1
|
Jung B, Bhatti FUR, Mummareddy H, Kim Y, Park SH, Cho H. Targeted nanosome delivery of TPCA-1 for modulating inflammation in a mouse model of post-traumatic osteoarthritis. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2025; 67:102827. [PMID: 40324641 DOI: 10.1016/j.nano.2025.102827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 04/15/2025] [Accepted: 05/01/2025] [Indexed: 05/07/2025]
Abstract
Inflammation plays a significant role in the pathogenesis of knee post-traumatic osteoarthritis (PTOA) characterized by damage to cartilage and surrounding tissues that results in loss of physiological function. This inflammation is mainly regulated by NF-κB pathway. The TPCA-1 can inhibit IκB kinase (IKK) β in NF-κB pathway. Here, we optimized the delivery of TPCA-1 to the damaged knee joint via targeted nanosomes and examined its effects in a mouse model of PTOA. PTOA was induced in mice through a modified cyclic mechanical loading method. Mice were divided into groups receiving vehicle, TPCA-1 solution, or TPCA-1-loaded nanosomes. A concentration of 100 μM TPCA-1 was used based on preliminary studies. Control groups included untreated and vehicle-treated animals. Treatment efficacy was assessed using in vivo imaging, serum biochemical assays, gene expression analysis of cartilage tissues, histopathology, and behavioral analysis. Mechanical loading induced significant knee joint damage in the model. TPCA-1 nanosomes notably attenuated the adverse effects of loading, outperforming both the vehicle and TPCA-1-solution in reducing inflammation. Notably, serum levels of total NO and LDH were significantly lower in the TPCA-1-nanosome group. Inflammation, as indicated by MMP13 and IL1β gene expression, was substantially reduced. Enhanced cartilage preservation and function were confirmed through IVIS imaging, histological assessments, and improved behavior metrics. The targeted delivery of TPCA-1 via nanosomes effectively inhibits the NF-κB pathway, leading to significant reductions in inflammation and cartilage damage in a PTOA mouse model. This strategy demonstrates potential as a therapeutic intervention for managing inflammation and preserving joint health in osteoarthritis.
Collapse
Affiliation(s)
- Bongsu Jung
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Republic of Korea; Department of Biomedical Device, Gachon University, Republic of Korea
| | - Fazal-Ur-Rehman Bhatti
- Dept. of Orthopaedic Surgery & Biomedical Eng. University of Tennessee Health Science Center, Memphis, TN, USA
| | - Harisankeerth Mummareddy
- Dept. of Orthopaedic Surgery & Biomedical Eng. University of Tennessee Health Science Center, Memphis, TN, USA
| | - Youngjoo Kim
- Department of Biomedical Device, Gachon University, Republic of Korea
| | - Sang-Hyug Park
- Department of Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, Republic of Korea.
| | - Hongsik Cho
- Dept. of Orthopaedic Surgery & Biomedical Eng. University of Tennessee Health Science Center, Memphis, TN, USA; Campbell Clinic, Memphis, TN, USA; VA Medical Center, Memphis, TN, USA.
| |
Collapse
|
2
|
Doswell F, Haley JD, Kaczocha M. Proteomic Analysis of Signaling Pathways Modulated by Fatty Acid Binding Protein 5 (FABP5) in Macrophages. J Pharmacol Exp Ther 2024; 391:289-300. [PMID: 38849143 PMCID: PMC11493448 DOI: 10.1124/jpet.123.002006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 05/20/2024] [Accepted: 05/28/2024] [Indexed: 06/09/2024] Open
Abstract
Although acute inflammation serves essential functions in maintaining tissue homeostasis, chronic inflammation is causally linked to many diseases. Macrophages are a major cell type that orchestrates inflammatory processes. During inflammation, macrophages undergo polarization and activation, thereby mobilizing pro-inflammatory and anti-inflammatory transcriptional programs that regulate ensuing macrophage functions. Fatty acid binding protein 5 (FABP5) is a lipid chaperone highly expressed in macrophages. FABP5 deletion is implicated in driving macrophages toward an anti-inflammatory phenotype, yet signaling pathways regulated by macrophage-FABP5 have not been systematically profiled. We leveraged proteomic and phosphoproteomic approaches to characterize pathways modulated by FABP5 in M1 and M2 polarized bone marrow-derived macrophages (BMDMs). Stable isotope labeling by amino acids-based analysis of M1 and M2 polarized wild-type and FABP5 knockout BMDMs revealed numerous differentially regulated proteins and phosphoproteins. FABP5 deletion impacted downstream pathways associated with inflammation, cytokine production, oxidative stress, and kinase activity. Toll-like receptor 2 (TLR2) emerged as a novel target of FABP5 and pharmacological FABP5 inhibition blunted TLR2-mediated activation of downstream pathways, ascribing a novel role for FABP5 in TLR2 signaling. This study represents a comprehensive characterization of the impact of FABP5 deletion on the proteomic and phosphoproteomic landscape of M1 and M2 polarized BMDMs. Loss of FABP5 altered pathways implicated in inflammatory responses, macrophage function, and TLR2 signaling. This work provides a foundation for future studies seeking to investigate the therapeutic potential of FABP5 inhibition in pathophysiological states resulting from dysregulated inflammatory signaling. SIGNIFICANCE STATEMENT: This research offers a comprehensive analysis of fatty acid binding protein 5 (FABP5) in macrophages during inflammatory response. The authors employed quantitative proteomic and phosphoproteomic approaches to investigate this utilizing bone marrow-derived macrophages that were M1 and M2 polarized using lipopolysaccharide with interferon γ and interleukin-4, respectively. This revealed multiple pathways related to inflammation that were differentially regulated due to the absence of FABP5. These findings underscore the potential therapeutic significance of macrophage-FABP5 as a candidate for addressing inflammatory-related diseases.
Collapse
Affiliation(s)
- Faniya Doswell
- Molecular and Cellular Biology Program, Stony Brook University, Stony Brook, New York (F.D.); Departments of Anesthesiology (F.D., M.K.) and Pathology (J.D.H.) and Biological Mass Spectrometry Facility, (J.D.H.), Renaissance School of Medicine, Stony Brook University, Stony Brook, New York
| | - John D Haley
- Molecular and Cellular Biology Program, Stony Brook University, Stony Brook, New York (F.D.); Departments of Anesthesiology (F.D., M.K.) and Pathology (J.D.H.) and Biological Mass Spectrometry Facility, (J.D.H.), Renaissance School of Medicine, Stony Brook University, Stony Brook, New York
| | - Martin Kaczocha
- Molecular and Cellular Biology Program, Stony Brook University, Stony Brook, New York (F.D.); Departments of Anesthesiology (F.D., M.K.) and Pathology (J.D.H.) and Biological Mass Spectrometry Facility, (J.D.H.), Renaissance School of Medicine, Stony Brook University, Stony Brook, New York
| |
Collapse
|
3
|
Doswell F, Haley JD, Kaczocha M. Proteomic analysis of signaling pathways modulated by FABP5 in macrophages. RESEARCH SQUARE 2023:rs.3.rs-3332029. [PMID: 37790380 PMCID: PMC10543284 DOI: 10.21203/rs.3.rs-3332029/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Background While acute inflammation serves essential functions in maintaining tissue homeostasis, chronic inflammation is causally linked to many diseases. Macrophages are a major cell-type that orchestrates inflammatory processes. During inflammation, macrophages undergo polarization and activation, thereby mobilizing pro-inflammatory and anti-inflammatory transcriptional programs that regulate ensuing macrophage functions. Fatty acid binding protein 5 (FABP5) is a lipid chaperone that is highly expressed in macrophages. FABP5 deletion is implicated in driving macrophages towards an anti-inflammatory phenotype, yet the signaling pathways regulated by macrophage FABP5 have not been systematically profiled. Herein, we leveraged proteomic and phosphoproteomic approaches to characterize pathways modulated by FABP5 in M1 and M2 polarized bone marrow derived macrophages (BMDMs). Results Stable isotope labeling by amino acids (SILAC) based analysis of M1 and M2 polarized wild-type (WT) and FABP5 knockout (KO) BMDMs revealed numerous differentially regulated proteins and phosphoproteins. FABP5 deletion impacted several downstream pathways associated with inflammation, cytokine production, oxidative stress, and kinase activity. Kinase enrichment analysis based on phosphorylated sites revealed key kinases, including members of the GRK family, that were altered in FABP5 KO BMDMs. Reactive oxygen species (ROS) levels were elevated in M1 polarized KO macrophages, consistent with the differential protein expression profiles. Conclusions This study represents a comprehensive characterization of the impact of FABP5 deletion upon the proteomic and phosphoproteomic landscape of M1 and M2 polarized BMDMs. Loss of FABP5 altered multiple pathways implicated in inflammatory responses and macrophage function. This work provides a foundation for future studies seeking to investigate the therapeutic potential of FABP5 inhibition in pathophysiological states resulting from dysregulated inflammatory signaling.
Collapse
Affiliation(s)
- Faniya Doswell
- Molecular and Cellular Biology Program, Stony Brook University, Stony Brook, NY, USA
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - John D Haley
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
- Stony Brook Biological Mass Spectrometry Facility, Renaissance School of Medicine, Stony Brook University, Stony Brook, USA
| | - Martin Kaczocha
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
4
|
Henpita C, Vyas R, Healy CL, Kieu TL, Gurkar AU, Yousefzadeh MJ, Cui Y, Lu A, Angelini LA, O'Kelly RD, McGowan SJ, Chandrasekhar S, Vanderpool RR, Hennessy‐Wack D, Ross MA, Bachman TN, McTiernan C, Pillai SPS, Ladiges W, Lavasani M, Huard J, Beer‐Stolz D, St. Croix CM, Watkins SC, Robbins PD, Mora AL, Kelley EE, Wang Y, O'Connell TD, Niedernhofer LJ. Loss of DNA repair mechanisms in cardiac myocytes induce dilated cardiomyopathy. Aging Cell 2023; 22:e13782. [PMID: 36734200 PMCID: PMC10086531 DOI: 10.1111/acel.13782] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 12/06/2022] [Accepted: 12/19/2022] [Indexed: 02/04/2023] Open
Abstract
Cardiomyopathy is a progressive disease of the myocardium leading to impaired contractility. Genotoxic cancer therapies are known to be potent drivers of cardiomyopathy, whereas causes of spontaneous disease remain unclear. To test the hypothesis that endogenous genotoxic stress contributes to cardiomyopathy, we deleted the DNA repair gene Ercc1 specifically in striated muscle using a floxed allele of Ercc1 and mice expressing Cre under control of the muscle-specific creatinine kinase (Ckmm) promoter or depleted systemically (Ercc1-/D mice). Ckmm-Cre+/- ;Ercc1-/fl mice expired suddenly of heart disease by 7 months of age. As young adults, the hearts of Ckmm-Cre+/- ;Ercc1-/fl mice were structurally and functionally normal, but by 6-months-of-age, there was significant ventricular dilation, wall thinning, interstitial fibrosis, and systolic dysfunction indicative of dilated cardiomyopathy. Cardiac tissue from the tissue-specific or systemic model showed increased apoptosis and cardiac myocytes from Ckmm-Cre+/- ;Ercc1-/fl mice were hypersensitive to genotoxins, resulting in apoptosis. p53 levels and target gene expression, including several antioxidants, were increased in cardiac tissue from Ckmm-Cre+/- ;Ercc1-/fl and Ercc1-/D mice. Despite this, cardiac tissue from older mutant mice showed evidence of increased oxidative stress. Genetic or pharmacologic inhibition of p53 attenuated apoptosis and improved disease markers. Similarly, overexpression of mitochondrial-targeted catalase improved disease markers. Together, these data support the conclusion that DNA damage produced endogenously can drive cardiac disease and does so mechanistically via chronic activation of p53 and increased oxidative stress, driving cardiac myocyte apoptosis, dilated cardiomyopathy, and sudden death.
Collapse
Affiliation(s)
- Chathurika Henpita
- Department of Biochemistry, Molecular Biology and Biophysics, Institute on the Biology of Aging and MetabolismUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Rajesh Vyas
- Department of Biochemistry, Molecular Biology and Biophysics, Institute on the Biology of Aging and MetabolismUniversity of MinnesotaMinneapolisMinnesotaUSA
- Department of Molecular MedicineScripps Research InstituteJupiterFloridaUSA
| | - Chastity L. Healy
- Department of Integrative Biology and PhysiologyUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Tra L. Kieu
- Department of Biochemistry, Molecular Biology and Biophysics, Institute on the Biology of Aging and MetabolismUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Aditi U. Gurkar
- Department of Molecular MedicineScripps Research InstituteJupiterFloridaUSA
- Division of Geriatric Medicine, Aging InstituteUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Matthew J. Yousefzadeh
- Department of Biochemistry, Molecular Biology and Biophysics, Institute on the Biology of Aging and MetabolismUniversity of MinnesotaMinneapolisMinnesotaUSA
- Department of Molecular MedicineScripps Research InstituteJupiterFloridaUSA
| | - Yuxiang Cui
- Department of ChemistryUniversity of California, RiversideRiversideCaliforniaUSA
| | - Aiping Lu
- Department of Orthopedic SurgeryUniversity of PittsburghPittsburghPennsylvaniaUSA
- Steadman Philippon Research InstituteVailColoradoUSA
| | - Luise A. Angelini
- Department of Biochemistry, Molecular Biology and Biophysics, Institute on the Biology of Aging and MetabolismUniversity of MinnesotaMinneapolisMinnesotaUSA
- Department of Molecular MedicineScripps Research InstituteJupiterFloridaUSA
| | - Ryan D. O'Kelly
- Department of Biochemistry, Molecular Biology and Biophysics, Institute on the Biology of Aging and MetabolismUniversity of MinnesotaMinneapolisMinnesotaUSA
- Department of Molecular MedicineScripps Research InstituteJupiterFloridaUSA
| | - Sara J. McGowan
- Department of Biochemistry, Molecular Biology and Biophysics, Institute on the Biology of Aging and MetabolismUniversity of MinnesotaMinneapolisMinnesotaUSA
- Department of Molecular MedicineScripps Research InstituteJupiterFloridaUSA
| | - Sanjay Chandrasekhar
- Department of Biochemistry, Molecular Biology and Biophysics, Institute on the Biology of Aging and MetabolismUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Rebecca R. Vanderpool
- Division of Cardiology, Heart and Vascular InstituteUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Danielle Hennessy‐Wack
- Department of Biochemistry, Molecular Biology and Biophysics, Institute on the Biology of Aging and MetabolismUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Mark A. Ross
- Center for Biologic ImagingUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Timothy N. Bachman
- Division of Pulmonary, Allergy, and Critical Care MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Charles McTiernan
- Division of Cardiology, Heart and Vascular InstituteUniversity of PittsburghPittsburghPennsylvaniaUSA
| | | | - Warren Ladiges
- Department of Comparative MedicineUniversity of WashingtonSeattleWashingtonUSA
| | - Mitra Lavasani
- Department of Orthopedic SurgeryUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of Physical Medicine and RehabilitationNorthwestern University and Shirley Ryan Ability LabChicagoIllinoisUSA
| | - Johnny Huard
- Department of Orthopedic SurgeryUniversity of PittsburghPittsburghPennsylvaniaUSA
- Steadman Philippon Research InstituteVailColoradoUSA
| | - Donna Beer‐Stolz
- Center for Biologic ImagingUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of Cell BiologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Claudette M. St. Croix
- Center for Biologic ImagingUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of Cell BiologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Simon C. Watkins
- Center for Biologic ImagingUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of Cell BiologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Paul D. Robbins
- Department of Biochemistry, Molecular Biology and Biophysics, Institute on the Biology of Aging and MetabolismUniversity of MinnesotaMinneapolisMinnesotaUSA
- Department of Molecular MedicineScripps Research InstituteJupiterFloridaUSA
| | - Ana L. Mora
- Division of Pulmonary, Allergy, and Critical Care MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
- Division of Pulmonary, Critical Care and Sleep Medicine, College of MedicineThe Ohio State UniversityColumbusOhioUSA
| | - Eric E. Kelley
- Department of Physiology and PharmacologyWest Virginia UniversityMorgantownWest VirginiaUSA
| | - Yinsheng Wang
- Department of ChemistryUniversity of California, RiversideRiversideCaliforniaUSA
| | - Timothy D. O'Connell
- Department of Integrative Biology and PhysiologyUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Laura J. Niedernhofer
- Department of Biochemistry, Molecular Biology and Biophysics, Institute on the Biology of Aging and MetabolismUniversity of MinnesotaMinneapolisMinnesotaUSA
- Department of Molecular MedicineScripps Research InstituteJupiterFloridaUSA
| |
Collapse
|
5
|
Zou Y, Jin B, Li H, Wu X, Liu Y, Zhao H, Zhong D, Wang L, Chen W, Wen M, Liu YN. Cold Nanozyme for Precise Enzymatic Antitumor Immunity. ACS NANO 2022; 16:21491-21504. [PMID: 36453617 DOI: 10.1021/acsnano.2c10057] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Precise catalysis is pursued for the biomedical applications of artificial enzymes. It is feasible to precisely control the catalysis of artificial enzymes via tunning the temperature-dependent enzymatic kinetics. The safety window of cold temperatures (4-37 °C) for the human body is much wider than that of thermal temperatures (37-42 °C). Although the development of cold-activated artificial enzymes is promising, there is currently a lack of suitable candidates. Herein, a cold-activated artificial enzyme is presented with Bi2Fe4O9 nanosheets (NSs) as a paradigm. The as-obtained Bi2Fe4O9 NSs possess glutathione oxidase (GSHOx)-like activity under cold temperature due to their pyroelectricity. Bi2Fe4O9 NSs trigger the cold-enzymatic death of tumor cells via apoptosis and ferroptosis, and minimize the off-target toxicity to normal tissues. Moreover, an interventional device is fabricated to intelligently and remotely control the enzymatic activity of Bi2Fe4O9 NSs on a smartphone. With Bi2Fe4O9 NSs as an in situ vaccine, systemic antitumor immunity is successfully activated to suppress tumor metastasis and relapse. Moreover, blood biochemistry analysis and histological examination indicate the high biosafety of Bi2Fe4O9 NSs for in vivo applications. This cold nanozyme provides a strategy for cancer vaccines, which can benefit the precise control over catalytic nanomedicines.
Collapse
Affiliation(s)
- Yuyan Zou
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan410083, China
| | - Bowen Jin
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan410083, China
| | - Hui Li
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan410083, China
| | - Xianbo Wu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan410083, China
| | - Yihong Liu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan410083, China
| | - Henan Zhao
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan410083, China
| | - Da Zhong
- Xiangya Hospital, Central South University, Changsha, Hunan410083, China
| | - Long Wang
- Xiangya Hospital, Central South University, Changsha, Hunan410083, China
| | - Wansong Chen
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan410083, China
| | - Mei Wen
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan410083, China
| | - You-Nian Liu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan410083, China
| |
Collapse
|
6
|
Nirgude S, Desai S, Mahadeva R, Ravindran F, Choudhary B. ST08 Altered NF-κB Pathway in Breast Cancer Cells In Vitro as Revealed by miRNA-mRNA Analysis and Enhanced the Effect of Cisplatin on Tumour Reduction in EAC Mouse Model. Front Oncol 2022; 12:835027. [PMID: 35615145 PMCID: PMC9125255 DOI: 10.3389/fonc.2022.835027] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/22/2022] [Indexed: 12/17/2022] Open
Abstract
ST08 is a novel curcumin derivative that exhibited apoptotic and anti-migratory activity in MDA-MB-231, triple-negative breast cancer cells reported earlier. In this study, we further explored the anticancer properties of ST08. ST08 reduced tumor burden in vivo and induced apoptosis through the mitochondrial pathway both in vitro and in vivo. ST08 potentiated the effect of cisplatin in vitro and in vivo in mouse EAC breast cancer models with minimal toxicity. ST08 induced alterations in the gene expression were studied by parallel analysis of miRNA and mRNA. 74 differentially expressed miRNA regulated 114 mRNA in triple-negative (MDA-MB-231) cancer cells. Pathway related to the ECM was altered in mesenchymal MDA-MB-231 cells. We constructed a unique miRNA-mRNA interaction network, and one of the pathways regulated by miRNA was NF-κB. Targets of NF-κB like MMP1, PTX3, and MMP2 were downregulated in MDA-MB-231 in response to ST08 treatment. PMA induced cell proliferation was abrogated by ST08 treatment, and no additional cell cytotoxicity was observed when used in combination with IKK-16 indicating ST08 regulation of NF-κB pathway in MDA-MB-231 cells.
Collapse
Affiliation(s)
- Snehal Nirgude
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru, India
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Sagar Desai
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru, India
- Manipal Academy of Higher Education, Manipal, India
| | | | - Febina Ravindran
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru, India
| | - Bibha Choudhary
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru, India
- *Correspondence: Bibha Choudhary,
| |
Collapse
|
7
|
Alhusain A, Fadda L, Sarawi W, Alomar H, Ali H, Mahamad R, Hasan I, Badr A. The Potential Protective Effect of Curcumin and α-Lipoic Acid on N-(4-Hydroxyphenyl) Acetamide-induced Hepatotoxicity Through Downregulation of α-SMA and Collagen III Expression. Dose Response 2022; 20:15593258221078394. [PMID: 35250410 PMCID: PMC8891863 DOI: 10.1177/15593258221078394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 01/17/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND AND OBJECTIVES N-(4-hydroxyphenyl) acetamide (NHPA) is the most commonly used analgesic and antipyretic agent worldwide; however, it remains the leading cause of drug-induced acute liver failure. This study explored the potential impact of curcumin (Curc) and/or α-lipoic acid (Lip acid) on liver damage induced by NHPA overdose. MATERIALS AND METHODS Male Wistar rats were intoxicated with a single oral dose of NHPA (1000 mg/kg) and treated with Curc (200 mg/kg p. o.) and/or Lip acid (100 mg/kg i. p.). These treatments were given in 2 doses at 2 hours and 10 hours post-NHPA-administration. Animals were sacrificed 24 hours post-NHPA-administration. RESULTS Treatment with Curc and/or Lip acid showed effective reduction of NHPA-induced liver injury, demonstrated by reducing serum alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, total bilirubin, as well as hepatic nitric oxide and malondialdehyde. Curc and/or Lip acid treatments counteracted these changes. They also ameliorated NHPA-induced centrilobular hepatocellular necrosis, evidenced by histopathological examination. Moreover, Curc and Lip acid reduced the expression of alpha-smooth muscle actin and collagen III, upregulated by NHPA intoxication in response to oxidative stress and inflammation. DISCUSSION AND CONCLUSION Curc and Lip acid can be considered as promising natural therapies against liver injury, induced by NHPA, through their antioxidant and antifibrotic actions.
Collapse
Affiliation(s)
- Ahlam Alhusain
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Laila Fadda
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Wedad Sarawi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hatun Alomar
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hanaa Ali
- Department of Genetics and Cytology, National Research Centre, Dokki, Egypt
| | - Raeesa Mahamad
- Department of Anatomy, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Iman Hasan
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Amira Badr
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Department of Pharmacology and Toxicology, College of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
8
|
Fragkiadoulaki E, Tsatsakis A, Nikitovic D, Georgiadis G, Kalogeraki A, Kaloudis K, Alegkakis A, Karzi V, Mamoulakis C. Resveratrol and lycopene ameliorate contrast-induced nephropathy in a rabbit model. Hum Exp Toxicol 2022; 41:9603271221145355. [PMID: 36565226 DOI: 10.1177/09603271221145355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Oxidative stress appears to possess a central role in CIN pathophysiology. Resveratrol (Res) and lycopene (Lyc) are strong natural antioxidants evaluated in a limited number of CIN animal studies in vivo. The aim of the study was to evaluate the potential renoprotective effects of Res/Lyc in a CIN rabbit model. Twenty-four adult male New Zealand white rabbits were equally assigned into four groups: control (saline), CIN (intravenous iopromide; 7.5 g iodine/kg), Res + CIN (per os Res; 5 mg/kg), and Lyc + CIN (per os Lyc; 4 mg/kg). Serum Cr (sCr); symmetric/asymmetric dimethylarginine (SDMA/ADMA); oxidative stress biomarkers: malondialdehyde; total antioxidant capacity; catalase; glutathione) were evaluated in blood samples at three time points: right after (0 h); 24 h; 48 h after iopromide/saline administration. CD20+/CD3+ lymphocytes were determined (48 h). All animals were sacrificed at 48 h and both kidneys collected. Oxidative stress biomarkers were measured in renal tissue. sCr and SDMA/ADMA levels increased significantly in CIN compared to all groups. Oxidative stress secondary to CIN in blood/kidneys was suppressed by Res/Lyc. B and T lymphocytes decreased significantly in CIN compared to all groups. The present study provides emerging evidence that Res/Lyc ameliorate CIN by modulating oxidant/antioxidant balance in blood/renal tissue and by inhibiting vasoconstriction/blood cytotoxicity.
Collapse
Affiliation(s)
- Eirini Fragkiadoulaki
- Department of Urology, Medical School, University General Hospital of Heraklion, 37778University of Crete, Heraklion, Greece.,Department of Forensic Sciences and Toxicology, Medical School, 37778University of Crete, Heraklion, Greece
| | - Aristides Tsatsakis
- Department of Forensic Sciences and Toxicology, Medical School, 37778University of Crete, Heraklion, Greece
| | - Dragana Nikitovic
- Laboratory of Anatomy-Histology-Embryology, Medical School, 37778University of Crete, Heraklion, Greece
| | - Georgios Georgiadis
- Department of Urology, Medical School, University General Hospital of Heraklion, 37778University of Crete, Heraklion, Greece
| | - Alexandra Kalogeraki
- Laboratory of Cytopathology, Medical School, 37778University of Crete, Heraklion, Greece
| | - Konstantinos Kaloudis
- Department of Forensic Sciences and Toxicology, Medical School, 37778University of Crete, Heraklion, Greece
| | - Athanasios Alegkakis
- Department of Forensic Sciences and Toxicology, Medical School, 37778University of Crete, Heraklion, Greece
| | - Vasiliki Karzi
- Department of Forensic Sciences and Toxicology, Medical School, 37778University of Crete, Heraklion, Greece
| | - Charalampos Mamoulakis
- Department of Urology, Medical School, University General Hospital of Heraklion, 37778University of Crete, Heraklion, Greece
| |
Collapse
|
9
|
Zhang L, Zhao J, Mu X, McGowan SJ, Angelini L, O'Kelly RD, Yousefzadeh MJ, Sakamoto A, Aversa Z, LeBrasseur NK, Suh Y, Huard J, Kamenecka TM, Niedernhofer LJ, Robbins PD. Novel small molecule inhibition of IKK/NF-κB activation reduces markers of senescence and improves healthspan in mouse models of aging. Aging Cell 2021; 20:e13486. [PMID: 34734460 PMCID: PMC8672781 DOI: 10.1111/acel.13486] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 09/01/2021] [Accepted: 09/13/2021] [Indexed: 11/30/2022] Open
Abstract
Constitutive NF-κB activation is associated with cellular senescence and stem cell dysfunction and rare variants in NF-κB family members are enriched in centenarians. We recently identified a novel small molecule (SR12343) that inhibits IKK/NF-κB activation by disrupting the association between IKKβ and NEMO. Here we investigated the therapeutic effects of SR12343 on senescence and aging in three different mouse models. SR12343 reduced senescence-associated beta-galactosidase (SA-β-gal) activity in oxidative stress-induced senescent mouse embryonic fibroblasts as well as in etoposide-induced senescent human IMR90 cells. Chronic administration of SR12343 to the Ercc1-/∆ and Zmpste24-/- mouse models of accelerated aging reduced markers of cellular senescence and SASP and improved multiple parameters of aging. SR12343 also reduced markers of senescence and increased muscle fiber size in 2-year-old WT mice. Taken together, these results demonstrate that IKK/NF-κB signaling pathway represents a promising target for reducing markers of cellular senescence, extending healthspan and treating age-related diseases.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Biochemistry, Molecular Biology and BiophysicsInstitute on the Biology of Aging and MetabolismUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Jing Zhao
- Department of Molecular MedicineScripps ResearchJupiterFloridaUSA
| | - Xiaodong Mu
- Center for Regenerative Sports MedicineSteadman Philippon Research InstituteVailColoradoUSA
- Shandong First Medical University (Shandong Academy of Medical Sciences)JinanChina
| | - Sara J. McGowan
- Department of Biochemistry, Molecular Biology and BiophysicsInstitute on the Biology of Aging and MetabolismUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Luise Angelini
- Department of Biochemistry, Molecular Biology and BiophysicsInstitute on the Biology of Aging and MetabolismUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Ryan D. O'Kelly
- Department of Biochemistry, Molecular Biology and BiophysicsInstitute on the Biology of Aging and MetabolismUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Matthew J. Yousefzadeh
- Department of Biochemistry, Molecular Biology and BiophysicsInstitute on the Biology of Aging and MetabolismUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Ayumi Sakamoto
- Department of Physical Medicine and Rehabilitation and Robert and Arlene Kogod Center on AgingRochesterMinnesotaUSA
| | - Zaira Aversa
- Department of Physical Medicine and Rehabilitation and Robert and Arlene Kogod Center on AgingRochesterMinnesotaUSA
| | - Nathan K. LeBrasseur
- Department of Physical Medicine and Rehabilitation and Robert and Arlene Kogod Center on AgingRochesterMinnesotaUSA
| | - Yousin Suh
- Department of Genetics and DevelopmentColumbia UniversityNew YorkNew YorkUSA
| | - Johnny Huard
- Center for Regenerative Sports MedicineSteadman Philippon Research InstituteVailColoradoUSA
| | | | - Laura J. Niedernhofer
- Department of Biochemistry, Molecular Biology and BiophysicsInstitute on the Biology of Aging and MetabolismUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Paul D. Robbins
- Department of Biochemistry, Molecular Biology and BiophysicsInstitute on the Biology of Aging and MetabolismUniversity of MinnesotaMinneapolisMinnesotaUSA
| |
Collapse
|
10
|
The NEDD8-activating enzyme inhibition with MLN4924 sensitizes human cancer cells of different origins to apoptosis and necroptosis. Arch Biochem Biophys 2020; 691:108513. [PMID: 32721435 DOI: 10.1016/j.abb.2020.108513] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/05/2020] [Accepted: 07/22/2020] [Indexed: 11/23/2022]
Abstract
OBJECTIVES MLN4924 is an inhibitor of NEDD8-activating enzyme (NAE) that interferes with the cullin-RING ubiquitin ligase complexes formation and the nuclear factor kappa B (NF-κB) activation. Here, we investigated the cytotoxic effect of MLN4924 and its ability to sensitize a broad range of cancer cells of different origins to tumour necrosis factor-α (TNF)-induced cell death alongside unravelling its mechanism of action. MATERIALS AND METHODS Cell viability and caspases processing were determined after MLN4924 treatment either alone or with zVAD-fmk (pan caspase inhibitor), necrostatin-1 (nec-1, RIPK1 inhibitor) and necrosulfonamide (NSA, MLKL inhibitor). Moreover, MLN4924 ability to potentiate TNF-induced cell death was evaluated in 24 cell lines of different cancer origins. The impact of NAE inhibition with MLN4924 on TNF-induced apoptosis and necroptosis was evaluated using zVAD-fmk and nec-1, respectively. RESULTS MLN4924 alone was able to induce cell death in different cell lines that was attributed to apoptosis induction. Also, MLN4924 sensitized different cancer cell lines to TNF-induced cell death. MLN4924/TNF-induced cell death was apoptosis and necroptosis dependent that may be attributed to MLN4924 inhibition of NF-κB pathway activation. CONCLUSIONS Targeting NAE and NF-κB pathway with MLN4924 represents a substantial approach to enhance the sensitivity of diverse types of cancer cells. Moreover, the broad in vitro screening of MLN4924 anticancer activity provides a valuable guidance for elucidating the susceptible cancer types for the prospective clinical application of MLN4924.
Collapse
|
11
|
Beyond the myocardium? SGLT2 inhibitors target peripheral components of reduced oxygen flux in the diabetic patient with heart failure with preserved ejection fraction. Heart Fail Rev 2020; 27:219-234. [PMID: 32583230 DOI: 10.1007/s10741-020-09996-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Recent cardiovascular outcome trials have highlighted the propensity of the antidiabetic agents, SGLT2 inhibitors (SGLT2is or -flozin drugs), to exert positive clinical outcomes in patients with cardiovascular disease at risk for major adverse cardiovascular events (MACEs). Of interest in cardiac diabetology is the physiological status of the patient with T2DM and heart failure with preserved ejection fraction (HFpEF), a well-examined association. Underlying this pathologic tandem are the effects that long-standing hyperglycemia has on the ability of the HFpEF heart to adequately deliver oxygen. It is believed that shortcomings in oxygen diffusion or utilization and the resulting hypoxia thereafter may play a role in underlying the clinical sequelae of patients with T2DM and HFpEF, with implications in the long-term decline of extra-cardiac tissue. Oxygen consumption is one of the most critical factors in indexing heart failure disease burden, warranting a probe into the role of SGLT2i on oxygen utility in HFpEF and T2DM. We investigated the role of oxygen flux in the patient with T2DM and HFpEF extending beyond the heart with focuses on cellular metabolism, perivascular fibrosis with endothelial dysfunction, hematologic changes, and renal effects with neurohormonal considerations in the patient with HFpEF and T2DM. Moreover, we give a commentary on potential therapeutic targets of these components with SGLT2i to gain insight into disease burden amelioration in patients with HFpEF and T2DM.
Collapse
|
12
|
Adverse and hormetic effects in rats exposed for 12 months to low dose mixture of 13 chemicals: RLRS part III. Toxicol Lett 2019; 310:70-91. [PMID: 30999039 DOI: 10.1016/j.toxlet.2019.04.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/27/2019] [Accepted: 04/05/2019] [Indexed: 12/31/2022]
Abstract
The aim of the current study was to evaluate the effects of a mixture of thirteen common chemicals on rats, after a one-year exposure to doses around the acceptable daily intake (ADIs), using blood and urinary tests. The influence of low doses of the mixture on weight gain, water consumption, feed consumption and feed efficiency, biochemistry parameters, haematological parameters, blood lymphocytes subsets, serum inflammation profile and urine parameters was evaluated. Our mixture caused a moderate monotonic increase of the males' appetite and a non-monotonic increase of anabolism and a monotonic increase of appetite for the females. Regarding biochemical parameters, the exposure to the test mixture caused non-monotonic increases of AST and ALT, a decrease of PChE in males and plausibly a monotonic biliary obstruction in both sexes. Monocytes significantly increased in low dose groups of both sexes. A significant decrease of all the lymphocytes subclasses and an increased expression of TNF-α protein associated with an increased expression of IFN-γ protein observed in various groups. It became apparent that after twelve months of exposure very low doses of the tested mixture had both non-monotonic and monotonic harmful effects on different levels on rats.
Collapse
|
13
|
Bhatti FUR, Hasty KA, Cho H. Anti-inflammatory role of TPCA-1 encapsulated nanosomes in porcine chondrocytes against TNF-α stimulation. Inflammopharmacology 2019; 27:1011-1019. [PMID: 30600473 DOI: 10.1007/s10787-018-0542-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 10/20/2018] [Indexed: 11/28/2022]
Abstract
In this study, we evaluated the hypothesis that immunonanosomes carrying the drug [5-(p-Fluorophenyl)-2-ureido]thiophene-3-carboxamide (TPCA-1) will help in reducing nuclear factor-kappaB (NF-κB)-associated inflammation in porcine chondrocytes against tumor necrosis factor-alpha (TNF-α)-induced stress. The nanosomes were tagged with monoclonal anti-type II collagen (MabCII) antibody to specifically target the exposed type II collagen in cartilage matrix. TPCA-1 at a concentration of 10 µM significantly reduced expression of the matrix-degrading enzyme, Matrix metalloproteinase-13 (MMP-13) and blocked the p65 nuclear translocation. In comparison to the TPCA-1 solution alone, the TPCA-1 nanosomes were found to be more effective in reducing the cellular toxicity, oxidative stress and inflammation in chondrocytes treated with TNF-α. In addition, TPCA-1 nanosomes were more effective in reducing the gene expression of hypoxia-inducible factor-2alpha (HIF-2α) that in turn is associated with the regulation of MMP-13 gene. TPCA-1 nanosomes significantly reduced expression of both these genes. The data also showed that TPCA-1 did not attenuate the down-regulated gene expression levels of anabolic genes aggrecan (ACAN) and collagen type II alpha (COL2A1). In conclusion, this study showed that TPCA-1 nanosomes carrying a dose of 10 µM TPCA-1 can effectively increase the survival of cultured porcine chondrocytes against TNF-α-induced stress. The findings of this study could be used to develop nanosome-based drug delivery systems (DDSs) for animal model of OA. Moreover, the approach presented here can be further utilized in other studies for targeted delivery of the drug of interest at a cellular level.
Collapse
Affiliation(s)
- Fazal Ur Rehman Bhatti
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Research 151, VAMC, 1030 Jefferson Ave, Memphis, TN, 38104, USA.,VA Medical Center, Memphis, TN, USA
| | - Karen A Hasty
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Research 151, VAMC, 1030 Jefferson Ave, Memphis, TN, 38104, USA. .,Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center-Campbell Clinic, Research 151, VAMC, 1030 Jefferson Ave, Memphis, TN, 38104, USA. .,VA Medical Center, Memphis, TN, USA.
| | - Hongsik Cho
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Research 151, VAMC, 1030 Jefferson Ave, Memphis, TN, 38104, USA. .,Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center-Campbell Clinic, Research 151, VAMC, 1030 Jefferson Ave, Memphis, TN, 38104, USA. .,VA Medical Center, Memphis, TN, USA.
| |
Collapse
|
14
|
Involvement of inhibitor kappa B kinase 2 (IKK2) in the regulation of vascular tone. J Transl Med 2018; 98:1311-1319. [PMID: 29785049 DOI: 10.1038/s41374-018-0061-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 03/22/2018] [Accepted: 03/23/2018] [Indexed: 11/09/2022] Open
Abstract
Inhibitor kappa B kinase 2 (IKK2) plays an essential role in the activation of nuclear factor kappa B (NF-kB). Recently, it has been suggested that IKK2 acts as a myosin light chain kinase (MLCK) and contributes to vasoconstriction in mouse aorta. However, the underlying mechanisms are still unknown. Therefore, we investigated whether IKK2 acts as a MLCK or regulates the activity of myosin light chain phosphatase (MLCP). Pressure myograph was used to measure vascular tone in rat mesenteric arteries. Immunofluorescence staining was performed to identify phosphorylation levels of MLC (ser19), MYPT1 (thr853 and thr696) and CPI-17 (thr38). SC-514 (IKK2 inhibitor, 50 μM) induced relaxation in the mesenteric arteries pre-contracted with 70 mM high K+ solution or U-46619 (thromboxane analog, 5 μM). The relaxation induced by SC-514 was increased in the arteries pre-contracted with U-46619 compared to arteries pre-contracted with 70 mM high K+ solution. U-46619-induced contraction was decreased by treatment of SC-514 in the presence of MLCK inhibitor, ML-7 (10 μM). In the absence of intracellular Ca2+, U-46619 still induced contraction, which was decreased by treatment of SC-514. Furthermore, phosphorylation levels of MLC (ser19) and MYPT1 (thr853) were decreased by treatment of SC-514. IKK2 is involved in the vascular contraction through regulation of MLCP activity by phosphorylating MYPT1 at thr853 in rat mesenteric arteries. These findings suggest IKK2 could be a new pharmacological target for specific therapies of various vascular diseases.
Collapse
|
15
|
da Cruz Filho IJ, da Silva Barros BR, de Souza Aguiar LM, Navarro CDC, Ruas JS, de Lorena VMB, de Moraes Rocha GJ, Vercesi AE, de Melo CML, Maior AMS. Lignins isolated from Prickly pear cladodes of the species Opuntia fícus-indica (Linnaeus) Miller and Opuntia cochenillifera (Linnaeus) Miller induces mice splenocytes activation, proliferation and cytokines production. Int J Biol Macromol 2018; 123:1331-1339. [PMID: 30244129 DOI: 10.1016/j.ijbiomac.2018.09.120] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/14/2018] [Accepted: 09/20/2018] [Indexed: 01/14/2023]
Abstract
Opuntia fícus-indica and Opuntia cochenillifera are species of Cactaceae, found in the arid regions of the planet. They present water, cellulose, hemicellulose, pectins, extractives, ashes and lignins. Here we aimed to study the immunomodulatory action of lignins from these two species against mice splenocytes, since no study for this purpose has yet been reported. The antioxidant activities of these lignins were evaluated by the DPPH, ABTS, NO assays and total antioxidant activity. Cytotoxicity was evaluated through Annexin V-FITC and propidium iodide-PE probs and cell proliferation was determined by CFSE. Immunomodulation studies with Opuntia lignins obtained were performed through investigation of ROS levels, cytosolic calcium release, changes on mitochondrial membrane potential, cytokine production and NO release. Results showed that Opuntia cochenillifera lignin presented more phenolic amount and antioxidant activities than Opuntia ficius-indica. Both lignins showed high cell viability (>96%) and cell proliferation. Activation signal was observed for both lignins with increase of ROS and cytosolic calcium levels, and changes in mitochondrial membrane potential. In addition, lignins induced high TNF-α, IL-6 and IL-10 production and reduced NO release. Therefore, these lignins present great potential to be used as molecules with a proinflammatory profile, being shown as a promising therapeutic agent.
Collapse
Affiliation(s)
- Iranildo José da Cruz Filho
- Laboratory of Biothecnological Process, Antibiotics Department, Federal University of Pernambuco, Pernambuco, Brazil
| | - Bárbara Rafaela da Silva Barros
- Laboratory of Immunological and Antitumor Analyzes, Antibiotics Department, Federal University of Pernambuco, Pernambuco, Brazil
| | - Lethícia Maria de Souza Aguiar
- Laboratory of Immunological and Antitumor Analyzes, Antibiotics Department, Federal University of Pernambuco, Pernambuco, Brazil
| | | | - Juliana Silveira Ruas
- Laboratory of Bioenergetic, Department of Clinical Patology, Campinas State University, São Paulo, Brazil
| | | | - George Jackson de Moraes Rocha
- National Laboratory of Bioethanol Science and Technology, National Center for Research in Energy and Materials, São Paulo, Brazil
| | - Aníbal Eugênio Vercesi
- Laboratory of Bioenergetic, Department of Clinical Patology, Campinas State University, São Paulo, Brazil
| | | | - Ana Maria Souto Maior
- Laboratory of Biothecnological Process, Antibiotics Department, Federal University of Pernambuco, Pernambuco, Brazil
| |
Collapse
|
16
|
N6-Furfuryladenine is protective in Huntington's disease models by signaling huntingtin phosphorylation. Proc Natl Acad Sci U S A 2018; 115:E7081-E7090. [PMID: 29987005 DOI: 10.1073/pnas.1801772115] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The huntingtin N17 domain is a modulator of mutant huntingtin toxicity and is hypophosphorylated in Huntington's disease (HD). We conducted high-content analysis to find compounds that could restore N17 phosphorylation. One lead compound from this screen was N6-furfuryladenine (N6FFA). N6FFA was protective in HD model neurons, and N6FFA treatment of an HD mouse model corrects HD phenotypes and eliminates cortical mutant huntingtin inclusions. We show that N6FFA restores N17 phosphorylation levels by being salvaged to a triphosphate form by adenine phosphoribosyltransferase (APRT) and used as a phosphate donor by casein kinase 2 (CK2). N6FFA is a naturally occurring product of oxidative DNA damage. Phosphorylated huntingtin functionally redistributes and colocalizes with CK2, APRT, and N6FFA DNA adducts at sites of induced DNA damage. We present a model in which this natural product compound is salvaged to provide a triphosphate substrate to signal huntingtin phosphorylation via CK2 during low-ATP stress under conditions of DNA damage, with protective effects in HD model systems.
Collapse
|
17
|
Zhao J, Zhang L, Mu X, Doebelin C, Nguyen W, Wallace C, Reay DP, McGowan SJ, Corbo L, Clemens PR, Wilson GM, Watkins SC, Solt LA, Cameron MD, Huard J, Niedernhofer LJ, Kamenecka TM, Robbins PD. Development of novel NEMO-binding domain mimetics for inhibiting IKK/NF-κB activation. PLoS Biol 2018; 16:e2004663. [PMID: 29889904 PMCID: PMC6013238 DOI: 10.1371/journal.pbio.2004663] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 06/21/2018] [Accepted: 05/21/2018] [Indexed: 01/24/2023] Open
Abstract
Nuclear factor κB (NF-κB) is a transcription factor important for regulating innate and adaptive immunity, cellular proliferation, apoptosis, and senescence. Dysregulation of NF-κB and its upstream regulator IκB kinase (IKK) contributes to the pathogenesis of multiple inflammatory and degenerative diseases as well as cancer. An 11-amino acid peptide containing the NF-κB essential modulator (NEMO)-binding domain (NBD) derived from the C-terminus of β subunit of IKK, functions as a highly selective inhibitor of the IKK complex by disrupting the association of IKKβ and the IKKγ subunit NEMO. A structure-based pharmacophore model was developed to identify NBD mimetics by in silico screening. Two optimized lead NBD mimetics, SR12343 and SR12460, inhibited tumor necrosis factor α (TNF-α)- and lipopolysaccharide (LPS)-induced NF-κB activation by blocking the interaction between IKKβ and NEMO and suppressed LPS-induced acute pulmonary inflammation in mice. Chronic treatment of a mouse model of Duchenne muscular dystrophy (DMD) with SR12343 and SR12460 attenuated inflammatory infiltration, necrosis and muscle degeneration, demonstrating that these small-molecule NBD mimetics are potential therapeutics for inflammatory and degenerative diseases.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Molecular Medicine and the TSRI Center on Aging, The Scripps Research Institute, Jupiter, Florida, United States of America
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Lei Zhang
- Department of Molecular Medicine and the TSRI Center on Aging, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Xiaodong Mu
- Department of Orthopaedic Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Christelle Doebelin
- Department of Molecular Medicine and the TSRI Center on Aging, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - William Nguyen
- Department of Molecular Medicine and the TSRI Center on Aging, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Callen Wallace
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Daniel P. Reay
- Department of Neurology, University of Pittsburgh, Pennsylvania, United States of America
| | - Sara J. McGowan
- Department of Molecular Medicine and the TSRI Center on Aging, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Lana Corbo
- Department of Molecular Medicine and the TSRI Center on Aging, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Paula R. Clemens
- Department of Neurology, University of Pittsburgh, Pennsylvania, United States of America
| | - Gabriela Mustata Wilson
- Department of Health Informatics and Information Management, College of Nursing and Health Professions, University of Southern Indiana, Evansville, Indiana, United States of America
| | - Simon C. Watkins
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Laura A. Solt
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Michael D. Cameron
- Department of Molecular Medicine and the TSRI Center on Aging, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Johnny Huard
- Department of Orthopaedic Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Laura J. Niedernhofer
- Department of Molecular Medicine and the TSRI Center on Aging, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Theodore M. Kamenecka
- Department of Molecular Medicine and the TSRI Center on Aging, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Paul D. Robbins
- Department of Molecular Medicine and the TSRI Center on Aging, The Scripps Research Institute, Jupiter, Florida, United States of America
- * E-mail:
| |
Collapse
|
18
|
Cuomo F, Coppola A, Botti C, Maione C, Forte A, Scisciola L, Liguori G, Caiafa I, Ursini MV, Galderisi U, Cipollaro M, Altucci L, Cobellis G. Pro-inflammatory cytokines activate hypoxia-inducible factor 3α via epigenetic changes in mesenchymal stromal/stem cells. Sci Rep 2018; 8:5842. [PMID: 29643458 PMCID: PMC5895792 DOI: 10.1038/s41598-018-24221-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 03/23/2018] [Indexed: 11/09/2022] Open
Abstract
Human mesenchymal stromal/stem cells (hMSCs) emerged as a promising therapeutic tool for ischemic disorders, due to their ability to regenerate damaged tissues, promote angiogenesis and reduce inflammation, leading to encouraging, but still limited results. The outcomes in clinical trials exploring hMSC therapy are influenced by low cell retention and survival in affected tissues, partially influenced by lesion's microenvironment, where low oxygen conditions (i.e. hypoxia) and inflammation coexist. Hypoxia and inflammation are pathophysiological stresses, sharing common activators, such as hypoxia-inducible factors (HIFs) and NF-κB. HIF1α and HIF2α respond essentially to hypoxia, activating pathways involved in tissue repair. Little is known about the regulation of HIF3α. Here we investigated the role of HIF3α in vitro and in vivo. Human MSCs expressed HIF3α, differentially regulated by pro-inflammatory cytokines in an oxygen-independent manner, a novel and still uncharacterized mechanism, where NF-κB is critical for its expression. We investigated if epigenetic modifications are involved in HIF3α expression by methylation-specific PCR and histone modifications. Robust hypermethylation of histone H3 was observed across HIF3A locus driven by pro-inflammatory cytokines. Experiments in a murine model of arteriotomy highlighted the activation of Hif3α expression in infiltrated inflammatory cells, suggesting a new role for Hif3α in inflammation in vivo.
Collapse
Affiliation(s)
- Francesca Cuomo
- Department of Biochemistry, Biophysics and General Pathology, Università degli Studi della Campania L. Vanvitelli, Via L. De Crecchio, 7, 80138, Naples, Italy
| | - Antonietta Coppola
- Department of Biochemistry, Biophysics and General Pathology, Università degli Studi della Campania L. Vanvitelli, Via L. De Crecchio, 7, 80138, Naples, Italy
| | - Chiara Botti
- Department of Biochemistry, Biophysics and General Pathology, Università degli Studi della Campania L. Vanvitelli, Via L. De Crecchio, 7, 80138, Naples, Italy
- Laboratorio di Patologia Clinica, Ospedale Santobono, Via M. Fiore 6, 80129, Naples, Italy
| | - Ciro Maione
- Department of Biochemistry, Biophysics and General Pathology, Università degli Studi della Campania L. Vanvitelli, Via L. De Crecchio, 7, 80138, Naples, Italy
| | - Amalia Forte
- Department of Experimental Medicine, Università degli Studi della Campania L. Vanvitelli, Via L. De Crecchio, 7, 80138, Naples, Italy
| | - Lucia Scisciola
- Department of Biochemistry, Biophysics and General Pathology, Università degli Studi della Campania L. Vanvitelli, Via L. De Crecchio, 7, 80138, Naples, Italy
| | - Giuseppina Liguori
- Istituto Nazionale Tumori, Struttura Complessa Oncologia Medica Melanoma Immunoterapia Oncologica e Terapia Innovativa, Via M. Semmola, 80131, Naples, Italy
| | - Ilaria Caiafa
- Department of Biochemistry, Biophysics and General Pathology, Università degli Studi della Campania L. Vanvitelli, Via L. De Crecchio, 7, 80138, Naples, Italy
| | - Matilde Valeria Ursini
- Institute of Genetics and Biophysics, 'A. Buzzati-Traverso' (IGB), via P. Castellino, 111, 80131, Naples, Italy
| | - Umberto Galderisi
- Department of Experimental Medicine, Università degli Studi della Campania L. Vanvitelli, Via L. De Crecchio, 7, 80138, Naples, Italy
| | - Marilena Cipollaro
- Department of Experimental Medicine, Università degli Studi della Campania L. Vanvitelli, Via L. De Crecchio, 7, 80138, Naples, Italy
| | - Lucia Altucci
- Department of Biochemistry, Biophysics and General Pathology, Università degli Studi della Campania L. Vanvitelli, Via L. De Crecchio, 7, 80138, Naples, Italy
| | - Gilda Cobellis
- Department of Biochemistry, Biophysics and General Pathology, Università degli Studi della Campania L. Vanvitelli, Via L. De Crecchio, 7, 80138, Naples, Italy.
| |
Collapse
|
19
|
Al-Sha'er MA, Almazari IS, Taha MO. Discovery of novel potent nuclear factor kappa-B inhibitors (IKK-β) via extensive ligand-based modeling and virtual screening. J Mol Recognit 2017; 30. [PMID: 28008665 DOI: 10.1002/jmr.2604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 10/23/2016] [Accepted: 11/22/2016] [Indexed: 12/12/2022]
Abstract
Inhibitor kappa-B kinase-beta (IKK-β) controls the activation of nuclear transcription factor kappa-B and has been linked to inflammation and cancer. Therefore, inhibitors of this kinase should have potent anti-inflammatory and anticancer properties. Accordingly, we explored the pharmacophoric space of 218 IKK-β inhibitors to identify high-quality binding models. Subsequently, genetic algorithm-based quantitative structure activity relationship (QSAR) analysis was employed to select the best possible combination of pharmacophoric models and physicochemical descriptors that explain bioactivity variation among training compounds. Three successful pharmacophores emerged in 2 optimal QSAR equations (r12175 = 0.733, r12LOO = 0.52, F1 = 65.62, r12PRESS against 43 test inhibitors = 0.63 and r22175 = 0.683, r22LOO = 0.52, F2 = 72.66, r22PRESS against 43 test inhibitors = 0.65). Two pharmacophores were merged in a single binding model. Receiver operating characteristic curve validation proved the excellent qualities of this model. The merged pharmacophore and the associated QSAR equations were applied to screen the National Cancer Institute list of compounds. Ten hits were found to exhibit potent anti-IKK-β bioactivity, out of which, one illustrates IC50 of 11.0nM.
Collapse
Affiliation(s)
| | | | - Mutasem O Taha
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, The University of Jordan, Amman, Jordan
| |
Collapse
|
20
|
Hamed MM, Darwish SS, Herrmann J, Abadi AH, Engel M. First Bispecific Inhibitors of the Epidermal Growth Factor Receptor Kinase and the NF-κB Activity As Novel Anticancer Agents. J Med Chem 2017; 60:2853-2868. [PMID: 28291344 DOI: 10.1021/acs.jmedchem.6b01774] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The activation of the NF-κB transcription factor is a major adaptive response induced upon treatment with EGFR kinase inhibitors, leading to the emergence of resistance in nonsmall cell lung cancer and other tumor types. To suppress this survival mechanism, we developed new thiourea quinazoline derivatives that are dual inhibitors of both EGFR kinase and the NF-κB activity. Optimization of the hit compound, identified in a NF-κB reporter gene assay, led to compound 9b, exhibiting a cellular IC50 for NF-κB inhibition of 0.3 μM while retaining a potent EGFR kinase inhibition (IC50 = 60 nM). The dual inhibitors showed a higher potency than gefitinib to inhibit cell growth of EGFR-overexpressing tumor cell lines in vitro and in a xenograft model in vivo, while no signs of toxicity were observed. An investigation of the molecular mechanism of NF-κB suppression revealed that the dual inhibitors depleted the transcriptional coactivator CREB-binding protein from the NF-κB complex in the nucleus.
Collapse
Affiliation(s)
- Mostafa M Hamed
- Pharmaceutical and Medicinal Chemistry, Campus C2.3, and Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarland University , Campus E8.1, D-66123 Saarbrücken, Germany.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo , Cairo 11835, Egypt
| | - Sarah S Darwish
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo , Cairo 11835, Egypt
| | - Jennifer Herrmann
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) , Campus E8.1, D-66123 Saarbrücken, Germany
| | - Ashraf H Abadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo , Cairo 11835, Egypt
| | - Matthias Engel
- Pharmaceutical and Medicinal Chemistry, Saarland University , Campus C2.3, D-66123 Saarbrücken, Germany
| |
Collapse
|
21
|
Ratner D, Orning MPA, Lien E. Bacterial secretion systems and regulation of inflammasome activation. J Leukoc Biol 2016; 101:165-181. [PMID: 27810946 DOI: 10.1189/jlb.4mr0716-330r] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/19/2016] [Accepted: 09/20/2016] [Indexed: 01/03/2023] Open
Abstract
Innate immunity is critical for host defenses against pathogens, but many bacteria display complex ways of interacting with innate immune signaling, as they may both activate and evade certain pathways. Gram-negative bacteria can exhibit specialized nanomachine secretion systems for delivery of effector proteins into mammalian cells. Bacterial types III, IV, and VI secretion systems (T3SS, T4SS, and T6SS) are known for their impact on caspase-1-activating inflammasomes, necessary for producing bioactive inflammatory cytokines IL-1β and IL-18, key participants of anti-bacterial responses. Here, we discuss how these secretion systems can mediate triggering and inhibition of inflammasome signaling. We propose that a fine balance between secretion system-mediated activation and inhibition can determine net activation of inflammasome activity and control inflammation, clearance, or spread of the infection.
Collapse
Affiliation(s)
- Dmitry Ratner
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA; and
| | - M Pontus A Orning
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA; and.,Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norges Teknisk-Naturvitenskapelige Universitet, Trondheim, Norway
| | - Egil Lien
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA; and .,Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norges Teknisk-Naturvitenskapelige Universitet, Trondheim, Norway
| |
Collapse
|
22
|
Souza NC, de Oliveira JM, Morrone MDS, Albanus RD, Amarante MDSM, Camillo CDS, Langassner SMZ, Gelain DP, Moreira JCF, Dalmolin RJS, de Bittencourt Pasquali MA. Turnera subulata Anti-Inflammatory Properties in Lipopolysaccharide-Stimulated RAW 264.7 Macrophages. J Med Food 2016; 19:922-930. [DOI: 10.1089/jmf.2016.0047] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Natália Cabral Souza
- Institute of Tropical Medicine of Rio Grande do Norte, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Juliana Medeiros de Oliveira
- Institute of Tropical Medicine of Rio Grande do Norte, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | | | - Ricardo D'Oliveira Albanus
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | | | - Daniel Pens Gelain
- Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | - Matheus Augusto de Bittencourt Pasquali
- Institute of Tropical Medicine of Rio Grande do Norte, Federal University of Rio Grande do Norte, Natal, RN, Brazil
- Department of Food Engineering, Federal University of Campina Grande, Campina Grande, PB, Brazil
| |
Collapse
|
23
|
Friedmann-Morvinski D, Narasimamurthy R, Xia Y, Myskiw C, Soda Y, Verma IM. Targeting NF-κB in glioblastoma: A therapeutic approach. SCIENCE ADVANCES 2016; 2:e1501292. [PMID: 26824076 PMCID: PMC4730860 DOI: 10.1126/sciadv.1501292] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 11/17/2015] [Indexed: 05/29/2023]
Abstract
Glioblastoma multiforme (GBM) is the most common and lethal form of intracranial tumor. We have established a lentivirus-induced mouse model of malignant gliomas, which faithfully captures the pathophysiology and molecular signature of mesenchymal human GBM. RNA-Seq analysis of these tumors revealed high nuclear factor κB (NF-κB) activation showing enrichment of known NF-κB target genes. Inhibition of NF-κB by either depletion of IκB kinase 2 (IKK2), expression of a IκBαM super repressor, or using a NEMO (NF-κB essential modifier)-binding domain (NBD) peptide in tumor-derived cell lines attenuated tumor proliferation and prolonged mouse survival. Timp1, one of the NF-κB target genes significantly up-regulated in GBM, was identified to play a role in tumor proliferation and growth. Inhibition of NF-κB activity or silencing of Timp1 resulted in slower tumor growth in both mouse and human GBM models. Our results suggest that inhibition of NF-κB activity or targeting of inducible NF-κB genes is an attractive therapeutic approach for GBM.
Collapse
Affiliation(s)
- Dinorah Friedmann-Morvinski
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Rajesh Narasimamurthy
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Yifeng Xia
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Chad Myskiw
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Yasushi Soda
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Inder M. Verma
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| |
Collapse
|
24
|
Acuña UM, Zi J, Orjala J, Carcache de Blanco EJ. Ambiguine I Isonitrile from Fischerella ambigua Induces Caspase-Independent Cell Death in MCF-7 Hormone Dependent Breast Cancer Cells. INTERNATIONAL JOURNAL OF CANCER RESEARCH 2015; 49:1655-1662. [PMID: 26753095 PMCID: PMC4703120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Ambiguine I isonitrile (AmbI) obtained from the cultured cyanobacterium Fischerella ambigua was identified as a potent NF-κB inhibitor (IC50=30 nM). The cytotoxic effect was evaluated in both HT-29 colon cancer cell line (EC50=4.35 μM) and MCF-7 breast cancer cell line (EC50=1.7 μM) using the SRB assay. In the cells treated with AmbI, an increased population of cells was detected in sub G1-phase. The apoptotic effect was associated with block in G1-phase of the cell cycle in treated cells; however, cell death was induced independently of caspase-7. The NF-κB expression of p50 and p65 units were also examined in treated cells and compared with the positive control, rocaglamide (IC50=75 nM). Moreover, the expression of mediators of the NF-κB pathway such as kinase IKKκ was studied at increasing concentrations of AmbI. The down stream effect of NF-κB inhibition and the effect on the expression of TNF-α induced ICAM-1 was evaluated. Thus, the dose-dependent and time-dependent effect of AmbI on MCF-7 cells was examined in an attempt to investigate its potential mechanism of action on inducing apoptosis.
Collapse
Affiliation(s)
- Ulyana Muñoz Acuña
- Division of Pharmacy Practice and Administration and Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, 500 W. 12 Avenue, Columbus, OH 43210
| | - Jiachen Zi
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612
| | - Jimmy Orjala
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612
| | - Esperanza J Carcache de Blanco
- Division of Pharmacy Practice and Administration and Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, 500 W. 12 Avenue, Columbus, OH 43210
| |
Collapse
|
25
|
Fu RH, Tsai CW, Tsai RT, Liu SP, Chan TM, Ho YC, Lin HL, Chen YM, Hung HS, Chiu SC, Tsai CH, Wang YC, Shyu WC, Lin SZ. Irisflorentin Modifies Properties of Mouse Bone Marrow-Derived Dendritic Cells and Reduces the Allergic Contact Hypersensitivity Responses. Cell Transplant 2015; 24:573-88. [PMID: 25654487 DOI: 10.3727/096368915x687002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Irisflorentin is an isoflavone component derived from the roots of Belamcanda chinensis (L.) DC. In traditional Chinese medicine, this herb has pharmacological properties to treat inflammatory disorders. Dendritic cells (DCs) are crucial modulators for the development of optimal T-cell immunity and maintenance of tolerance. Aberrant activation of DCs can induce harmful immune responses, and so agents that effectively improve DC properties have great clinical value. We herein investigated the effects of irisflorentin on lipopolysaccharide (LPS)-stimulated maturation of mouse bone marrow-derived DCs in vitro and in the contact hypersensitivity response (CHSR) in vivo. Our results demonstrated that treatment with up to 40 μM irisflorentin does not cause cellular toxicity. Irisflorentin significantly lessened the proinflammatory cytokine production (tumor necrosis factor-α, interleukin-6, and interleukin-12p70) by LPS-stimulated DCs. Irisflorentin also inhibited the expression of LPS-induced major histocompatibility complex class II and costimulatory molecules (CD40 and CD86) on LPS-stimulated DCs. In addition, irisflorentin diminished LPS-stimulated DC-elicited allogeneic T-cell proliferation. Furthermore, irisflorentin significantly interfered with LPS-induced activation of IκB kinase, c-Jun N-terminal kinase, and p38, as well as the nuclear translocation of NF-κB p65. Subsequently, treatment with irisflorentin obviously weakened 2,4-dinitro-1-fluorobenzene-induced delayed-type hypersensitivity. These findings suggest new insights into the role of irisflorentin as an immunotherapeutic adjuvant through its capability to modulate the properties of DCs.
Collapse
Affiliation(s)
- Ru-Huei Fu
- Graduate Institute of Immunology, China Medical University, Taichung, Taiwan
- Center for Neuropsychiatry, China Medical University Hospital, Taichung, Taiwan
- Department of Psychology, Asia University, Taichung, Taiwan
| | - Chia-Wen Tsai
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Rong-Tzong Tsai
- Institute of Biochemistry and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
| | - Shih-Ping Liu
- Center for Neuropsychiatry, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Tzu-Min Chan
- Department of Neurosurgery, China Medical University Beigang Hospital, Yunlin, Taiwan
- Department of Neurosurgery, Tainan Municipal An-Nan Hospital-China Medical University, Tainan, Taiwan
| | - Yu-Chen Ho
- Graduate Institute of Immunology, China Medical University, Taichung, Taiwan
| | - Hsin-Lien Lin
- Graduate Institute of Immunology, China Medical University, Taichung, Taiwan
| | - Yue-Mi Chen
- Graduate Institute of Immunology, China Medical University, Taichung, Taiwan
| | - Huey-Shan Hung
- Center for Neuropsychiatry, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Shao-Chih Chiu
- Graduate Institute of Immunology, China Medical University, Taichung, Taiwan
- Center for Neuropsychiatry, China Medical University Hospital, Taichung, Taiwan
| | - Chang-Hai Tsai
- Department of Pediatrics, China Medical University, Taichung, Taiwan
| | - Yu-Chi Wang
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Woei-Cherng Shyu
- Graduate Institute of Immunology, China Medical University, Taichung, Taiwan
- Center for Neuropsychiatry, China Medical University Hospital, Taichung, Taiwan
| | - Shinn-Zong Lin
- Graduate Institute of Immunology, China Medical University, Taichung, Taiwan
- Center for Neuropsychiatry, China Medical University Hospital, Taichung, Taiwan
- Department of Neurosurgery, China Medical University Beigang Hospital, Yunlin, Taiwan
- Department of Neurosurgery, Tainan Municipal An-Nan Hospital-China Medical University, Tainan, Taiwan
| |
Collapse
|
26
|
El-Mesery M, Seher A, Stühmer T, Siegmund D, Wajant H. MLN4924 sensitizes monocytes and maturing dendritic cells for TNF-dependent and -independent necroptosis. Br J Pharmacol 2015; 172:1222-36. [PMID: 25363690 DOI: 10.1111/bph.12998] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 10/16/2014] [Accepted: 10/21/2014] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND PURPOSE MLN4924 prevents the formation of active cullin-RING ubiquitin ligase complexes and thus inhibits NF-κB signalling. Here, we evaluated the effects of this compound on monocytes and dendritic cells (DCs). EXPERIMENTAL APPROACH Monocytes and DCs were challenged with TNF or LPS in the presence and absence of MLN4924. The effects of MLN4924 on cellular viability, pro-inflammatory gene induction and DC maturation were investigated using the MTT assay, elisa and FACS analysis. Mechanisms of cell death induction were evaluated by using inhibitors of caspases, RIPK1 and MLKL. KEY RESULTS MLN4924 inhibited NF-κB activation and sensitized monocytes and immature DCs (iDCs) for TNFR1-induced cell death. Neither the caspase inhibitor zVAD-fmk, the RIPK1 inhibitor necrostatin-1 (nec-1) nor the MLKL inhibitor necrosulfonamide (NSA) alone prevented TNF-induced cell death. A combination of zVAD-fmk and nec-1 or NSA, however, rescued monocytes and iDCs from MLN4924/TNF-induced cell death indicating that MLN4924 affects anti-apoptotic and anti-necrotic activities in TNFR1 signalling. MLN4924 also converted the response of iDCs to LPS from maturation to cell death. LPS-induced cell death in MLN4924-treated iDCs was again only effectively blocked by cotreatment with zVAD-fmk and nec-1 or NSA. Noteworthy, MLN4924/LPS-induced cell death was almost completely independent of endogenous TNF. MLN4924 also strongly inhibited maturation and activation of iDCs that were rescued from cell death by zVAD-fmk and nec-1. CONCLUSIONS AND IMPLICATIONS Our data reveal a strong dual suppressive effect of MLN4924 on DC activity. The targeting of NAE by MLN4924 could be a new way to treat inflammatory diseases.
Collapse
Affiliation(s)
- Mohamed El-Mesery
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany; Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | | | | | | | | |
Collapse
|
27
|
Kim BM, Kim DH, Park JH, Surh YJ, Na HK. Ginsenoside Rg3 Inhibits Constitutive Activation of NF-κB Signaling in Human Breast Cancer (MDA-MB-231) Cells: ERK and Akt as Potential Upstream Targets. J Cancer Prev 2014; 19:23-30. [PMID: 25337569 PMCID: PMC4189477 DOI: 10.15430/jcp.2014.19.1.23] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 03/16/2014] [Accepted: 03/16/2014] [Indexed: 01/15/2023] Open
Abstract
Ginsenoside Rg3, one of the major ingredients of heat-processed ginseng, has been reported to inhibit the growth of various cancer cells. We previously reported that Rg3 inhibited the proliferation and induced apoptosis of breast cancer (MDA-MB-231) cells. In the present study, we have explored the mechanism underlying the anti-proliferative and proapoptotic effects of Rg3 in MDA-MB-231 cells, which have constitutively activated NF-κB and the mutant form of p53. Rg3 inhibited DNA binding and transcriptional activity of NF-κB and these effects were attributable to its suppression of IKKβ activity, degradation of IκBα and subsequent nuclear translocation of the p65 subunit of NF-κB. Similarly, the constitutive activation of ERK and Akt through phosphorylation was gradually reduced in MDA-MB-231 cells treated with Rg3. The pharmacological inhibitors of these kinases both U0126 (MEK1/2 inhibitor) and LY294002 (PI3K inhibitor) abrogated the NF-κB DNA binding activity in MDA-MB-231 cells. In addition, Rg3 treatment lowered the levels of the mutant p53 in concentration- and time-dependent manners. Rg3 also increased the association between p53 and its negative regulator Mdm2 in MDA-MB-231 cells. These findings suggest that Rg3 induced apoptosis in MDA-MB-231 cells, which is mediated by blocking NF-κB signaling via inactivation of ERK and Akt as well as destabilization of mutant p53.
Collapse
Affiliation(s)
- Bo-Min Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University
| | - Do-Hee Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University
| | - Jeong-Hill Park
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University
| | - Young-Joon Surh
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University
| | - Hye-Kyung Na
- Department of Food and Nutrition, Sungshin Women’s University, Seoul, Korea
- Correspondence to: Hye-Kyung Na, Department of Food and Nutrition, Sungshin Women’s University, Dobong-ro 76ga-gil, Gangbuk-gu, Seoul 142-732, Korea Tel: +82-2-920-7688, Fax: +82-2-920-2076, E-mail:
| |
Collapse
|