1
|
Dedic B, Westerberg L, Mosqueda Solís A, Dumont KD, Ruas JL, Thorell A, Näslund E, Spalding KL. Senescence detection using reflected light. Aging Cell 2024; 23:e14295. [PMID: 39102872 PMCID: PMC11561700 DOI: 10.1111/acel.14295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/10/2024] [Accepted: 07/18/2024] [Indexed: 08/07/2024] Open
Abstract
Senescence is an important cellular program occurring in development, tissue repair, cancer, and aging. Increased senescence is also associated with disease states, including obesity and Type 2 diabetes (T2D). Characterizing and quantifying senescent cells at a single cell level has been challenging and particularly difficult in large primary cells, such as human adipocytes. In this study, we present a novel approach that utilizes reflected light for accurate senescence-associated beta-galactosidase (SABG) staining measurements, which can be integrated with immunofluorescence and is compatible with primary mature adipocytes from both human and mouse, as well as with differentiated 3T3-L1 cells. This technique provides a more comprehensive classification of a cell's senescent state by incorporating multiple criteria, including robust sample-specific pH controls. By leveraging the precision of confocal microscopy to detect X-gal crystals using reflected light, we achieved superior sensitivity over traditional brightfield techniques. This strategy allows for the capture of all X-gal precipitates in SABG-stained samples, revealing diverse X-gal staining patterns and improved detection sensitivity. Additionally, we demonstrate that reflected light outperforms western blot analysis for the detection and quantification of senescence in mature human adipocytes, as it offers a more accurate representation of SABG activity. This detection strategy enables a more thorough investigation of senescent cell characteristics and specifically a deeper look at the relationship between adipocyte senescence and obesity associated disorders, such as T2D.
Collapse
Affiliation(s)
- Benjamin Dedic
- Department of Cell and Molecular BiologyKarolinska InstitutetStockholmSweden
| | - Leo Westerberg
- Department of Cell and Molecular BiologyKarolinska InstitutetStockholmSweden
| | - Andrea Mosqueda Solís
- Department of Cell and Molecular BiologyKarolinska InstitutetStockholmSweden
- Department of Biosciences and NutritionKarolinska InstitutetStockholmSweden
| | - Kyle D. Dumont
- Molecular and Cellular Exercise Physiology, Department of Physiology and PharmacologyKarolinska InstitutetStockholmSweden
| | - Jorge L. Ruas
- Molecular and Cellular Exercise Physiology, Department of Physiology and PharmacologyKarolinska InstitutetStockholmSweden
- Department of Pharmacology and Stanley and Judith Frankel Institute for Heart and Brain HealthUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Anders Thorell
- Department of Clinical SciencesDanderyd Hospital, Karolinska Institutet and Department of Surgery, Ersta Hospital, Karolinska InstitutetStockholmSweden
| | - Erik Näslund
- Department of Clinical SciencesDanderyd Hospital, Karolinska InstitutetStockholmSweden
| | - Kirsty L. Spalding
- Department of Cell and Molecular BiologyKarolinska InstitutetStockholmSweden
| |
Collapse
|
2
|
Neri F, Takajjart SN, Lerner CA, Desprez PY, Schilling B, Campisi J, Gerencser AA. A Fully-Automated Senescence Test (FAST) for the high-throughput quantification of senescence-associated markers. GeroScience 2024; 46:4185-4202. [PMID: 38869711 PMCID: PMC11336018 DOI: 10.1007/s11357-024-01167-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/15/2024] [Indexed: 06/14/2024] Open
Abstract
Cellular senescence is a major driver of aging and age-related diseases. Quantification of senescent cells remains challenging due to the lack of senescence-specific markers and generalist, unbiased methodology. Here, we describe the Fully-Automated Senescence Test (FAST), an image-based method for the high-throughput, single-cell assessment of senescence in cultured cells. FAST quantifies three of the most widely adopted senescence-associated markers for each cell imaged: senescence-associated β-galactosidase activity (SA-β-Gal) using X-Gal, proliferation arrest via lack of 5-ethynyl-2'-deoxyuridine (EdU) incorporation, and enlarged morphology via increased nuclear area. The presented workflow entails microplate image acquisition, image processing, data analysis, and graphing. Standardization was achieved by (i) quantifying colorimetric SA-β-Gal via optical density; (ii) implementing staining background controls; and (iii) automating image acquisition, image processing, and data analysis. In addition to the automated threshold-based scoring, a multivariate machine learning approach is provided. We show that FAST accurately quantifies senescence burden and is agnostic to cell type and microscope setup. Moreover, it effectively mitigates false-positive senescence marker staining, a common issue arising from culturing conditions. Using FAST, we compared X-Gal with fluorescent C12FDG live-cell SA-β-Gal staining on the single-cell level. We observed only a modest correlation between the two, indicating that those stains are not trivially interchangeable. Finally, we provide proof of concept that our method is suitable for screening compounds that modify senescence burden. This method will be broadly useful to the aging field by enabling rapid, unbiased, and user-friendly quantification of senescence burden in culture, as well as facilitating large-scale experiments that were previously impractical.
Collapse
Affiliation(s)
- Francesco Neri
- Buck Institute for Research on Aging, Novato, CA, USA
- USC Leonard Davis School of Gerontology, Los Angeles, CA, USA
| | | | - Chad A Lerner
- Buck Institute for Research on Aging, Novato, CA, USA
| | - Pierre-Yves Desprez
- Buck Institute for Research on Aging, Novato, CA, USA
- California Pacific Medical Center, San Francisco, CA, USA
| | - Birgit Schilling
- Buck Institute for Research on Aging, Novato, CA, USA.
- USC Leonard Davis School of Gerontology, Los Angeles, CA, USA.
| | - Judith Campisi
- Buck Institute for Research on Aging, Novato, CA, USA
- USC Leonard Davis School of Gerontology, Los Angeles, CA, USA
| | | |
Collapse
|
3
|
Gosai SJ, Castro RI, Fuentes N, Butts JC, Mouri K, Alasoadura M, Kales S, Nguyen TTL, Noche RR, Rao AS, Joy MT, Sabeti PC, Reilly SK, Tewhey R. Machine-guided design of cell-type-targeting cis-regulatory elements. Nature 2024; 634:1211-1220. [PMID: 39443793 PMCID: PMC11525185 DOI: 10.1038/s41586-024-08070-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/18/2024] [Indexed: 10/25/2024]
Abstract
Cis-regulatory elements (CREs) control gene expression, orchestrating tissue identity, developmental timing and stimulus responses, which collectively define the thousands of unique cell types in the body1-3. While there is great potential for strategically incorporating CREs in therapeutic or biotechnology applications that require tissue specificity, there is no guarantee that an optimal CRE for these intended purposes has arisen naturally. Here we present a platform to engineer and validate synthetic CREs capable of driving gene expression with programmed cell-type specificity. We take advantage of innovations in deep neural network modelling of CRE activity across three cell types, efficient in silico optimization and massively parallel reporter assays to design and empirically test thousands of CREs4-8. Through large-scale in vitro validation, we show that synthetic sequences are more effective at driving cell-type-specific expression in three cell lines compared with natural sequences from the human genome and achieve specificity in analogous tissues when tested in vivo. Synthetic sequences exhibit distinct motif vocabulary associated with activity in the on-target cell type and a simultaneous reduction in the activity of off-target cells. Together, we provide a generalizable framework to prospectively engineer CREs from massively parallel reporter assay models and demonstrate the required literacy to write fit-for-purpose regulatory code.
Collapse
Affiliation(s)
- Sager J Gosai
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Harvard Graduate Program in Biological and Biomedical Science, Boston, MA, USA.
- Department Of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| | | | - Natalia Fuentes
- The Jackson Laboratory, Bar Harbor, ME, USA
- Harvard College, Harvard University, Cambridge, MA, USA
| | - John C Butts
- The Jackson Laboratory, Bar Harbor, ME, USA
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, USA
| | | | | | | | | | - Ramil R Noche
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA
- Yale Zebrafish Research Core, Yale School of Medicine, New Haven, CT, USA
| | - Arya S Rao
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Mary T Joy
- The Jackson Laboratory, Bar Harbor, ME, USA
| | - Pardis C Sabeti
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department Of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Department of Immunology and Infectious Diseases, Harvard T H Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Steven K Reilly
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA.
- Wu Tsai Institute, Yale University, New Haven, CT, USA.
| | - Ryan Tewhey
- The Jackson Laboratory, Bar Harbor, ME, USA.
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, USA.
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA.
| |
Collapse
|
4
|
Phillips-Rose LS, Yu CK, West NP, Fraser JA. A Chimeric ORF Fusion Phenotypic Reporter for Cryptococcus neoformans. J Fungi (Basel) 2024; 10:567. [PMID: 39194893 DOI: 10.3390/jof10080567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024] Open
Abstract
The plethora of genome sequences produced in the postgenomic age has not resolved many of our most pressing biological questions. Correlating gene expression with an interrogatable and easily observable characteristic such as the surrogate phenotype conferred by a reporter gene is a valuable approach to gaining insight into gene function. Many reporters including lacZ, amdS, and the fluorescent proteins mRuby3 and mNeonGreen have been used across all manners of organisms. Described here is an investigation into the creation of a robust, synthetic, fusion reporter system for Cryptococcus neoformans that combines some of the most useful fluorophores available in this system with the versatility of the counter-selectable nature of amdS. The reporters generated include multiple composition and orientation variants, all of which were investigated for differences in expression. Evaluation of known promoters from the TEF1 and GAL7 genes was undertaken, elucidating novel expression tendencies of these biologically relevant C. neoformans regulators of transcription. Smaller than lacZ but providing multiple useful surrogate phenotypes for interrogation, the fusion ORF serves as a superior whole-cell assay compared to traditional systems. Ultimately, the work described here bolsters the array of relevant genetic tools that may be employed in furthering manipulation and understanding of the WHO fungal priority group pathogen C. neoformans.
Collapse
Affiliation(s)
- Louis S Phillips-Rose
- Australian Infectious Diseases Research Centre, School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Chendi K Yu
- Australian Infectious Diseases Research Centre, School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Nicholas P West
- Australian Infectious Diseases Research Centre, School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - James A Fraser
- Australian Infectious Diseases Research Centre, School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
5
|
Neri F, Takajjart SN, Lerner CA, Desprez PY, Schilling B, Campisi J, Gerencser AA. A Fully-Automated Senescence Test (FAST) for the high-throughput quantification of senescence-associated markers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.22.573123. [PMID: 38187756 PMCID: PMC10769423 DOI: 10.1101/2023.12.22.573123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Cellular senescence is a major driver of aging and age-related diseases. Quantification of senescent cells remains challenging due to the lack of senescence-specific markers and generalist, unbiased methodology. Here, we describe the Fully-Automated Senescence Test (FAST), an image-based method for the high-throughput, single-cell assessment of senescence in cultured cells. FAST quantifies three of the most widely adopted senescence-associated markers for each cell imaged: senescence-associated β-galactosidase activity (SA-β-Gal) using X-Gal, proliferation arrest via lack of 5-ethynyl-2'-deoxyuridine (EdU) incorporation, and enlarged morphology via increased nuclear area. The presented workflow entails microplate image acquisition, image processing, data analysis, and graphing. Standardization was achieved by i) quantifying colorimetric SA-β-Gal via optical density; ii) implementing staining background controls; iii) automating image acquisition, image processing, and data analysis. In addition to the automated threshold-based scoring, a multivariate machine learning approach is provided. We show that FAST accurately quantifies senescence burden and is agnostic to cell type and microscope setup. Moreover, it effectively mitigates false-positive senescence marker staining, a common issue arising from culturing conditions. Using FAST, we compared X-Gal with fluorescent C12FDG live-cell SA-β-Gal staining on the single-cell level. We observed only a modest correlation between the two, indicating that those stains are not trivially interchangeable. Finally, we provide proof of concept that our method is suitable for screening compounds that modify senescence burden. This method will be broadly useful to the aging field by enabling rapid, unbiased, and user-friendly quantification of senescence burden in culture, as well as facilitating large-scale experiments that were previously impractical.
Collapse
Affiliation(s)
- Francesco Neri
- Buck Institute for Research on Aging, Novato, CA, USA
- USC Leonard Davis School of Gerontology, Los Angeles, CA, USA
| | | | | | - Pierre-Yves Desprez
- Buck Institute for Research on Aging, Novato, CA, USA
- California Pacific Medical Center, San Francisco, CA, USA
| | - Birgit Schilling
- Buck Institute for Research on Aging, Novato, CA, USA
- USC Leonard Davis School of Gerontology, Los Angeles, CA, USA
| | - Judith Campisi
- Buck Institute for Research on Aging, Novato, CA, USA
- USC Leonard Davis School of Gerontology, Los Angeles, CA, USA
| | | |
Collapse
|
6
|
Wang W, Silva LM, Wang HH, Kavanaugh MA, Pottorf TS, Allard BA, Jacobs DT, Dong R, Cornelius JT, Chaturvedi A, Swenson-Fields KI, Fields TA, Pritchard MT, Sharma M, Slawson C, Wallace DP, Calvet JP, Tran PV. Ttc21b deficiency attenuates autosomal dominant polycystic kidney disease in a kidney tubular- and maturation-dependent manner. Kidney Int 2022; 102:577-591. [PMID: 35644283 PMCID: PMC9398994 DOI: 10.1016/j.kint.2022.04.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 04/21/2022] [Accepted: 04/29/2022] [Indexed: 01/26/2023]
Abstract
Primary cilia are sensory organelles built and maintained by intraflagellar transport (IFT) multiprotein complexes. Deletion of several IFT-B genes attenuates polycystic kidney disease (PKD) severity in juvenile and adult autosomal dominant polycystic kidney disease (ADPKD) mouse models. However, deletion of an IFT-A adaptor, Tulp3, attenuates PKD severity in adult mice only. These studies indicate that dysfunction of specific cilia components has potential therapeutic value. To broaden our understanding of cilia dysfunction and its therapeutic potential, we investigate the role of global deletion of an IFT-A gene, Ttc21b, in juvenile and adult mouse models of ADPKD. Both juvenile (postnatal day 21) and adult (six months of age) ADPKD mice exhibited kidney cysts, increased kidney weight/body weight ratios, lengthened kidney cilia, inflammation, and increased levels of the nutrient sensor, O-linked β-N-acetylglucosamine (O-GlcNAc). Deletion of Ttc21b in juvenile ADPKD mice reduced cortical collecting duct cystogenesis and kidney weight/body weight ratios, increased proximal tubular and glomerular dilations, but did not reduce cilia length, inflammation, nor O-GlcNAc levels. In contrast, Ttc21b deletion in adult ADPKD mice markedly attenuated kidney cystogenesis and reduced cilia length, inflammation, and O-GlcNAc levels. Thus, unlike IFT-B, the effect of Ttc21b deletion in mouse models of ADPKD is development-specific. Unlike an IFT-A adaptor, deleting Ttc21b in juvenile ADPKD mice is partially ameliorative. Thus, our studies suggest that different microenvironmental factors, found in distinct nephron segments and in developing versus mature stages, modify ciliary homeostasis and ADPKD pathobiology. Further, elevated levels of O-GlcNAc, which regulates cellular metabolism and ciliogenesis, may be a pathological feature of ADPKD.
Collapse
Affiliation(s)
- Wei Wang
- Department of Anatomy and Cell Biology, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Luciane M Silva
- Department of Anatomy and Cell Biology, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Henry H Wang
- Department of Anatomy and Cell Biology, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Matthew A Kavanaugh
- Department of Anatomy and Cell Biology, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Tana S Pottorf
- Department of Anatomy and Cell Biology, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Bailey A Allard
- Department of Anatomy and Cell Biology, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Damon T Jacobs
- Department of Anatomy and Cell Biology, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Rouchen Dong
- Department of Anatomy and Cell Biology, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Joseph T Cornelius
- Department of Anatomy and Cell Biology, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Aakriti Chaturvedi
- Department of Anatomy and Cell Biology, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Katherine I Swenson-Fields
- Department of Anatomy and Cell Biology, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Timothy A Fields
- Department of Pathology and Laboratory Medicine, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Michele T Pritchard
- Pharmacology, Toxicology and Therapeutics, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Madhulika Sharma
- Department of Internal Medicine, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Chad Slawson
- Department of Biochemistry and Molecular Biology, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Darren P Wallace
- Department of Internal Medicine, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - James P Calvet
- Department of Biochemistry and Molecular Biology, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Pamela V Tran
- Department of Anatomy and Cell Biology, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA.
| |
Collapse
|
7
|
Lazzarini E, Lodrini AM, Arici M, Bolis S, Vagni S, Panella S, Rendon-Angel A, Saibene M, Metallo A, Torre T, Vassalli G, Ameri P, Altomare C, Rocchetti M, Barile L. Stress-induced premature senescence is associated with a prolonged QT interval and recapitulates features of cardiac aging. Theranostics 2022; 12:5237-5257. [PMID: 35836799 PMCID: PMC9274748 DOI: 10.7150/thno.70884] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 06/11/2022] [Indexed: 01/12/2023] Open
Abstract
Rationale: Aging in the heart is a gradual process, involving continuous changes in cardiovascular cells, including cardiomyocytes (CMs), namely cellular senescence. These changes finally lead to adverse organ remodeling and resulting in heart failure. This study exploits CMs from human induced pluripotent stem cells (iCMs) as a tool to model and characterize mechanisms involved in aging. Methods and Results: Human somatic cells were reprogrammed into human induced pluripotent stem cells and subsequently differentiated in iCMs. A senescent-like phenotype (SenCMs) was induced by short exposure (3 hours) to doxorubicin (Dox) at the sub-lethal concentration of 0.2 µM. Dox treatment induced expression of cyclin-dependent kinase inhibitors p21 and p16, and increased positivity to senescence-associated beta-galactosidase when compared to untreated iCMs. SenCMs showed increased oxidative stress, alteration in mitochondrial morphology and depolarized mitochondrial membrane potential, which resulted in decreased ATP production. Functionally, when compared to iCMs, SenCMs showed, prolonged multicellular QTc and single cell APD, with increased APD variability and delayed afterdepolarizations (DADs) incidence, two well-known arrhythmogenic indexes. These effects were largely ascribable to augmented late sodium current (INaL) and reduced delayed rectifier potassium current (Ikr). Moreover sarcoplasmic reticulum (SR) Ca2+ content was reduced because of downregulated SERCA2 and increased RyR2-mediated Ca2+ leak. Electrical and intracellular Ca2+ alterations were mostly justified by increased CaMKII activity in SenCMs. Finally, SenCMs phenotype was furtherly confirmed by analyzing physiological aging in CMs isolated from old mice in comparison to young ones. Conclusions: Overall, we showed that SenCMs recapitulate the phenotype of aged primary CMs in terms of senescence markers, electrical and Ca2+ handling properties and metabolic features. Thus, Dox-induced SenCMs can be considered a novel in vitro platform to study aging mechanisms and to envision cardiac specific anti-aging approach in humans.
Collapse
Affiliation(s)
- Edoardo Lazzarini
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Alessandra Maria Lodrini
- Department of Biotechnology and Biosciences, Università degli Studi di Milano-Bicocca, Milano, Italy.,Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Martina Arici
- Department of Biotechnology and Biosciences, Università degli Studi di Milano-Bicocca, Milano, Italy
| | - Sara Bolis
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland.,Cellular and Molecular Cardiology, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Sara Vagni
- Department of Biotechnology and Biosciences, Università degli Studi di Milano-Bicocca, Milano, Italy
| | - Stefano Panella
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Azucena Rendon-Angel
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland.,Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Melissa Saibene
- Department of Earth and Environmental Sciences, Università degli Studi di Milano-Bicocca, Milano, Italy
| | - Alessia Metallo
- Department of Biotechnology and Biosciences, Università degli Studi di Milano-Bicocca, Milano, Italy
| | - Tiziano Torre
- Department of Cardiac Surgery Istituto Cardiocentro Ticino, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Giuseppe Vassalli
- Cellular and Molecular Cardiology, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland.,Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Pietro Ameri
- Cardiovascular Disease Unit, IRCCS Ospedale Policlinico, Genova, Italy.,Department of Internal Medicine, University of Genova, Genova, Italy
| | - Claudia Altomare
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Marcella Rocchetti
- Department of Biotechnology and Biosciences, Università degli Studi di Milano-Bicocca, Milano, Italy.,✉ Corresponding authors: Lucio Barile, PhD. Istituto Cardiocentro Ticino, Laboratories for Translational Research, EOC Via Chiesa 5, 6500 Bellinzona, Switzerland. +41 586667104 ; Marcella Rocchetti, PhD. University of Milano-Bicocca, Dept. of Biotechnology and Biosciences, P.za della Scienza 2, 20126 Milano, Italy. +39 0264483313
| | - Lucio Barile
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland.,Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland.,Institute of Life Science, Scuola Superiore Sant'Anna, Pisa, Italy.,✉ Corresponding authors: Lucio Barile, PhD. Istituto Cardiocentro Ticino, Laboratories for Translational Research, EOC Via Chiesa 5, 6500 Bellinzona, Switzerland. +41 586667104 ; Marcella Rocchetti, PhD. University of Milano-Bicocca, Dept. of Biotechnology and Biosciences, P.za della Scienza 2, 20126 Milano, Italy. +39 0264483313
| |
Collapse
|
8
|
Trimborn L, Hoecker U, Ponnu J. A Simple Quantitative Assay for Measuring β-Galactosidase Activity Using X-Gal in Yeast-Based Interaction Analyses. Curr Protoc 2022; 2:e421. [PMID: 35567769 DOI: 10.1002/cpz1.421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Yeast-based interaction assays to determine protein-protein and protein-nucleic acid interactions commonly rely on the reconstitution of chimeric transcription factors that activate the expression of target reporter genes. The enzyme β-galactosidase (β-gal), coded by the LacZ gene of Escherichia coli, is a widely used reporter in yeast systems, and its expression is commonly assessed by evaluating its activity. X-gal (5-bromo-4-chloro-3-indolyl-β-d-galactopyranoside) is an inexpensive and sensitive substrate of β-gal, whose hydrolysis results in an intensely blue colored and easily detectable end product, 5,5'-dibromo-4,4'-dichloro-indigo. The insoluble nature of this end product, however, makes X-gal-based assays unsuitable for direct spectrophotometric absorbance quantification. As such, the use of X-gal is mostly restricted to solid-support approaches, such as colony lift or agar plate assays, which often only provide a qualitative readout. In this article, we describe a quantitative solid-phase X-gal assay to measure protein-protein interaction strength in yeast cells using a simple and low-cost experimental setup. We have optimized multiple aspects of the assay, namely sample preparation, reaction time, and quantification method, for speed and consistency. By integrating the use of a freely available ImageJ-based plugin, we have further standardized the assay for reliability and reproducibility. This improved quantitative X-gal assay can be performed in a standard molecular biology lab without the need for any specialized equipment other than an inexpensive and widely accessible smartphone camera. To exemplify the protocol, we provide detailed step-by-step instructions to perform a quantitative X-gal assay to assess the interaction between two Arabidopsis thaliana proteins, SUPPRESSOR OF PHYA-105 1 (SPA1) and PRODUCTION OF ANTHOCYANIN PIGMENT 2 (PAP2). To demonstrate the sensitivity of our assay in detecting weaker interactions, we also compare the results with a liquid-phase assay that uses ONPG (ortho-nitrophenyl-β-galactopyranoside) as a substrate for β-gal. The quantitative X-gal assay described here can easily be adapted for high-throughout interaction studies and protein domain mapping, even in yeast strains with low levels of LacZ expression. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Preparation of competent yeast cells and transformation Alternate Protocol 1: In-house preparation of yeast competent cells for use in lithium acetate (LiAc)-mediated yeast transformation Support Protocol: Long-term storage and revival of frozen yeast strain stocks Basic Protocol 2: Measuring β-galactosidase activity via the quantitative X-gal assay Alternate Protocol 2: Quantification of interaction strength using liquid ONPG assay.
Collapse
Affiliation(s)
- Laura Trimborn
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), Biocenter, University of Cologne, Cologne, Germany
| | - Ute Hoecker
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), Biocenter, University of Cologne, Cologne, Germany
| | - Jathish Ponnu
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), Biocenter, University of Cologne, Cologne, Germany
| |
Collapse
|
9
|
Gq neuromodulation of BLA parvalbumin interneurons induces burst firing and mediates fear-associated network and behavioral state transition in mice. Nat Commun 2022; 13:1290. [PMID: 35277502 PMCID: PMC8917207 DOI: 10.1038/s41467-022-28928-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 02/14/2022] [Indexed: 01/08/2023] Open
Abstract
Patterned coordination of network activity in the basolateral amygdala (BLA) is important for fear expression. Neuromodulatory systems play an essential role in regulating changes between behavioral states, however the mechanisms underlying this neuromodulatory control of transitions between brain and behavioral states remain largely unknown. We show that chemogenetic Gq activation and α1 adrenoreceptor activation in mouse BLA parvalbumin (PV) interneurons induces a previously undescribed, stereotyped phasic bursting in PV neurons and time-locked synchronized bursts of inhibitory postsynaptic currents and phasic firing in BLA principal neurons. This Gq-coupled receptor activation in PV neurons suppresses gamma oscillations in vivo and in an ex vivo slice model, and facilitates fear memory recall, which is consistent with BLA gamma suppression during conditioned fear expression. Thus, here we identify a neuromodulatory mechanism in PV inhibitory interneurons of the BLA which regulates BLA network oscillations and fear memory recall. The authors study mechanisms underlying neuromodulatory control of transitions between brain and behavioral states. They identify a mechanism whereby modulation of Gq activity in basolateral amygdala parvalbumin interneurons mediates the transition to a fear-associated network and behavioral state.
Collapse
|
10
|
Hernández-Guzmán C, Gallego-Gutiérrez H, Chávez-Munguía B, Martín-Tapia D, González-Mariscal L. Zonula occludens 2 and Cell-Cell Contacts Are Required for Normal Nuclear Shape in Epithelia. Cells 2021; 10:cells10102568. [PMID: 34685547 PMCID: PMC8534263 DOI: 10.3390/cells10102568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/04/2021] [Accepted: 09/06/2021] [Indexed: 01/10/2023] Open
Abstract
MAGUK protein ZO-2 is present at tight junctions (TJs) and nuclei. In MDCK ZO-2 knockdown (KD) cells, nuclei exhibit an irregular shape with lobules and indentations. This condition correlates with an increase in DNA double strand breaks, however cells are not senescent and instead become resistant to UV-induced senescence. The irregular nuclear shape is also observed in isolated cells and in those without TJs, due to the lack of extracellular calcium. The aberrant nuclear shape of ZO-2 KD cells is not accompanied by a reduced expression of lamins A/C and B and lamin B receptors. Instead, it involves a decrease in constitutive and facultative heterochromatin, and microtubule instability that is restored with docetaxel. ZO-2 KD cells over-express SUN-1 that crosses the inner nuclear membrane and connects the nucleoskeleton of lamin A to nesprins, which traverse the outer nuclear membrane. Nesprins-3 and -4 that indirectly bind on their cytoplasmic face to vimentin and microtubules, respectively, are also over-expressed in ZO-2 KD cells, whereas vimentin is depleted. SUN-1 and lamin B1 co-immunoprecipitate with ZO-2, and SUN-1 associates to ZO-2 in a pull-down assay. Our results suggest that ZO-2 forms a complex with SUN-1 and lamin B1 at the inner nuclear membrane, and that ZO-2 and cell–cell contacts are required for a normal nuclear shape.
Collapse
Affiliation(s)
- Christian Hernández-Guzmán
- Center for Research and Advanced Studies (Cinvestav), Department of Physiology, Biophysics and Neuroscience, Ave IPN 2508, Mexico City 07360, Mexico; (C.H.-G.); (H.G.-G.); (D.M.-T.)
| | - Helios Gallego-Gutiérrez
- Center for Research and Advanced Studies (Cinvestav), Department of Physiology, Biophysics and Neuroscience, Ave IPN 2508, Mexico City 07360, Mexico; (C.H.-G.); (H.G.-G.); (D.M.-T.)
| | - Bibiana Chávez-Munguía
- Center for Research and Advanced Studies (Cinvestav), Department of Infectomics and Molecular Pathogenesis, Ave IPN 2508, Mexico City 07360, Mexico;
| | - Dolores Martín-Tapia
- Center for Research and Advanced Studies (Cinvestav), Department of Physiology, Biophysics and Neuroscience, Ave IPN 2508, Mexico City 07360, Mexico; (C.H.-G.); (H.G.-G.); (D.M.-T.)
| | - Lorenza González-Mariscal
- Center for Research and Advanced Studies (Cinvestav), Department of Physiology, Biophysics and Neuroscience, Ave IPN 2508, Mexico City 07360, Mexico; (C.H.-G.); (H.G.-G.); (D.M.-T.)
- Correspondence: ; Tel.: +52-55-5747-3966
| |
Collapse
|
11
|
Marfull-Oromí P, Fleitas C, Zammou B, Rocandio D, Ballester-Lurbe B, Terrado J, Perez-Roger I, Espinet C, Egea J. Genetic ablation of the Rho GTPase Rnd3 triggers developmental defects in internal capsule and the globus pallidus formation. J Neurochem 2021; 158:197-216. [PMID: 33576044 DOI: 10.1111/jnc.15322] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 01/20/2021] [Accepted: 02/08/2021] [Indexed: 12/24/2022]
Abstract
The forebrain includes the cerebral cortex, the thalamus, and the striatum and globus pallidus (GP) in the subpallium. The formation of these structures and their interconnections by specific axonal tracts take place in a precise and orchestrated time and spatial-dependent manner during development. However, the knowledge of the molecular and cellular mechanisms that are involved is rather limited. Moreover, while many extracellular cues and specific receptors have been shown to play a role in different aspects of nervous system development, including neuron migration and axon guidance, examples of intracellular signaling effectors involved in these processes are sparse. In the present work, we have shown that the atypical RhoGTPase, Rnd3, is expressed very early during brain development and keeps a dynamic expression in several brain regions including the cortex, the thalamus, and the subpallium. By using a gene-trap allele (Rnd3gt ) and immunological techniques, we have shown that Rnd3gt/gt embryos display severe defects in striatal and thalamocortical axonal projections (SAs and TCAs, respectively) and defects in GP formation already at early stages. Surprisingly, the corridor, an important intermediate target for TCAs is still present in these mutants. Mechanistically, a conditional genetic deletion approach revealed that Rnd3 is primarily required for the normal development of Medial Ganglionic Eminence-derived structures, such as the GP, and therefore acts non-cell autonomously in SAs and TCAs. In conclusion, we have demonstrated the important role of Rnd3 as an early regulator of subpallium development in vivo and revealed new insights about SAs and TCAs development.
Collapse
Affiliation(s)
| | | | | | | | - Begoña Ballester-Lurbe
- Departamento de Medicina y Cirugía Animal, Facultad de Veterinaria, Universidad CEU Cardenal Herrera, Valencia, Spain
| | - Jose Terrado
- Departamento de Medicina y Cirugía Animal, Facultad de Veterinaria, Universidad CEU Cardenal Herrera, Valencia, Spain
| | - Ignacio Perez-Roger
- Departamento de Medicina y Cirugía Animal, Facultad de Veterinaria, Universidad CEU Cardenal Herrera, Valencia, Spain
| | | | - Joaquim Egea
- IRBLLEIDA/Universitat de Lleida, Serra Húnter associate professor, Lleida, Spain
| |
Collapse
|
12
|
Domínguez-Bautista JA, Acevo-Rodríguez PS, Castro-Obregón S. Programmed Cell Senescence in the Mouse Developing Spinal Cord and Notochord. Front Cell Dev Biol 2021; 9:587096. [PMID: 33575260 PMCID: PMC7870793 DOI: 10.3389/fcell.2021.587096] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 01/05/2021] [Indexed: 01/10/2023] Open
Abstract
Programmed cell senescence is a cellular process that seems to contribute to embryo development, in addition to cell proliferation, migration, differentiation and programmed cell death, and has been observed in evolutionary distant organisms such as mammals, amphibians, birds and fish. Programmed cell senescence is a phenotype similar to stress-induced cellular senescence, characterized by the expression of the cell cycle inhibitors p21CIP1/WAF and p16INK4A, increased activity of a lysosomal enzyme with beta-galactosidase activity (coined senescence-associated beta-galactosidase) and secretion of growth factors, interleukins, chemokines, metalloproteases, etc., collectively known as a senescent-associated secretory phenotype that instructs surrounding tissue. How wide is the distribution of programmed cell senescence during mouse development and its specific mechanisms to shape the embryo are still poorly understood. Here, we investigated whether markers of programmed cell senescence are found in the developing mouse spinal cord and notochord. We found discrete areas and developmental windows with high senescence-associated beta galactosidase in both spinal cord and notochord, which was reduced in mice embryos developed ex-utero in the presence of the senolytic ABT-263. Expression of p21CIP1/WAF was documented in epithelial cells of the spinal cord and the notochord, while p16INK4A was observed in motoneurons. Treatment with the senolytic ABT-263 decreased the number of motoneurons, supporting their senescent phenotype. Our data suggest that a subpopulation of motoneurons in the developing spinal cord, as well as some notochord cells undergo programmed cell senescence.
Collapse
Affiliation(s)
| | | | - Susana Castro-Obregón
- División de Neurociencias, Instituto de Fisiología Celular, UNAM, Mexico City, Mexico
| |
Collapse
|
13
|
Tissue localization of retinoic acid receptor (RAR) active drugs. Methods Enzymol 2020. [PMID: 32359657 DOI: 10.1016/bs.mie.2020.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The retinoic acid (RA) signaling pathway is crucial for the control of embryonic development and also regulates function of several organ systems in the adult, including the central nervous system. The retinoic acid receptors (RARs) that mediate the majority of the functions of RA can promote proliferation, differentiation, morphogenesis and cell survival. Dysregulation of this signaling pathway has been considered in the pathophysiology of various diseases including neurodegenerative disorders such Alzheimer's disease and amyotrophic lateral sclerosis. Thus, drugs targeted to the RARs have been proposed as treatments for such diseases. Understanding how these drugs distribute in the body is essential to determine their potential effectiveness. However measuring tissue levels of what are often lipophilic drugs can be difficult. Here we describe an indirect measurement of RAR ligand tissue distribution after intraperitoneal injection into rodents that uses a sensitive RA reporter cell line.
Collapse
|
14
|
Yong HJ, Ha N, Cho EB, Yun S, Kim H, Hwang JI, Seong JY. The unique expression profile of FAM19A1 in the mouse brain and its association with hyperactivity, long-term memory and fear acquisition. Sci Rep 2020; 10:3969. [PMID: 32123192 PMCID: PMC7052240 DOI: 10.1038/s41598-020-60266-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 02/10/2020] [Indexed: 12/30/2022] Open
Abstract
Neurodevelopment and mature brain function are spatiotemporally regulated by various cytokines and chemokines. The chemokine-like neuropeptide FAM19A1 is a member of family with sequence similarity 19 (FAM19), which is predominantly expressed in the brain. Its highly conserved amino acid sequence among vertebrates suggests that FAM19A1 may play important physiological roles in neurodevelopment and brain function. Here we used a LacZ reporter gene system to map the expression pattern of the FAM19A1 gene in the mouse brain. The FAM19A1 expression was observed in several brain regions starting during embryonic brain development. As the brain matured, the FAM19A1 expression was detected in the pyramidal cells of cortical layers 2/3 and 5 and in several limbic areas, including the hippocampus and the amygdala. FAM19A1-deficient mice were used to evaluate the physiological contribution of FAM19A1 to various brain functions. In behavior analysis, FAM19A1-deficient mice exhibited several abnormal behaviors, including hyperactive locomotor behavior, long-term memory deficits and fear acquisition failure. These findings provide insight into the potential contributions of FAM19A1 to neurodevelopment and mature brain function.
Collapse
Affiliation(s)
- Hyo Jeong Yong
- The GPCR laboratory, Graduate School of Biomedical Science, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Nui Ha
- Neuracle Science Co. Ltd., Seoul, 02841, Republic of Korea
| | - Eun Bee Cho
- Neuracle Science Co. Ltd., Seoul, 02841, Republic of Korea
| | - Seongsik Yun
- The GPCR laboratory, Graduate School of Biomedical Science, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Hyun Kim
- Department of Anatomy, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Jong-Ik Hwang
- The GPCR laboratory, Graduate School of Biomedical Science, Korea University College of Medicine, Seoul, 02841, Republic of Korea.
| | - Jae Young Seong
- The GPCR laboratory, Graduate School of Biomedical Science, Korea University College of Medicine, Seoul, 02841, Republic of Korea.
| |
Collapse
|
15
|
Shahapal A, Cho EB, Yong HJ, Jeong I, Kwak H, Lee JK, Kim W, Kim B, Park HC, Lee WS, Kim H, Hwang JI, Seong JY. FAM19A5 Expression During Embryogenesis and in the Adult Traumatic Brain of FAM19A5-LacZ Knock-in Mice. Front Neurosci 2019; 13:917. [PMID: 31543758 PMCID: PMC6730007 DOI: 10.3389/fnins.2019.00917] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/16/2019] [Indexed: 12/24/2022] Open
Abstract
FAM19A5 is a secretory protein that is predominantly expressed in the brain. Although the FAM19A5 gene has been found to be associated with neurological and/or psychiatric diseases, only limited information is available on its function in the brain. Using FAM19A5-LacZ knock-in mice, we determined the expression pattern of FAM19A5 in developing and adult brains and identified cell types that express FAM19A5 in naïve and traumatic brain injury (TBI)–induced brains. According to X-gal staining results, FAM19A5 is expressed in the ventricular zone and ganglionic eminence at a very early stage of brain development, suggesting its functions are related to the generation of neural stem cells and oligodendrocyte precursor cells (OPCs). In the later stages of developing embryos and in adult mice, FAM19A5 expression expanded broadly to particular regions of the brain, including layers 2/3 and 5 of the cortex, cornu amonis (CA) region of the hippocampus, and the corpus callosum. X-gal staining combined with immunostaining for a variety of cell-type markers revealed that FAM19A5 is expressed in many different cell types, including neurons, OPCs, astrocytes, and microglia; however, only some populations of these cell types produce FAM19A5. In a subpopulation of neuronal cells, TBI led to increased X-gal staining that extended to the nucleus, marked by slightly condensed content and increased heterochromatin formation along the nuclear border. Similarly, nuclear extension of X-gal staining occurred in a subpopulation of OPCs in the corpus callosum of the TBI-induced brain. Together, these results suggest that FAM19A5 plays a role in nervous system development from an early stage and increases its expression in response to pathological conditions in subsets of neurons and OPCs of the adult brain.
Collapse
Affiliation(s)
- Anu Shahapal
- Graduate School of Biomedical Sciences, Korea University College of Medicine, Seoul, South Korea
| | - Eun Bee Cho
- Neuracle Science Co., Ltd., Seoul, South Korea
| | - Hyo Jeong Yong
- Graduate School of Biomedical Sciences, Korea University College of Medicine, Seoul, South Korea
| | - Inyoung Jeong
- Graduate School of Biomedical Sciences, Korea University Ansan Hospital, Ansan, South Korea
| | - Hoyun Kwak
- Neuracle Science Co., Ltd., Seoul, South Korea
| | | | - Wonkyum Kim
- Neuracle Science Co., Ltd., Seoul, South Korea
| | | | - Hae-Chul Park
- Graduate School of Biomedical Sciences, Korea University Ansan Hospital, Ansan, South Korea
| | - Won Suk Lee
- Graduate School of Biomedical Sciences, Korea University College of Medicine, Seoul, South Korea
| | - Hyun Kim
- Graduate School of Biomedical Sciences, Korea University College of Medicine, Seoul, South Korea
| | - Jong-Ik Hwang
- Graduate School of Biomedical Sciences, Korea University College of Medicine, Seoul, South Korea
| | - Jae Young Seong
- Graduate School of Biomedical Sciences, Korea University College of Medicine, Seoul, South Korea
| |
Collapse
|
16
|
Moreno-Blas D, Gorostieta-Salas E, Pommer-Alba A, Muciño-Hernández G, Gerónimo-Olvera C, Maciel-Barón LA, Konigsberg M, Massieu L, Castro-Obregón S. Cortical neurons develop a senescence-like phenotype promoted by dysfunctional autophagy. Aging (Albany NY) 2019; 11:6175-6198. [PMID: 31469660 PMCID: PMC6738425 DOI: 10.18632/aging.102181] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 08/09/2019] [Indexed: 12/15/2022]
Abstract
Senescent cells accumulate in various tissues and organs with aging altering surrounding tissue due to an active secretome, and at least in mice their elimination extends healthy lifespan and ameliorates several chronic diseases. Whether all cell types senesce, including post-mitotic cells, has been poorly described mainly because cellular senescence was defined as a permanent cell cycle arrest. Nevertheless, neurons with features of senescence have been described in old rodent and human brains. In this study we characterized an in vitro model useful to study the molecular basis of senescence of primary rat cortical cells that recapitulates senescent features described in brain aging. We found that in long-term cultures, rat primary cortical neurons displayed features of cellular senescence before glial cells did, and developed a functional senescence-associated secretory phenotype able to induce paracrine premature senescence of mouse embryonic fibroblasts but proliferation of rat glial cells. Functional autophagy seems to prevent neuronal senescence, as we observed an autophagic flux reduction in senescent neurons both in vitro and in vivo, and autophagy impairment induced cortical cell senescence while autophagy stimulation inhibited it. Our findings suggest that aging-associated dysfunctional autophagy contributes to senescence transition also in neuronal cells.
Collapse
Affiliation(s)
- Daniel Moreno-Blas
- Departamento de Neurodesarrollo y Fisiología, División de Neurociencias, Instituto de Fisiología Celular, UNAM, Mexico City 04510, México
| | - Elisa Gorostieta-Salas
- Departamento de Neurodesarrollo y Fisiología, División de Neurociencias, Instituto de Fisiología Celular, UNAM, Mexico City 04510, México
| | - Alexander Pommer-Alba
- Departamento de Neurodesarrollo y Fisiología, División de Neurociencias, Instituto de Fisiología Celular, UNAM, Mexico City 04510, México
| | - Gabriel Muciño-Hernández
- Departamento de Neurodesarrollo y Fisiología, División de Neurociencias, Instituto de Fisiología Celular, UNAM, Mexico City 04510, México
| | - Cristian Gerónimo-Olvera
- Departamento de Neuropatología, División de Neurociencias, Instituto de Fisiología Celular, UNAM, Mexico City 04510, México
| | - Luis Angel Maciel-Barón
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City 09340, México
| | - Mina Konigsberg
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City 09340, México
| | - Lourdes Massieu
- Departamento de Neuropatología, División de Neurociencias, Instituto de Fisiología Celular, UNAM, Mexico City 04510, México
| | - Susana Castro-Obregón
- Departamento de Neurodesarrollo y Fisiología, División de Neurociencias, Instituto de Fisiología Celular, UNAM, Mexico City 04510, México
| |
Collapse
|
17
|
Blanco MJ, Learte AIR, Marchena MA, Muñoz-Sáez E, Cid MA, Rodríguez-Martín I, Sánchez-Camacho C. Tracing Gene Expression Through Detection of β-galactosidase Activity in Whole Mouse Embryos. J Vis Exp 2018. [PMID: 30010638 DOI: 10.3791/57785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The Escherichia coli LacZ gene, encoding β-galactosidase, is largely used as a reporter for gene expression and as a tracer in cell lineage studies. The classical histochemical reaction is based on the hydrolysis of the substrate X-gal in combination with ferric and ferrous ions, which produces an insoluble blue precipitate that is easy to visualize. Therefore, β-galactosidase activity serves as a marker for the expression pattern of the gene of interest as the development proceeds. Here we describe the standard protocol for the detection of β-galactosidase activity in early whole mouse embryos and the subsequent method for paraffin sectioning and counterstaining. Additionally, a procedure for clarifying whole embryos is provided to better visualize X-gal staining in deeper regions of the embryo. Consistent results are obtained by performing this procedure, although optimization of reaction conditions is needed to minimize background activity. Limitations in the assay should be also considered, particularly regarding the size of the embryo in whole mount staining. Our protocol provides a sensitive and a reliable method for β-galactosidase detection during the mouse development that can be further applied to the cryostat sections as well as whole organs. Thus, the dynamic gene expression patterns throughout development can be easily analyzed by using this protocol in whole embryos, but also detailed expression at the cellular level can be assessed after paraffin sectioning.
Collapse
Affiliation(s)
- María José Blanco
- Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid
| | - Ana I R Learte
- Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid
| | - Miguel A Marchena
- Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid
| | - Emma Muñoz-Sáez
- Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid
| | - María Antonia Cid
- Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid
| | | | - Cristina Sánchez-Camacho
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC); School of Doctoral Studies and Research, Universidad Europea de Madrid;
| |
Collapse
|
18
|
Dong FN, Amiri-Yekta A, Martinez G, Saut A, Tek J, Stouvenel L, Lorès P, Karaouzène T, Thierry-Mieg N, Satre V, Brouillet S, Daneshipour A, Hosseini SH, Bonhivers M, Gourabi H, Dulioust E, Arnoult C, Touré A, Ray PF, Zhao H, Coutton C. Absence of CFAP69 Causes Male Infertility due to Multiple Morphological Abnormalities of the Flagella in Human and Mouse. Am J Hum Genet 2018; 102:636-648. [PMID: 29606301 DOI: 10.1016/j.ajhg.2018.03.007] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/05/2018] [Indexed: 10/17/2022] Open
Abstract
The multiple morphological abnormalities of the flagella (MMAF) phenotype is among the most severe forms of sperm defects responsible for male infertility. The phenotype is characterized by the presence in the ejaculate of immotile spermatozoa with severe flagellar abnormalities including flagella being short, coiled, absent, and of irregular caliber. Recent studies have demonstrated that MMAF is genetically heterogeneous, and genes thus far associated with MMAF account for only one-third of cases. Here we report the identification of homozygous truncating mutations (one stop-gain and one splicing variant) in CFAP69 of two unrelated individuals by whole-exome sequencing of a cohort of 78 infertile men with MMAF. CFAP69 encodes an evolutionarily conserved protein found at high levels in the testis. Immunostaining experiments in sperm from fertile control individuals showed that CFAP69 localized to the midpiece of the flagellum, and the absence of CFAP69 was confirmed in both individuals carrying CFPA69 mutations. Additionally, we found that sperm from a Cfap69 knockout mouse model recapitulated the MMAF phenotype. Ultrastructural analysis of testicular sperm from the knockout mice showed severe disruption of flagellum structure, but histological analysis of testes from these mice revealed the presence of all stages of the seminiferous epithelium, indicating that the overall progression of spermatogenesis is preserved and that the sperm defects likely arise during spermiogenesis. Together, our data indicate that CFAP69 is necessary for flagellum assembly/stability and that in both humans and mice, biallelic truncating mutations in CFAP69 cause autosomal-recessive MMAF and primary male infertility.
Collapse
|
19
|
Lino MM, Simões S, Pinho S, Ferreira L. Intracellular delivery of more than one protein with spatio-temporal control. NANOSCALE 2017; 9:18668-18680. [PMID: 29165472 DOI: 10.1039/c7nr02414b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Transient, non-integrative modulation of cell function by intracellular delivery of proteins has high potential in cellular reprogramming, gene editing and therapeutic medicine applications. Unfortunately, the capacity to deliver multiple proteins intracellularly with temporal and spatial control has not been demonstrated. Here, we report a near infrared (NIR) laser-activatable nanomaterial that allows for precise control over the release of two proteins from a single nanomaterial. The nanomaterial is formed by gold nanorods (AuNRs) modified with single stranded DNA (ssDNA) to which complementary DNA-conjugated proteins are hybridized. Using DNA strands with distinct melting temperatures we are able to control independently the release of each protein with a laser using the same wavelength but with different powers. Studies in mammalian cells show that AuNRs conjugated with proteins are internalized by endocytosis and NIR laser irradiation promotes endosomal escape and the release of the proteins from the AuNRs simultaneously. Our results further demonstrate the feasibility of protein release from a carrier that has been accumulated within the cell up to 1 day while maintaining its activity.
Collapse
Affiliation(s)
- Miguel M Lino
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal.
| | | | | | | |
Collapse
|
20
|
Zajic LB, Webb TL, Webb P, Coy JW, Dow SW, Quimby JM. Comparison of proliferative and immunomodulatory potential of adipose-derived mesenchymal stem cells from young and geriatric cats. J Feline Med Surg 2017; 19:1096-1102. [PMID: 27913779 PMCID: PMC11110994 DOI: 10.1177/1098612x16680703] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Objectives The objective of this study was to compare the ability of adipose-derived mesenchymal stem cells (aMSCs) generated from young vs geriatric cats to proliferate in culture, suppress lymphocyte proliferation and undergo senescence. Methods Adipose tissues from five young (<5 years) and six geriatric (>10 years) cats were harvested and cryopreserved for subsequent aMSC isolation and culture. aMSC proliferation in culture was compared via determination of time until passage two and by 3-(4,5-demethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The immunomodulatory capacity of aMSCs was assessed using lymphocyte proliferation assays, and senescence was evaluated using senescence-associated B-galactosidase (SABG) expression. All assays were performed on aMSCs between passage two and passage three. Results aMSCs from geriatric cats took significantly longer ( P = 0.008) to reach passage two (median 11 days, range 9-22 days) compared with aMSCs from young healthy cats (median 7 days, range 6-8 days). No significant difference was detected between young and geriatric cats in terms of their ability to suppress lymphocyte proliferation. SABG expression was not significantly different between young and geriatric aMSCs. Conclusions and relevance Compared with young feline aMSCs, geriatric aMSCs are significantly impaired in their ability to rapidly proliferate to passage two following initial culture, presenting a concern for autologous therapy. Nonetheless, once the cells are expanded, young and geriatric cat aMSCs appear to be equivalent in terms of their ability to functionally suppress T-cell activation and proliferation.
Collapse
Affiliation(s)
- Lara B Zajic
- Current address: The Animal Medical Center, New York, NY, USA
| | | | | | | | | | - Jessica M Quimby
- Jessica Quimby DVM, PhD, DACVIM (Internal Medicine), Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
21
|
Ortega-de San Luis C, Pascual A. Simultaneous Detection of Both GDNF and GFRα1 Expression Patterns in the Mouse Central Nervous System. Front Neuroanat 2016; 10:73. [PMID: 27445711 PMCID: PMC4919337 DOI: 10.3389/fnana.2016.00073] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 06/09/2016] [Indexed: 12/20/2022] Open
Abstract
Glial cell line-derived neurotrophic factor (GDNF) is proposed as a therapeutic tool in Parkinson's disease, addiction-related disorders, and neurodegenerative conditions affecting motor neurons (MNs). Despite the high amount of work about GDNF therapeutic application, the neuronal circuits requiring GDNF trophic support in the brain and spinal cord (SC) are poorly characterized. Here, we defined GDNF and GDNF family receptor-α 1 (GFRα1) expression pattern in the brain and SC of newborn and adult mice. We performed systematic and simultaneous detection of EGFP and LacZ expressing alleles in reporter mice and asked whether modifications of this signaling pathway lead to a significant central nervous system (CNS) alteration. GFRα1 was predominantly expressed by neurons but also by an unexpected population of non-neuronal cells. GFRα1 expression pattern was wider in neonatal than in adult CNS and GDNF expression was restricted in comparison with GFRα1 at both developmental time points. The use of confocal microscopy to imaging X-gal deposits and EGFP allowed us to identify regions containing cells that expressed both proteins and to discriminate between auto and non-autotrophic signaling. We also suggested long-range GDNF-GFRα1 circuits taking advantage of the ability of the EGFP genetically encoded reporter to label long distance projecting axons. The complete elimination of either the ligand or the receptor during development did not produce major abnormalities, suggesting a preponderant role for GDNF signaling during adulthood. In the SC, our results pointed to local modulatory interneurons as the main target of GDNF produced by Clarke's column (CC) cells. Our work increases the understanding on how GDNF signals in the CNS and establish a crucial framework for posterior studies addressing either the biological role of GDNF or the optimization of trophic factor-based therapies.
Collapse
Affiliation(s)
- Clara Ortega-de San Luis
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla Seville, Spain
| | - Alberto Pascual
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla Seville, Spain
| |
Collapse
|
22
|
Frame JM, Fegan KH, Conway SJ, McGrath KE, Palis J. Definitive Hematopoiesis in the Yolk Sac Emerges from Wnt-Responsive Hemogenic Endothelium Independently of Circulation and Arterial Identity. Stem Cells 2016; 34:431-44. [PMID: 26418893 PMCID: PMC4755868 DOI: 10.1002/stem.2213] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 08/21/2015] [Accepted: 09/04/2015] [Indexed: 12/20/2022]
Abstract
Adult-repopulating hematopoietic stem cells (HSCs) emerge in low numbers in the midgestation mouse embryo from a subset of arterial endothelium, through an endothelial-to-hematopoietic transition. HSC-producing arterial hemogenic endothelium relies on the establishment of embryonic blood flow and arterial identity, and requires β-catenin signaling. Specified prior to and during the formation of these initial HSCs are thousands of yolk sac-derived erythro-myeloid progenitors (EMPs). EMPs ensure embryonic survival prior to the establishment of a permanent hematopoietic system, and provide subsets of long-lived tissue macrophages. While an endothelial origin for these HSC-independent definitive progenitors is also accepted, the spatial location and temporal output of yolk sac hemogenic endothelium over developmental time remain undefined. We performed a spatiotemporal analysis of EMP emergence, and document the morphological steps of the endothelial-to-hematopoietic transition. Emergence of rounded EMPs from polygonal clusters of Kit(+) cells initiates prior to the establishment of arborized arterial and venous vasculature in the yolk sac. Interestingly, Kit(+) polygonal clusters are detected in both arterial and venous vessels after remodeling. To determine whether there are similar mechanisms regulating the specification of EMPs with other angiogenic signals regulating adult-repopulating HSCs, we investigated the role of embryonic blood flow and Wnt/β-catenin signaling during EMP emergence. In embryos lacking a functional circulation, rounded Kit(+) EMPs still fully emerge from unremodeled yolk sac vasculature. In contrast, canonical Wnt signaling appears to be a common mechanism regulating hematopoietic emergence from hemogenic endothelium. These data illustrate the heterogeneity in hematopoietic output and spatiotemporal regulation of primary embryonic hemogenic endothelium.
Collapse
Affiliation(s)
- Jenna M. Frame
- Department of Pediatrics, Center for Pediatric Biomedical Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Katherine H. Fegan
- Department of Pediatrics, Center for Pediatric Biomedical Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Simon J. Conway
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kathleen E. McGrath
- Department of Pediatrics, Center for Pediatric Biomedical Research, University of Rochester Medical Center, Rochester, NY, USA
| | - James Palis
- Department of Pediatrics, Center for Pediatric Biomedical Research, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
23
|
Trifonov S, Yamashita Y, Kase M, Maruyama M, Sugimoto T. Overview and assessment of the histochemical methods and reagents for the detection of β-galactosidase activity in transgenic animals. Anat Sci Int 2016; 91:56-67. [PMID: 26394634 PMCID: PMC4679788 DOI: 10.1007/s12565-015-0300-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 08/24/2015] [Indexed: 11/29/2022]
Abstract
Bacterial β-galactosidase is one of the most widely used reporter genes in experiments involving transgenic and knockout animals. In this review we discuss the current histochemical methods and available reagents to detect β-galactosidase activity. Different substrates are available, but the most commonly used is X-gal in combination with potassium ferri- and ferro-cyanide. The reaction produces a characteristic blue precipitate in the cells expressing β-galactosidase, and despite its efficiency in staining whole embryos, its detection on thin tissue sections is difficult. Salmon-gal is another substrate, which in combination with ferric and ferrous ions gives a reddish-pink precipitate. Its sensitivity for staining tissue sections is similar to that of X-gal. Combining X-gal or Salmon-gal with tetrazolium salts provides a faster and more sensitive reaction than traditional β-galactosidase histochemistry. Here, we compare the traditional β-galactosidase assay and the combination of X-gal or Salmon-gal with three tetrazolium salts: nitroblue tetrazolium, tetranitroblue tetrazolium and iodonitrotetrazolium. Based on an assessment of the sensitivity and specificity of the different combinations of substrates, we are proposing an optimized and enhanced method for β-galactosidase detection in histological sections of the transgenic mouse brain. Optimal staining was obtained with X-gal in combination with nitroblue tetrazolium, which provides a faster and more specific staining than the traditional X-gal combination with potassium ferri- and ferro-cyanide. We recommend the X-gal/nitroblue tetrazolium staining mixture as the first choice for the detection of β-galactosidase activity on histological sections. When faster results are needed, Salmon-gal/nitroblue tetrazolium should be considered as an alternative, while maintaining acceptable levels of noise.
Collapse
Affiliation(s)
- Stefan Trifonov
- Department of Anatomy and Brain Science, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka, 573-1010, Japan
| | - Yuji Yamashita
- Department of Anatomy and Brain Science, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka, 573-1010, Japan
| | - Masahiko Kase
- Department of Anatomy and Brain Science, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka, 573-1010, Japan
| | - Masato Maruyama
- Department of Anatomy and Brain Science, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka, 573-1010, Japan
| | - Tetsuo Sugimoto
- Department of Anatomy and Brain Science, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka, 573-1010, Japan.
| |
Collapse
|
24
|
Neuropsin (OPN5)-mediated photoentrainment of local circadian oscillators in mammalian retina and cornea. Proc Natl Acad Sci U S A 2015; 112:13093-8. [PMID: 26392540 DOI: 10.1073/pnas.1516259112] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The molecular circadian clocks in the mammalian retina are locally synchronized by environmental light cycles independent of the suprachiasmatic nuclei (SCN) in the brain. Unexpectedly, this entrainment does not require rods, cones, or melanopsin (OPN4), possibly suggesting the involvement of another retinal photopigment. Here, we show that the ex vivo mouse retinal rhythm is most sensitive to short-wavelength light but that this photoentrainment requires neither the short-wavelength-sensitive cone pigment [S-pigment or cone opsin (OPN1SW)] nor encephalopsin (OPN3). However, retinas lacking neuropsin (OPN5) fail to photoentrain, even though other visual functions appear largely normal. Initial evidence suggests that OPN5 is expressed in select retinal ganglion cells. Remarkably, the mouse corneal circadian rhythm is also photoentrainable ex vivo, and this photoentrainment likewise requires OPN5. Our findings reveal a light-sensing function for mammalian OPN5, until now an orphan opsin.
Collapse
|
25
|
Aoto K, Sandell LL, Butler Tjaden NE, Yuen KC, Watt KEN, Black BL, Durnin M, Trainor PA. Mef2c-F10N enhancer driven β-galactosidase (LacZ) and Cre recombinase mice facilitate analyses of gene function and lineage fate in neural crest cells. Dev Biol 2015; 402:3-16. [PMID: 25794678 PMCID: PMC4433593 DOI: 10.1016/j.ydbio.2015.02.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 02/24/2015] [Accepted: 02/25/2015] [Indexed: 10/23/2022]
Abstract
Neural crest cells (NCC) comprise a multipotent, migratory stem cell and progenitor population that gives rise to numerous cell and tissue types within a developing embryo, including craniofacial bone and cartilage, neurons and glia of the peripheral nervous system, and melanocytes within the skin. Here we describe two novel stable transgenic mouse lines suitable for lineage tracing and analysis of gene function in NCC. Firstly, using the F10N enhancer of the Mef2c gene (Mef2c-F10N) linked to LacZ, we generated transgenic mice (Mef2c-F10N-LacZ) that express LacZ in the majority, if not all migrating NCC that delaminate from the neural tube. Mef2c-F10N-LacZ then continues to be expressed primarily in neurogenic, gliogenic and melanocytic NCC and their derivatives, but not in ectomesenchymal derivatives. Secondly, we used the same Mef2c-F10N enhancer together with Cre recombinase to generate transgenic mice (Mef2c-F10N-Cre) that can be used to indelibly label, or alter gene function in, migrating NCC and their derivatives. At early stages of development, Mef2c-F10N-LacZ and Mef2c-F10N-Cre label NCC in a pattern similar to Wnt1-Cre mice, with the exception that Mef2c-F10N-LacZ and Mef2c-F10N-Cre specifically label NCC that have delaminated from the neural plate, while premigratory NCC are not labeled. Thus, our Mef2c-F10N-LacZ and Mef2c-F10N-Cre transgenic mice provide new resources for tracing migratory NCC and analyzing gene function in migrating and differentiating NCC independently of NCC formation.
Collapse
Affiliation(s)
- Kazushi Aoto
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Lisa L Sandell
- University of Louisville, Department of Molecular, Cellular and Craniofacial Biology, School of Dentistry, Louisville, KY 40201, USA
| | - Naomi E Butler Tjaden
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Kobe C Yuen
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Kristin E Noack Watt
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Brian L Black
- Cardiovascular Research Institute and Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Michael Durnin
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Paul A Trainor
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
26
|
Iglesias-Bartolome R, Torres D, Marone R, Feng X, Martin D, Simaan M, Chen M, Weinstein LS, Taylor SS, Molinolo AA, Gutkind JS. Inactivation of a Gα(s)-PKA tumour suppressor pathway in skin stem cells initiates basal-cell carcinogenesis. Nat Cell Biol 2015; 17:793-803. [PMID: 25961504 PMCID: PMC4449815 DOI: 10.1038/ncb3164] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 03/18/2015] [Indexed: 02/07/2023]
Abstract
Genomic alterations in GNAS, the gene coding for the Gαs heterotrimeric G-protein, are associated with a large number human of diseases. Here, we explored the role of Gαs on stem cell fate decisions by using the mouse epidermis as a model system. Conditional epidermal deletion of Gnas or repression of PKA signaling caused a remarkable expansion of the stem cell compartment, resulting in rapid basal cell carcinoma formation. In contrast, inducible expression of active Gαs in the epidermis caused hair follicle stem cell exhaustion and hair loss. Mechanistically, we found that Gαs-PKA disruption promotes the cell autonomous Sonic Hedgehog pathway stimulation and Hippo signaling inhibition, resulting in the non-canonical activation of GLI and YAP1. Our study highlights an important tumor suppressive function of Gαs-PKA, limiting the proliferation of epithelial stem cells and maintaining proper hair follicle homeostasis. These findings can have broad implications in multiple pathophysiological conditions, including cancer.
Collapse
Affiliation(s)
- Ramiro Iglesias-Bartolome
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Daniela Torres
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Romina Marone
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Xiaodong Feng
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Daniel Martin
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - May Simaan
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Min Chen
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Lee S Weinstein
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Susan S Taylor
- 1] Department of Pharmacology, University of California San Diego, La Jolla, California 92093, USA [2] Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| | - Alfredo A Molinolo
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - J Silvio Gutkind
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|