1
|
Liu Y, Takamatsu Y, Chen K, Ding Y, Oka Y, Sugiyama T, Maejima H. Skilled reaching training combined with pharmacological inhibition of histone deacetylases potentiated motor recovery after intracerebral hemorrhage in a synergic manner. Brain Res 2025; 1856:149569. [PMID: 40081517 DOI: 10.1016/j.brainres.2025.149569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/19/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
Neuronal recovery after stroke is supported by the expression of genes involved in neuronal plasticity and neuroprotection. As an epigenetic modification, histone acetylation modulates gene expression elicited by neurorehabilitation. This study aimed to investigate the combined effects of skilled reaching training (SRT) and the pharmacological inhibition of histone deacetylase (HDAC) using sodium butyrate (NaB) on motor function recovery after intracerebral hemorrhage (ICH). Wistar rats were divided into five groups: Sham, ICH, ICH plus SRT (ICH + SRT), ICH plus NaB administration (ICH + NaB), and ICH plus SRT plus NaB administration (ICH + SRT + NaB). ICH surgery was conducted based on the microinjection of collagenase into the striatum near the internal capsule. NaB treatment (300 mg/kg injected intraperitoneally) and SRT were performed five days a week for four weeks after ICH surgery, followed by tissue collection. After the intervention, the ICH + SRT + NaB group exhibited significant improvement in skilled motor function, accompanied by a significant increase in neurotrophin 4 and synaptophysin expression in the ipsilateral motor cortex. This study showed that combination therapy of SRT and HDAC inhibition synergistically promoted motor recovery after ICH, accompanied by the upregulation of crucial genes for neuroplasticity. Taken together, this study indicates that HDAC inhibition could represent an enriched neuronal platform for neurorehabilitation after ICH.
Collapse
Affiliation(s)
- Yushan Liu
- Graduate School of Health Sciences, Hokkaido University, Kita 12 Nishi 5, Kita-ku, Sapporo 060-0812, Japan
| | - Yasuyuki Takamatsu
- Department of Rehabilitation Science, Faculty of Health Sciences, Hokkaido University, Kita 12 Nishi 5, Kita-ku, Sapporo 060-0812, Japan; Department of Physical Therapy, College of Life and Health Sciences, Chubu University, 1200 Matsumoto-cho, Kasugai 487-8501, Japan
| | - Ke Chen
- Graduate School of Health Sciences, Hokkaido University, Kita 12 Nishi 5, Kita-ku, Sapporo 060-0812, Japan
| | - Yuan Ding
- Graduate School of Health Sciences, Hokkaido University, Kita 12 Nishi 5, Kita-ku, Sapporo 060-0812, Japan
| | - Yuichiro Oka
- Department of Rehabilitation Science, Faculty of Health Sciences, Hokkaido University, Kita 12 Nishi 5, Kita-ku, Sapporo 060-0812, Japan
| | - Takuya Sugiyama
- Graduate School of Health Sciences, Hokkaido University, Kita 12 Nishi 5, Kita-ku, Sapporo 060-0812, Japan
| | - Hiroshi Maejima
- Department of Rehabilitation Science, Faculty of Health Sciences, Hokkaido University, Kita 12 Nishi 5, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|
2
|
Gupta AK, Gupta S, Mehan S, Khan Z, Das Gupta G, Narula AS. Exploring the Connection Between BDNF/TrkB and AC/cAMP/PKA/CREB Signaling Pathways: Potential for Neuroprotection and Therapeutic Targets for Neurological Disorders. Mol Neurobiol 2025:10.1007/s12035-025-05001-5. [PMID: 40342191 DOI: 10.1007/s12035-025-05001-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 04/24/2025] [Indexed: 05/11/2025]
Abstract
The BDNF/TrkB and AC/cAMP/PKA/CREB signaling pathways play a vital role in neuroplasticity, neuronal survival, and cognitive functions. This review explores its physiological and pathological implications in neurological disorders, with a focus on neurodegenerative diseases (NDDs) and neuropsychiatric disorders (NPDs). Neurological conditions increasingly burden public health, making understanding the biochemical mechanisms that underpin these diseases critical. BDNF, a neurotrophic factor, binds to the TrkB receptor, activating multiple intracellular signaling cascades that regulate cellular responses essential for neurogenesis, memory, and learning. Dysregulation within this pathway has been linked to various NDDs, as well as NPDs. Key components of the path, including adenylyl cyclase and cyclic AMP, mediate the effects of neurotransmitters and growth factors, influencing downstream targets like PKA and CREB, which are crucial for gene expression and synaptic changes. Furthermore, the review discusses the challenges of targeting this pathway for therapeutic interventions, including receptor isoform diversity, blood-brain barrier penetration, and potential side effects. Future strategies may include the development of selective TrkB modulators, nanoparticle carriers for drug delivery, and innovative gene therapy techniques. Advancing the understanding of this complex signaling network holds promise for effective interventions in treating neurological and psychiatric disorders, ultimately enhancing neuroprotection and cognitive resilience.
Collapse
Affiliation(s)
- Abhishek Kumar Gupta
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
- Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India
| | - Sumedha Gupta
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
- Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India.
- Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India.
| | - Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
- Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India
| | - Ghanshyam Das Gupta
- Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC, 27516, USA
| |
Collapse
|
3
|
La Loggia O, Antunes DF, Aubin-Horth N, Taborsky B. Social Complexity During Early Development has Long-Term Effects on Neuroplasticity in the Social Decision-Making Network. Mol Ecol 2025; 34:e17738. [PMID: 40116137 DOI: 10.1111/mec.17738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 03/07/2025] [Accepted: 03/10/2025] [Indexed: 03/23/2025]
Abstract
In social species, early social experience shapes the development of appropriate social behaviours during conspecific interactions referred to as social competence. However, the underlying neuronal mechanisms responsible for the acquisition of social competence are largely unknown. A key candidate to influence social competence is neuroplasticity, which functions to restructure neural networks in response to novel experiences or alterations of the environment. One important mediator of this restructuring is the neurotrophin BDNF, which is well conserved among vertebrates. We studied the highly social fish Neolamprologus pulcher, in which the impact of early social experience on social competence has been previously shown. We investigated experimentally how variation in the early social environment impacts markers of neuroplasticity by analysing the relative expression of the bdnf gene and its receptors p75NTR and TrkB across nodes of the social decision-making network. In fish raised in larger groups, bdnf and TrkB were upregulated in the anterior tuberal nucleus, compared to fish raised in smaller groups, while TrkB was downregulated and bdnf was upregulated in the lateral part of the dorsal telencephalon. In the preoptic area (POA), all three genes were upregulated in fish raised in large groups, suggesting that early social experiences might lead to changes of the neuronal connectivity in the POA. Our results highlight the importance of early social experience in programming the constitutive expression of neuroplasticity markers, suggesting that the effects of early social experience on social competence might be due to changes in neuroplasticity.
Collapse
Affiliation(s)
- Océane La Loggia
- Institute for Ecology and Evolution, Behavioural Ecology Division, University of Bern, Bern, Switzerland
| | - Diogo F Antunes
- Institute for Ecology and Evolution, Behavioural Ecology Division, University of Bern, Bern, Switzerland
| | - Nadia Aubin-Horth
- Département de Biologie and Institut de Biologie Intégrative et Des Systèmes, Université Laval, Quebec, Canada
| | - Barbara Taborsky
- Institute for Ecology and Evolution, Behavioural Ecology Division, University of Bern, Bern, Switzerland
| |
Collapse
|
4
|
Bouhaddou N, Mabrouk M, Atifi F, Bouyahya A, Zaid Y. The link between BDNF and platelets in neurological disorders. Heliyon 2024; 10:e39278. [PMID: 39568824 PMCID: PMC11577193 DOI: 10.1016/j.heliyon.2024.e39278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 11/22/2024] Open
Abstract
Platelets are considered one of the most important reservoirs not only of growth factors, but also of neurotrophic factors that could contribute to the repair of vascular lesions and the prevention of neurological deterioration. Among these factors, Brain-Derived Neurotrophic Factor (BDNF) - a protein belonging to the neurotrophin family - is widely expressed both in the hippocampus and in platelets. Platelets constitute an important reservoir of BDNF; however, little is known about the factors modulating its release into the circulation and whether anti-platelet drugs affect this secretion. In this review, we have discussed the link between BDNF and platelets and their role in neurological disorders.
Collapse
Affiliation(s)
- Nezha Bouhaddou
- Physiology and Physiopathology Team, Genomics of Human Pathologies Research Center, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Meryem Mabrouk
- Laboratory of Materials, Nanotechnology and Environment, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Farah Atifi
- Laboratory of Materials, Nanotechnology and Environment, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Younes Zaid
- Laboratory of Materials, Nanotechnology and Environment, Faculty of Sciences, Mohammed V University, Rabat, Morocco
- Immunology and Biodiversity Laboratory, Department of Biology, Faculty of Sciences, Hassan II University, Casablanca, Morocco
| |
Collapse
|
5
|
Gellé T, Vinais T, Lacroix A, Plansont B, Nubukpo P, Girard M. Serum BDNF and pro-BDNF levels in alcohol use disorders according to depression status: An exploratory study of their evolution two months after withdrawal. Heliyon 2024; 10:e38940. [PMID: 39430530 PMCID: PMC11490827 DOI: 10.1016/j.heliyon.2024.e38940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 09/25/2024] [Accepted: 10/02/2024] [Indexed: 10/22/2024] Open
Abstract
Background Alcohol use disorders (AUDs) are complex pathologies with a myriad of molecular actors involved in both disease progression and remission. Brain-derived neurotrophic factor (BDNF) is suspected to be one such actor due to its neurotrophic effects. The BDNF precursor, pro-BDNF, has different effects, as it mainly promotes neuronal apoptosis. Both forms also play a role in depression and depressive episodes (DE). The aim of this exploratory study was to compare serum BDNF and pro-BDNF levels in patients with AUDs after withdrawal and according to DE status with those of controls without AUDs or DE. Materials and methods Ninety-nine AUD patients and 40 controls were included. Questionnaires were used to assess both alcohol and psychiatric domains: the severity of hazardous alcohol consumption was assessed using Alcohol Use Disorders Identification Test (AUDIT), craving was assessed using Obsessive and Compulsive Drinking Scale (OCDS), anxiety was assessed with Hamilton Anxiety Rating Scale (HAM-A) and depression with Montgomery-Åsberg Depression Rating Scale (MADRS). Blood samples were collected during two visits: at the time of alcohol withdrawal (M0) and two months later (M2). ELISAs to measure serum BDNF and pro-BDNF levels were performed. AUD patients were categorized according to depression status at M2. Forty-five patients remained abstinent whereas 54 relapsed. BDNF serum levels rose after alcohol withdrawal, but pro-BDNF levels did not vary between M0 and M2. Results AUD subjects without DE at M2 had higher BDNF levels at both M0 and M2 than AUD subjects with DE at M2. AUD subjects showed lower MADRS and OCD scores at M2 than at M0. AUD subjects without DE had lower BDNF levels at M0 than controls but not at M2, regardless of abstinence maintenance. Conclusion BDNF serum levels were reduced in AUD patients compared to controls and were further reduced in patients with both AUDs and DE. Alcohol withdrawal treatment was sufficient to induce an increase in serum BDNF levels after 2 months, regardless of whether abstinence was maintained during this time period.
Collapse
Affiliation(s)
- Thibaut Gellé
- Inserm U1094, IRD UMR270, Univ. Limoges, CHU Limoges, EpiMaCT - Epidemiology of chronic diseases in tropical zone, Institute of Epidemiology and Tropical Neurology, OmegaHealth, Limoges, France
| | - Théodore Vinais
- Inserm U1094, IRD UMR270, Univ. Limoges, CHU Limoges, EpiMaCT - Epidemiology of chronic diseases in tropical zone, Institute of Epidemiology and Tropical Neurology, OmegaHealth, Limoges, France
- Research and Innovation Unit, Esquirol Hospital, 87025, Limoges, France
| | - Aurélie Lacroix
- Inserm U1094, IRD UMR270, Univ. Limoges, CHU Limoges, EpiMaCT - Epidemiology of chronic diseases in tropical zone, Institute of Epidemiology and Tropical Neurology, OmegaHealth, Limoges, France
- Research and Innovation Unit, Esquirol Hospital, 87025, Limoges, France
| | - Brigitte Plansont
- Research and Innovation Unit, Esquirol Hospital, 87025, Limoges, France
| | - Philippe Nubukpo
- Inserm U1094, IRD UMR270, Univ. Limoges, CHU Limoges, EpiMaCT - Epidemiology of chronic diseases in tropical zone, Institute of Epidemiology and Tropical Neurology, OmegaHealth, Limoges, France
- Research and Innovation Unit, Esquirol Hospital, 87025, Limoges, France
| | - Murielle Girard
- Research and Innovation Unit, Esquirol Hospital, 87025, Limoges, France
| |
Collapse
|
6
|
Ikenouchi A, Okamoto N, Hamada S, Chibaatar E, Fujii R, Konishi Y, Igata R, Tesen H, Yoshimura R. Association between salivary mature brain-derived neurotrophic factor and psychological distress in healthcare workers. Brain Behav 2023; 13:e3278. [PMID: 37822121 PMCID: PMC10726813 DOI: 10.1002/brb3.3278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/28/2023] [Accepted: 09/28/2023] [Indexed: 10/13/2023] Open
Abstract
INTRODUCTION Previous studies have suggested association between brain-derived neurotrophic factor (BDNF) and the stress level of workers. However, no studies have investigated the potential of salivary mature BDNF (mBDNF) level as a noninvasive biomarker for psychological distress. This study aimed to explore the reliability of salivary mBDNF as a biomarker for psychological distress in healthcare workers. Furthermore, we examined the relationship between salivary and plasma mBDNF levels and their correlation with age, sex, body mass index (BMI), and exercise habits. METHODS Fifty-one healthy healthcare workers (26 men) from the University of Occupational and Environmental Health, Japan, participated in this study. In this cross-sectional study, participants provided demographic information. Psychological distress was assessed using the Kessler 6 (K6). Saliva and blood samples were collected, and mBDNF was measured by ELISA. Spearman's rank correlation coefficient was performed to analyze the relationship between mBDNF (saliva and plasma) and K6. Statistical analyses were conducted using Stata 17.0, and a significance level of p < .05 was applied. RESULTS The median K6 score was 1 (interquartile range [IQR]: 0-3). The median (IQR) salivary mBDNF was 1.36 (1.12-1.96) pg/mL, whereas the mean (standard deviation) plasma mBDNF was 1261.11 (242.98) pg/mL. No correlation was observed between salivary and plasma mBDNF concentrations or with the K6 score. Additionally, there were no associations between salivary or plasma mBDNF concentrations and age, sex, or exercise habits. Finally, an association between plasma mBDNF concentration and BMI was found only in univariate analysis. CONCLUSION Our findings indicate that salivary mBDNF can be accurately measured noninvasively in healthcare workers. Within our study sample, salivary mBDNF did not demonstrate any correlation with K6 and plasma mBDNF. Future studies with a larger study sample and a diverse study population consisting of healthy participants and patients with psychiatric disorders are warranted.
Collapse
Affiliation(s)
- Atsuko Ikenouchi
- Department of PsychiatryUniversity of Occupational and Environmental Health, JapanKitakyushuJapan
- Medical Center for DementiaHospital of University of Occupational and Environmental Health, JapanKitakyushuJapan
| | - Naomichi Okamoto
- Department of PsychiatryUniversity of Occupational and Environmental Health, JapanKitakyushuJapan
| | - Shinsuke Hamada
- Department of PsychiatryUniversity of Occupational and Environmental Health, JapanKitakyushuJapan
- Medical Center for DementiaHospital of University of Occupational and Environmental Health, JapanKitakyushuJapan
| | - Enkhmurun Chibaatar
- Department of PsychiatryUniversity of Occupational and Environmental Health, JapanKitakyushuJapan
| | - Rintaro Fujii
- Department of PsychiatryUniversity of Occupational and Environmental Health, JapanKitakyushuJapan
| | - Yuki Konishi
- Department of PsychiatryUniversity of Occupational and Environmental Health, JapanKitakyushuJapan
| | - Ryohei Igata
- Department of PsychiatryUniversity of Occupational and Environmental Health, JapanKitakyushuJapan
| | - Hirofumi Tesen
- Department of PsychiatryUniversity of Occupational and Environmental Health, JapanKitakyushuJapan
| | - Reiji Yoshimura
- Department of PsychiatryUniversity of Occupational and Environmental Health, JapanKitakyushuJapan
| |
Collapse
|
7
|
Griego E, Galván EJ. BDNF and Lactate as Modulators of Hippocampal CA3 Network Physiology. Cell Mol Neurobiol 2023; 43:4007-4022. [PMID: 37874456 PMCID: PMC11407739 DOI: 10.1007/s10571-023-01425-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 10/14/2023] [Indexed: 10/25/2023]
Abstract
Growing evidence supports the notion that brain-derived neurotrophic factor (BDNF) and lactate are potent modulators of mammalian brain function. The modulatory actions of those biomolecules influence a wide range of neuronal responses, from the shaping of neuronal excitability to the induction and expression of structural and synaptic plasticity. The biological actions of BDNF and lactate are mediated by their cognate receptors and specific transporters located in the neuronal membrane. Canonical functions of BDNF occur via the tropomyosin-related kinase B receptor (TrkB), whereas lactate acts via monocarboxylate transporters or the hydroxycarboxylic acid receptor 1 (HCAR1). Both receptors are highly expressed in the central nervous system, and some of their physiological actions are particularly well characterized in the hippocampus, a brain structure involved in the neurophysiology of learning and memory. The multifarious neuronal circuitry between the axons of the dentate gyrus granule cells, mossy fibers (MF), and pyramidal neurons of area CA3 is of great interest given its role in specific mnemonic processes and involvement in a growing number of brain disorders. Whereas the modulation exerted by BDNF via TrkB has been extensively studied, the influence of lactate via HCAR1 on the properties of the MF-CA3 circuit is an emerging field. In this review, we discuss the role of both systems in the modulation of brain physiology, with emphasis on the hippocampal CA3 network. We complement this review with original data that suggest cross-modulation is exerted by these two independent neuromodulatory systems.
Collapse
Affiliation(s)
- Ernesto Griego
- Departamento de Farmacobiología, Cinvestav Sur, Mexico City, Mexico.
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, USA.
- Departamento de Farmacobiología, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Calzada de los Tenorios No. 235, Col. Granjas Coapa, C.P. 14330, Mexico City, Mexico.
| | - Emilio J Galván
- Departamento de Farmacobiología, Cinvestav Sur, Mexico City, Mexico
- Centro de Investigaciones sobre el Envejecimiento, Mexico City, Mexico
| |
Collapse
|
8
|
Sochal M, Ditmer M, Binienda A, Gabryelska A, Białasiewicz P, Talar-Wojnarowska R, Fichna J, Małecka-Wojciesko E. Relation between Selected Sleep Parameters, Depression, Anti-Tumor Necrosis Factor Therapy, and the Brain-Derived Neurotrophic Factor Pathway in Inflammatory Bowel Disease. Metabolites 2023; 13:450. [PMID: 36984890 PMCID: PMC10056410 DOI: 10.3390/metabo13030450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Inflammatory bowel disease (IBD) patients often have sleep and mood disorders. Brain-derived neurotrophic factor (BDNF) and proBDNF were shown to modulate interactions between the central nervous system and the gastrointestinal tract, possibly contributing to psychological issues. Anti-tumor necrosis factor (TNF) therapy in IBD can alter BDNF expression and further affect the brain-gut axis. Eighty IBD patients and 44 healthy controls (HCs) were enrolled and divided into subsets based on disease activity and condition (ulcerative colitis (UC)/Crohn's disease (CD)). Questionnaires evaluating sleep parameters and depression as well as venous blood were collected. The IBD group had a lower expression of BDNF mRNA, but higher proBDNF and BDNF protein concentration than HCs. The UC group had a higher BDNF protein concentration than the CD. BDNF protein was positively correlated to sleep efficiency in the IBD group. Depression severity was associated positively with BDNF mRNA and negatively with BDNF protein in the remission group. Anti-TNF therapy enhanced BDNF mRNA expression. The BDNF pathway might be disturbed in IBD, linking it to sleep disorders and depression. Systemic inflammation could be the main cause of this disruption. BDNF mRNA is a more reliable parameter than protein due to numerous post-translational modifications.
Collapse
Affiliation(s)
- Marcin Sochal
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 90-419 Lodz, Poland
| | - Marta Ditmer
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 90-419 Lodz, Poland
| | - Agata Binienda
- Department of Biochemistry, Medical University of Lodz, 90-419 Lodz, Poland
| | - Agata Gabryelska
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 90-419 Lodz, Poland
| | - Piotr Białasiewicz
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 90-419 Lodz, Poland
| | | | - Jakub Fichna
- Department of Biochemistry, Medical University of Lodz, 90-419 Lodz, Poland
| | - Ewa Małecka-Wojciesko
- Department of Digestive Tract Diseases, Medical University of Lodz, 92-215 Lodz, Poland
| |
Collapse
|
9
|
Sochal M, Ditmer M, Gabryelska A, Białasiewicz P. The Role of Brain-Derived Neurotrophic Factor in Immune-Related Diseases: A Narrative Review. J Clin Med 2022; 11:6023. [PMID: 36294343 PMCID: PMC9604720 DOI: 10.3390/jcm11206023] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 07/26/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is a neurotrophin regulating synaptic plasticity, neuronal excitability, and nociception. It seems to be one of the key molecules in interactions between the central nervous system and immune-related diseases, i.e., diseases with an inflammatory background of unknown etiology, such as inflammatory bowel diseases or rheumatoid arthritis. Studies show that BDNF levels might change in the tissues and serum of patients during the course of these conditions, e.g., affecting cell survival and modulating pain severity and signaling pathways involving different neurotransmitters. Immune-related conditions often feature psychiatric comorbidities, such as sleep disorders (e.g., insomnia) and symptoms of depression/anxiety; BDNF may be related as well to them as it seems to exert an influence on sleep structure; studies also show that patients with psychiatric disorders have decreased BDNF levels, which increase after treatment. BDNF also has a vital role in nociception, particularly in chronic pain, hyperalgesia, and allodynia, participating in the formation of central hypersensitization. In this review, we summarize the current knowledge on BDNF's function in immune-related diseases, sleep, and pain. We also discuss how BDNF is affected by treatment and what consequences these changes might have beyond the nervous system.
Collapse
|
10
|
Szarowicz CA, Steece-Collier K, Caulfield ME. New Frontiers in Neurodegeneration and Regeneration Associated with Brain-Derived Neurotrophic Factor and the rs6265 Single Nucleotide Polymorphism. Int J Mol Sci 2022; 23:8011. [PMID: 35887357 PMCID: PMC9319713 DOI: 10.3390/ijms23148011] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/20/2022] Open
Abstract
Brain-derived neurotrophic factor is an extensively studied neurotrophin implicated in the pathology of multiple neurodegenerative and psychiatric disorders including, but not limited to, Parkinson's disease, Alzheimer's disease, Huntington's disease, traumatic brain injury, major de-pressive disorder, and schizophrenia. Here we provide a brief summary of current knowledge on the role of BDNF and the common human single nucleotide polymorphism, rs6265, in driving the pathogenesis and rehabilitation in these disorders, as well as the status of BDNF-targeted therapies. A common trend has emerged correlating low BDNF levels, either detected within the central nervous system or peripherally, to disease states, suggesting that BDNF replacement therapies may hold clinical promise. In addition, we introduce evidence for a distinct role of the BDNF pro-peptide as a biologically active ligand and the need for continuing studies on its neurological function outside of that as a molecular chaperone. Finally, we highlight the latest research describing the role of rs6265 expression in mechanisms of neurodegeneration as well as paradoxical advances in the understanding of this genetic variant in neuroregeneration. All of this is discussed in the context of personalized medicine, acknowledging there is no "one size fits all" therapy for neurodegenerative or psychiatric disorders and that continued study of the multiple BDNF isoforms and genetic variants represents an avenue for discovery ripe with therapeutic potential.
Collapse
Affiliation(s)
- Carlye A. Szarowicz
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; (C.A.S.); (K.S.-C.)
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | - Kathy Steece-Collier
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; (C.A.S.); (K.S.-C.)
| | - Margaret E. Caulfield
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; (C.A.S.); (K.S.-C.)
| |
Collapse
|
11
|
Lucaci AG, Notaras MJ, Kosakovsky Pond SL, Colak D. The evolution of BDNF is defined by strict purifying selection and prodomain spatial coevolution, but what does it mean for human brain disease? Transl Psychiatry 2022; 12:258. [PMID: 35732627 PMCID: PMC9217794 DOI: 10.1038/s41398-022-02021-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/24/2022] [Accepted: 06/07/2022] [Indexed: 11/09/2022] Open
Abstract
Brain-Derived Neurotrophic Factor (BDNF) is an essential mediator of brain assembly, development, and maturation. BDNF has been implicated in a variety of brain disorders such as neurodevelopmental disorders (e.g., autism spectrum disorder), neuropsychiatric disorders (e.g., anxiety, depression, PTSD, and schizophrenia), and various neurodegenerative disorders (e.g., Parkinson's, Alzheimer's, etc.). To better understand the role of BDNF in disease, we sought to define the evolution of BDNF within Mammalia. We conducted sequence alignment and phylogenetic reconstruction of BDNF across a diverse selection of >160 mammalian species spanning ~177 million years of evolution. The selective evolutionary change was examined via several independent computational models of codon evolution including FEL (pervasive diversifying selection), MEME (episodic selection), and BGM (structural coevolution of sites within a single molecule). We report strict purifying selection in the main functional domain of BDNF (NGF domain, essentially comprising the mature BDNF protein). Additionally, we discover six sites in our homologous alignment which are under episodic selection in early regulatory regions (i.e. the prodomain) and 23 pairs of coevolving sites that are distributed across the entirety of BDNF. Coevolving BDNF sites exhibited complex spatial relationships and geometric features including triangular relations, acyclic graph networks, double-linked sites, and triple-linked sites, although the most notable pattern to emerge was that changes in the mature region of BDNF tended to coevolve along with sites in the prodomain. Thus, we propose that the discovery of both local and distal sites of coevolution likely reflects 'evolutionary fine-tuning' of BDNF's underlying regulation and function in mammals. This tracks with the observation that BDNF's mature domain (which encodes mature BDNF protein) is largely conserved, while the prodomain (which is linked to regulation and its own unique functionality) exhibits more pervasive and diversifying evolutionary selection. That said, the fact that negative purifying selection also occurs in BDNF's prodomain also highlights that this region also contains critical sites of sensitivity which also partially explains its disease relevance (via Val66Met and other prodomain variants). Taken together, these computational evolutionary analyses provide important context as to the origins and sensitivity of genetic changes within BDNF that may help to deconvolute the role of BDNF polymorphisms in human brain disorders.
Collapse
Affiliation(s)
- Alexander G. Lucaci
- grid.264727.20000 0001 2248 3398Institute for Genomics and Evolutionary Medicine, Science & Education Research Center, Temple University, Philadelphia, PA USA
| | - Michael J. Notaras
- grid.5386.8000000041936877XCenter for Neurogenetics, Brain & Mind Research Institute, Weill Medical College, Cornell University, New York, New York, USA
| | - Sergei L. Kosakovsky Pond
- grid.264727.20000 0001 2248 3398Institute for Genomics and Evolutionary Medicine, Science & Education Research Center, Temple University, Philadelphia, PA USA
| | - Dilek Colak
- Center for Neurogenetics, Brain & Mind Research Institute, Weill Medical College, Cornell University, New York, New York, USA. .,Gale and Ira Drukier Institute for Children's Health, Weill Cornell Medical College, Cornell University, New York, NY, USA.
| |
Collapse
|
12
|
Azman KF, Zakaria R. Recent Advances on the Role of Brain-Derived Neurotrophic Factor (BDNF) in Neurodegenerative Diseases. Int J Mol Sci 2022; 23:6827. [PMID: 35743271 PMCID: PMC9224343 DOI: 10.3390/ijms23126827] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 02/04/2023] Open
Abstract
Neurotrophins, such as brain-derived neurotrophic factor (BDNF), are essential for neuronal survival and growth. The signaling cascades initiated by BDNF and its receptor are the key regulators of synaptic plasticity, which plays important role in learning and memory formation. Changes in BDNF levels and signaling pathways have been identified in several neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and Huntington's disease, and have been linked with the symptoms and course of these diseases. This review summarizes the current understanding of the role of BDNF in several neurodegenerative diseases, as well as the underlying molecular mechanism. The therapeutic potential of BDNF treatment is also discussed, in the hope of discovering new avenues for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Khairunnuur Fairuz Azman
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia;
| | | |
Collapse
|
13
|
Fading memories in aging and neurodegeneration: Is p75 neurotrophin receptor a culprit? Ageing Res Rev 2022; 75:101567. [PMID: 35051645 DOI: 10.1016/j.arr.2022.101567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/12/2021] [Accepted: 01/12/2022] [Indexed: 11/22/2022]
Abstract
Aging and age-related neurodegenerative diseases have become one of the major concerns in modern times as cognitive abilities tend to decline when we get older. It is well known that the main cause of this age-related cognitive deficit is due to aberrant changes in cellular, molecular circuitry and signaling pathways underlying synaptic plasticity and neuronal connections. The p75 neurotrophin receptor (p75NTR) is one of the important mediators regulating the fate of the neurons in the nervous system. Its importance in neuronal apoptosis is well documented. However, the mechanisms involving the regulation of p75NTR in synaptic plasticity and cognitive function remain obscure, although cognitive impairment has been associated with a higher expression of p75NTR in neurons. In this review, we discuss the current understanding of how neurons are influenced by p75NTR function to maintain normal neuronal synaptic strength and connectivity, particularly to support learning and memory in the hippocampus. We then discuss the age-associated alterations in neurophysiological mechanisms of synaptic plasticity and cognitive function. Furthermore, we also describe current evidence that has begun to elucidate how p75NTR regulates synaptic changes in aging and age-related neurodegenerative diseases, focusing on the hippocampus. Elucidating the role that p75NTR signaling plays in regulating synaptic plasticity will contribute to a better understanding of cognitive processes and pathological conditions. This will in turn provide novel approaches to improve therapies for the treatment of neurological diseases in which p75NTR dysfunction has been demonstrated.
Collapse
|
14
|
Prestigio C, Ferrante D, Marte A, Romei A, Lignani G, Onofri F, Valente P, Benfenati F, Baldelli P. REST/NRSF drives homeostatic plasticity of inhibitory synapses in a target-dependent fashion. eLife 2021; 10:e69058. [PMID: 34855580 PMCID: PMC8639147 DOI: 10.7554/elife.69058] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 11/22/2021] [Indexed: 12/31/2022] Open
Abstract
The repressor-element 1-silencing transcription/neuron-restrictive silencer factor (REST/NRSF) controls hundreds of neuron-specific genes. We showed that REST/NRSF downregulates glutamatergic transmission in response to hyperactivity, thus contributing to neuronal homeostasis. However, whether GABAergic transmission is also implicated in the homeostatic action of REST/NRSF is unknown. Here, we show that hyperactivity-induced REST/NRSF activation, triggers a homeostatic rearrangement of GABAergic inhibition, with increased frequency of miniature inhibitory postsynaptic currents (IPSCs) and amplitude of evoked IPSCs in mouse cultured hippocampal neurons. Notably, this effect is limited to inhibitory-onto-excitatory neuron synapses, whose density increases at somatic level and decreases in dendritic regions, demonstrating a complex target- and area-selectivity. The upscaling of perisomatic inhibition was occluded by TrkB receptor inhibition and resulted from a coordinated and sequential activation of the Npas4 and Bdnf gene programs. On the opposite, the downscaling of dendritic inhibition was REST-dependent, but BDNF-independent. The findings highlight the central role of REST/NRSF in the complex transcriptional responses aimed at rescuing physiological levels of network activity in front of the ever-changing environment.
Collapse
Affiliation(s)
- Cosimo Prestigio
- Department of Experimental Medicine, University of GenovaGenovaItaly
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di TecnologiaGenovaItaly
| | - Daniele Ferrante
- Department of Experimental Medicine, University of GenovaGenovaItaly
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di TecnologiaGenovaItaly
| | - Antonella Marte
- Department of Experimental Medicine, University of GenovaGenovaItaly
| | - Alessandra Romei
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di TecnologiaGenovaItaly
| | - Gabriele Lignani
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, Queen Square HouseLondonUnited Kingdom
| | - Franco Onofri
- Department of Experimental Medicine, University of GenovaGenovaItaly
- IRCCS, Ospedale Policlinico San MartinoGenovaItaly
| | - Pierluigi Valente
- Department of Experimental Medicine, University of GenovaGenovaItaly
- IRCCS, Ospedale Policlinico San MartinoGenovaItaly
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di TecnologiaGenovaItaly
- IRCCS, Ospedale Policlinico San MartinoGenovaItaly
| | - Pietro Baldelli
- Department of Experimental Medicine, University of GenovaGenovaItaly
- IRCCS, Ospedale Policlinico San MartinoGenovaItaly
| |
Collapse
|
15
|
Ma W, Yang JW, Wang XB, Luo T, Zhou L, Lagares A, Li H, Liang Z, Liu KP, Zang CH, Li CY, Wu Z, Guo JH, Zhou XF, Li LY. Negative regulation by proBDNF signaling of peripheral neurogenesis in the sensory ganglia of adult rats. Biomed Pharmacother 2021; 144:112273. [PMID: 34700232 DOI: 10.1016/j.biopha.2021.112273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 12/31/2022] Open
Abstract
Neurogenesis in the adult brain is well recognized and plays a critical role in the maintenance of brain function and homeostasis. However, whether neurogenesis also occurs in the adult peripheral nervous system remains unknown. Here, using sensory ganglia (dorsal root ganglia, DRGs) as a model, we show that neurogenesis also occurs in the peripheral nervous system, but in a manner different from that in the central nervous system. Satellite glial cells (SGCs) express the neuronal precursor markers Nestin, POU domain, class 4, transcription factor 1, and p75 pan-neurotrophin receptor. Following sciatic nerve injury, the suppression of endogenous proBDNF by proBDNF antibodies resulted in the transformation of proliferating SGCs into doublecortin-positive cells in the DRGs. Using purified SGCs migrating out from the DRGs, the inhibition of endogenous proBDNF promoted the conversion of SGCs into neuronal phenotypes in vitro. Our findings suggest that SGCs are neuronal precursors, and that proBDNF maintains the SGC phenotype. Furthermore, the suppression of proBDNF signaling is necessary for neuronal phenotype acquisition by SGCs. Thus, we propose that peripheral neurogenesis may occur via the direct conversion of SGCs into neurons, and that this process is negatively regulated by proBDNF.
Collapse
Affiliation(s)
- Wei Ma
- Institute of Neuroscience, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Jin-Wei Yang
- Second Department of General Surgery, First People's Hospital of Yunnan Province, Kunming 650032, Yunnan, China
| | - Xian-Bin Wang
- Institute of Neuroscience, Kunming Medical University, Kunming 650500, Yunnan, China; Department of Rehabilitation Medicine, Guizhou Medical University, Guiyang 550000, Guizhou, China
| | - Tao Luo
- Institute of Neuroscience, Kunming Medical University, Kunming 650500, Yunnan, China; Medical college of Panzhihua University, Panzhihua 617000, Sichuan, China
| | - Lei Zhou
- The Key Laboratory of Stem Cell and Regenerative Medicine of Yunnan Province, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Alfonso Lagares
- Department of Neurosurgery, Hospital 12 de Octubre, Instituto de Investigación imas12, Universidad Complutense de Madrid, Madrid, Spain
| | - Hongyun Li
- Brain and Mind Centre, Sydney Medical School, The University of Sydney, NSW 2050, Australia
| | - Zhang Liang
- Institute of Neuroscience, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Kuang-Pin Liu
- Institute of Neuroscience, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Cheng-Hao Zang
- Second Department of General Surgery, First People's Hospital of Yunnan Province, Kunming 650032, Yunnan, China
| | - Chun-Yan Li
- Institute of Neuroscience, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Zhen Wu
- Second Department of General Surgery, First People's Hospital of Yunnan Province, Kunming 650032, Yunnan, China
| | - Jian-Hui Guo
- Second Department of General Surgery, First People's Hospital of Yunnan Province, Kunming 650032, Yunnan, China.
| | - Xin-Fu Zhou
- School of Pharmacy and Medical Sciences, Sansom Institute, Faculty of Health Sciences, University of South Australia, Adelaide, SA 5000, Australia.
| | - Li-Yan Li
- Institute of Neuroscience, Kunming Medical University, Kunming 650500, Yunnan, China.
| |
Collapse
|
16
|
Hamid ARRH, Maliawan S, Samatra DPGP, Astawa INM, Bakta IM, Jawi IM, Manuaba IBP, Sukrama IDM, Perdanakusuma DS. Can Early Electrical Stimulation Accelerates the Neural Regeneration by Increasing the Expression of BDNF and GDNF in Distal Part of Injured Peripheral Nerve? An Animal Experimental Study. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.7500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: The role of neurotrophic factors (brain-derived neurotrophic factors and glial cell line-derived neurotrophic factors) and early electrical stimulation (EES) in the injured nerve has found promising in several studies. However, there is still limited knowledge about the effect of EES in the distal part of the nerve to sustain this level of expression of growth factors.
AIM: We aim to evaluate the effects of EES in in neural regeneration by measuring the expression of brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF) in animal model.
METHODS: The research was conducted starting from April to May 2021 using male Wistar rats. Using general anesthesia, the sciatic nerve was cut. The intervention group was treated with EES in the distal stump, right after nerve resection (20 Hz, 1–2 mA, 2–5 s), while the control group received no treatment after nerve resection. A reoperation on day 3 was performed in both groups to measure BDNF and GDNF expression level of the distal nerve tissue by ELISA as well as histopathological examination of sprouting axons of the injured proximal nerve.
RESULTS: A total of 32 samples were included in the study. A statistically significant levels of GDNF is found higher in the EES group (n = 16) than the control group (n = 16) (35. 71 pg/100 mg, confidence interval (CI) 95% 23.93, 47.48, p < 0.05). The number of sprouting axons is found lower in the EES group (p < 0.05). The BDNF level is similar between the two groups, however not significant. After a subgroup analysis, it was found that the greater the level of GDNF, the fewer the axon sprouts in both groups (fewer axon group 58.35 [n = 22, CI 95% 45.14, 71.55] vs. more axon group 47.14 [n = 10, CI 95% 35.33, 58.95]), p < 0.05.
CONCLUSION: The EES proves its benefit in accelerating the axonal regeneration by increasing the expression GDNF in the distal nerve stumps in the electrical excited degenerated sciatic nerve in the rat model.
Collapse
|
17
|
Tang JJ, Feng S, Chen XD, Huang H, Mao M, Wang HY, Li S, Lu XM, Wang YT. The Effects of P75NTR on Learning Memory Mediated by Hippocampal Apoptosis and Synaptic Plasticity. Curr Pharm Des 2021; 27:531-539. [PMID: 32938344 DOI: 10.2174/1381612826666200916145142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 08/18/2020] [Indexed: 11/22/2022]
Abstract
Neurological diseases bring great mental and physical torture to the patients, and have long-term and sustained negative effects on families and society. The attention to neurological diseases is increasing, and the improvement of the material level is accompanied by an increase in the demand for mental level. The p75 neurotrophin receptor (p75NTR) is a low-affinity neurotrophin receptor and involved in diverse and pleiotropic effects in the developmental and adult central nervous system (CNS). Since neurological diseases are usually accompanied by the regression of memory, the pathogenesis of p75NTR also activates and inhibits other signaling pathways, which has a serious impact on the learning and memory of patients. The results of studies shown that p75NTR is associated with LTP/LTD-induced synaptic enhancement and inhibition, suggest that p75NTR may be involved in the progression of synaptic plasticity. And its proapoptotic effect is associated with activation of proBDNF and inhibition of proNGF, and TrkA/p75NTR imbalance leads to pro-survival or proapoptotic phenomena. It can be inferred that p75NTR mediates apoptosis in the hippocampus and amygdale, which may affect learning and memory behavior. This article mainly discusses the relationship between p75NTR and learning memory and associated mechanisms, which may provide some new ideas for the treatment of neurological diseases.
Collapse
Affiliation(s)
- Jun-Jie Tang
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Shuang Feng
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Xing-Dong Chen
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Hua Huang
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Min Mao
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Hai-Yan Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Sen Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Xiu-Min Lu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Yong-Tang Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| |
Collapse
|
18
|
Garad M, Edelmann E, Leßmann V. Long-term depression at hippocampal mossy fiber-CA3 synapses involves BDNF but is not mediated by p75NTR signaling. Sci Rep 2021; 11:8535. [PMID: 33879805 PMCID: PMC8058084 DOI: 10.1038/s41598-021-87769-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 03/31/2021] [Indexed: 01/09/2023] Open
Abstract
BDNF plays a crucial role in the regulation of synaptic plasticity. It is synthesized as a precursor (proBDNF) that can be proteolytically cleaved to mature BDNF (mBDNF). Previous studies revealed a bidirectional mode of BDNF actions, where long-term potentiation (LTP) was mediated by mBDNF through tropomyosin related kinase (Trk) B receptors whereas long-term depression (LTD) depended on proBDNF/p75 neurotrophin receptor (p75NTR) signaling. While most experimental evidence for this BDNF dependence of synaptic plasticity in the hippocampus was derived from Schaffer collateral (SC)-CA1 synapses, much less is known about the mechanisms of synaptic plasticity, in particular LTD, at hippocampal mossy fiber (MF) synapses onto CA3 neurons. Since proBDNF and mBDNF are expressed most abundantly at MF-CA3 synapses in the rodent brain and we had shown previously that MF-LTP depends on mBDNF/TrkB signaling, we now explored the role of proBDNF/p75NTR signaling in MF-LTD. Our results show that neither acute nor chronic inhibition of p75NTR signaling impairs MF-LTD, while short-term plasticity, in particular paired-pulse facilitation, at MF-CA3 synapses is affected by a lack of functional p75NTR signaling. Furthermore, MF-CA3 synapses showed normal LTD upon acute inhibition of TrkB receptor signaling. Nonetheless, acute inhibition of plasminogen activator inhibitor-1 (PAI-1), an inhibitor of both intracellular and extracellular proBDNF cleavage, impaired MF-LTD. This seems to indicate that LTD at MF-CA3 synapses involves BDNF, however, MF-LTD does not depend on p75NTRs. Altogether, our experiments demonstrate that p75NTR signaling is not warranted for all glutamatergic synapses but rather needs to be checked separately for every synaptic connection.
Collapse
Affiliation(s)
- Machhindra Garad
- Institute of Physiology, Otto-von-Guericke University Magdeburg, 39120, Magdeburg, Germany
| | - Elke Edelmann
- Institute of Physiology, Otto-von-Guericke University Magdeburg, 39120, Magdeburg, Germany.
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany.
| | - Volkmar Leßmann
- Institute of Physiology, Otto-von-Guericke University Magdeburg, 39120, Magdeburg, Germany.
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany.
| |
Collapse
|
19
|
Willis A, Pratt JA, Morris BJ. BDNF and JNK Signaling Modulate Cortical Interneuron and Perineuronal Net Development: Implications for Schizophrenia-Linked 16p11.2 Duplication Syndrome. Schizophr Bull 2020; 47:812-826. [PMID: 33067994 PMCID: PMC8084442 DOI: 10.1093/schbul/sbaa139] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Schizophrenia (SZ) is a neurodevelopmental disorder caused by the interaction of genetic and environmental risk factors. One of the strongest genetic risk variants is duplication (DUP) of chr.16p11.2. SZ is characterized by cortical gamma-amino-butyric acid (GABA)ergic interneuron dysfunction and disruption to surrounding extracellular matrix structures, perineuronal nets (PNNs). Developmental maturation of GABAergic interneurons, and also the resulting closure of the critical period of cortical plasticity, is regulated by brain-derived neurotrophic factor (BDNF), although the mechanisms involved are unknown. Here, we show that BDNF promotes GABAergic interneuron and PNN maturation through JNK signaling. In mice reproducing the 16p11.2 DUP, where the JNK upstream activator Taok2 is overexpressed, we find that JNK is overactive and there are developmental abnormalities in PNNs, which persist into adulthood. Prefrontal cortex parvalbumin (PVB) expression is reduced, while PNN intensity is increased. Additionally, we report a unique role for TAOK2 signaling in the regulation of PVB interneurons. Our work implicates TAOK2-JNK signaling in cortical interneuron and PNN development, and in the responses to BDNF. It also demonstrates that over-activation of this pathway in conditions associated with SZ risk causes long-lasting disruption in cortical interneurons.
Collapse
Affiliation(s)
- Ashleigh Willis
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, Scotland, UK
| | - Judith A Pratt
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, UK
| | - Brian J Morris
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, Scotland, UK,To whom correspondence should be addressed; Institute of Neuroscience and Psychology, University of Glasgow, G12 8QQ, Glasgow, Scotland, UK; tel: 0044-141-330-5361, fax: 0044-141-330-5659, e-mail:
| |
Collapse
|
20
|
Neuroprotective Effects of Anti-proBDNF in a Rat Photothrombotic Ischemic Model. Neuroscience 2020; 446:261-270. [PMID: 32798590 DOI: 10.1016/j.neuroscience.2020.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 11/23/2022]
Abstract
Up-regulation of proBDNF in ischemic brain and the detrimental role of proBDNF on cellular survival has already been established. We propose that the up-regulated proBDNF may trigger the harmful events and evoke a secondary ischemic damage after ischemia. This study aimed to establish the neuroprotective effects of anti-proBDNF antibody in a rat photothrombotic ischemic model. Photothrombotic ischemic model was performed on Sprague Dawley rats and anti-proBDNF antibodies were administered intraperitoneally to the ischemic rats at a dose of 5 mg/kg after 6 hours (6 h) and on 3 days (3d) after ischemia. Behavioural tests were performed for sensorimotor functional analyses. Animals were euthanized at 7d for histochemical and biochemical studies. We observed higher proBDNF expression around the ischemic infarct. Higher level of apoptosis and inflammation was evident at 7d after ischemia on brain sections. Interestingly, the anti-proBDNF treatment instigated significant reduction of the infarction size as detected by Haematoxylin and Eosin (H&E) staining. Similar reduction of apoptotic signaling proteins in western blot and immunostaining after anti-proBDNF treatment was found. Up-regulation of synaptic protein expression was also observed after this treatment. Significant sensorimotor functional improvements were also noticed at 7d after anti-proBDNF treatment. We conclude that anti-proBDNF treatment is anti-apoptotic and anti-inflammatory, and plays advantageous role in promoting cellular growth and improving sensorimotor function after ischemic insult. Taken together, our study suggests that this anti-proBDNF treatment can be considered as a therapeutic approach for ischemic recovery.
Collapse
|
21
|
Dravid A, Parittotokkaporn S, Aqrawe Z, O’Carroll SJ, Svirskis D. Determining Neurotrophin Gradients in Vitro To Direct Axonal Outgrowth Following Spinal Cord Injury. ACS Chem Neurosci 2020; 11:121-132. [PMID: 31825204 DOI: 10.1021/acschemneuro.9b00565] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A spinal cord injury can damage neuronal connections required for both motor and sensory function. Barriers to regeneration within the central nervous system, including an absence of neurotrophic stimulation, impair the ability of injured neurons to reestablish their original circuitry. Exogenous neurotrophin administration has been shown to promote axonal regeneration and outgrowth following injury. The neurotrophins possess chemotrophic properties that guide axons toward the region of highest concentration. These growth factors have demonstrated potential to be used as a therapeutic intervention for orienting axonal growth beyond the injury lesion, toward denervated targets. However, the success of this approach is dependent on the appropriate spatiotemporal distribution of these molecules to ensure detection and navigation by the axonal growth cone. A number of in vitro gradient-based assays have been employed to investigate axonal response to neurotrophic gradients. Such platforms have helped elucidate the potential of applying a concentration gradient of neurotrophins to promote directed axonal regeneration toward a functionally significant target. Here, we review these techniques and the principles of gradient detection in axonal guidance, with particular focus on the use of neurotrophins to orient the trajectory of regenerating axons.
Collapse
Affiliation(s)
- Anusha Dravid
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Sam Parittotokkaporn
- Department of Anatomy and Medical Imaging, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Zaid Aqrawe
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
- Department of Anatomy and Medical Imaging, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Simon J. O’Carroll
- Department of Anatomy and Medical Imaging, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Darren Svirskis
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| |
Collapse
|
22
|
Gharami K, Biswas SC. Glutamate treatment mimics LTP- and LTD-like biochemical activity in viable synaptosome preparation. Neurochem Int 2020; 134:104655. [PMID: 31899196 DOI: 10.1016/j.neuint.2019.104655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/05/2019] [Accepted: 12/29/2019] [Indexed: 01/28/2023]
Abstract
Long-term potentiation (LTP) and long-term depression (LTD) are considered to be the cellular mechanisms behind the increase or decrease of synaptic strength respectively. Electrophysiologically induced LTP/LTD is associated with the activation of glutamate receptors in the synaptic terminals resulting in the initiation of biochemical processes in the postsynaptic terminals and thus propagation of synaptic activity. Isolated nerve endings i.e. synaptosome preparation was used to study here, the biochemical phenotypes of LTP and LTD, and glutamate treatment in varying concentration for different time was used to induce those biochemical phenomena. Treatment with 200 μM glutamate showed increased GluA1 phosphorylation at serine 831 and activation of CaMKIIα by phosphorylation at threonine 286 like LTP, whereas 100 μM glutamate treatment showed decrease in GluA1 phosphorylation level at both pGluA1(S831) and pGluA1(S845), and activation of GSK3β by de-phosphorylating pGSK3β at serine 9 like LTD. The 200 μM glutamate treatment was associated with an increase in the local translation of Arc, BDNF, CaMKIIα and Homer1, whereas 100 μM glutamate treatments resulted in decrease in the level of the said synaptic proteins and the effect was blocked by the proteasomal inhibitor, Lactasystin. Both, the local translation and local degradation was sensitive to the Ca2+ chellator, Bapta-AM, indicating that both the phenomena were dependent on the rise in intra-synaptosomal Ca2+, like LTP and LTD. Overall the results of the present study suggest that synaptosomal preparations can be a viable alternative to study mechanisms underlying the biochemical activities of LTP/LTD in short term.
Collapse
Affiliation(s)
- Kusumika Gharami
- Cell Biology & Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India.
| | - Subhas C Biswas
- Cell Biology & Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India.
| |
Collapse
|
23
|
Solinas SMG, Edelmann E, Leßmann V, Migliore M. A kinetic model for Brain-Derived Neurotrophic Factor mediated spike timing-dependent LTP. PLoS Comput Biol 2019; 15:e1006975. [PMID: 31017891 PMCID: PMC6502438 DOI: 10.1371/journal.pcbi.1006975] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 05/06/2019] [Accepted: 03/25/2019] [Indexed: 12/29/2022] Open
Abstract
Across the mammalian nervous system, neurotrophins control synaptic plasticity, neuromodulation, and neuronal growth. The neurotrophin Brain-Derived Neurotrophic Factor (BDNF) is known to promote structural and functional synaptic plasticity in the hippocampus, the cerebral cortex, and many other brain areas. In recent years, a wealth of data has been accumulated revealing the paramount importance of BDNF for neuronal function. BDNF signaling gives rise to multiple complex signaling pathways that mediate neuronal survival and differentiation during development, and formation of new memories. These different roles of BDNF for neuronal function have essential consequences if BDNF signaling in the brain is reduced. Thus, BDNF knock-out mice or mice that are deficient in BDNF receptor signaling via TrkB and p75 receptors show deficits in neuronal development, synaptic plasticity, and memory formation. Accordingly, BDNF signaling dysfunctions are associated with many neurological and neurodegenerative conditions including Alzheimer's and Huntington's disease. However, despite the widespread implications of BDNF-dependent signaling in synaptic plasticity in healthy and pathological conditions, the interplay of the involved different biochemical pathways at the synaptic level remained mostly unknown. In this paper, we investigated the role of BDNF/TrkB signaling in spike-timing dependent plasticity (STDP) in rodent hippocampus CA1 pyramidal cells, by implementing the first subcellular model of BDNF regulated, spike timing-dependent long-term potentiation (t-LTP). The model is based on previously published experimental findings on STDP and accounts for the observed magnitude, time course, stimulation pattern and BDNF-dependence of t-LTP. It allows interpreting the main experimental findings concerning specific biomolecular processes, and it can be expanded to take into account more detailed biochemical reactions. The results point out a few predictions on how to enhance LTP induction in such a way to rescue or improve cognitive functions under pathological conditions.
Collapse
Affiliation(s)
- Sergio M. G. Solinas
- Institute of Biophysics, National Research Council, Palermo, Italy
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Elke Edelmann
- Institute of Physiology, Otto-von-Guericke-University, Medical Faculty, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Volkmar Leßmann
- Institute of Physiology, Otto-von-Guericke-University, Medical Faculty, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Michele Migliore
- Institute of Biophysics, National Research Council, Palermo, Italy
| |
Collapse
|
24
|
Suelves N, Miguez A, López-Benito S, Barriga GGD, Giralt A, Alvarez-Periel E, Arévalo JC, Alberch J, Ginés S, Brito V. Early Downregulation of p75 NTR by Genetic and Pharmacological Approaches Delays the Onset of Motor Deficits and Striatal Dysfunction in Huntington's Disease Mice. Mol Neurobiol 2019; 56:935-953. [PMID: 29804232 DOI: 10.1007/s12035-018-1126-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 05/11/2018] [Indexed: 11/26/2022]
Abstract
Deficits in striatal brain-derived neurotrophic factor (BDNF) delivery and/or BDNF/tropomyosin receptor kinase B (TrkB) signaling may contribute to neurotrophic support reduction and selective early degeneration of striatal medium spiny neurons in Huntington's disease (HD). Furthermore, we and others have demonstrated that TrkB/p75NTR imbalance in vitro increases the vulnerability of striatal neurons to excitotoxic insults and induces corticostriatal synaptic alterations. We have now expanded these studies by analyzing the consequences of BDNF/TrkB/p75NTR imbalance in the onset of motor behavior and striatal neuropathology in HD mice. Our findings demonstrate for the first time that the onset of motor coordination abnormalities, in a full-length knock-in HD mouse model (KI), correlates with the reduction of BDNF and TrkB levels, along with an increase in p75NTR expression. Genetic normalization of p75NTR expression in KI mutant mice delayed the onset of motor deficits and striatal neuropathology, as shown by restored levels of striatal-enriched proteins and dendritic spine density and reduced huntingtin aggregation. We found that the BDNF/TrkB/p75NTR imbalance led to abnormal BDNF signaling, manifested as a diminished activation of TrkB-phospholipase C-gamma pathway but upregulation of c-Jun kinase pathway. Moreover, we confirmed the contribution of the proper balance of BDNF/TrkB/p75NTR on HD pathology by a pharmacological approach using fingolimod. We observed that chronic infusion of fingolimod normalizes p75NTR levels, which is likely to improve motor coordination and striatal neuropathology in HD transgenic mice. We conclude that downregulation of p75NTR expression can delay disease progression suggesting that therapeutic approaches aimed to restore the balance between BDNF, TrkB, and p75NTR could be promising to prevent motor deficits in HD.
Collapse
Affiliation(s)
- Nuria Suelves
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurosciències, Universitat de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Andrés Miguez
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurosciències, Universitat de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Saray López-Benito
- Department of Cell Biology and Pathology, Instituto de Neurociencias de Castilla y León (INCyL), University of Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Gerardo García-Díaz Barriga
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurosciències, Universitat de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Albert Giralt
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurosciències, Universitat de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Elena Alvarez-Periel
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurosciències, Universitat de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Juan Carlos Arévalo
- Department of Cell Biology and Pathology, Instituto de Neurociencias de Castilla y León (INCyL), University of Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Jordi Alberch
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurosciències, Universitat de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Silvia Ginés
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurosciències, Universitat de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Verónica Brito
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurosciències, Universitat de Barcelona, Barcelona, Spain.
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| |
Collapse
|
25
|
Sharma D, Barhwal KK, Biswal SN, Srivastava AK, Bhardwaj P, Kumar A, Chaurasia OP, Hota SK. Hypoxia-mediated alteration in cholesterol oxidation and raft dynamics regulates BDNF signalling and neurodegeneration in hippocampus. J Neurochem 2018; 148:238-251. [DOI: 10.1111/jnc.14609] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 09/08/2018] [Accepted: 10/08/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Deepti Sharma
- Defence Institute of High Altitude Research; Defence Research and Development Organisation; Leh-Ladakh India
| | | | - Surya Narayan Biswal
- Defence Institute of High Altitude Research; Defence Research and Development Organisation; Leh-Ladakh India
| | | | - Pushpendar Bhardwaj
- Defence Institute of High Altitude Research; Defence Research and Development Organisation; Leh-Ladakh India
| | - Ashish Kumar
- Defence Institute of High Altitude Research; Defence Research and Development Organisation; Leh-Ladakh India
| | - Om Prakash Chaurasia
- Defence Institute of High Altitude Research; Defence Research and Development Organisation; Leh-Ladakh India
| | - Sunil Kumar Hota
- Defence Institute of High Altitude Research; Defence Research and Development Organisation; Leh-Ladakh India
| |
Collapse
|
26
|
Angelucci F, Čechová K, Průša R, Hort J. Amyloid beta soluble forms and plasminogen activation system in Alzheimer's disease: Consequences on extracellular maturation of brain-derived neurotrophic factor and therapeutic implications. CNS Neurosci Ther 2018; 25:303-313. [PMID: 30403004 PMCID: PMC6488905 DOI: 10.1111/cns.13082] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/09/2018] [Accepted: 10/10/2018] [Indexed: 12/18/2022] Open
Abstract
Soluble oligomeric forms of amyloid beta (Aβ) play an important role in causing the cognitive deficits in Alzheimer’s disease (AD) by targeting and disrupting synaptic pathways. Thus, the present research is directed toward identifying the neuronal pathways targeted by soluble forms and, accordingly, develops alternative therapeutic strategies. The neurotrophin brain‐derived neurotrophic factor (BDNF) is synthesized as a precursor (pro‐BDNF) which is cleaved extracellularly by plasmin to release the mature form. The conversion from pro‐BDNF to BDNF is an important process that regulates neuronal activity and memory processes. Plasmin‐dependent maturation of BDNF in the brain is regulated by plasminogen activator inhibitor‐1 (PAI‐1), the natural inhibitor of tissue‐type plasminogen activator (tPA). Therefore, tPA/PAI‐1 system represents an important regulator of extracellular BDNF/pro‐BDNF ratio. In this review, we summarize the data on the components of the plasminogen activation system and on BDNF in AD. Moreover, we will hypothesize a possible pathogenic mechanism caused by soluble Aβ forms based on the effects on tPA/PAI‐1 system and on the consequence of an altered conversion from pro‐BDNF to the mature BDNF in the brain of AD patients. Translation into clinic may include a better characterization of the disease stage and future direction on therapeutic targets.
Collapse
Affiliation(s)
- Francesco Angelucci
- Memory Clinic, Department of Neurology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Kateřina Čechová
- Memory Clinic, Department of Neurology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic.,International Clinical Research Centre, St. Anne's University Hospital, Brno, Czech Republic
| | - Richard Průša
- Department of Medical Chemistry and Clinical Biochemistry, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Jakub Hort
- Memory Clinic, Department of Neurology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic.,International Clinical Research Centre, St. Anne's University Hospital, Brno, Czech Republic
| |
Collapse
|
27
|
Das D, Biswal S, Barhwal KK, Chaurasia OP, Hota SK. Kaempferol Inhibits Extra-synaptic NMDAR-Mediated Downregulation of TRkβ in Rat Hippocampus During Hypoxia. Neuroscience 2018; 392:77-91. [DOI: 10.1016/j.neuroscience.2018.09.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/09/2018] [Accepted: 09/17/2018] [Indexed: 10/28/2022]
|
28
|
Granato A, Dering B. Alcohol and the Developing Brain: Why Neurons Die and How Survivors Change. Int J Mol Sci 2018; 19:ijms19102992. [PMID: 30274375 PMCID: PMC6213645 DOI: 10.3390/ijms19102992] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 09/27/2018] [Accepted: 09/29/2018] [Indexed: 02/06/2023] Open
Abstract
The consequences of alcohol drinking during pregnancy are dramatic and usually referred to as fetal alcohol spectrum disorders (FASD). This condition is one of the main causes of intellectual disability in Western countries. The immature fetal brain exposed to ethanol undergoes massive neuron death. However, the same mechanisms leading to cell death can also be responsible for changes of developmental plasticity. As a consequence of such a maladaptive plasticity, the functional damage to central nervous system structures is amplified and leads to permanent sequelae. Here we review the literature dealing with experimental FASD, focusing on the alterations of the cerebral cortex. We propose that the reciprocal interaction between cell death and maladaptive plasticity represents the main pathogenetic mechanism of the alcohol-induced damage to the developing brain.
Collapse
Affiliation(s)
- Alberto Granato
- Department of Psychology, Catholic University, Largo A. Gemelli 1, 20123 Milan, Italy.
| | - Benjamin Dering
- Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK.
| |
Collapse
|
29
|
The ProNGF/p75NTR pathway induces tau pathology and is a therapeutic target for FTLD-tau. Mol Psychiatry 2018; 23:1813-1824. [PMID: 29867188 DOI: 10.1038/s41380-018-0071-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 01/26/2018] [Accepted: 03/26/2018] [Indexed: 11/09/2022]
Abstract
Tau pathology is characterized as a form of frontotemporal lobar degeneration (FTLD) known as FTLD-tau. The underlying pathogenic mechanisms are not known and no therapeutic interventions are currently available. Here, we report that the neurotrophin receptor p75NTR plays a critical role in the pathogenesis of FTLD-tau. The expression of p75NTR and the precursor of nerve growth factor (proNGF) were increased in the brains of FTLD-tau patients and mice (P301L transgenic). ProNGF-induced tau phosphorylation via p75NTR in vitro, which was associated with the AKT/glycogen synthase kinase (GSK)3β pathway. Genetic reduction of p75NTR in P301L mice rescued the memory deficits, alleviated tau hyperphosphorylation and restored the activity of the AKT/GSK3β pathway. Treatment of the P301L mice with the soluble p75NTR extracellular domain (p75ECD-Fc), which can antagonize neurotoxic ligands of p75NTR, effectively improved memory behavior and suppressed tau pathology. This suggests that p75NTR plays a crucial role in tau paGSKthology and represents a potential druggable target for FTLD-tau and related tauopathies.
Collapse
|
30
|
Salter EW, Sunstrum JK, Matovic S, Inoue W. Chronic stress dampens excitatory synaptic gain in the paraventricular nucleus of the hypothalamus. J Physiol 2018; 596:4157-4172. [PMID: 29901836 DOI: 10.1113/jp275669] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 06/03/2018] [Indexed: 12/11/2022] Open
Abstract
KEY POINTS Glutamatergic synaptic inputs to corticotrophin-releasing hormone (CRH) secreting neurons in the paraventricular nucleus of the hypothalamus (PVN) are required for stress-induced activation of the hypothalamic-pituitary-adrenal (HPA) axis. These synapses also undergo stress-induced plasticity, thereby influencing HPA axis stress adaptation. By using patch clamp electrophysiology, we show that, in adult non-stressed mice, action potentials at these glutamatergic afferents elicit multiquantal transmission to the postsynaptic PVN-CRH neurons (i.e. synaptic multiplicity). Mechanistically, synaptic multiplicity results from multivesicular release at common synaptic sites, which is facilitated upon elevation of release probability, effectively increasing the upper limit of the dynamic range of synaptic transmission. Following chronic variable stress, functional PVN glutamate synapse number increases, although its synaptic multiplicity paradoxically decreases. These two contrasting synaptic changes can, respectively, increase the baseline excitatory drive while also limiting the capacity for potentiation, and may preferentially increase the baseline excitatory drive onto PVN-CRH neurons. ABSTRACT The activation of the hypothalamic-pituitary-adrenal (HPA) axis relies on excitation of neuroendocrine neurons in the paraventricular nucleus of the hypothalamus (PVN) that secrete corticotrophin-releasing hormone (CRH). Afferent glutamate synapses onto these PVN-CRH neurons convey critical excitatory inputs during stress, and also undergo stress-induced plasticity, highlighting their roles in both stress activation and adaptation of the HPA axis. In the present study, using whole-cell patch clamp recordings from PVN-CRH neurons in brain slices from adult mice, we found that the amplitude of action potential-dependent spontaneous EPSCs (sEPSCs) was larger than that of action potential independent miniature EPSCs (mEPSCs), suggesting that action potentials at individual axons recruited multiquantal transmission onto the same postsynaptic neurons (i.e. synaptic multiplicity). The large, putative multiquantal sEPSCs had fast rise times similar to mEPSCs, and were abolished by replacing extracellular Ca2+ with Sr2+ , indicating Ca2+ -dependent synchronous release of multiple vesicles. Application of a low affinity, fast dissociating competitive AMPA receptor antagonist γ-d-glutamylglycine revealed that synaptic multiplicity resulted from multivesicular release targeting a common population of postsynaptic receptors. High-frequency afferent stimulation facilitated synaptic multiplicity, effectively increasing the upper limit of the dynamic range of synaptic transmission. Finally, we found that chronic variable stress (CVS), a stress model known to cause basal HPA axis hyperactivity, increased sEPSCs frequency but paradoxically decreased synaptic multiplicity. These results suggest that the CVS-induced synaptic changes may elevate the baseline excitatory drive at the same time as limiting the capacity for potentiation, and may contribute to the basal HPA axis hyperactivity.
Collapse
Affiliation(s)
- Eric W Salter
- Neuroscience Program, University of Western Ontario, London, Ontario, Canada
| | - Julia K Sunstrum
- Neuroscience Program, University of Western Ontario, London, Ontario, Canada
| | - Sara Matovic
- Neuroscience Program, University of Western Ontario, London, Ontario, Canada
| | - Wataru Inoue
- Neuroscience Program, University of Western Ontario, London, Ontario, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada.,Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
31
|
Loera-Valencia R, Piras A, Ismail MAM, Manchanda S, Eyjolfsdottir H, Saido TC, Johansson J, Eriksdotter M, Winblad B, Nilsson P. Targeting Alzheimer's disease with gene and cell therapies. J Intern Med 2018; 284:2-36. [PMID: 29582495 DOI: 10.1111/joim.12759] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) causes dementia in both young and old people affecting more than 40 million people worldwide. The two neuropathological hallmarks of the disease, amyloid beta (Aβ) plaques and neurofibrillary tangles consisting of protein tau are considered the major contributors to the disease. However, a more complete picture reveals significant neurodegeneration and decreased cell survival, neuroinflammation, changes in protein and energy homeostasis and alterations in lipid and cholesterol metabolism. In addition, gene and cell therapies for severe neurodegenerative disorders have recently improved technically in terms of safety and efficiency and have translated to the clinic showing encouraging results. Here, we review broadly current data within the field for potential targets that could modify AD through gene and cell therapy strategies. We envision that not only Aβ will be targeted in a disease-modifying treatment strategy but rather that a combination of treatments, possibly at different intervention times may prove beneficial in curing this devastating disease. These include decreased tau pathology, neuronal growth factors to support neurons and modulation of neuroinflammation for an appropriate immune response. Furthermore, cell based therapies may represent potential strategies in the future.
Collapse
Affiliation(s)
- R Loera-Valencia
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Solna, Sweden
| | - A Piras
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Solna, Sweden
| | - M A M Ismail
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Solna, Sweden.,Theme Neuro, Diseases of the Nervous System Patient Flow, Karolinska University Hospital, Huddinge, Sweden
| | - S Manchanda
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Solna, Sweden
| | - H Eyjolfsdottir
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Huddinge, Sweden.,Theme Aging, Karolinska University Hospital, Huddinge, Sweden
| | - T C Saido
- RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - J Johansson
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Solna, Sweden
| | - M Eriksdotter
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Huddinge, Sweden.,Theme Aging, Karolinska University Hospital, Huddinge, Sweden
| | - B Winblad
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Solna, Sweden.,Theme Aging, Karolinska University Hospital, Huddinge, Sweden
| | - P Nilsson
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
32
|
Muñoz FV, Larkey L. THE CREATIVE PSYCHOSOCIAL GENOMIC HEALING EXPERIENCE (CPGHE) AND GENE EXPRESSION IN BREAST CANCER PATIENTS: A FEASIBILITY STUDY. ADVANCES IN INTEGRATIVE MEDICINE 2018; 5:9-14. [PMID: 30271706 PMCID: PMC6157740 DOI: 10.1016/j.aimed.2018.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Biomarkers associated with inflammation and immune function are increasingly being used to examine mechanisms of the effects of mind-body therapies. Less researched are biomarkers associated with cognitive and executive functioning in the study of mind-body therapy mechanisms and effects. This study explored the feasibility of recruiting breast cancer patients (BCPs) and implementation fidelity of participation in a research project utilizing the 4-stage Creative Psychosocial Genomic Healing Experience (CPGHE), a mind-body protocol that is theorized to create epigenetic effects via targeted psychological change in emotional triggers in coping with cancer. METHODS Eight BCPs were identified as eligible (stages I, II, III, early phases of treatment) and five consented to one of two intervention groups (allocated to a single session or two sessions of CPGHE). Blood draws were examined pre- and post- intervention for a stress/inflammation gene expression marker, Nuclear Factor kappa-B (NF-kB), and three markers associated with synaptic plasticity undergirding cognitive and executive functioning: Early Growth Response 1 (EGR1), activity-regulated cytoskeleton-associated protein (Arc), and brain-derived neurotrophic factor (BDNF). RESULTS One consented BCP dropped out due to illness. The remaining four adhered to the 4-stage CPGHE protocol and found the CPGHE experience beneficial. Blood samples for the gene expression results were collected and processed according to planned protocol without incident. CONCLUSION Implementing the CPGHE and achieving good adherence among a sample of BCPs is feasible. Processing of blood samples collected from BCPs for gene expression data is also feasible.
Collapse
Affiliation(s)
- Francisco V Muñoz
- Arizona State University, College of Nursing and Health, Innovation Pomona Valley Hospital Medical Center, Lewis Family, Cancer Care Center
| | - Linda Larkey
- Arizona State University, College of Nursing and Health Innovation
| |
Collapse
|
33
|
Hollville E, Deshmukh M. Physiological functions of non-apoptotic caspase activity in the nervous system. Semin Cell Dev Biol 2017; 82:127-136. [PMID: 29199140 DOI: 10.1016/j.semcdb.2017.11.037] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 11/22/2017] [Accepted: 11/29/2017] [Indexed: 12/15/2022]
Abstract
Caspases are cysteine proteases that play important and well-defined roles in apoptosis and inflammation. Increasing evidence point to alternative functions of caspases where restricted and localized caspase activation within neurons allows for a variety of non-apoptotic and non-inflammatory processes required for brain development and function. In this review, we highlight sublethal caspase functions in axon and dendrite pruning, neurite outgrowth and dendrite branches formation, as well as in long-term depression and synaptic plasticity. Importantly, as non-apoptotic activity of caspases is often confined in space and time in neurons, we also discuss the mechanisms that restrict caspase activity in order to maintain the neuronal networks in a healthy and functional state.
Collapse
Affiliation(s)
| | - Mohanish Deshmukh
- Neuroscience Center, UNC Chapel Hill, Chapel Hill, NC, USA; Department of Cell Biology and Physiology, UNC Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
34
|
Soligo M, Piccinin S, Protto V, Gelfo F, De Stefano ME, Florenzano F, Berretta E, Petrosini L, Nisticò R, Manni L. Recovery of hippocampal functions and modulation of muscarinic response by electroacupuncture in young diabetic rats. Sci Rep 2017; 7:9077. [PMID: 28831054 PMCID: PMC5567336 DOI: 10.1038/s41598-017-08556-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 07/11/2017] [Indexed: 01/15/2023] Open
Abstract
The muscarinic receptor response to acetylcholine regulates the hippocampal-related learning, memory, neural plasticity and the production and processing of the pro-nerve growth factor (proNGF) by hippocampal cells. The development and progression of diabetes generate a mild cognitive impairment reducing the functions of the septo-hippocampal cholinergic circuitry, depressing neural plasticity and inducing proNGF accumulation in the brain. Here we demonstrate, in a rat model of early type-1 diabetes, that a physical therapy, the electroacupuncture, counteracts the diabetes-induced deleterious effects on hippocampal physiology by ameliorating hippocampal-related memory functions; recovering the impaired long-term potentiation at the dentate gyrus (DG-LTP) and the lowered expression of the vesicular glutamate transporter 1; normalizing the activity-dependent release of proNGF in diabetic rat hippocampus. Electroacupuncture exerted its therapeutic effects by regulating the expression and activity of M1- and M2-acetylcholine muscarinic receptors subtypes in the dentate gyrus of hippocampus. Our results suggest that a physical therapy based on repetitive sensory stimulation could promote hippocampal neural activity, neuronal metabolism and functions, and conceivably improve the diabetes-induced cognitive impairment. Our data can support the setup of therapeutic protocols based on a better integration between physical therapies and pharmacology for the cure of diabetes-associated neurodegeneration and possibly for Alzheimer’s disease.
Collapse
Affiliation(s)
- Marzia Soligo
- Institute of Translational Pharmacology, Consiglio Nazionale Delle Ricerche (CNR), Rome, Italy
| | - Sonia Piccinin
- European Brain Research Institute (EBRI), Rita Levi-Montalcini Foundation, Rome, Italy
| | - Virginia Protto
- Institute of Translational Pharmacology, Consiglio Nazionale Delle Ricerche (CNR), Rome, Italy
| | - Francesca Gelfo
- I.R.C.C.S., Santa Lucia Foundation, Rome, Italy.,Department of Systemic Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Maria Egle De Stefano
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur-Fondazione Cenci Bolognetti, Rome, Italy
| | - Fulvio Florenzano
- European Brain Research Institute (EBRI), Rita Levi-Montalcini Foundation, Rome, Italy
| | - Erica Berretta
- I.R.C.C.S., Santa Lucia Foundation, Rome, Italy.,Department of Psychology, Faculty of Medicine and Psychology, University "Sapienza" of Rome, Rome, Italy
| | - Laura Petrosini
- I.R.C.C.S., Santa Lucia Foundation, Rome, Italy.,Department of Psychology, Faculty of Medicine and Psychology, University "Sapienza" of Rome, Rome, Italy
| | - Robert Nisticò
- European Brain Research Institute (EBRI), Rita Levi-Montalcini Foundation, Rome, Italy.,Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Luigi Manni
- Institute of Translational Pharmacology, Consiglio Nazionale Delle Ricerche (CNR), Rome, Italy.
| |
Collapse
|
35
|
Differences in the Biological Functions of BDNF and proBDNF in the Central Nervous System. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s11055-017-0391-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
36
|
Ogura A, Saito S, Kimura S, Tominaga-Yoshino K. [An in vitro model system for studying the stress-induced memory disorder]. Nihon Yakurigaku Zasshi 2017; 150:223-227. [PMID: 29118284 DOI: 10.1254/fpj.150.223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
|
37
|
Abstract
Brain-derived neurotrophic factor (BDNF) belongs to a family of small secreted proteins that also include nerve growth factor, neurotrophin 3, and neurotrophin 4. BDNF stands out among all neurotrophins by its high expression levels in the brain and its potent effects at synapses. Several aspects of BDNF biology such as transcription, processing, and secretion are regulated by synaptic activity. Such observations prompted the suggestion that BDNF may regulate activity-dependent forms of synaptic plasticity such as long-term potentiation (LTP), a sustained enhancement of excitatory synaptic efficacy thought to underlie learning and memory. Here, we will review the evidence pointing to a fundamental role of this neurotrophin in LTP, especially within the hippocampus. Prominent questions in the field, including the release and action sites of BDNF during LTP, as well as the signaling and molecular mechanisms involved, will also be addressed. The diverse effects of BDNF at excitatory synapses are determined by the activation of TrkB receptors and downstream signaling pathways, and the functions, typically opposing in nature, of its immature form (proBDNF). The activation of p75NTR receptors by proBDNF and the implications for long-term depression will also be addressed. Finally, we discuss the synergy between TrkB and glucocorticoid receptor signaling to determine cellular responses to stress.
Collapse
Affiliation(s)
- G Leal
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - C R Bramham
- K.G. Jebsen Center for Neuropsychiatric Disorders, University of Bergen, Bergen, Norway
| | - C B Duarte
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
38
|
Wang M, Li D, Yun D, Zhuang Y, Repunte-Canonigo V, Sanna PP, Behnisch T. Translation of BDNF-gene transcripts with short 3' UTR in hippocampal CA1 neurons improves memory formation and enhances synaptic plasticity-relevant signaling pathways. Neurobiol Learn Mem 2016; 138:121-134. [PMID: 27394686 DOI: 10.1016/j.nlm.2016.07.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/29/2016] [Accepted: 07/06/2016] [Indexed: 12/23/2022]
Abstract
While the brain-derived neurotrophic factor (BDNF) gene and its multiple transcripts have been recognized as a key factor for learning, but the specific involvement of BDNF translated from BDNF transcripts with short-3' untranslated region (short 3' UTR) in learning and memory requires further analysis. In this paper, we present data to show that the transduction of hippocampal CA1 neurons with AAV9-5' UTR-BDNF (short 3' UTR)-IRES-ZsGreen and the subsequent expression of BDNF enhanced the phosphorylation of synaptic plasticity relevant proteins and improved passive avoidance and object location, but not object recognition memory. In addition, BDNF improved the relearning of object location. At higher BDNF overexpression levels, the fear behavior was accompanied with a decline in the passive avoidance memory 24h post training, and with an enhanced fear conditioning performance. In addition, these animals developed spontaneous seizures. Thus, the expression of BDNF in the hippocampal CA1 region has the potential to improve fear and object location memory in wild type mouse strains when the region and expression levels of BDNF are well controlled.
Collapse
Affiliation(s)
- Man Wang
- The Institutes of Brain Science, The State Key Laboratory of Medical Neurobiology, and The Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Dongxue Li
- The Institutes of Brain Science, The State Key Laboratory of Medical Neurobiology, and The Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Di Yun
- The Institutes of Brain Science, The State Key Laboratory of Medical Neurobiology, and The Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Yinghan Zhuang
- The Institutes of Brain Science, The State Key Laboratory of Medical Neurobiology, and The Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Vez Repunte-Canonigo
- Molecular and Cellular Neuroscience Department, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, CA 92037, USA
| | - Pietro Paolo Sanna
- Molecular and Cellular Neuroscience Department, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, CA 92037, USA
| | - Thomas Behnisch
- The Institutes of Brain Science, The State Key Laboratory of Medical Neurobiology, and The Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China.
| |
Collapse
|
39
|
An in vitro reproduction of stress-induced memory defects: Effects of corticoids on dendritic spine dynamics. Sci Rep 2016; 6:19287. [PMID: 26765339 PMCID: PMC4725889 DOI: 10.1038/srep19287] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 12/07/2015] [Indexed: 01/07/2023] Open
Abstract
Previously, in organotypic slice culture of rodent hippocampus we found that three repeated inductions of LTP, but not a single induction, led to a slow-developing long-lasting enhancement of synaptic strength coupled with synapse formation. Naming this structural plasticity RISE (repetitive LTP-induced synaptic enhancement) and assuming it to be a potential in vitro reproduction of repetition-dependent memory consolidation, we are analyzing its cellular mechanisms. Here, we applied a glucocorticoid to the culture to mimic acute excess stress and demonstrated its blockade of RISE. Since excess stress interferes with behavioral memory consolidation, the parallelism between RISE in vitro and memory consolidation in vivo is supported. We recently reported that RISE developed after stochastic processes. Here we found that the glucocorticoid interfered with RISE by suppressing the increment of dendritic spine fluctuation that precedes a net increase in spine density. The present study provides clues for understanding the mechanism of stress-induced memory defects.
Collapse
|
40
|
The Role of Proteases in Hippocampal Synaptic Plasticity: Putting Together Small Pieces of a Complex Puzzle. Neurochem Res 2015; 41:156-82. [DOI: 10.1007/s11064-015-1752-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/26/2015] [Accepted: 10/27/2015] [Indexed: 12/17/2022]
|
41
|
Abstract
Neurotrophins (NTs) belong to a family of trophic factors that regulate the survival, growth and programmed cell death of neurons. In mammals, there are four structurally and functionally related NT proteins, viz. nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin 3 and neurotrophin 4. Most research on NTs to date has focussed on the effects of NGF and BDNF signalling via their respective cognate high affinity neurotrophic tyrosine kinase viz TrkA and TrkB receptors. Apart from the key physiologic roles of NGF and BDNF in peripheral and central nervous system function, NGF and BDNF signalling via TrkA and TrkB receptors respectively have been implicated in mechanisms underpinning neuropathic pain. Additionally, NGF and BDNF signalling via the low-affinity pan neurotrophin receptor at 75 kDa (p75NTR) may also contribute to the pathobiology of neuropathic pain. In this review, we critically assess the role of neurotrophins signalling via their cognate high affinity receptors as well as the low affinity p75NTR in the pathophysiology of peripheral neuropathic and central neuropathic pain. We also identify knowledge gaps to guide future research aimed at generating novel insight on how to optimally modulate NT signalling for discovery of novel therapeutics to improve neuropathic pain relief.
Collapse
|
42
|
Khan N, Gordon R, Woodruff TM, Smith MT. Antiallodynic effects of alpha lipoic acid in an optimized RR-EAE mouse model of MS-neuropathic pain are accompanied by attenuation of upregulated BDNF-TrkB-ERK signaling in the dorsal horn of the spinal cord. Pharmacol Res Perspect 2015; 3:e00137. [PMID: 26171221 PMCID: PMC4492753 DOI: 10.1002/prp2.137] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 02/21/2015] [Accepted: 02/26/2015] [Indexed: 01/01/2023] Open
Abstract
Neuropathic pain may affect patients with multiple sclerosis (MS) even in early disease. In an experimental autoimmune encephalomyelitis (EAE)-mouse model of MS, chronic alpha lipoic acid (ALA) treatment reduced clinical disease severity, but MS-neuropathic pain was not assessed. Hence, we investigated the pain-relieving efficacy and mode of action of ALA using our optimized relapsing-remitting (RR)-EAE mouse model of MS-associated neuropathic pain. C57BL/6 mice were immunized with MOG35-55 and adjuvants (Quil A and pertussis toxin) to induce RR-EAE; sham-mice received adjuvants only. RR-EAE mice received subcutaneous ALA (3 or 10 mg kg(-1) day(-1)) or vehicle for 21 days (15-35 d.p.i.; [days postimmunization]); sham-mice received vehicle. Hindpaw hypersensitivity was assessed blinded using von Frey filaments. Following euthanasia (day 35 d.p.i.), lumbar spinal cords were removed for immunohistochemical and molecular biological assessments. Fully developed mechanical allodynia in the bilateral hindpaws of vehicle-treated RR-EAE mice was accompanied by marked CD3(+) T-cell infiltration, microglia activation, and increased brain-derived neurotrophic factor (BDNF)-tyrosine kinase B (TrkB) signaling in the dorsal horn of the lumbar spinal cord. Consequently, phospho-ERK, a marker of central sensitization in neuropathic pain, was upregulated in the spinal dorsal horn. Importantly, hindpaw hypersensitivity was completely attenuated in RR-EAE mice administered ALA at 10 mg kg(-1) day(-1) but not 3 mg kg(-1) day(-1). The antiallodynic effect of ALA (10 mg kg(-1) day(-1)) was associated with a marked reduction in the aforementioned spinal dorsal horn markers to match their respective levels in the vehicle-treated sham-mice. Our findings suggest that ALA at 10 mg kg(-1) day(-1) produced its antiallodynic effects in RR-EAE mice by reducing augmented CD3(+) T-cell infiltration and BDNF-TrkB-ERK signaling in the spinal dorsal horn.
Collapse
Affiliation(s)
- Nemat Khan
- Center for Integrated Preclinical Drug Development, University of QueenslandSt Lucia Campus, Brisbane, Queensland, 4072, Australia
- School of Pharmacy, University of Queensland, Pharmacy Australia Center of ExcellenceWoolloongabba, Brisbane, Queensland, 4102, Australia
| | - Richard Gordon
- The School of Biomedical Sciences, University of QueenslandSt Lucia Campus, Brisbane, Queensland, 4072, Australia
| | - Trent M Woodruff
- The School of Biomedical Sciences, University of QueenslandSt Lucia Campus, Brisbane, Queensland, 4072, Australia
| | - Maree T Smith
- Center for Integrated Preclinical Drug Development, University of QueenslandSt Lucia Campus, Brisbane, Queensland, 4072, Australia
- School of Pharmacy, University of Queensland, Pharmacy Australia Center of ExcellenceWoolloongabba, Brisbane, Queensland, 4102, Australia
| |
Collapse
|
43
|
Dendritic spine dynamics leading to spine elimination after repeated inductions of LTD. Sci Rep 2015; 5:7707. [PMID: 25573377 PMCID: PMC4648349 DOI: 10.1038/srep07707] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 12/08/2014] [Indexed: 01/24/2023] Open
Abstract
Memory is fixed solidly by repetition. However, the cellular mechanism underlying this repetition-dependent memory consolidation/reconsolidation remains unclear. In our previous study using stable slice cultures of the rodent hippocampus, we found long-lasting synaptic enhancement/suppression coupled with synapse formation/elimination after repeated inductions of chemical LTP/LTD, respectively. We proposed these phenomena as useful model systems for analyzing repetition-dependent memory consolidation. Recently, we analyzed the dynamics of dendritic spines during development of the enhancement, and found that the spines increased in number following characteristic stochastic processes. The current study investigates spine dynamics during the development of the suppression. We found that the rate of spine retraction increased immediately leaving that of spine generation unaltered. Spine elimination occurred independent of the pre-existing spine density on the dendritic segment. In terms of elimination, mushroom-type spines were not necessarily more stable than stubby-type and thin-type spines.
Collapse
|