1
|
Sheikh SI, Doellman MM, VanKuren NW, Hall P, Kronforst MR. A shared gene but distinct dynamics regulate mimicry polymorphisms in closely related species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.03.641230. [PMID: 40093043 PMCID: PMC11908123 DOI: 10.1101/2025.03.03.641230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Sex-limited polymorphisms, such as mating strategies in male birds and mimicry in female butterflies, are widespread across the tree of life and are frequently adaptive. Considerable work has been done exploring the ecological pressures and evolutionary forces that generate and maintain genetic variation resulting in alternative sex-limited morphs, yet little is known about their molecular and developmental genetic basis. A powerful system to investigate this is Papilio butterflies: within the subgenus Menelaides, multiple closely related species have female-limited mimicry polymorphism, with females developing either derived mimetic or ancestral non-mimetic wing color patterns. While mimetic color patterns are different between species, each polymorphism is controlled by allelic variation of doublesex (dsx). Across several species, we found that the mimetic and non-mimetic females develop male-like color patterns when we knockdown dsx expression, establishing that dsx controls both sexual dimorphism and polymorphism. We also found that mimetic dsx alleles have unique spatiotemporal expression patterns between two species, Papilio lowii and Papilio alphenor. To uncover the downstream genes involved in the color pattern switch between both species, we used RNA-seq in P. lowii and compared the results to previous work in P. alphenor. While some canonical wing patterning genes are differentially expressed in females of both species, the temporal patterns of differential expression are notably different. Our results indicate that, despite the putative ancestral co-option and shared use of dsx among closely related species, the mimicry switch functions through distinct underlying mechanisms.
Collapse
Affiliation(s)
- Sofia I. Sheikh
- Department of Ecology & Evolution, The University of Chicago
| | - Meredith M. Doellman
- Department of Ecology & Evolution, The University of Chicago
- Current Address: The Field Museum of Natural History, Chicago
| | | | - Phoebe Hall
- Department of Ecology & Evolution, The University of Chicago
| | | |
Collapse
|
2
|
Lim H, Chan IZW, Monteiro A. Pattern Matters in the Aposematic Colouration of Papilio polytes Butterflies. INSECTS 2024; 15:465. [PMID: 39057198 PMCID: PMC11277510 DOI: 10.3390/insects15070465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024]
Abstract
Many toxic animals display bright colour patterns to warn predators about their toxicity. This sometimes leads other sympatric palatable organisms to evolve mimetic colour patterns to also evade predation. These mimics, however, are often imperfect, and it is unclear how much their colour patterns can vary away from the model before they become ineffective. In this study, we investigated how predation risk of the palatable Common Mormon butterfly (Papilio polytes) is affected by two alterations of its wing pattern that make it progressively more distinct from its model, the Common Rose (Pachliopta aristolochiae). We deployed butterfly paper models in the field, where all models displayed the same colours but had different patterns. In the first modification from the Wildtype pattern, we exchanged the position of the red and white colour patches but kept the overall pattern constant. In the second modification, we created an eyespot-like shape from the pre-existing pattern elements by moving their positions in the wing, altering the overall wing pattern. Both modifications increased attack risk from predators relative to Wildtype patterns, with the eyespot-like modification having the highest predation risk. Our results show that avian predators can distinguish between all three patterns tested, and that pattern is important in aposematic signals. Predators learn to avoid aposematic colours, not in isolation, but as part of specific patterns.
Collapse
Affiliation(s)
| | - Ian Z. W. Chan
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore
| | - Antónia Monteiro
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore
| |
Collapse
|
3
|
Stavenga DG. Butterfly blues and greens caused by subtractive colour mixing of carotenoids and bile pigments. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024; 210:371-380. [PMID: 37436440 PMCID: PMC11106126 DOI: 10.1007/s00359-023-01656-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/13/2023]
Abstract
Butterflies often have conspicuously patterned wings, due to pigmentary and/or structurally wing scales that cover the wing membrane. The wing membrane of several butterfly species is also pigmentary coloured, notably by the bile pigments pterobilin, pharcobilin and sarpedobilin. The absorption spectra of the bilins have bands in the ultraviolet and red wavelength range, resulting in blue-cyan colours. Here, a survey of papilionoid and nymphalid butterflies reveals that several species with wings containing bile pigments combine them with carotenoids and other short-wavelength absorbing pigments, e.g., papiliochrome II, ommochromes and flavonoids, which creates green-coloured patterns. Various uncharacterized, long-wavelength absorbing wing pigments were encountered, particularly in heliconiines. The wings thus exhibit quite variable reflectance spectra, extending the enormous pigmentary and structural colouration richness of butterflies.
Collapse
Affiliation(s)
- Doekele G Stavenga
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747AG, Groningen, The Netherlands.
| |
Collapse
|
4
|
Platt AJ, Padrick S, Ma AT, Beld J. A dissected non-ribosomal peptide synthetase maintains activity. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2024; 1872:140972. [PMID: 37951518 DOI: 10.1016/j.bbapap.2023.140972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/25/2023] [Accepted: 11/02/2023] [Indexed: 11/14/2023]
Abstract
Non-ribosomal peptide synthetases (NRPSs) generate chemically complex compounds and their modular architecture suggests that changing their domain organization can predictably alter their products. Ebony, a small three-domain NRPS, catalyzes the formation of β-alanine containing amides from biogenic amines. To examine the necessity of interdomain interactions, we modeled and docked domains of Ebony to reveal potential interfaces between them. Testing the same domain combinations in vitro showed that 8 % of activity was preserved after Ebony was dissected into a di-domain and a detached C-terminal domain, suggesting that sufficient interaction was maintained after dissection. Our work creates a model to identify domain interfaces necessary for catalysis, an important step toward utilizing Ebony as a combinatorial engineering platform for novel amides.
Collapse
Affiliation(s)
- Amanda J Platt
- Department of Microbiology and Immunology, Institute of Molecular Medicine and Infectious Disease, Center for Advanced Microbial Processing, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Shae Padrick
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, 245 N 15(th) Street, Philadelphia, PA 19102, USA
| | - Amy T Ma
- Department of Microbiology and Immunology, Institute of Molecular Medicine and Infectious Disease, Center for Advanced Microbial Processing, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Joris Beld
- Department of Microbiology and Immunology, Institute of Molecular Medicine and Infectious Disease, Center for Advanced Microbial Processing, Drexel University College of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Wee JLQ, Murugesan SN, Wheat CW, Monteiro A. The genetic basis of wing spots in Pieris canidia butterflies. BMC Genomics 2023; 24:169. [PMID: 37016295 PMCID: PMC10074818 DOI: 10.1186/s12864-023-09261-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/20/2023] [Indexed: 04/06/2023] Open
Abstract
Spots in pierid butterflies and eyespots in nymphalid butterflies are likely non-homologous wing colour pattern elements, yet they share a few features in common. Both develop black scales that depend on the function of the gene spalt, and both might have central signalling cells. This suggests that both pattern elements may be sharing common genetic circuitry. Hundreds of genes have already been associated with the development of nymphalid butterfly eyespot patterns, but the genetic basis of the simpler spot patterns on the wings of pierid butterflies has not been investigated. To facilitate studies of pierid wing patterns, we report a high-quality draft genome assembly for Pieris canidia, the Indian cabbage white. We then conducted transcriptomic analyses of pupal wing tissues sampled from the spot and non-spot regions of P. canidia at 3-6 h post-pupation. A total of 1352 genes were differentially regulated between wing tissues with and without the black spot, including spalt, Krüppel-like factor 10, genes from the Toll, Notch, TGF-β, and FGFR signalling pathways, and several genes involved in the melanin biosynthetic pathway. We identified 14 genes that are up-regulated in both pierid spots and nymphalid eyespots and propose that spots and eyespots share regulatory modules despite their likely independent origins.
Collapse
Affiliation(s)
- Jocelyn Liang Qi Wee
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore.
| | - Suriya Narayanan Murugesan
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore.
| | | | - Antónia Monteiro
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore
| |
Collapse
|
6
|
Komata S, Yoda S, KonDo Y, Shinozaki S, Tamai K, Fujiwara H. Functional unit of supergene in female-limited Batesian mimicry of Papilio polytes. Genetics 2023; 223:iyac177. [PMID: 36454671 PMCID: PMC9910408 DOI: 10.1093/genetics/iyac177] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/14/2022] [Accepted: 11/14/2022] [Indexed: 12/05/2022] Open
Abstract
Supergenes are sets of genes and genetic elements that are inherited like a single gene and control complex adaptive traits, but their functional roles and units are poorly understood. In Papilio polytes, female-limited Batesian mimicry is thought to be regulated by a ∼130 kb inversion region (highly diversified region: HDR) containing 3 genes, UXT, U3X, and doublesex (dsx) which switches non-mimetic and mimetic types. To determine the functional unit, we here performed electroporation-mediated RNAi analyses (and further Crispr/Cas9 for UXT) of genes within and flanking the HDR in pupal hindwings. We first clarified that non-mimetic dsx-h had a function to form the non-mimetic trait in female and only dsx-H isoform 3 had an important function in the formation of mimetic traits. Next, we found that UXT was involved in making mimetic-type pale-yellow spots and adjacent gene sir2 in making red spots in hindwings, both of which refine more elaborate mimicry. Furthermore, downstream gene networks of dsx, U3X, and UXT screened by RNA sequencing showed that U3X upregulated dsx-H expression and repressed UXT expression. These findings demonstrate that a set of multiple genes, not only inside but also flanking HDR, can function as supergene members, which extends the definition of supergene unit than we considered before. Also, our results indicate that dsx functions as the switching gene and some other genes such as UXT and sir2 within the supergene unit work as the modifier gene.
Collapse
Affiliation(s)
- Shinya Komata
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Shinichi Yoda
- NIBB Core Research Facilities, National Institute for Basic Biology, Okazaki, 444-8585, Japan
| | - Yûsuke KonDo
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Souta Shinozaki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Kouki Tamai
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Haruhiko Fujiwara
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| |
Collapse
|
7
|
Wang S, Teng D, Li X, Yang P, Da W, Zhang Y, Zhang Y, Liu G, Zhang X, Wan W, Dong Z, Wang D, Huang S, Jiang Z, Wang Q, Lohman DJ, Wu Y, Zhang L, Jia F, Westerman E, Zhang L, Wang W, Zhang W. The evolution and diversification of oakleaf butterflies. Cell 2022; 185:3138-3152.e20. [PMID: 35926506 DOI: 10.1016/j.cell.2022.06.042] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 01/20/2022] [Accepted: 06/22/2022] [Indexed: 10/16/2022]
Abstract
Oakleaf butterflies in the genus Kallima have a polymorphic wing phenotype, enabling these insects to masquerade as dead leaves. This iconic example of protective resemblance provides an interesting evolutionary paradigm that can be employed to study biodiversity. We integrated multi-omic data analyses and functional validation to infer the evolutionary history of Kallima species and investigate the genetic basis of their variable leaf wing patterns. We find that Kallima butterflies diversified in the eastern Himalayas and dispersed to East and Southeast Asia. Moreover, we find that leaf wing polymorphism is controlled by the wing patterning gene cortex, which has been maintained in Kallima by long-term balancing selection. Our results provide macroevolutionary and microevolutionary insights into a model species originating from a mountain ecosystem.
Collapse
Affiliation(s)
- Shuting Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Dequn Teng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Xueyan Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Peiwen Yang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Wa Da
- Tibet Plateau Institute of Biology, Lhasa, Tibet 850001, China
| | - Yiming Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Yubo Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Guichun Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | | | - Wenting Wan
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Zhiwei Dong
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Donghui Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; National Teaching Center for Experimental Biology, Peking University, Beijing 100871, China
| | - Shun Huang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Zhisheng Jiang
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Qingyi Wang
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - David J Lohman
- Biology Department, City College of New York, City University of New York, New York, NY 10031, USA; Ph.D. Program in Biology, Graduate Center, City University of New York, New York, NY 10016, USA; Entomology Section, National Museum of Natural History, Manila 1000, Philippines
| | - Yongjie Wu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Linlin Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Fenghai Jia
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Erica Westerman
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| | - Li Zhang
- Chinese Institute for Brain Research, Beijing 100871, China
| | - Wen Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China; Center for Excellence in Animal Evolution and Genetics, Kunming 650223, China
| | - Wei Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Institute of Ecology, Peking University, Beijing 100871, China; Institute for Tibetan Plateau Research, Peking University, Beijing 100871, China.
| |
Collapse
|
8
|
Komata S, Kajitani R, Itoh T, Fujiwara H. Genomic architecture and functional unit of mimicry supergene in female limited Batesian mimic Papilio butterflies. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210198. [PMID: 35694751 PMCID: PMC9189499 DOI: 10.1098/rstb.2021.0198] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/17/2022] [Indexed: 11/12/2022] Open
Abstract
It has long been suggested that dimorphic female-limited Batesian mimicry of two closely related Papilio butterflies, Papilio memnon and Papilio polytes, is controlled by supergenes. Whole-genome sequencing, genome-wide association studies and functional analyses have recently identified mimicry supergenes, including the doublesex (dsx) gene. Although supergenes of both the species are composed of highly divergent regions between mimetic and non-mimetic alleles and are located at the same chromosomal locus, they show critical differences in genomic architecture, particularly with or without an inversion: P. polytes has an inversion, but P. memnon does not. This review introduces and compares the detailed genomic structure of mimicry supergenes in two Papilio species, including gene composition, repetitive sequence composition, breakpoint/boundary site structure, chromosomal inversion and linkage disequilibrium. Expression patterns and functional analyses of the respective genes within or flanking the supergene suggest that dsx and other genes are involved in mimetic traits. In addition, structural comparison of the corresponding region for the mimicry supergene among further Papilio species suggests three scenarios for the evolution of the mimicry supergene between the two Papilio species. The structural features revealed in the Papilio mimicry supergene provide insight into the formation, maintenance and evolution of supergenes. This article is part of the theme issue 'Genomic architecture of supergenes: causes and evolutionary consequences'.
Collapse
Affiliation(s)
- Shinya Komata
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Rei Kajitani
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan
| | - Takehiko Itoh
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan
| | - Haruhiko Fujiwara
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| |
Collapse
|
9
|
Shimajiri T, Otaki JM. Phenotypic Plasticity of the Mimetic Swallowtail Butterfly Papilio polytes: Color Pattern Modifications and Their Implications in Mimicry Evolution. INSECTS 2022; 13:insects13070649. [PMID: 35886825 PMCID: PMC9322193 DOI: 10.3390/insects13070649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/05/2022] [Accepted: 07/16/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Diverse butterfly wing color patterns are evolutionary products in response to environmental changes in the past. Environmental stress, such as temperature shock, is known to induce color pattern modifications in various butterfly species, and this phenotypic plasticity plays an important role in color pattern evolution. However, the potential contributions of phenotypic plasticity to mimicry evolution have not been evaluated. Here, we focused on the swallowtail butterfly Papilio polytes, which has nonmimetic and mimetic forms in females, to examine its plastic phenotypes. Cold shock and heat shock treatments in the nonmimetic form induced color pattern modifications that were partly similar to those of the mimetic form, and nonmimetic females were more sensitive than males and mimetic females. These results suggest that phenotypic plasticity in nonmimetic females might have provided a basis of natural selection for mimetic color patterns during evolution. Abstract Butterfly wing color patterns are sensitive to environmental stress, such as temperature shock, and this phenotypic plasticity plays an important role in color pattern evolution. However, the potential contributions of phenotypic plasticity to mimicry evolution have not been evaluated. Here, we focused on the swallowtail butterfly Papilio polytes, which has nonmimetic and mimetic forms in females, to examine its plastic phenotypes. In the nonmimetic form, medial white spots and submarginal reddish spots in the ventral hindwings were enlarged by cold shock but were mostly reduced in size by heat shock. These temperature-shock-induced color pattern modifications were partly similar to mimetic color patterns, and nonmimetic females were more sensitive than males and mimetic females. Unexpectedly, injection of tungstate, a known modification inducer in nymphalid and lycaenid butterflies, did not induce any modification, but fluorescent brightener 28, another inducer discovered recently, induced unique modifications. These results suggest that phenotypic plasticity in nonmimetic females might have provided a basis of natural selection for mimetic color patterns during evolution.
Collapse
|
10
|
He JW, Dong ZW, Hu P, Liu W, Zhang R, Liu GC, Zhao RP, Wan WT, Wang W, Li XY. Integrated Analysis of Transcriptome and Proteome to Reveal Pupal Color Switch in Papilio xuthus Butterflies. Front Genet 2022; 12:795115. [PMID: 35186009 PMCID: PMC8852814 DOI: 10.3389/fgene.2021.795115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/22/2021] [Indexed: 11/29/2022] Open
Abstract
Pupal color polyphenism in Papilio butterflies, including green, intermediate, or brown, is an excellent study system for understanding phenotypic plasticity. Previous studies suggested that development of brown pupae may be controlled by a hormone called pupal-cuticle-melanizing-hormone (PCMH) which is synthesized and secreted from brain-suboesophageal ganglion and prothoracic ganglion complexes (Br-SG-TG1) during the pre-pupa stage. However, detailed molecular mechanisms of neuroendocrine regulation in pupal color development remain unknown. In this study, we integrated the expression profiles of transcriptome and proteome at pre-pupa stages [2 h after gut purge (T1) and 3 h after forming the garter around the body (T2)] and pigmentation stages [10 h after ecdysis (T3) and 24 h after ecdysis (T4)] to identify important genes and pathways underlying the development of green and brown pupa in the swallowtail butterfly Papilio xuthus. Combined comparisons of each developmental stage and each tissue under green and brown conditions, a total of 1042 differentially expressed genes (DEGs) and 430 different abundance proteins (DAPs) were identified. Weighted gene co-expression network analysis (WGCNA) and enrichment analysis indicate that these DEGs were mainly related to oxidation-reduction, structural constituent of cuticle, and pigment binding. Soft clustering by Mfuzz and enrichment analysis indicate that these DAPs are mainly involved in tyrosine metabolism, insect hormone biosynthesis, and melanogenesis. By homologous alignment, we further identified those genes encoding neuropeptides (51), GPCRs (116), G-proteins (8), cuticular proteins (226), chitinases (16), and chitin deacetylases (8) in the whole genome of P. xuthus and analyzed their expression profiles. Although we identified no gene satisfying with hypothesized expression profile of PCMH, we found some genes in the neuropeptide cascade showed differentially expressed under two pupal color conditions. We also found that Toll signaling pathway genes, juvenile hormone (JH) related genes, and multiple cuticular proteins play important roles in the formation of selective pupal colors during the prepupal-pupal transition. Our data also suggest that both green and brown pupa include complex pigment system that is regulated by genes involved in black, blue, and yellow pigments. Our results provide important insights into the evolution of pupal protective colors among swallowtail butterflies.
Collapse
Affiliation(s)
- Jin-Wu He
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Zhi-Wei Dong
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Ping Hu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Wei Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Ru Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Gui-Chun Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Ruo-Ping Zhao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Wen-Ting Wan
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Wen Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an, China
- *Correspondence: Wen Wang, ; Xue-Yan Li,
| | - Xue-Yan Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- *Correspondence: Wen Wang, ; Xue-Yan Li,
| |
Collapse
|
11
|
Rahman SR, Terranova T, Tian L, Hines HM. Developmental Transcriptomics Reveals a Gene Network Driving Mimetic Color Variation in a Bumble Bee. Genome Biol Evol 2021; 13:6244266. [PMID: 33881508 PMCID: PMC8220310 DOI: 10.1093/gbe/evab080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2021] [Indexed: 11/24/2022] Open
Abstract
A major goal of evolutionary genetics and evo-devo is to understand how changes in genotype manifest as changes in phenotype. Bumble bees display remarkable color pattern diversity while converging onto numerous regional Müllerian mimicry patterns, thus enabling exploration of the genetic mechanisms underlying convergent phenotypic evolution. In western North America, multiple bumble bee species converge onto local mimicry patterns through parallel shifts of midabdominal segments from red to black. It was previously demonstrated that a Hox gene, Abd-B, is the key regulator of the phenotypic switch in one of these species, Bombus melanopygus, however, the mechanism by which Abd-B regulates color differentiation remains unclear. Using tissue/stage-specific transcriptomic analysis followed by qRT–PCR validation, this study reveals a suite of genes potentially involved downstream of Abd-B during color pattern differentiation. The data support differential genes expression of not only the first switch gene Abd-B, but also an intermediate developmental gene nubbin, and a whole suite of downstream melanin and redox genes that together reinforce the observed eumelanin (black)-pheomelanin (red) ratios. These include potential genes involved in the production of insect pheomelanins, a pigment until recently not thought to occur in insects and thus lacking known regulatory enzymes. The results enhance understanding of pigmentation gene networks involved in bumble bee color pattern development and diversification, while providing insights into how upstream regulators such as Hox genes interact with downstream morphogenic players to facilitate this adaptive phenotypic radiation.
Collapse
Affiliation(s)
- Sarthok Rasique Rahman
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA.,Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama, USA
| | - Tatiana Terranova
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Li Tian
- Department of Entomology, China Agricultural University, Beijing, China
| | - Heather M Hines
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA.,Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
12
|
Yoda S, Sakakura K, Kitamura T, KonDo Y, Sato K, Ohnuki R, Someya I, Komata S, Kojima T, Yoshioka S, Fujiwara H. Genetic switch in UV response of mimicry-related pale-yellow colors in Batesian mimic butterfly, Papilio polytes. SCIENCE ADVANCES 2021; 7:7/2/eabd6475. [PMID: 33523992 PMCID: PMC7793577 DOI: 10.1126/sciadv.abd6475] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 11/18/2020] [Indexed: 05/14/2023]
Abstract
In a Batesian mimic butterfly Papilio polytes, mimetic females resemble an unpalatable model, Pachliopta aristolochiae, but exhibit a different color pattern from nonmimetic females and males. In particular, the pale-yellow region on hind wings, which correspondingly sends important putative signals for mimicry and mate preference, is different in shape and chemical features between nonmimetic and mimetic morphs. Recently, we found that mimetic-type doublesex [dsx (H)] causes mimetic traits; however, the control of dimorphic pale-yellow colors remains unclear. Here, we revealed that dsx (H) switched the pale-yellow colors from UV-excited fluorescent type (nonmimetic) to UV-reflecting type (mimetic), by repressing the papiliochrome II synthesis genes and nanostructural changes in wing scales. Photoreceptor reactivities showed that some birds and butterflies could effectively recognize mimetic and nonmimetic pale-yellow colors, suggesting that a genetic switch in the UV response of pale-yellow colors may play essential roles in establishing the dimorphic female-limited Batesian mimicry.
Collapse
Affiliation(s)
- Shinichi Yoda
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Kousuke Sakakura
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Tasuku Kitamura
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Yûsuke KonDo
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Kazuki Sato
- Department of Physics, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Japan
| | - Ryosuke Ohnuki
- Department of Physics, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Japan
| | - Itsuki Someya
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Shinya Komata
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Tetsuya Kojima
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Shinya Yoshioka
- Department of Physics, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Japan
| | - Haruhiko Fujiwara
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan.
| |
Collapse
|
13
|
Stavenga DG, Leertouwer HL, Arikawa K. Coloration principles of the Great purple emperor butterfly (Sasakia charonda). ZOOLOGICAL LETTERS 2020; 6:13. [PMID: 33292721 PMCID: PMC7664033 DOI: 10.1186/s40851-020-00164-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/31/2020] [Indexed: 06/12/2023]
Abstract
The dorsal wings of male Sasakia charonda butterflies display a striking blue iridescent coloration, which is accentuated by white, orange-yellow and red spots, as well as by brown margins. The ventral wings also have a variegated, but more subdued, pattern. We investigated the optical basis of the various colors of intact wings as well as isolated wing scales by applying light and electron microscopy, imaging scatterometry and (micro)spectrophotometry. The prominent blue iridescence is due to scales with tightly packed, multilayered ridges that contain melanin pigment. The scales in the brown wing margins also contain melanin. Pigments extracted from the orange-yellow and red spots indicate the presence of 3-OH-kynurenine and ommochrome pigment. The scales in the white spots also have multilayered ridges but lack pigment. The lower lamina of the scales plays a so-far undervalued but often crucial role. Its thin-film properties color the majority of the ventral wing scales, which are unpigmented and have large windows. The lower lamina acting as a thin-film reflector generally contributes to the reflectance of the various scale types.
Collapse
Affiliation(s)
- Doekele G Stavenga
- Surfaces and thin films, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, NL-9747, AG, Groningen, the Netherlands.
| | - Hein L Leertouwer
- Surfaces and thin films, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, NL-9747, AG, Groningen, the Netherlands
| | - Kentaro Arikawa
- Department of Evolutionary Studies of Biosystems, Sokendai-Hayama, The Graduate University for Advanced Studies, Hayama, 240-0193, Japan
| |
Collapse
|
14
|
Hyeun-Ji L, Rendón MÁ, Liedtke HC, Gomez-Mestre I. Shifts in the developmental rate of spadefoot toad larvae cause decreased complexity of post-metamorphic pigmentation patterns. Sci Rep 2020; 10:19624. [PMID: 33184389 PMCID: PMC7665075 DOI: 10.1038/s41598-020-76578-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/27/2020] [Indexed: 11/18/2022] Open
Abstract
Amphibian larvae are plastic organisms that can adjust their growth and developmental rates to local environmental conditions. The consequences of such developmental alterations have been studied in detail, both at the phenotypic and physiological levels. While largely unknown, it is of great importance to assess how developmental alterations affect the pigmentation pattern of the resulting metamorphs, because pigmentation is relevant for communication, mate choice, and camouflage and hence influences the overall fitness of the toads. Here we quantify the variation in several aspects of the pigmentation pattern of juvenile spadefoot toads experimentally induced to accelerate their larval development in response to decreased water level. It is known that induced developmental acceleration comes at the cost of reduced size at metamorphosis, higher metabolic rate, and increased oxidative stress. In this study, we show that spadefoot toads undergoing developmental acceleration metamorphosed with a less complex, more homogeneous, darker dorsal pattern consisting of continuous blotches, compared to the more contrasted pattern with segregated blotches and higher fractal dimension in normally developing individuals, and at a smaller size. We also observed a marked effect of population of origin in the complexity of the pigmentation pattern. Complexity of the post-metamorphic dorsal pigmentation could therefore be linked to pre-metamorphic larval growth and development.
Collapse
Affiliation(s)
- Lee Hyeun-Ji
- Ecology, Evolution, and Development Group, Doñana Biological Station, Consejo Superior de Investigaciones Científicas, 41092, Seville, Spain
- Department of Wetland Ecology, Doñana Biological Station, Consejo Superior de Investigaciones Científicas, 41092, Seville, Spain
| | - Miguel Ángel Rendón
- Department of Wetland Ecology, Doñana Biological Station, Consejo Superior de Investigaciones Científicas, 41092, Seville, Spain
| | - Hans Christoph Liedtke
- Ecology, Evolution, and Development Group, Doñana Biological Station, Consejo Superior de Investigaciones Científicas, 41092, Seville, Spain
- Department of Wetland Ecology, Doñana Biological Station, Consejo Superior de Investigaciones Científicas, 41092, Seville, Spain
| | - Ivan Gomez-Mestre
- Ecology, Evolution, and Development Group, Doñana Biological Station, Consejo Superior de Investigaciones Científicas, 41092, Seville, Spain.
- Department of Wetland Ecology, Doñana Biological Station, Consejo Superior de Investigaciones Científicas, 41092, Seville, Spain.
| |
Collapse
|
15
|
Varija
Raghu S, Thamankar R. A Comparative Study of Crystallography and Defect Structure of Corneal Nipple Array in Daphnis nerii Moth and Papilio polytes Butterfly Eye. ACS OMEGA 2020; 5:23662-23671. [PMID: 32984686 PMCID: PMC7512438 DOI: 10.1021/acsomega.0c02314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
Moth and butterfly ommatidial nanostructures have been extensively studied for their anti-reflective properties. Especially, from the point of view of sub-wavelength anti-reflection phenomena, the moth eye structures are the archetype example. Here, a comparative analysis of corneal nipples in moth eye (both Male and Female) and butterfly eye (both Male and Female) is given. The surface of moth(Male and Female) and butterfly(Male and Female) eye is defined with regularly arranged hexagonal facets filled with corneal nipples. A detailed analysis using high-resolution scanning electron microscopy images show the intricate hexagonal arrangement of corneal nipples within the individual hexagonal facet. Individual nipples in moth are circular with an average diameter of about 140/165 nm (Male/Female) and average internipple separation of 165 nm. The moth eye show the ordered arrangement of the corneal nipples and the butterfly eye (Male/Female) show an even more complex arrangement of the nipples. Structurally, the corneal nipples in both male and female butterflies are not circular but are polygons with 5, 6, and 7 sides. The average center-to-center separation in the butterfly(Male/Female) is about 260 nm/204 nm, respectively. We find that these corneal nipples are organized into much more dense hexagonal packing with the internipple (edge-to-edge) separation ranging from 20 to 25 nm. Each hexagonal facet is divided into multiple grains separated by boundaries spanning one or two crystallographic defects. These defects are seen in both moth and butterfly. These are typical 5-coordinated and 7-coordinated defect sites typical for a solid-state material with the hexagonal atomic arrangement. Even though the isolated defects are a rarity, interwoven (7-5) defects form a grain boundary between perfectly ordered grains. These defects introduce a low-angle dislocation, and a detailed analysis of the defects is done. The butterfly eye (Male/Female) is defined with extremely high-density corneal nipple with no apparent grains. Each corneal nipple is a polygon with "n" sides (n = 5, 6, and 7). While the 5- and 7-coordinated defects exist, they do not initiate a grain rotation as seen in the moth eyes. To find out the similarity and the difference in the reflectivity of these nanostructured surfaces, we used the effective medium theory and calculated the reflectivity in moth and butterfly eyes. From this simple analysis, we find that females have better anti-reflective properties compared to the males in both moth and butterfly.
Collapse
Affiliation(s)
- Shamprasad Varija
Raghu
- Neurogenetics
Lab, Dept of Applied Zoology, Mangalore
University, Mangalagangothri, Karnataka, India 574199
| | - R. Thamankar
- Department
of Physics, School of Advanced Sciences, VIT, Vellore, Tamilnadu, India 632014
| |
Collapse
|
16
|
Deshmukh R, Lakhe D, Kunte K. Tissue-specific developmental regulation and isoform usage underlie the role of doublesex in sex differentiation and mimicry in Papilio swallowtails. ROYAL SOCIETY OPEN SCIENCE 2020; 7:200792. [PMID: 33047041 PMCID: PMC7540742 DOI: 10.1098/rsos.200792] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 09/08/2020] [Indexed: 06/11/2023]
Abstract
Adaptive phenotypes often arise by rewiring existing developmental networks. Co-option of transcription factors in novel contexts has facilitated the evolution of ecologically important adaptations. doublesex (dsx) governs fundamental sex differentiation during embryonic stages and has been co-opted to regulate diverse secondary sexual dimorphisms during pupal development of holometabolous insects. In Papilio polytes, dsx regulates female-limited mimetic polymorphism, resulting in mimetic and non-mimetic forms. To understand how a critical gene such as dsx regulates novel wing patterns while maintaining its basic function in sex differentiation, we traced its expression through metamorphosis in P. polytes using developmental transcriptome data. We found three key dsx expression peaks: (i) eggs in pre- and post-ovisposition stages; (ii) developing wing discs and body in final larval instar; and (iii) 3-day pupae. We identified potential dsx targets using co-expression and differential expression analysis, and found distinct, non-overlapping sets of genes-containing putative dsx-binding sites-in developing wings versus abdominal tissue and in mimetic versus non-mimetic individuals. This suggests that dsx regulates distinct downstream targets in different tissues and wing colour morphs and has perhaps acquired new, previously unknown targets, for regulating mimetic polymorphism. Additionally, we observed that the three female isoforms of dsx were differentially expressed across stages (from eggs to adults) and tissues and differed in their protein structure. This may promote differential protein-protein interactions for each isoform and facilitate sub-functionalization of dsx activity across its isoforms. Our findings suggest that dsx employs tissue-specific downstream effectors and partitions its functions across multiple isoforms to regulate primary and secondary sexual dimorphism through insect development.
Collapse
|
17
|
Yoda S, Otaguro E, Nobuta M, Fujiwara H. Molecular Mechanisms Underlying Pupal Protective Color Switch in Papilio polytes Butterflies. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
18
|
Stavenga DG, Wallace JRA, Warrant EJ. Bogong Moths Are Well Camouflaged by Effectively Decolourized Wing Scales. Front Physiol 2020; 11:95. [PMID: 32116798 PMCID: PMC7026391 DOI: 10.3389/fphys.2020.00095] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 01/27/2020] [Indexed: 11/13/2022] Open
Abstract
Moth wings are densely covered by wing scales that are assumed to specifically function to camouflage nocturnally active species during day time. Generally, moth wing scales are built according to the basic lepidopteran Bauplan, where the upper lamina consists of an array of parallel ridges and the lower lamina is a thin plane. The lower lamina hence acts as a thin film reflector having distinct reflectance spectra that can make the owner colorful and thus conspicuous for predators. Most moth species therefore load the scales’ upper lamina with variable amounts of melanin so that dull, brownish color patterns result. We investigated whether scale pigmentation in this manner indeed provides moths with camouflage by comparing the reflectance spectra of the wings and scales of the Australian Bogong moth (Agrotis infusa) with those of objects in their natural environment. The similarity of the spectra underscores the effective camouflaging strategies of this moth species.
Collapse
Affiliation(s)
- Doekele G Stavenga
- Surfaces and Thin Films, Zernike Institute for Advanced Materials, University of Groningen, Groningen, Netherlands
| | - Jesse R A Wallace
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Eric J Warrant
- Research School of Biology, Australian National University, Canberra, ACT, Australia.,Lund Vision Group, Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
19
|
Iijima T, Yoda S, Fujiwara H. The mimetic wing pattern of Papilio polytes butterflies is regulated by a doublesex-orchestrated gene network. Commun Biol 2019; 2:257. [PMID: 31312726 PMCID: PMC6620351 DOI: 10.1038/s42003-019-0510-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 06/18/2019] [Indexed: 12/27/2022] Open
Abstract
The swallowtail butterfly Papilio polytes is sexually dimorphic and exhibits female-limited Batesian mimicry. This species also has two female forms, a non-mimetic form with male-like wing patterns, and a mimetic form resembling an unpalatable model, Pachliopta aristolochiae. The mimicry locus H constitutes a dimorphic Mendelian 'supergene', including a transcription factor gene doublesex (dsx). However, how the mimetic-type dsx (dsx-H) orchestrates the downstream gene network and causes the mimetic traits remains unclear. Here we performed RNA-seq-based gene screening and found that Wnt1 and Wnt6 are up-regulated by dsx-H during the early pupal stage and are involved in the red/white pigmentation and patterning of mimetic female wings. In contrast, a homeobox gene abdominal-A is repressed by dsx-H and involved in the non-mimetic colouration pattern. These findings suggest that dual regulation by dsx-H, induction of mimetic gene networks and repression of non-mimetic gene networks, is essential for the switch from non-mimetic to mimetic pattern in mimetic female wings.
Collapse
Affiliation(s)
- Takuro Iijima
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8562 Japan
| | - Shinichi Yoda
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8562 Japan
| | - Haruhiko Fujiwara
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8562 Japan
| |
Collapse
|
20
|
Nagamine K, Hojoh K, Nagata S, Shintani Y. Rearing Theretra oldenlandiae (Lepidoptera: Sphingidae) Larvae on an Artificial Diet. JOURNAL OF INSECT SCIENCE (ONLINE) 2019; 19:5494807. [PMID: 31115474 PMCID: PMC6529896 DOI: 10.1093/jisesa/iez043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Indexed: 06/09/2023]
Abstract
The hawk moth Theretra oldenlandiae (Fabricius) is an important insect pest because in the larval stage it feeds on agricultural crops and ornamental plants such as the eddoe and garden balsam. In this study, we established methods for rearing T. oldenlandiae in the laboratory using an artificial diet containing dry powder of a wild grass Cayratia japonica (Thunb.) Gagnep. Several artificial diets were tested with different ratios of a commercial diet, Insecta LFM, and the dry leaf powder, and including different antibiotics, and the composition of the standard diet on which larvae performed best was determined. The standard diet contains 20 g of Insecta LFM, 4 g of leaf powder, 100 ml of water, 75 mg of chloramphenicol, and 200 μl of propionic acid. Larvae reared on the standard diet became larger pupae than those reared on C. japonica leaves. This result suggests that the larvae have growth potential that is masked on C. japonica leaves, and that C. japonica may not be the most suitable host species for T. oldenlandiae larvae in terms of nutrient level.
Collapse
Affiliation(s)
- Keisuke Nagamine
- Laboratory of Entomology, Department of Environmental and Horticultural Sciences, Minami Kyushu University, Miyakonojo, Miyazaki, Japan
| | - Keiich Hojoh
- Laboratory of Entomology, Department of Environmental and Horticultural Sciences, Minami Kyushu University, Miyakonojo, Miyazaki, Japan
| | - Suzuka Nagata
- Laboratory of Entomology, Department of Environmental and Horticultural Sciences, Minami Kyushu University, Miyakonojo, Miyazaki, Japan
| | - Yoshinori Shintani
- Laboratory of Entomology, Department of Environmental and Horticultural Sciences, Minami Kyushu University, Miyakonojo, Miyazaki, Japan
| |
Collapse
|
21
|
Asano T, Seto Y, Hashimoto K, Kurushima H. Mini-review an insect-specific system for terrestrialization: Laccase-mediated cuticle formation. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 108:61-70. [PMID: 30904465 DOI: 10.1016/j.ibmb.2019.03.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 03/14/2019] [Accepted: 03/14/2019] [Indexed: 06/09/2023]
Abstract
Insects are often regarded as the most successful group of animals in the terrestrial environment. Their success can be represented by their huge biomass and large impact on ecosystems. Among the factors suggested to be responsible for their success, we focus on the possibility that the cuticle might have affected the process of insects' evolution. The cuticle of insects, like that of other arthropods, is composed mainly of chitin and structural cuticle proteins. However, insects seem to have evolved a specific system for cuticle formation. Oxidation reaction of catecholamines catalyzed by a copper enzyme, laccase, is the key step in the metabolic pathway for hardening of the insect cuticle. Molecular phylogenetic analysis indicates that laccase functioning in cuticle sclerotization has evolved only in insects. In this review, we discuss a theory on how the insect-specific "laccase" function has been advantageous for establishing their current ecological position as terrestrial animals.
Collapse
Affiliation(s)
- Tsunaki Asano
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo, 192-0397, Japan.
| | - Yosuke Seto
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo, 192-0397, Japan
| | - Kosei Hashimoto
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo, 192-0397, Japan
| | - Hiroaki Kurushima
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo, 192-0397, Japan
| |
Collapse
|
22
|
Figon F, Casas J. Ommochromes in invertebrates: biochemistry and cell biology. Biol Rev Camb Philos Soc 2019; 94:156-183. [PMID: 29989284 DOI: 10.1111/brv.12441] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 06/09/2018] [Accepted: 06/12/2018] [Indexed: 01/24/2023]
Abstract
Ommochromes are widely occurring coloured molecules of invertebrates, arising from tryptophan catabolism through the so-called Tryptophan → Ommochrome pathway. They are mainly known to mediate compound eye vision, as well as reversible and irreversible colour patterning. Ommochromes might also be involved in cell homeostasis by detoxifying free tryptophan and buffering oxidative stress. These biological functions are directly linked to their unique chromophore, the phenoxazine/phenothiazine system. The most recent reviews on ommochrome biochemistry were published more than 30 years ago, since when new results on the enzymes of the ommochrome pathway, on ommochrome photochemistry as well as on their antiradical capacities have been obtained. Ommochromasomes are the organelles where ommochromes are synthesised and stored. Hence, they play an important role in mediating ommochrome functions. Ommochromasomes are part of the lysosome-related organelles (LROs) family, which includes other pigmented organelles such as vertebrate melanosomes. Ommochromasomes are unique because they are the only LRO for which a recycling process during reversible colour change has been described. Herein, we provide an update on ommochrome biochemistry, photoreactivity and antiradical capacities to explain their diversity and behaviour both in vivo and in vitro. We also highlight new biochemical techniques, such as quantum chemistry, metabolomics and crystallography, which could lead to major advances in their chemical and functional characterisation. We then focus on ommochromasome structure and formation by drawing parallels with the well-characterised melanosomes of vertebrates. The biochemical, genetic, cellular and microscopic tools that have been applied to melanosomes should provide important information on the ommochromasome life cycle. We propose LRO-based models for ommochromasome biogenesis and recycling that could be tested in the future. Using the context of insect compound eyes, we finally emphasise the importance of an integrated approach in understanding the biological functions of ommochromes.
Collapse
Affiliation(s)
- Florent Figon
- Institut de Recherche sur la Biologie de l'Insecte, UMR CNRS 7261, Université de Tours, 37200 Tours, France
| | - Jérôme Casas
- Institut de Recherche sur la Biologie de l'Insecte, UMR CNRS 7261, Université de Tours, 37200 Tours, France
| |
Collapse
|
23
|
Katoh M, Tatsuta H, Tsuji K. Ultraviolet exposure has an epigenetic effect on a Batesian mimetic trait in the butterfly Papilio polytes. Sci Rep 2018; 8:13416. [PMID: 30194364 PMCID: PMC6128867 DOI: 10.1038/s41598-018-31732-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 08/23/2018] [Indexed: 11/16/2022] Open
Abstract
Wing polymorphism of butterflies provides a good system in which to study adaptation. The Asian Batesian mimic butterfly Papilio polytes has unmelanized, putative mimetic red spots on its black hind wings. The size of those red spots is non-heritable but it is highly polymorphic, the adaptive significance of which is unknown. We hypothesized that under strong ultraviolet (UV) irradiation, butterflies develop a wider melanized black area to protect the wings from UV damage, and as a result express smaller mimetic red spots. Our field survey on Okinawa Island revealed a negative relationship between the sizes of the red spot and the black area in the wings. The size varied seasonally and was negatively correlated with the intensity of solar UV radiation at the time of capture. Laboratory experiments revealed that the size was reduced by strong UV irradiation not only of the eggs and larvae, but also of their mothers through a putative epigenetic mechanism. The flexible phenotypic expression of the red spots in P. polytes suggests a trade-off between protection against UV damage and predation avoidance, and provides a new insight into the evolution of Batesian mimicry.
Collapse
Affiliation(s)
- Mitsuho Katoh
- Department of Agro-Environmental Sciences, Faculty of Agriculture, University of the Ryukyus, Okinawa, 903-0213, Japan.
- The United Graduate School of Agricultural Sciences, Kagoshima University, Korimoto 1-21-24, Kagoshima, 890-8580, Japan.
| | - Haruki Tatsuta
- Department of Agro-Environmental Sciences, Faculty of Agriculture, University of the Ryukyus, Okinawa, 903-0213, Japan
- The United Graduate School of Agricultural Sciences, Kagoshima University, Korimoto 1-21-24, Kagoshima, 890-8580, Japan
| | - Kazuki Tsuji
- Department of Agro-Environmental Sciences, Faculty of Agriculture, University of the Ryukyus, Okinawa, 903-0213, Japan.
- The United Graduate School of Agricultural Sciences, Kagoshima University, Korimoto 1-21-24, Kagoshima, 890-8580, Japan.
| |
Collapse
|
24
|
Palmer DH, Tan YQ, Finkbeiner SD, Briscoe AD, Monteiro A, Kronforst MR. Experimental field tests of Batesian mimicry in the swallowtail butterfly Papilio polytes. Ecol Evol 2018; 8:7657-7666. [PMID: 30151179 PMCID: PMC6106175 DOI: 10.1002/ece3.4207] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/13/2018] [Accepted: 04/19/2018] [Indexed: 11/09/2022] Open
Abstract
The swallowtail butterfly Papilio polytes is known for its striking resemblance in wing pattern to the toxic butterfly Pachliopta aristolochiae and is a focal system for the study of mimicry evolution. Papilio polytes females are polymorphic in wing pattern, with mimetic and nonmimetic forms, while males are monomorphic and nonmimetic. Past work invokes selection for mimicry as the driving force behind wing pattern evolution in P. polytes. However, the mimetic relationship between P. polytes and P. aristolochiae is not well understood. In order to test the mimicry hypothesis, we constructed paper replicas of mimetic and nonmimetic P. polytes and P. aristolochiae, placed them in their natural habitat, and measured bird predation on replicas. In initial trials with stationary replicas and plasticine bodies, overall predation was low and we found no differences in predation between replica types. In later trials with replicas mounted on springs and with live mealworms standing in for the butterfly's body, we found less predation on mimetic P. polytes replicas compared to nonmimetic P. polytes replicas, consistent with the predator avoidance benefits of mimicry. While our results are mixed, they generally lend support to the mimicry hypothesis as well as the idea that behavioral differences between the sexes contributed to the evolution of sexually dimorphic mimicry.
Collapse
Affiliation(s)
- Daniela H. Palmer
- Committee on Evolutionary BiologyUniversity of ChicagoChicagoIllinois
- Department of Ecology and EvolutionUniversity of ChicagoChicagoIllinois
| | - Yue Qian Tan
- Department of Biological SciencesNational University of SingaporeSingaporeSingapore
| | - Susan D. Finkbeiner
- Department of Ecology and EvolutionUniversity of ChicagoChicagoIllinois
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaIrvineCalifornia
| | - Adriana D. Briscoe
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaIrvineCalifornia
| | - Antónia Monteiro
- Department of Biological SciencesNational University of SingaporeSingaporeSingapore
| | - Marcus R. Kronforst
- Committee on Evolutionary BiologyUniversity of ChicagoChicagoIllinois
- Department of Ecology and EvolutionUniversity of ChicagoChicagoIllinois
| |
Collapse
|
25
|
Melanin Pathway Genes Regulate Color and Morphology of Butterfly Wing Scales. Cell Rep 2018; 24:56-65. [DOI: 10.1016/j.celrep.2018.05.092] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/26/2018] [Accepted: 05/29/2018] [Indexed: 02/03/2023] Open
|
26
|
Stavenga DG, Leertouwer HL, Meglič A, Drašlar K, Wehling MF, Pirih P, Belušič G. Classical lepidopteran wing scale colouration in the giant butterfly-moth Paysandisia archon. PeerJ 2018; 6:e4590. [PMID: 29666756 PMCID: PMC5899422 DOI: 10.7717/peerj.4590] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 03/19/2018] [Indexed: 11/30/2022] Open
Abstract
The palm borer moth Paysandisia archon (Castniidae; giant butterfly-moths) has brown dorsal forewings and strikingly orange-coloured dorsal hindwings with white spots surrounded by black margins. Here, we have studied the structure and pigments of the wing scales in the various coloured wing areas, applying light and electron microscopy and (micro)spectrophotometry, and we analysed the spatial reflection properties with imaging scatterometry. The scales in the white spots are unpigmented, those in the black and brown wing areas contain various amounts of melanin, and the orange wing scales contain a blue-absorbing ommochrome pigment. In all scale types, the upper lamina acts as a diffuser and the lower lamina as a thin film interference reflector, with thickness of about 200 nm. Scale stacking plays an important role in creating the strong visual signals: the colour of the white eyespots is created by stacks of unpigmented blue scales, while the orange wing colour is strongly intensified by stacking the orange scales.
Collapse
Affiliation(s)
- Doekele G Stavenga
- Department of Computational Physics, University of Groningen, Groningen, Netherlands
| | - Hein L Leertouwer
- Department of Computational Physics, University of Groningen, Groningen, Netherlands
| | - Andrej Meglič
- Department of Biology, University of Ljubljana, Ljubljana, Slovenia
| | - Kazimir Drašlar
- Department of Biology, University of Ljubljana, Ljubljana, Slovenia
| | | | - Primož Pirih
- Department of Computational Physics, University of Groningen, Groningen, Netherlands
| | - Gregor Belušič
- Department of Biology, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
27
|
Feindt W, Oppenheim SJ, DeSalle R, Goldstein PZ, Hadrys H. Transcriptome profiling with focus on potential key genes for wing development and evolution in Megaloprepus caerulatus, the damselfly species with the world's largest wings. PLoS One 2018; 13:e0189898. [PMID: 29329292 PMCID: PMC5766104 DOI: 10.1371/journal.pone.0189898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 12/04/2017] [Indexed: 11/20/2022] Open
Abstract
The evolution, development and coloration of insect wings remains a puzzling subject in evolutionary research. In basal flying insects such as Odonata, genomic research regarding bauplan evolution is still rare. Here we focus on the world's largest odonate species-the "forest giant" Megaloprepus caerulatus, to explore its potential for looking deeper into the development and evolution of wings. A recently discovered cryptic species complex in this genus previously considered monotypic is characterized by morphological differences in wing shape and color patterns. As a first step toward understanding wing pattern divergence and pathways involved in adaptation and speciation at the genomic level, we present a transcriptome profiling of M. caerulatus using RNA-Seq and compare these data with two other odonate species. The de novo transcriptome assembly consists of 61,560 high quality transcripts and is approximately 93% complete. For almost 75% of the identified transcripts a possible function could be assigned: 48,104 transcripts had a hit to an InterPro protein family or domain, and 28,653 were mapped to a Gene Ontology term. In particular, we focused on genes related to wing development and coloration. The comparison with two other species revealed larva-specific genes and a conserved 'core' set of over 8,000 genes forming orthologous clusters with Ischnura elegans and Ladona fulva. This transcriptome may provide a first point of reference for future research in odonates addressing questions surrounding the evolution of wing development, wing coloration and their role in speciation.
Collapse
Affiliation(s)
- Wiebke Feindt
- University of Veterinary Medicine Hannover, ITZ—Division of Ecology and Evolution, Hannover, Germany
- Leibniz University Hannover, Hannover, Germany
| | - Sara J. Oppenheim
- American Museum of Natural History, Sackler Institute for Comparative Genomics, New York, NY, United States of America
| | - Robert DeSalle
- American Museum of Natural History, Sackler Institute for Comparative Genomics, New York, NY, United States of America
| | - Paul Z. Goldstein
- Systematic Entomology Laboratory (USDA-ARS), National Museum of Natural History, Washington, DC, United States of America
| | - Heike Hadrys
- University of Veterinary Medicine Hannover, ITZ—Division of Ecology and Evolution, Hannover, Germany
- American Museum of Natural History, Sackler Institute for Comparative Genomics, New York, NY, United States of America
- Yale University, Department of Ecology & Evolutionary Biology, New Haven, Connecticut, United States of America
| |
Collapse
|
28
|
Fujiwara H, Nishikawa H. Functional analysis of genes involved in color pattern formation in Lepidoptera. CURRENT OPINION IN INSECT SCIENCE 2016; 17:16-23. [PMID: 27720069 DOI: 10.1016/j.cois.2016.05.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 05/20/2016] [Accepted: 05/20/2016] [Indexed: 05/22/2023]
Abstract
In addition to the genome editing technology, novel functional analyses using electroporation are powerful tools to reveal the gene function in the color pattern formation. Using these methods, several genes involved in various larval color pattern formation are clarified in the silkworm Bombyx mori and some Papilio species. Furthermore, the coloration pattern mechanism underlying the longtime mystery of female-limited Batesian mimicry of Papilio polytes has been recently revealed. This review presents the recent progress on the molecular mechanisms and evolutionary process of coloration patterns contributing to various mimicry in Lepidoptera, especially focusing on the gene function in the silkworm and Papilio species.
Collapse
Affiliation(s)
- Haruhiko Fujiwara
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba 277-8562, Japan.
| | - Hideki Nishikawa
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| |
Collapse
|
29
|
Connahs H, Rhen T, Simmons RB. Transcriptome analysis of the painted lady butterfly, Vanessa cardui during wing color pattern development. BMC Genomics 2016; 17:270. [PMID: 27030049 PMCID: PMC4815134 DOI: 10.1186/s12864-016-2586-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 03/14/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Butterfly wing color patterns are an important model system for understanding the evolution and development of morphological diversity and animal pigmentation. Wing color patterns develop from a complex network composed of highly conserved patterning genes and pigmentation pathways. Patterning genes are involved in regulating pigment synthesis however the temporal expression dynamics of these interacting networks is poorly understood. Here, we employ next generation sequencing to examine expression patterns of the gene network underlying wing development in the nymphalid butterfly, Vanessa cardui. RESULTS We identified 9, 376 differentially expressed transcripts during wing color pattern development, including genes involved in patterning, pigmentation and gene regulation. Differential expression of these genes was highest at the pre-ommochrome stage compared to early pupal and late melanin stages. Overall, an increasing number of genes were down-regulated during the progression of wing development. We observed dynamic expression patterns of a large number of pigment genes from the ommochrome, melanin and also pteridine pathways, including contrasting patterns of expression for paralogs of the yellow gene family. Surprisingly, many patterning genes previously associated with butterfly pattern elements were not significantly up-regulated at any time during pupation, although many other transcription factors were differentially expressed. Several genes involved in Notch signaling were significantly up-regulated during the pre-ommochrome stage including slow border cells, bunched and pebbles; the function of these genes in the development of butterfly wings is currently unknown. Many genes involved in ecdysone signaling were also significantly up-regulated during early pupal and late melanin stages and exhibited opposing patterns of expression relative to the ecdysone receptor. Finally, a comparison across four butterfly transcriptomes revealed 28 transcripts common to all four species that have no known homologs in other metazoans. CONCLUSIONS This study provides a comprehensive list of differentially expressed transcripts during wing development, revealing potential candidate genes that may be involved in regulating butterfly wing patterns. Some differentially expressed genes have no known homologs possibly representing genes unique to butterflies. Results from this study also indicate that development of nymphalid wing patterns may arise not only from melanin and ommochrome pigments but also the pteridine pigment pathway.
Collapse
Affiliation(s)
- Heidi Connahs
- Biology Department, University of North Dakota, Grand Forks, ND, USA. .,Department of Biological Sciences, National University of Singapore, Singapore, Singapore.
| | - Turk Rhen
- Biology Department, University of North Dakota, Grand Forks, ND, USA
| | - Rebecca B Simmons
- Biology Department, University of North Dakota, Grand Forks, ND, USA
| |
Collapse
|
30
|
Cong Q, Grishin NV. The complete mitochondrial genome of Lerema accius and its phylogenetic implications. PeerJ 2016; 4:e1546. [PMID: 26788426 PMCID: PMC4715447 DOI: 10.7717/peerj.1546] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 12/09/2015] [Indexed: 11/23/2022] Open
Abstract
Butterflies and moths (Lepidoptera) are becoming model organisms for genetics and evolutionary biology. Decoding the Lepidoptera genomes, both nuclear and mitochondrial, is an essential step in these studies. Here we describe a protocol to assemble mitogenomes from Next Generation Sequencing reads obtained through whole-genome sequencing and report the 15,338 bp mitogenome of Lerema accius. The mitogenome is AT-rich and encodes 13 proteins, 22 transfer-RNAs, and two ribosomal-RNAs, with a gene order typical for Lepidoptera mitogenomes. A phylogenetic study based on the protein sequences using both Bayesian Inference and Maximum Likelihood methods consistently place Lerema accius with other grass skippers (Hesperiinae).
Collapse
Affiliation(s)
- Qian Cong
- Departments of Biophysics and Biochemistry, University of Texas Southwestern Medical Center , Dallas, TX , United States
| | - Nick V Grishin
- Departments of Biophysics and Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, United States; Howard Hughes Medical Center, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
31
|
Piron Prunier F, Chouteau M, Whibley A, Joron M, Llaurens V. Selection of Valid Reference Genes for Reverse Transcription Quantitative PCR Analysis in Heliconius numata (Lepidoptera: Nymphalidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2016; 16:iew034. [PMID: 27271971 PMCID: PMC4896466 DOI: 10.1093/jisesa/iew034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 04/07/2016] [Indexed: 05/03/2023]
Abstract
Identifying the genetic basis of adaptive variation is challenging in non-model organisms and quantitative real time PCR. is a useful tool for validating predictions regarding the expression of candidate genes. However, comparing expression levels in different conditions requires rigorous experimental design and statistical analyses. Here, we focused on the neotropical passion-vine butterflies Heliconius, non-model species studied in evolutionary biology for their adaptive variation in wing color patterns involved in mimicry and in the signaling of their toxicity to predators. We aimed at selecting stable reference genes to be used for normalization of gene expression data in RT-qPCR analyses from developing wing discs according to the minimal guidelines described in Minimum Information for publication of Quantitative Real-Time PCR Experiments (MIQE). To design internal RT-qPCR controls, we studied the stability of expression of nine candidate reference genes (actin, annexin, eF1α, FK506BP, PolyABP, PolyUBQ, RpL3, RPS3A, and tubulin) at two developmental stages (prepupal and pupal) using three widely used programs (GeNorm, NormFinder and BestKeeper). Results showed that, despite differences in statistical methods, genes RpL3, eF1α, polyABP, and annexin were stably expressed in wing discs in late larval and pupal stages of Heliconius numata This combination of genes may be used as a reference for a reliable study of differential expression in wings for instance for genes involved in important phenotypic variation, such as wing color pattern variation. Through this example, we provide general useful technical recommendations as well as relevant statistical strategies for evolutionary biologists aiming to identify candidate-genes involved adaptive variation in non-model organisms.
Collapse
Affiliation(s)
- Florence Piron Prunier
- Institut de Systématique, Evolution, Biodiversité, ISYEB - UMR 7205, CNRS - Muséum National d'Histoire Naturelle - UPMC - EPHE, Sorbonne Universités, Paris, France, Corresponding author, e-mail: , and Centre d'Ecologie Fonctionnelle et Evolutive, CEFE UMR 5175, CNRS - Université de Montpellier - Université Paul Valéry Montpellier - EPHE, Montpellier 5, France Institut de Systématique, Evolution, Biodiversité, ISYEB - UMR 7205, CNRS - Muséum National d'Histoire Naturelle - UPMC - EPHE, Sorbonne Universités, Paris, France, Corresponding author, e-mail: , and Centre d'Ecologie Fonctionnelle et Evolutive, CEFE UMR 5175, CNRS - Université de Montpellier - Université Paul Valéry Montpellier - EPHE, Montpellier 5, France
| | - Mathieu Chouteau
- Institut de Systématique, Evolution, Biodiversité, ISYEB - UMR 7205, CNRS - Muséum National d'Histoire Naturelle - UPMC - EPHE, Sorbonne Universités, Paris, France, Corresponding author, e-mail: , and Centre d'Ecologie Fonctionnelle et Evolutive, CEFE UMR 5175, CNRS - Université de Montpellier - Université Paul Valéry Montpellier - EPHE, Montpellier 5, France Institut de Systématique, Evolution, Biodiversité, ISYEB - UMR 7205, CNRS - Muséum National d'Histoire Naturelle - UPMC - EPHE, Sorbonne Universités, Paris, France, Corresponding author, e-mail: , and Centre d'Ecologie Fonctionnelle et Evolutive, CEFE UMR 5175, CNRS - Université de Montpellier - Université Paul Valéry Montpellier - EPHE, Montpellier 5, France
| | - Annabel Whibley
- Institut de Systématique, Evolution, Biodiversité, ISYEB - UMR 7205, CNRS - Muséum National d'Histoire Naturelle - UPMC - EPHE, Sorbonne Universités, Paris, France, Corresponding author, e-mail: , and Centre d'Ecologie Fonctionnelle et Evolutive, CEFE UMR 5175, CNRS - Université de Montpellier - Université Paul Valéry Montpellier - EPHE, Montpellier 5, France
| | - Mathieu Joron
- Institut de Systématique, Evolution, Biodiversité, ISYEB - UMR 7205, CNRS - Muséum National d'Histoire Naturelle - UPMC - EPHE, Sorbonne Universités, Paris, France, Corresponding author, e-mail: , and Centre d'Ecologie Fonctionnelle et Evolutive, CEFE UMR 5175, CNRS - Université de Montpellier - Université Paul Valéry Montpellier - EPHE, Montpellier 5, France Institut de Systématique, Evolution, Biodiversité, ISYEB - UMR 7205, CNRS - Muséum National d'Histoire Naturelle - UPMC - EPHE, Sorbonne Universités, Paris, France, Corresponding author, e-mail: , and Centre d'Ecologie Fonctionnelle et Evolutive, CEFE UMR 5175, CNRS - Université de Montpellier - Université Paul Valéry Montpellier - EPHE, Montpellier 5, France
| | - Violaine Llaurens
- Institut de Systématique, Evolution, Biodiversité, ISYEB - UMR 7205, CNRS - Muséum National d'Histoire Naturelle - UPMC - EPHE, Sorbonne Universités, Paris, France, Corresponding author, e-mail: , and Centre d'Ecologie Fonctionnelle et Evolutive, CEFE UMR 5175, CNRS - Université de Montpellier - Université Paul Valéry Montpellier - EPHE, Montpellier 5, France
| |
Collapse
|
32
|
The complete mitochondrial genome of Papilio glaucus and its phylogenetic implications. Meta Gene 2015; 5:68-83. [PMID: 26106582 PMCID: PMC4475787 DOI: 10.1016/j.mgene.2015.05.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 04/19/2015] [Accepted: 05/11/2015] [Indexed: 11/21/2022] Open
Abstract
Due to the intriguing morphology, lifecycle, and diversity of butterflies and moths, Lepidoptera are emerging as model organisms for the study of genetics, evolution and speciation. The progress of these studies relies on decoding Lepidoptera genomes, both nuclear and mitochondrial. Here we describe a protocol to obtain mitogenomes from Next Generation Sequencing reads performed for whole-genome sequencing and report the complete mitogenome of Papilio (Pterourus) glaucus. The circular mitogenome is 15,306 bp in length and rich in A and T. It contains 13 protein-coding genes (PCGs), 22 transfer-RNA-coding genes (tRNA), and 2 ribosomal-RNA-coding genes (rRNA), with a gene order typical for mitogenomes of Lepidoptera. We performed phylogenetic analyses based on PCG and RNA-coding genes or protein sequences using Bayesian Inference and Maximum Likelihood methods. The phylogenetic trees consistently show that among species with available mitogenomes Papilio glaucus is the closest to Papilio (Agehana) maraho from Asia.
Collapse
|
33
|
Abstract
For over 100 years, it has been known that polymorphic mimicry is often switched by simple mendelian factors, yet the physical nature of these loci had escaped characterization. Now, the genome sequences of two swallowtail butterfly (Papilio) species have enabled the precise identification of a locus underlying mimicry, adding to unprecedented recent discoveries in mimicry genetics.
Collapse
Affiliation(s)
- James Mallet
- Department of Organismal and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
34
|
Stavenga DG, Matsushita A, Arikawa K. Combined pigmentary and structural effects tune wing scale coloration to color vision in the swallowtail butterfly Papilio xuthus. ZOOLOGICAL LETTERS 2015; 1:14. [PMID: 26605059 PMCID: PMC4657377 DOI: 10.1186/s40851-015-0015-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 04/02/2015] [Indexed: 05/27/2023]
Abstract
Butterflies have well-developed color vision, presumably optimally tuned to the detection of conspecifics by their wing coloration. Here we investigated the pigmentary and structural basis of the wing colors in the Japanese yellow swallowtail butterfly, Papilio xuthus, applying spectrophotometry, scatterometry, light and electron microscopy, and optical modeling. The about flat lower lamina of the wing scales plays a crucial role in wing coloration. In the cream, orange and black scales, the lower lamina is a thin film with thickness characteristically depending on the scale type. The thin film acts as an interference reflector, causing a structural color that is spectrally filtered by the scale's pigment. In the cream and orange scales, papiliochrome pigment is concentrated in the ridges and crossribs of the elaborate upper lamina. In the black scales the upper lamina contains melanin. The blue scales are unpigmented and their structure differs strongly from those of the pigmented scales. The distinct blue color is created by the combination of an optical multilayer in the lower lamina and a fine-structured upper lamina. The structural and pigmentary scale properties are spectrally closely related, suggesting that they are under genetic control of the same key enzymes. The wing reflectance spectra resulting from the tapestry of scales are well discriminable by the Papilio color vision system.
Collapse
Affiliation(s)
- Doekele G Stavenga
- />Computational Physics, Zernike Institute for Advanced Materials, University of Groningen, Groningen, NL9747AG The Netherlands
| | - Atsuko Matsushita
- />Laboratory of Neuroethology, SOKENDAI (The Graduate University for Advanced Studies), Hayama, 240-0115 Japan
| | - Kentaro Arikawa
- />Laboratory of Neuroethology, SOKENDAI (The Graduate University for Advanced Studies), Hayama, 240-0115 Japan
| |
Collapse
|