yu X, Sun JP. The catalytic role of the M2 metal ion in PP2Cα. Sci Rep 2015; 5:8560. [PMID: 25708299 PMCID: PMC5390078 DOI: 10.1038/srep08560] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 01/26/2015] [Indexed: 01/16/2023] Open
Abstract
PP2C family phosphatases (the type 2C family of protein phosphatases; or metal-dependent phosphatase, PPM) constitute an important class of signaling enzymes that regulate many fundamental life activities. All PP2C family members have a conserved binuclear metal ion active center that is essential for their catalysis. However, the catalytic role of each metal ion during catalysis remains elusive. In this study, we discovered that mutations in the structurally buried D38 residue of PP2Cα (PPM1A) redefined the water-mediated hydrogen network in the active site and selectively disrupted M2 metal ion binding. Using the D38A and D38K mutations of PP2Cα as specific tools in combination with enzymology analysis, our results demonstrated that the M2 metal ion determines the rate-limiting step of substrate hydrolysis, participates in dianion substrate binding and stabilizes the leaving group after P-O bond cleavage. The newly characterized catalytic role of the M2 metal ion in this family not only provides insight into how the binuclear metal centers of the PP2C phosphatases are organized for efficient catalysis but also helps increase our understanding of the function and substrate specificity of PP2C family members.
Collapse
Affiliation(s)
- Chang Pan
- 1] Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University, School of Medicine, Jinan, Shandong, China [2] Qilu Hospital of Shandong University, Jinan, China
| | - Jun-yi Tang
- 1] Shandong Provincial School Key laboratory for Protein Science of Chronic Degenerative Diseases, Jinan, Shandong, China [2] Department of Physiology, Shandong University, School of Medicine, Jinan, Shandong, China
| | - Yun-fei Xu
- 1] Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University, School of Medicine, Jinan, Shandong, China [2] Qilu Hospital of Shandong University, Jinan, China
| | - Peng Xiao
- 1] Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University, School of Medicine, Jinan, Shandong, China [2] Shandong Provincial School Key laboratory for Protein Science of Chronic Degenerative Diseases, Jinan, Shandong, China
| | - Hong-da Liu
- 1] Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University, School of Medicine, Jinan, Shandong, China [2] Qilu Hospital of Shandong University, Jinan, China [3] Shandong Provincial School Key laboratory for Protein Science of Chronic Degenerative Diseases, Jinan, Shandong, China
| | - Hao-an Wang
- Department of Human Biology, University of Toronto, Toronto, Ontario, Canada
| | - Wen-bo Wang
- 1] Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University, School of Medicine, Jinan, Shandong, China [2] Qilu Hospital of Shandong University, Jinan, China [3] Shandong Provincial School Key laboratory for Protein Science of Chronic Degenerative Diseases, Jinan, Shandong, China
| | - Fan-guo Meng
- Yangtze Delta Region Institute of Tsinghua University, Zhejiang, China
| | - Xiao Yu
- 1] Shandong Provincial School Key laboratory for Protein Science of Chronic Degenerative Diseases, Jinan, Shandong, China [2] Department of Physiology, Shandong University, School of Medicine, Jinan, Shandong, China
| | - Jin-peng Sun
- 1] Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University, School of Medicine, Jinan, Shandong, China [2] Shandong Provincial School Key laboratory for Protein Science of Chronic Degenerative Diseases, Jinan, Shandong, China [3] Provincial Hospital affiliated to Shandong University, Jinan, Shandong, China
| |
Collapse
|
45
|
Hou X, Li R, Li K, Yu X, Sun JP, Fang H. Fast Identification of Novel Lymphoid Tyrosine Phosphatase Inhibitors Using Target–Ligand Interaction-Based Virtual Screening. J Med Chem 2014; 57:9309-22. [PMID: 25372368 DOI: 10.1021/jm500692u] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Xuben Hou
- Department
of Medicinal Chemistry, Key Laboratory of Chemical Biology of Natural
Products (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| | - Rong Li
- Key
Laboratory Experimental Teratology of the Ministry of Education and
Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Kangshuai Li
- Department
of Physiology, School of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xiao Yu
- Department
of Physiology, School of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Jin-Peng Sun
- Key
Laboratory Experimental Teratology of the Ministry of Education and
Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Hao Fang
- Department
of Medicinal Chemistry, Key Laboratory of Chemical Biology of Natural
Products (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
46
|
Engelmann D, Meier C, Alla V, Pützer BM. A balancing act: orchestrating amino-truncated and full-length p73 variants as decisive factors in cancer progression. Oncogene 2014; 34:4287-99. [PMID: 25381823 DOI: 10.1038/onc.2014.365] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 09/24/2014] [Accepted: 09/29/2014] [Indexed: 12/23/2022]
Abstract
p73 is the older sibling of p53 and mimics most of its tumor-suppressor functions. Through alternative promoter usage and splicing, the TP73 gene generates more than two dozen isoforms of which N-terminal truncated DNp73 variants have a decisive role in cancer pathogenesis as they outweigh the positive effects of full-length TAp73 and p53 in acting as a barrier to tumor development. Beyond the prevailing view that DNp73 predominantly counteract cell cycle arrest and apoptosis, latest progress indicates that these isoforms acquire novel functions in epithelial-to-mesenchymal transition, metastasis and therapy resistance. New insight into the mechanisms underlying this behavior reinforced the expectation that DNp73 variants contribute to aggressive cellular traits through both loss of wild-type tumor-suppressor activity and gain-of-function, suggesting an equally important role in cancer progression as mutant p53. In this review, we describe the novel properties of DNp73 in the invasion metastasis cascade and outline the comprehensive p73 regulatome with an emphasis on molecular processes putting TAp73 out of action in advanced tumors. These intriguing insights provoke a new understanding of the acquisition of aggressive traits by cancer cells and may help to set novel therapies for a broad range of metastatic tumors.
Collapse
Affiliation(s)
- D Engelmann
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock, Germany
| | - C Meier
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock, Germany
| | - V Alla
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock, Germany
| | - B M Pützer
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
47
|
Xiao P, Wang X, Wang HM, Fu XL, Cui FA, Yu X, Wen SS, Bi WX, Sun JP. The second-sphere residue T263 is important for the function and catalytic activity of PTP1B via interaction with the WPD-loop. Int J Biochem Cell Biol 2014; 57:84-95. [PMID: 25450460 DOI: 10.1016/j.biocel.2014.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 09/21/2014] [Accepted: 10/04/2014] [Indexed: 10/24/2022]
Abstract
Protein tyrosine phosphatases have diverse substrate specificities and intrinsic activities that lay the foundations for the fine-tuning of a phosphorylation network to precisely regulate cellular signal transduction. All classical PTPs share common catalytic mechanisms, and the important catalytic residues in the first sphere of their active sites have been well characterized. However, little attention has been paid to the second-sphere residues that are potentially important in defining the intrinsic activity and substrate specificity of PTPs. Here, we find that a conserved second-sphere residue, Thr263, located in the surface Q-loop is important for both the function and activity of PTPs. Using PTP1B as a study model, we found that mutations of Thr263 impaired the negative regulation role of PTP1B in insulin signaling. A detailed mechanistic study utilizing steady-state kinetics, Brønsted analysis and pH dependence in the presence of pNPP or phosphopeptide substrates revealed that Thr263 is required for the stabilization of the leaving group during catalysis. Further crystallographic studies and structural comparison revealed that Thr263 regulates the general acid function through modulation of the WPD-loop by the T263:F182/Y/H interaction pair, which is conserved in 26 out of 32 classical PTPs. In addition, the hydrophobic interaction between Thr263 and Arg1159 of the insulin receptor contributes to the substrate specificity of PTP1B. Taken together, our findings demonstrate the general role of the second-sphere residue Thr263 in PTP catalysis. Our findings suggest that the second sphere residues of PTP active site may play important roles in PTP-mediated function in both normal and diseased states.
Collapse
Affiliation(s)
- Peng Xiao
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University, School of Medicine, Jinan, Shandong, China; Shandong Provincial School Key Laboratory for Protein Science of Chronic Degenerative Diseases, Jinan, Shandong, China
| | - Xiao Wang
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University, School of Medicine, Jinan, Shandong, China; Shandong Provincial School Key Laboratory for Protein Science of Chronic Degenerative Diseases, Jinan, Shandong, China
| | - Hong-Mei Wang
- Shandong Provincial School Key Laboratory for Protein Science of Chronic Degenerative Diseases, Jinan, Shandong, China; Department of Physiology, Shandong University, School of Medicine, Jinan, Shandong, China
| | - Xiao-Lei Fu
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University, School of Medicine, Jinan, Shandong, China; Shandong Provincial School Key Laboratory for Protein Science of Chronic Degenerative Diseases, Jinan, Shandong, China; Department of Public Health, Shandong University, School of Medicine, Jinan, Shandong, China
| | - Fu-ai Cui
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University, School of Medicine, Jinan, Shandong, China
| | - Xiao Yu
- Shandong Provincial School Key Laboratory for Protein Science of Chronic Degenerative Diseases, Jinan, Shandong, China; Department of Public Health, Shandong University, School of Medicine, Jinan, Shandong, China
| | - Shi-shuai Wen
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University, School of Medicine, Jinan, Shandong, China; Shandong Provincial School Key Laboratory for Protein Science of Chronic Degenerative Diseases, Jinan, Shandong, China
| | - Wen-Xiang Bi
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University, School of Medicine, Jinan, Shandong, China.
| | - Jin-Peng Sun
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University, School of Medicine, Jinan, Shandong, China; Shandong Provincial School Key Laboratory for Protein Science of Chronic Degenerative Diseases, Jinan, Shandong, China; Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China.
| |
Collapse
|
48
|
Wang HM, Xu YF, Ning SL, Yang DX, Li Y, Du YJ, Yang F, Zhang Y, Liang N, Yao W, Zhang LL, Gu LC, Gao CJ, Pang Q, Chen YX, Xiao KH, Ma R, Yu X, Sun JP. The catalytic region and PEST domain of PTPN18 distinctly regulate the HER2 phosphorylation and ubiquitination barcodes. Cell Res 2014; 24:1067-90. [PMID: 25081058 PMCID: PMC4152746 DOI: 10.1038/cr.2014.99] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 04/27/2014] [Accepted: 05/26/2014] [Indexed: 12/23/2022] Open
Abstract
The tyrosine phosphorylation barcode encoded in C-terminus of HER2 and its ubiquitination regulate diverse HER2 functions. PTPN18 was reported as a HER2 phosphatase; however, the exact mechanism by which it defines HER2 signaling is not fully understood. Here, we demonstrate that PTPN18 regulates HER2-mediated cellular functions through defining both its phosphorylation and ubiquitination barcodes. Enzymologic characterization and three crystal structures of PTPN18 in complex with HER2 phospho-peptides revealed the molecular basis for the recognition between PTPN18 and specific HER2 phosphorylation sites, which assumes two distinct conformations. Unique structural properties of PTPN18 contribute to the regulation of sub-cellular phosphorylation networks downstream of HER2, which are required for inhibition of HER2-mediated cell growth and migration. Whereas the catalytic domain of PTPN18 blocks lysosomal routing and delays the degradation of HER2 by dephosphorylation of HER2 on pY(1112), the PEST domain of PTPN18 promotes K48-linked HER2 ubiquitination and its rapid destruction via the proteasome pathway and an HER2 negative feedback loop. In agreement with the negative regulatory role of PTPN18 in HER2 signaling, the HER2/PTPN18 ratio was correlated with breast cancer stage. Taken together, our study presents a structural basis for selective HER2 dephosphorylation, a previously uncharacterized mechanism for HER2 degradation and a novel function for the PTPN18 PEST domain. The new regulatory role of the PEST domain in the ubiquitination pathway will broaden our understanding of the functions of other important PEST domain-containing phosphatases, such as LYP and PTPN12.
Collapse
Affiliation(s)
- Hong-Mei Wang
- 1] Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, Shandong 250012, China [2] Department of Physiology, Shandong University School of Medicine, Jinan, Shandong 250012, China
| | - Yun-Fei Xu
- 1] Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, Shandong 250012, China [2] Department of Physiology, Shandong University School of Medicine, Jinan, Shandong 250012, China
| | - Shang-Lei Ning
- Qilu Hospital, Shandong University, Jinan, Shandong 250012, China
| | - Du-Xiao Yang
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, Shandong 250012, China
| | - Yi Li
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China
| | - Yu-Jie Du
- Department of Physiology, Shandong University School of Medicine, Jinan, Shandong 250012, China
| | - Fan Yang
- Department of Physiology, Shandong University School of Medicine, Jinan, Shandong 250012, China
| | - Ya Zhang
- Department of Physiology, Shandong University School of Medicine, Jinan, Shandong 250012, China
| | - Nan Liang
- 1] Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, Shandong 250012, China [2] Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China
| | - Wei Yao
- Department of Physiology, Shandong University School of Medicine, Jinan, Shandong 250012, China
| | - Ling-Li Zhang
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, Shandong 250012, China
| | - Li-Chuan Gu
- Shandong University, School of Life Science, Jinan, Shandong 250012, China
| | - Cheng-Jiang Gao
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, Shandong 250012, China
| | - Qi Pang
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China
| | - Yu-Xin Chen
- Qilu Hospital, Shandong University, Jinan, Shandong 250012, China
| | - Kun-Hong Xiao
- Duke University, School of Medicine, Durham, 27705, USA
| | - Rong Ma
- Qilu Hospital, Shandong University, Jinan, Shandong 250012, China
| | - Xiao Yu
- 1] Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, Shandong 250012, China [2] Department of Physiology, Shandong University School of Medicine, Jinan, Shandong 250012, China [3] Qilu Hospital, Shandong University, Jinan, Shandong 250012, China
| | - Jin-Peng Sun
- 1] Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, Shandong 250012, China [2] Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China
| |
Collapse
|
49
|
WWP2-WWP1 ubiquitin ligase complex coordinated by PPM1G maintains the balance between cellular p73 and ΔNp73 levels. Mol Cell Biol 2014; 34:3754-64. [PMID: 25071155 PMCID: PMC4187731 DOI: 10.1128/mcb.00101-14] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The balance between transcription factor p73 and its functionally opposing N-terminally truncated ΔNp73 isoform is critical for cell survival, but the precise mechanism that regulates their levels is not clear. In our study, we identified WWP2, an E3 ligase, as a novel p73-associated protein that ubiquitinates and degrades p73. In contrast, WWP2 heterodimerizes with another E3 ligase, WWP1, which specifically ubiquitinates and degrades ΔNp73. Further, we identified phosphatase PPM1G as a functional switch that controls the balance between monomeric WWP2 and a WWP2/WWP1 heterodimeric state in the cell. During cellular stress, WWP2 is inactivated, leading to upregulation of p73, whereas WWP2-WWP1 complex is intact to degrade ΔNp73, thus playing an important role in shifting the balance between p73 and ΔNp73. Collectively, our results reveal a new functional E3 ligase complex controlled by PPM1G that differentially regulates cellular p73 and ΔNp73.
Collapse
|
50
|
Marion S, Urs NM, Peterson SM, Sotnikova TD, Beaulieu JM, Gainetdinov RR, Caron MG. Dopamine D2 receptor relies upon PPM/PP2C protein phosphatases to dephosphorylate huntingtin protein. J Biol Chem 2014; 289:11715-11724. [PMID: 24619418 PMCID: PMC4002081 DOI: 10.1074/jbc.m113.544312] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 02/26/2014] [Indexed: 12/24/2022] Open
Abstract
Striatal dopamine D2 receptor (D2R) relies upon G protein- and β-arrestin-dependent signaling pathways to convey its action on motor control and behavior. Considering that D2R activation inhibits Akt in the striatum and that huntingtin physiological functions are affected by Akt phosphorylation, we sought to investigate whether D2R-mediated signaling could regulate huntingtin phosphorylation. We demonstrate that D2R activation decreases huntingtin phosphorylation on its Akt site. This dephosphorylation event depends upon the Gαi-dependent engagement of specific members of the protein phosphatase metallo-dependent (PPM/PP2C) family and is independent of β-arrestin 2. These observations identify the PPM/PP2C family as a mediator of G protein-coupled receptor signaling and thereby suggest a novel mechanism of dopaminergic signaling.
Collapse
Affiliation(s)
- Sébastien Marion
- Departments of Cell Biology, Neurobiology Duke University Medical Center, Durham, North Carolina 27710
| | - Nikhil M Urs
- Departments of Cell Biology, Neurobiology Duke University Medical Center, Durham, North Carolina 27710
| | - Sean M Peterson
- Departments of Cell Biology, Neurobiology Duke University Medical Center, Durham, North Carolina 27710
| | - Tatyana D Sotnikova
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval/IUSMQ, Québec G1J 2G3, Canada
| | - Jean-Martin Beaulieu
- Department of Neuroscience, Italian Institute of Technology, 16163 Genova, Italy
| | - Raul R Gainetdinov
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval/IUSMQ, Québec G1J 2G3, Canada
| | - Marc G Caron
- Departments of Cell Biology, Neurobiology Duke University Medical Center, Durham, North Carolina 27710; Departments of Medicine, Neurobiology Duke University Medical Center, Durham, North Carolina 27710; Neurobiology Duke University Medical Center, Durham, North Carolina 27710.
| |
Collapse
|