1
|
Pasterski MJ, Lorenz M, Ievlev AV, Wickramasinghe RC, Hanley L, Kenig F. The Determination of the Spatial Distribution of Indigenous Lipid Biomarkers in an Immature Jurassic Sediment Using Time-of-Flight-Secondary Ion Mass Spectrometry. ASTROBIOLOGY 2023; 23:936-950. [PMID: 37459147 DOI: 10.1089/ast.2022.0145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
The ability to detect and map lipids, including potential lipid biomarkers, within a sedimentary matrix using mass spectrometry (MS) imaging may be critical to determine whether potential lipids detected in samples returned from Mars are indigenous to Mars or are contaminants. Here, we use gas chromatography-mass spectrometry (GC-MS) and time-of-flight-secondary ion mass spectrometry (ToF-SIMS) datasets collected from an organic-rich, thermally immature Jurassic geologic sample to constrain MS imaging analysis of indigenous lipid biomarkers in geologic samples. GC-MS data show that the extractable fractions are dominated by C27-C30 steranes and sterenes as well as isorenieratene derivatives. ToF-SIMS spectra from organic matter-rich laminae contain a strong, spatially restricted signal for ions m/z 370.3, m/z 372.3, and m/z 386.3, which we assign to C27 sterenes, cholestane (C27), and 4- or 24-methyl steranes (C28), respectively, as well as characteristic fragment ions of isorenieratene derivatives, including m/z 133.1, m/z 171.1, and m/z 237.1. We observed individual steroid spatial heterogeneity at the scale of tens to hundreds of microns. The fine-scale heterogeneity observed implies that indigenous lipid biomarkers concentrated within specific regions may be detectable via ToF-SIMS in samples with even low amounts of organic carbon, including in samples returned from Mars.
Collapse
Affiliation(s)
- M Joseph Pasterski
- Department of Earth and Environmental Sciences, University of Illinois Chicago, Chicago, Illinois, USA
| | - Matthias Lorenz
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Anton V Ievlev
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | | | - Luke Hanley
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois, USA
| | - Fabien Kenig
- Department of Earth and Environmental Sciences, University of Illinois Chicago, Chicago, Illinois, USA
| |
Collapse
|
2
|
Smith DFQ, Casadevall A. Disaster mycology. BIOMEDICA : REVISTA DEL INSTITUTO NACIONAL DE SALUD 2023; 43:267-277. [PMID: 37721902 PMCID: PMC10599715 DOI: 10.7705/biomedica.6943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/13/2023] [Indexed: 09/20/2023]
Abstract
Natural and human-made disasters have long played a role in shaping the environment and microbial communities, also affecting non-microbial life on Earth. Disaster microbiology is a new concept based on the notion that a disaster changes the environment causing adaptation or alteration of microbial populations -growth, death, transportation to a new area, development traits, or resistance- that can have downstream effects on the affected ecosystem. Such downstream effects include blooms of microbial populations and the ability to colonize a new niche or host, cause disease, or survive in former extreme conditions. Throughout history, fungal populations have been affected by disasters. There are prehistoric archeological records of fungal blooms after asteroid impacts and fungi implicated in the fall of the dinosaurs. In recent times, drought and dust storms have caused disturbance of soil fungi, and hurricanes have induced the growth of molds on wet surfaces, resulting in an increased incidence of fungal disease. Probably, the anticipated increase in extreme heat would force fungi adaptation to survive at high temperatures, like those in the human body, and thus be able to infect mammals. This may lead to a drastic rise of new fungal diseases in humans.
Collapse
Affiliation(s)
- Daniel F Q Smith
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore MD, USA.
| | - Arturo Casadevall
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore MD, USA.
| |
Collapse
|
3
|
Polymenakou PN, Nomikou P, Hannington M, Petersen S, Kilias SP, Anastasiou TI, Papadimitriou V, Zaka E, Kristoffersen JB, Lampridou D, Wind S, Heinath V, Lange S, Magoulas A. Taxonomic diversity of microbial communities in sub-seafloor hydrothermal sediments of the active Santorini-Kolumbo volcanic field. Front Microbiol 2023; 14:1188544. [PMID: 37455712 PMCID: PMC10345502 DOI: 10.3389/fmicb.2023.1188544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction Active hydrothermal vents of volcanic origin provide a remarkable manifestation of life on Earth under extreme conditions, which may have consequences for our understanding of habitability on other terrestrial bodies as well. Methods Here, we performed for the first time Illumina sequencing of bacterial and archaeal communities on sub-seafloor samples collected from the Santorini-Kolumbo volcanic field. A total of 19 (3-m long) gravity corers were collected and processed for microbial community analysis. Results From a total of 6,46,671 produced V4 sequences for all samples, a total of 10,496 different Operational Taxonomic Units (OTUs) were identified that were assigned to 40 bacterial and 9 archaeal phyla and 14 candidate divisions. On average, the most abundant phyla in all samples were Chloroflexi (Chloroflexota) (24.62%), followed by Proteobacteria (Pseudomonadota) (11.29%), Firmicutes (Bacillota) (10.73%), Crenarchaeota (Thermoproteota) (8.55%), and Acidobacteria (Acidobacteriota) (8.07%). At the genus level, a total of 286 known genera and candidate genera were mostly dominated by members of Bacillus, Thermoflexus, Desulfatiglans, Pseudoalteromonas, and Pseudomonas. Discussion In most of the stations, the Chao1 values at the deeper layers were comparable to the surface sediment samples denoting the high diversity in the subsurface of these ecosystems. Heatmap analysis based on the 100 most abundant OTUs, grouped the sampling stations according to their geographical location, placing together the two hottest stations (up to 99°C). This result indicates that this specific area within the active Kolumbo crater create a distinct niche, where microorganisms with adaptation strategies to withstand heat stresses can thrive, such as the endospore-forming Firmicutes.
Collapse
Affiliation(s)
- Paraskevi N. Polymenakou
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology, and Aquaculture, Heraklion, Greece
| | - Paraskevi Nomikou
- Faculty of Geology and Geoenvironment, National and Kapodistrian University of Athens, Athens, Greece
| | - Mark Hannington
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Sven Petersen
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Stephanos P. Kilias
- Faculty of Geology and Geoenvironment, National and Kapodistrian University of Athens, Athens, Greece
| | - Thekla I. Anastasiou
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology, and Aquaculture, Heraklion, Greece
| | - Vasiliki Papadimitriou
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology, and Aquaculture, Heraklion, Greece
| | - Eleutheria Zaka
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology, and Aquaculture, Heraklion, Greece
- Department of Biology, University of Crete, Heraklion, Greece
| | - Jon Bent Kristoffersen
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology, and Aquaculture, Heraklion, Greece
| | - Danai Lampridou
- Faculty of Geology and Geoenvironment, National and Kapodistrian University of Athens, Athens, Greece
| | - Sandra Wind
- Department of Earth and Environmental Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Verena Heinath
- Institute of Geosciences, University of Kiel (CAU), Kiel, Germany
| | - Sabine Lange
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Antonios Magoulas
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology, and Aquaculture, Heraklion, Greece
| |
Collapse
|
4
|
Muñoz-Iglesias V, Sánchez-García L, Carrizo D, Molina A, Fernández-Sampedro M, Prieto-Ballesteros O. Raman spectroscopic peculiarities of Icelandic poorly crystalline minerals and their implications for Mars exploration. Sci Rep 2022; 12:5640. [PMID: 35379897 PMCID: PMC8979959 DOI: 10.1038/s41598-022-09684-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 03/28/2022] [Indexed: 11/09/2022] Open
Abstract
In this work, we have analyzed natural samples collected at three hydrothermal areas of Iceland by Raman spectroscopy. The studied high-latitude regions are considered environmentally and mineralogically appropriate Martian analogues since they are rich in weathered basalts that have been altered by hydrothermalism to mineral phases such as silica, clay minerals, sulfates, oxides, and sulfur. The main objective of this work was to assess the relation of the spectroscopic signatures of alteration to hydrothermal processes and biomediation, considering previous studies focused on the detection of lipid biomarkers in the same samples. The recorded Raman spectra, taken with optical parameters similar to the ExoMars 2022 Raman spectrometer, showed structural modifications in all secondary minerals in the form of peak shifts (in the case of sulfur and clay minerals), changes in the relative ratio intensity (in anatase) and/or shape broadening (in sulfates and hematite). These results reveal the suitability of Raman spectroscopy to examine areas rich in water-altered minerals, where a mixture of crystalline and amorphous phases can co-exist. The detection of silica is singularly interesting since, on the one hand, it can imply the past existence of hydrothermal hot springs rich in nutrient and redox gradients and, on the other hand, provides excellent matrix for biosignature preservation. The data can be helpful as an astrobiological database for the forthcoming missions to Mars, where potential upwelling groundwater systems could have altered the mineral phases in a similar way to that observed in this work.
Collapse
|
5
|
Ivarsson M, Drake H, Bengtson S, Rasmussen B. A Cryptic Alternative for the Evolution of Hyphae. Bioessays 2020; 42:e1900183. [DOI: 10.1002/bies.201900183] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 03/03/2020] [Indexed: 11/09/2022]
Affiliation(s)
- Magnus Ivarsson
- Department of BiologyUniversity of Southern Denmark Campusvej 55 Odense M DK 5230 Denmark
- Department of PaleobiologySwedish Museum of Natural History Box 50007 Stockholm SE‐104 05 Sweden
| | - Henrik Drake
- Department of Biology and Environmental ScienceLinnaeus University Kalmar 391 82 Sweden
| | - Stefan Bengtson
- Department of PaleobiologySwedish Museum of Natural History Box 50007 Stockholm SE‐104 05 Sweden
| | - Birger Rasmussen
- School of Earth SciencesThe University of Western Australia Nedlands WA 6009 Australia
| |
Collapse
|
6
|
Drake H, Roberts NMW, Heim C, Whitehouse MJ, Siljeström S, Kooijman E, Broman C, Ivarsson M, Åström ME. Timing and origin of natural gas accumulation in the Siljan impact structure, Sweden. Nat Commun 2019; 10:4736. [PMID: 31628335 PMCID: PMC6802084 DOI: 10.1038/s41467-019-12728-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 09/27/2019] [Indexed: 11/29/2022] Open
Abstract
Fractured rocks of impact craters may be suitable hosts for deep microbial communities on Earth and potentially other terrestrial planets, yet direct evidence remains elusive. Here, we present a study of the largest crater of Europe, the Devonian Siljan structure, showing that impact structures can be important unexplored hosts for long-term deep microbial activity. Secondary carbonate minerals dated to 80 ± 5 to 22 ± 3 million years, and thus postdating the impact by more than 300 million years, have isotopic signatures revealing both microbial methanogenesis and anaerobic oxidation of methane in the bedrock. Hydrocarbons mobilized from matured shale source rocks were utilized by subsurface microorganisms, leading to accumulation of microbial methane mixed with a thermogenic and possibly a minor abiotic gas fraction beneath a sedimentary cap rock at the crater rim. These new insights into crater hosted gas accumulation and microbial activity have implications for understanding the astrobiological consequences of impacts. Fractured rocks of impact craters have been suggested to be suitable hosts for deep microbial communities on Earth, and potentially other terrestrial planets, yet direct evidence remains elusive. Here, the authors show that the Siljan impact structure is host to long-term deep methane-cycling microbial activity.
Collapse
Affiliation(s)
- Henrik Drake
- Linnæus University, Department of Biology and Environmental Science, 39182, Kalmar, Sweden.
| | - Nick M W Roberts
- Geochronology and Tracers Facility, British Geological Survey, Nottingham, NG12 5GG, UK
| | - Christine Heim
- Department of Geobiology, Geoscience Centre Göttingen of the Georg-August University, Goldschmidtstr. 3, 37077, Göttingen, Germany
| | - Martin J Whitehouse
- Swedish Museum of Natural History, P.O. Box 50 007, 10405, Stockholm, Sweden
| | - Sandra Siljeström
- Bioscience and Materials/Chemistry and Materials, RISE Research Institutes of Sweden, Box 5607, 114 86, Stockholm, Sweden
| | - Ellen Kooijman
- Swedish Museum of Natural History, P.O. Box 50 007, 10405, Stockholm, Sweden
| | - Curt Broman
- Department of Geological Sciences, Stockholm University, 106 91, Stockholm, Sweden
| | - Magnus Ivarsson
- Swedish Museum of Natural History, P.O. Box 50 007, 10405, Stockholm, Sweden.,Department of Biology, University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark
| | - Mats E Åström
- Linnæus University, Department of Biology and Environmental Science, 39182, Kalmar, Sweden
| |
Collapse
|
7
|
Onstott T, Ehlmann B, Sapers H, Coleman M, Ivarsson M, Marlow J, Neubeck A, Niles P. Paleo-Rock-Hosted Life on Earth and the Search on Mars: A Review and Strategy for Exploration. ASTROBIOLOGY 2019; 19:1230-1262. [PMID: 31237436 PMCID: PMC6786346 DOI: 10.1089/ast.2018.1960] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 04/25/2019] [Indexed: 05/19/2023]
Abstract
Here we review published studies on the abundance and diversity of terrestrial rock-hosted life, the environments it inhabits, the evolution of its metabolisms, and its fossil biomarkers to provide guidance in the search for life on Mars. Key findings are (1) much terrestrial deep subsurface metabolic activity relies on abiotic energy-yielding fluxes and in situ abiotic and biotic recycling of metabolic waste products rather than on buried organic products of photosynthesis; (2) subsurface microbial cell concentrations are highest at interfaces with pronounced chemical redox gradients or permeability variations and do not correlate with bulk host rock organic carbon; (3) metabolic pathways for chemolithoautotrophic microorganisms evolved earlier in Earth's history than those of surface-dwelling phototrophic microorganisms; (4) the emergence of the former occurred at a time when Mars was habitable, whereas the emergence of the latter occurred at a time when the martian surface was not continually habitable; (5) the terrestrial rock record has biomarkers of subsurface life at least back hundreds of millions of years and likely to 3.45 Ga with several examples of excellent preservation in rock types that are quite different from those preserving the photosphere-supported biosphere. These findings suggest that rock-hosted life would have been more likely to emerge and be preserved in a martian context. Consequently, we outline a Mars exploration strategy that targets subsurface life and scales spatially, focusing initially on identifying rocks with evidence for groundwater flow and low-temperature mineralization, then identifying redox and permeability interfaces preserved within rock outcrops, and finally focusing on finding minerals associated with redox reactions and associated traces of carbon and diagnostic chemical and isotopic biosignatures. Using this strategy on Earth yields ancient rock-hosted life, preserved in the fossil record and confirmable via a suite of morphologic, organic, mineralogical, and isotopic fingerprints at micrometer scale. We expect an emphasis on rock-hosted life and this scale-dependent strategy to be crucial in the search for life on Mars.
Collapse
Affiliation(s)
- T.C. Onstott
- Department of Geosciences, Princeton University, Princeton, New Jersey, USA
- Address correspondence to: T.C. Onstott, Department of Geosciences, Princeton University,, Princeton, NJ 008544
| | - B.L. Ehlmann
- Division of Geological & Planetary Sciences, California Institute of Technology, Pasadena, California, USA
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
- B.L. Ehlmann, Division of Geological & Planetary Sciences, California Institute of Technology, Pasadena, CA 91125
| | - H. Sapers
- Division of Geological & Planetary Sciences, California Institute of Technology, Pasadena, California, USA
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
- Department of Earth Sciences, University of Southern California, Los Angeles, California, USA
| | - M. Coleman
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
- NASA Astrobiology Institute, Pasadena, California, USA
| | - M. Ivarsson
- Department of Biology, University of Southern Denmark, Odense, Denmark
| | - J.J. Marlow
- Department of Organismic & Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - A. Neubeck
- Department of Earth Sciences, Uppsala University, Uppsala, Sweden
| | - P. Niles
- Astromaterials Research and Exploration Science Division, NASA Johnson Space Center, Houston, Texas, USA
| |
Collapse
|
8
|
McMahon S, Ivarsson M. A New Frontier for Palaeobiology: Earth's Vast Deep Biosphere. Bioessays 2019; 41:e1900052. [PMID: 31241200 DOI: 10.1002/bies.201900052] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 04/29/2019] [Indexed: 11/11/2022]
Abstract
Diverse micro-organisms populate a global deep biosphere hosted by rocks and sediments beneath land and sea, containing more biomass than any other biome except forests. This paper reviews an emerging palaeobiological archive of these dark habitats: microfossils preserved in ancient pores and fractures in the crust. This archive, seemingly dominated by mineralized filaments (although rods and coccoids are also reported), is presently far too sparsely sampled and poorly understood to reveal trends in the abundance, distribution, or diversity of deep life through time. New research is called for to establish the nature and extent of the fossil record of Earth's deep biosphere by combining systematic exploration, rigorous microanalysis, and experimental studies of both microbial preservation and the formation of abiotic pseudofossils within the crust. It is concluded that the fossil record of Earth's largest microbial habitat may still have much to tell us about the history of life, the evolution of biogeochemical cycles, and the search for life on Mars.
Collapse
Affiliation(s)
- Sean McMahon
- School of Geosciences, University of Edinburgh, Edinburgh, EH8 9XP, UK.,UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, EH9 3FD, UK
| | - Magnus Ivarsson
- Department of Biology, University of Southern Denmark, DK-5230, Odense, Denmark.,Department of Palaeobiology, Swedish Museum of Natural History, Stockholm, SE-104 05, Sweden
| |
Collapse
|
9
|
Abstract
Impact-generated hydrothermal systems have been suggested as favourable environments for deep microbial ecosystems on Earth, and possibly beyond. Fossil evidence from a handful of impact craters worldwide have been used to support this notion. However, as always with mineralized remains of microorganisms in crystalline rock, certain time constraints with respect to the ecosystems and their subsequent fossilization are difficult to obtain. Here we re-evaluate previously described fungal fossils from the Lockne crater (458 Ma), Sweden. Based on in-situ Rb/Sr dating of secondary calcite-albite-feldspar (356.6 ± 6.7 Ma) we conclude that the fungal colonization took place at least 100 Myr after the impact event, thus long after the impact-induced hydrothermal activity ceased. We also present microscale stable isotope data of 13C-enriched calcite suggesting the presence of methanogens contemporary with the fungi. Thus, the Lockne fungi fossils are not, as previously thought, related to the impact event, but nevertheless have colonized fractures that may have been formed or were reactivated by the impact. Instead, the Lockne fossils show similar features as recent findings of ancient microbial remains elsewhere in the fractured Swedish Precambrian basement and may thus represent a more general feature in this scarcely explored habitat than previously known.
Collapse
|
10
|
Price A, Pearson VK, Schwenzer SP, Miot J, Olsson-Francis K. Nitrate-Dependent Iron Oxidation: A Potential Mars Metabolism. Front Microbiol 2018; 9:513. [PMID: 29616015 PMCID: PMC5869265 DOI: 10.3389/fmicb.2018.00513] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 03/06/2018] [Indexed: 11/13/2022] Open
Abstract
This work considers the hypothetical viability of microbial nitrate-dependent Fe2+ oxidation (NDFO) for supporting simple life in the context of the early Mars environment. This draws on knowledge built up over several decades of remote and in situ observation, as well as recent discoveries that have shaped current understanding of early Mars. Our current understanding is that certain early martian environments fulfill several of the key requirements for microbes with NDFO metabolism. First, abundant Fe2+ has been identified on Mars and provides evidence of an accessible electron donor; evidence of anoxia suggests that abiotic Fe2+ oxidation by molecular oxygen would not have interfered and competed with microbial iron metabolism in these environments. Second, nitrate, which can be used by some iron oxidizing microorganisms as an electron acceptor, has also been confirmed in modern aeolian and ancient sediment deposits on Mars. In addition to redox substrates, reservoirs of both organic and inorganic carbon are available for biosynthesis, and geochemical evidence suggests that lacustrine systems during the hydrologically active Noachian period (4.1-3.7 Ga) match the circumneutral pH requirements of nitrate-dependent iron-oxidizing microorganisms. As well as potentially acting as a primary producer in early martian lakes and fluvial systems, the light-independent nature of NDFO suggests that such microbes could have persisted in sub-surface aquifers long after the desiccation of the surface, provided that adequate carbon and nitrates sources were prevalent. Traces of NDFO microorganisms may be preserved in the rock record by biomineralization and cellular encrustation in zones of high Fe2+ concentrations. These processes could produce morphological biosignatures, preserve distinctive Fe-isotope variation patterns, and enhance preservation of biological organic compounds. Such biosignatures could be detectable by future missions to Mars with appropriate instrumentation.
Collapse
Affiliation(s)
- Alex Price
- Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, United Kingdom
| | - Victoria K. Pearson
- Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, United Kingdom
| | - Susanne P. Schwenzer
- Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, United Kingdom
| | - Jennyfer Miot
- CNRS, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Muséum National d’Histoire Naturelle, Université Pierre et Marie Curie – Sorbonne Universités, UMR 7590, Paris, France
| | - Karen Olsson-Francis
- Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, United Kingdom
| |
Collapse
|
11
|
|
12
|
Ivarsson M, Bengtson S, Drake H, Francis W. Fungi in Deep Subsurface Environments. ADVANCES IN APPLIED MICROBIOLOGY 2018; 102:83-116. [PMID: 29680127 DOI: 10.1016/bs.aambs.2017.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The igneous crust of the oceans and the continents represents the major part of Earth's lithosphere and has recently been recognized as a substantial, yet underexplored, microbial habitat. While prokaryotes have been the focus of most investigations, microeukaryotes have been surprisingly neglected. However, recent work acknowledges eukaryotes, and in particular fungi, as common inhabitants of the deep biosphere, including the deep igneous provinces. The fossil record of the subseafloor igneous crust, and to some extent the continental bedrock, establishes fungi or fungus-like organisms as inhabitants of deep rock since at least the Paleoproterozoic, which challenges the present notion of early fungal evolution. Additionally, deep fungi have been shown to play an important ecological role engaging in symbiosis-like relationships with prokaryotes, decomposing organic matter, and being responsible for mineral weathering and formation, thus mediating mobilization of biogeochemically important elements. In this review, we aim at covering the abundance and diversity of fungi in the various igneous rock provinces on Earth as well as describing the ecological impact of deep fungi. We further discuss what consequences recent findings might have for the understanding of the fungal distribution in extensive anoxic environments and for early fungal evolution.
Collapse
Affiliation(s)
- Magnus Ivarsson
- Nordic Center for Earth Evolution, University of Southern Denmark, Odense, Denmark; Swedish Museum of Natural History, Stockholm, Sweden.
| | | | | | - Warren Francis
- Nordic Center for Earth Evolution, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
13
|
Drake H, Ivarsson M, Bengtson S, Heim C, Siljeström S, Whitehouse MJ, Broman C, Belivanova V, Åström ME. Anaerobic consortia of fungi and sulfate reducing bacteria in deep granite fractures. Nat Commun 2017; 8:55. [PMID: 28676652 PMCID: PMC5496868 DOI: 10.1038/s41467-017-00094-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 05/31/2017] [Indexed: 11/08/2022] Open
Abstract
The deep biosphere is one of the least understood ecosystems on Earth. Although most microbiological studies in this system have focused on prokaryotes and neglected microeukaryotes, recent discoveries have revealed existence of fossil and active fungi in marine sediments and sub-seafloor basalts, with proposed importance for the subsurface energy cycle. However, studies of fungi in deep continental crystalline rocks are surprisingly few. Consequently, the characteristics and processes of fungi and fungus-prokaryote interactions in this vast environment remain enigmatic. Here we report the first findings of partly organically preserved and partly mineralized fungi at great depth in fractured crystalline rock (-740 m). Based on environmental parameters and mineralogy the fungi are interpreted as anaerobic. Synchrotron-based techniques and stable isotope microanalysis confirm a coupling between the fungi and sulfate reducing bacteria. The cryptoendolithic fungi have significantly weathered neighboring zeolite crystals and thus have implications for storage of toxic wastes using zeolite barriers.Deep subsurface microorganisms play an important role in nutrient cycling, yet little is known about deep continental fungal communities. Here, the authors show organically preserved and partly mineralized fungi at 740 m depth, and find evidence of an anaerobic fungi and sulfate reducing bacteria consortium.
Collapse
Affiliation(s)
- Henrik Drake
- Department of Biology and Environmental Science, Linnæus University, Kalmar, 39182, Sweden.
| | - Magnus Ivarsson
- Department of Palaeobiology and Nordic Center for Earth Evolution (NordCEE), Swedish Museum of Natural History, P.O. Box 50 007, Stockholm, 10405, Sweden
| | - Stefan Bengtson
- Department of Palaeobiology and Nordic Center for Earth Evolution (NordCEE), Swedish Museum of Natural History, P.O. Box 50 007, Stockholm, 10405, Sweden
| | - Christine Heim
- Geoscience Centre Göttingen of the Georg-August University (Department of Geobiology), Goldschmidtstr. 3, Göttingen, 37077, Germany
| | - Sandra Siljeström
- Department of Surfaces, Chemistry and Materials, SP Technical Research Institute of Sweden, P.O. Box 857, Borås, 50115, Sweden
| | - Martin J Whitehouse
- Department of Geosciences and Nordic Center for Earth Evolution (NordCEE), Swedish Museum of Natural History, P.O. Box 50007, Stockholm, 10405, Sweden
| | - Curt Broman
- Department of Geological Sciences, Stockholm University, Stockholm, 106 91, Sweden
| | - Veneta Belivanova
- Department of Palaeobiology and Nordic Center for Earth Evolution (NordCEE), Swedish Museum of Natural History, P.O. Box 50 007, Stockholm, 10405, Sweden
| | - Mats E Åström
- Department of Biology and Environmental Science, Linnæus University, Kalmar, 39182, Sweden
| |
Collapse
|
14
|
|
15
|
Surmik D, Boczarowski A, Balin K, Dulski M, Szade J, Kremer B, Pawlicki R. Spectroscopic Studies on Organic Matter from Triassic Reptile Bones, Upper Silesia, Poland. PLoS One 2016; 11:e0151143. [PMID: 26977600 PMCID: PMC4792425 DOI: 10.1371/journal.pone.0151143] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 02/24/2016] [Indexed: 11/19/2022] Open
Abstract
Fossil biomolecules from an endogenous source were previously identified in Cretaceous to Pleistocene fossilized bones, the evidence coming from molecular analyses. These findings, however, were called into question and an alternative hypothesis of the invasion of the bone by bacterial biofilm was proposed. Herewith we report a new finding of morphologically preserved blood-vessel-like structures enclosing organic molecules preserved in iron-oxide-mineralized vessel walls from the cortical region of nothosaurid and tanystropheid (aquatic and terrestrial diapsid reptiles) bones. These findings are from the Early/Middle Triassic boundary (Upper Roetian/Lowermost Muschelkalk) strata of Upper Silesia, Poland. Multiple spectroscopic analyses (FTIR, ToF-SIMS, and XPS) of the extracted "blood vessels" showed the presence of organic compounds, including fragments of various amino acids such as hydroxyproline and hydroxylysine as well as amides, that may suggest the presence of collagen protein residues. Because these amino acids are absent from most proteins other than collagen, we infer that the proteinaceous molecules may originate from endogenous collagen. The preservation of molecular signals of proteins within the "blood vessels" was most likely made possible through the process of early diagenetic iron oxide mineralization. This discovery provides the oldest evidence of in situ preservation of complex organic molecules in vertebrate remains in a marine environment.
Collapse
Affiliation(s)
- Dawid Surmik
- Faculty of Earth Science, University of Silesia, Będzińska 60, 41–200, Sosnowiec, Poland
- Park of Science & Human Evolution, 1 Maja 10, 46–040, Krasiejów, Poland
| | - Andrzej Boczarowski
- Faculty of Earth Science, University of Silesia, Będzińska 60, 41–200, Sosnowiec, Poland
- Park of Science & Human Evolution, 1 Maja 10, 46–040, Krasiejów, Poland
| | - Katarzyna Balin
- A. Chełkowski Institute of Physics, University of Silesia, Uniwersytecka 4, 40–007, Katowice, Poland
- Silesian Centre for Education and Interdisciplinary Research, 75 Pułku Piechoty 1A, 41–500, Chorzow, Poland
| | - Mateusz Dulski
- Silesian Centre for Education and Interdisciplinary Research, 75 Pułku Piechoty 1A, 41–500, Chorzow, Poland
- Institute of Material Science, University of Silesia, 75 Pułku Piechoty 1A, 41–500, Chorzow, Poland
| | - Jacek Szade
- A. Chełkowski Institute of Physics, University of Silesia, Uniwersytecka 4, 40–007, Katowice, Poland
- Silesian Centre for Education and Interdisciplinary Research, 75 Pułku Piechoty 1A, 41–500, Chorzow, Poland
| | - Barbara Kremer
- Institute of Paleobiology, Polish Academy of Science, Twarda 51/55, 00–818, Warszawa, Poland
| | - Roman Pawlicki
- Department of Histology, Jagiellonian University Medical College, Kopernika 7, 31–034, Kraków, Poland
| |
Collapse
|
16
|
Rummel JD, Beaty DW, Jones MA, Bakermans C, Barlow NG, Boston PJ, Chevrier VF, Clark BC, de Vera JPP, Gough RV, Hallsworth JE, Head JW, Hipkin VJ, Kieft TL, McEwen AS, Mellon MT, Mikucki JA, Nicholson WL, Omelon CR, Peterson R, Roden EE, Sherwood Lollar B, Tanaka KL, Viola D, Wray JJ. A new analysis of Mars "Special Regions": findings of the second MEPAG Special Regions Science Analysis Group (SR-SAG2). ASTROBIOLOGY 2014; 14:887-968. [PMID: 25401393 DOI: 10.1089/ast.2014.1227] [Citation(s) in RCA: 163] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
A committee of the Mars Exploration Program Analysis Group (MEPAG) has reviewed and updated the description of Special Regions on Mars as places where terrestrial organisms might replicate (per the COSPAR Planetary Protection Policy). This review and update was conducted by an international team (SR-SAG2) drawn from both the biological science and Mars exploration communities, focused on understanding when and where Special Regions could occur. The study applied recently available data about martian environments and about terrestrial organisms, building on a previous analysis of Mars Special Regions (2006) undertaken by a similar team. Since then, a new body of highly relevant information has been generated from the Mars Reconnaissance Orbiter (launched in 2005) and Phoenix (2007) and data from Mars Express and the twin Mars Exploration Rovers (all 2003). Results have also been gleaned from the Mars Science Laboratory (launched in 2011). In addition to Mars data, there is a considerable body of new data regarding the known environmental limits to life on Earth-including the potential for terrestrial microbial life to survive and replicate under martian environmental conditions. The SR-SAG2 analysis has included an examination of new Mars models relevant to natural environmental variation in water activity and temperature; a review and reconsideration of the current parameters used to define Special Regions; and updated maps and descriptions of the martian environments recommended for treatment as "Uncertain" or "Special" as natural features or those potentially formed by the influence of future landed spacecraft. Significant changes in our knowledge of the capabilities of terrestrial organisms and the existence of possibly habitable martian environments have led to a new appreciation of where Mars Special Regions may be identified and protected. The SR-SAG also considered the impact of Special Regions on potential future human missions to Mars, both as locations of potential resources and as places that should not be inadvertently contaminated by human activity.
Collapse
Affiliation(s)
- John D Rummel
- 1 Department of Biology, East Carolina University , Greenville, North Carolina, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Chatzitheodoridis E, Haigh S, Lyon I. A conspicuous clay ovoid in Nakhla: evidence for subsurface hydrothermal alteration on Mars with implications for astrobiology. ASTROBIOLOGY 2014; 14:651-693. [PMID: 25046549 PMCID: PMC4126275 DOI: 10.1089/ast.2013.1069] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Accepted: 05/19/2014] [Indexed: 06/03/2023]
Abstract
Abstract A conspicuous biomorphic ovoid structure has been discovered in the Nakhla martian meteorite, made of nanocrystalline iron-rich saponitic clay and amorphous material. The ovoid is indigenous to Nakhla and occurs within a late-formed amorphous mesostasis region of rhyolitic composition that is interstitial to two clinopyroxene grains with Al-rich rims, and contains acicular apatite crystals, olivine, sulfides, Ti-rich magnetite, and a new mineral of the rhoenite group. To infer the origin of the ovoid, a large set of analytical tools was employed, including scanning electron microscopy and backscattered electron imaging, wavelength-dispersive X-ray analysis, X-ray mapping, Raman spectroscopy, time-of-flight secondary ion mass spectrometry analysis, high-resolution transmission electron microscope imaging, and atomic force microscope topographic mapping. The concentric wall of the ovoid surrounds an originally hollow volume and exhibits internal layering of contrasting nanotextures but uniform chemical composition, and likely inherited its overall shape from a preexisting vesicle in the mesostasis glass. A final fibrous layer of Fe-rich phases blankets the interior surfaces of the ovoid wall structure. There is evidence that the parent rock of Nakhla has undergone a shock event from a nearby bolide impact that melted the rims of pyroxene and the interstitial matter and initiated an igneous hydrothermal system of rapidly cooling fluids, which were progressively mixed with fluids from the melted permafrost. Sharp temperature gradients were responsible for the crystallization of Al-rich clinopyroxene rims, rhoenite, acicular apatites, and the quenching of the mesostasis glass and the vesicle. During the formation of the ovoid structure, episodic fluid infiltration events resulted in the precipitation of saponite rinds around the vesicle walls, altered pyrrhotite to marcasite, and then isolated the ovoid wall structure from the rest of the system by depositing a layer of iron oxides/hydroxides. Carbonates, halite, and sulfates were deposited last within interstitial spaces and along fractures. Among three plausible competing hypotheses here, this particular abiotic scenario is considered to be the most reasonable explanation for the formation of the ovoid structure in Nakhla, and although compelling evidence for a biotic origin is lacking, it is evident that the martian subsurface contains niche environments where life could develop.
Collapse
Affiliation(s)
- Elias Chatzitheodoridis
- Department of Geological Sciences, School of Mining and Metallurgical Engineering, National Technical University of Athens, Athens, Greece
| | - Sarah Haigh
- School of Materials, The University of Manchester, Manchester, UK
| | - Ian Lyon
- School of Earth, Atmospheric and Environmental Sciences, The University of Manchester, Manchester, UK
| |
Collapse
|