1
|
Zhuang Y, Zhang X, Zhang S, Sun Y, Wang H, Chen Y, Zhang H, Zou P, Feng Y, Lu X, Chen P, Xu Y, Li JZ, Gao H, Jin L, Kong X. Chaperone-mediated autophagy manipulates PGC1α stability and governs energy metabolism under thermal stress. Nat Commun 2025; 16:4455. [PMID: 40360527 PMCID: PMC12075589 DOI: 10.1038/s41467-025-59618-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 04/29/2025] [Indexed: 05/15/2025] Open
Abstract
Thermogenic proteins are down-regulated under thermal stress, including PGC1α· However, the molecular mechanisms are not fully understood. Here, we addressed that chaperone-mediated autophagy could regulate the stability of PGC1α under thermal stress. In mice, knockdown of Lamp2a, one of the two components of CMA, in BAT showed increased PGC1α protein and improved metabolic phenotypes. Combining the proteomics of brown adipose tissue (BAT), structure prediction, co-immunoprecipitation- mass spectrum and biochemical assays, we found that PARK7, a Parkinson's disease causative protein, could sense the temperature changes and interact with LAMP2A and HSC70, respectively, subsequently manipulate the activity of CMA. Knockout of Park7 specific in BAT promoted BAT whitening, leading to impaired insulin sensitivity and energy expenditure at thermoneutrality. Moreover, inhibiting the activity of CMA by knockdown of LAMP2A reversed the effects induced by Park7 ablation. These findings suggest CMA is required for BAT to sustain thermoneutrality-induced whitening through degradation of PGC1α.
Collapse
Affiliation(s)
- Yixiao Zhuang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Xinyi Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Shuang Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yunpeng Sun
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Hui Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yuxuan Chen
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Hanyin Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Penglai Zou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yonghao Feng
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Xiaodan Lu
- Precisional Medical Center, Jilin Province People's Hospital, Changchun, 130021, China
| | - Peijie Chen
- School of Exercise and Health, Shanghai University of Sport, Shanghai, 200438, China
| | - Yi Xu
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, 200438, China
| | - John Zhong Li
- Department of Molecular Biology and Biochemistry, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
- Jiangsu Key Laboratory of Molecular Targets and Intervention of Metabolic Disease, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
- Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Huanqing Gao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| | - Li Jin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| | - Xingxing Kong
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China.
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, 200438, China.
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
2
|
Rodriguez-Muñoz A, Motahari-Rad H, Martin-Chaves L, Benitez-Porres J, Rodriguez-Capitan J, Gonzalez-Jimenez A, Insenser M, Tinahones FJ, Murri M. A Systematic Review of Proteomics in Obesity: Unpacking the Molecular Puzzle. Curr Obes Rep 2024; 13:403-438. [PMID: 38703299 PMCID: PMC11306592 DOI: 10.1007/s13679-024-00561-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/14/2024] [Indexed: 05/06/2024]
Abstract
PURPOSE OF REVIEW The present study aims to review the existing literature to identify pathophysiological proteins in obesity by conducting a systematic review of proteomics studies. Proteomics may reveal the mechanisms of obesity development and clarify the links between obesity and related diseases, improving our comprehension of obesity and its clinical implications. RECENT FINDINGS Most of the molecular events implicated in obesity development remain incomplete. Proteomics stands as a powerful tool for elucidating the intricate interactions among proteins in the context of obesity. This methodology has the potential to identify proteins involved in pathological processes and to evaluate changes in protein abundance during obesity development, contributing to the identification of early disease predisposition, monitoring the effectiveness of interventions and improving disease management overall. Despite many non-targeted proteomic studies exploring obesity, a comprehensive and up-to-date systematic review of the molecular events implicated in obesity development is lacking. The lack of such a review presents a significant challenge for researchers trying to interpret the existing literature. This systematic review was conducted following the PRISMA guidelines and included sixteen human proteomic studies, each of which delineated proteins exhibiting significant alterations in obesity. A total of 41 proteins were reported to be altered in obesity by at least two or more studies. These proteins were involved in metabolic pathways, oxidative stress responses, inflammatory processes, protein folding, coagulation, as well as structure/cytoskeleton. Many of the identified proteomic biomarkers of obesity have also been reported to be dysregulated in obesity-related disease. Among them, seven proteins, which belong to metabolic pathways (aldehyde dehydrogenase and apolipoprotein A1), the chaperone family (albumin, heat shock protein beta 1, protein disulfide-isomerase A3) and oxidative stress and inflammation proteins (catalase and complement C3), could potentially serve as biomarkers for the progression of obesity and the development of comorbidities, contributing to personalized medicine in the field of obesity. Our systematic review in proteomics represents a substantial step forward in unravelling the complexities of protein alterations associated with obesity. It provides valuable insights into the pathophysiological mechanisms underlying obesity, thereby opening avenues for the discovery of potential biomarkers and the development of personalized medicine in obesity.
Collapse
Affiliation(s)
- Alba Rodriguez-Muñoz
- Endocrinology and Nutrition UGC, Hospital Universitario Virgen de La Victoria, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Hospital Clínico Virgen de La Victoria, Málaga, Spain
- CIBER Fisiopatología de La Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Málaga, Spain
| | - Hanieh Motahari-Rad
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Laura Martin-Chaves
- Heart Area, Hospital Universitario Virgen de La Victoria, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Malaga, Spain
- Department of Dermatology and Medicine, Faculty of Medicine, University of Malaga, Malaga, Spain
| | - Javier Benitez-Porres
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Hospital Clínico Virgen de La Victoria, Málaga, Spain
- Department of Human Physiology, Physical Education and Sport, Faculty of Medicine, University of Malaga, Malaga, Spain
| | - Jorge Rodriguez-Capitan
- Heart Area, Hospital Universitario Virgen de La Victoria, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Malaga, Spain
- Biomedical Research Network Center for Cardiovascular Diseases (CIBERCV), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | | | - Maria Insenser
- Diabetes, Obesity and Human Reproduction Research Group, Department of Endocrinology & Nutrition, Hospital Universitario Ramón y Cajal & Universidad de Alcalá & Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) & Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain.
| | - Francisco J Tinahones
- Endocrinology and Nutrition UGC, Hospital Universitario Virgen de La Victoria, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Hospital Clínico Virgen de La Victoria, Málaga, Spain
- CIBER Fisiopatología de La Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Málaga, Spain
- Department of Dermatology and Medicine, Faculty of Medicine, University of Malaga, Malaga, Spain
| | - Mora Murri
- Endocrinology and Nutrition UGC, Hospital Universitario Virgen de La Victoria, Málaga, Spain.
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Hospital Clínico Virgen de La Victoria, Málaga, Spain.
- CIBER Fisiopatología de La Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Málaga, Spain.
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
3
|
Kulsange SE, Sharma M, Sonawane B, Jaiswal MR, Kulkarni MJ, Santhakumari B. SWATH-MS reveals that bisphenol A and its analogs regulate pathways leading to disruption in insulin signaling and fatty acid metabolism. Food Chem Toxicol 2024; 188:114667. [PMID: 38653447 DOI: 10.1016/j.fct.2024.114667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/24/2024] [Accepted: 04/14/2024] [Indexed: 04/25/2024]
Abstract
Bisphenol A (BPA) is an endocrine-disrupting chemical (EDC), associated with obesity and insulin resistance. The FDA prohibited the use of BPA-based polycarbonate resins in infant formula packaging; thus, its analogs, viz. Bisphenol S (BPS) and Bisphenol F (BPF) were considered alternatives in epoxy resins, plastics, and food cans. As these analogs might evoke a similar response, we investigated the role of Bisphenols (BPA, BPF, and BPS), on insulin signaling in CHO-HIRc-myc-GLUT4eGFP cells at environmentally relevant concentrations of 2 nM and 200 nM. Insulin signaling demonstrated that Bisphenols reduced phosphorylation of IR and AKT2, GLUT4 translocation, and glucose uptake. This was accompanied by increased oxidative stress. Furthermore, SWATH-MS-based proteomics of 3T3-L1 cells demonstrated that Bisphenol-treated cells regulate proteins in insulin resistance, adipogenesis, and fatty acid metabolism pathways differently. All three Bisphenols induced differentially expressed proteins enriched similar pathways, although their abundance differed for each Bisphenol. This might be due to their varying toxicity level, structural differences, and estrogen-mimetic activity. This study has important implications in addressing health concerns related to EDCs. Given that the analogs of BPA are considered alternatives to BPA, the findings of this study suggest they are equally potent in altering fatty acid metabolism and inducing insulin resistance.
Collapse
Affiliation(s)
- Shabda E Kulsange
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Monika Sharma
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Babasaheb Sonawane
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Meera R Jaiswal
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mahesh J Kulkarni
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - B Santhakumari
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Centre for Material Characterization, CSIR-National Chemical Laboratory, Pune 411008, India.
| |
Collapse
|
4
|
Patel MA, Daley M, Van Nynatten LR, Slessarev M, Cepinskas G, Fraser DD. A reduced proteomic signature in critically ill Covid-19 patients determined with plasma antibody micro-array and machine learning. Clin Proteomics 2024; 21:33. [PMID: 38760690 PMCID: PMC11100131 DOI: 10.1186/s12014-024-09488-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/06/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND COVID-19 is a complex, multi-system disease with varying severity and symptoms. Identifying changes in critically ill COVID-19 patients' proteomes enables a better understanding of markers associated with susceptibility, symptoms, and treatment. We performed plasma antibody microarray and machine learning analyses to identify novel proteins of COVID-19. METHODS A case-control study comparing the concentration of 2000 plasma proteins in age- and sex-matched COVID-19 inpatients, non-COVID-19 sepsis controls, and healthy control subjects. Machine learning was used to identify a unique proteome signature in COVID-19 patients. Protein expression was correlated with clinically relevant variables and analyzed for temporal changes over hospitalization days 1, 3, 7, and 10. Expert-curated protein expression information was analyzed with Natural language processing (NLP) to determine organ- and cell-specific expression. RESULTS Machine learning identified a 28-protein model that accurately differentiated COVID-19 patients from ICU non-COVID-19 patients (accuracy = 0.89, AUC = 1.00, F1 = 0.89) and healthy controls (accuracy = 0.89, AUC = 1.00, F1 = 0.88). An optimal nine-protein model (PF4V1, NUCB1, CrkL, SerpinD1, Fen1, GATA-4, ProSAAS, PARK7, and NET1) maintained high classification ability. Specific proteins correlated with hemoglobin, coagulation factors, hypertension, and high-flow nasal cannula intervention (P < 0.01). Time-course analysis of the 28 leading proteins demonstrated no significant temporal changes within the COVID-19 cohort. NLP analysis identified multi-system expression of the key proteins, with the digestive and nervous systems being the leading systems. CONCLUSIONS The plasma proteome of critically ill COVID-19 patients was distinguishable from that of non-COVID-19 sepsis controls and healthy control subjects. The leading 28 proteins and their subset of 9 proteins yielded accurate classification models and are expressed in multiple organ systems. The identified COVID-19 proteomic signature helps elucidate COVID-19 pathophysiology and may guide future COVID-19 treatment development.
Collapse
Affiliation(s)
- Maitray A Patel
- Epidemiology and Biostatistics, Western University, London, ON, N6A 3K7, Canada
| | - Mark Daley
- Epidemiology and Biostatistics, Western University, London, ON, N6A 3K7, Canada
- Computer Science, Western University, London, ON, N6A 3K7, Canada
| | | | - Marat Slessarev
- Medicine, Western University, London, ON, N6A 3K7, Canada
- Lawson Health Research Institute, London, ON, N6C 2R5, Canada
| | - Gediminas Cepinskas
- Lawson Health Research Institute, London, ON, N6C 2R5, Canada
- Medical Biophysics, Western University, London, ON, N6A 3K7, Canada
| | - Douglas D Fraser
- Lawson Health Research Institute, London, ON, N6C 2R5, Canada.
- Children's Health Research Institute, London, ON, N6C 4V3, Canada.
- Pediatrics, Western University, London, ON, N6A 3K7, Canada.
- Clinical Neurological Sciences, Western University, London, ON, N6A 3K7, Canada.
- Physiology & Pharmacology, Western University, London, ON, N6A 3K7, Canada.
- London Health Sciences Centre, 800 Commissioners Road East, London, ON, N6A 5W9, Canada.
| |
Collapse
|
5
|
Sandrelli F, Bisaglia M. Molecular and Physiological Determinants of Amyotrophic Lateral Sclerosis: What the DJ-1 Protein Teaches Us. Int J Mol Sci 2023; 24:ijms24087674. [PMID: 37108835 PMCID: PMC10144135 DOI: 10.3390/ijms24087674] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/12/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an adult-onset disease which causes the progressive degeneration of cortical and spinal motoneurons, leading to death a few years after the first symptom onset. ALS is mainly a sporadic disorder, and its causative mechanisms are mostly unclear. About 5-10% of cases have a genetic inheritance, and the study of ALS-associated genes has been fundamental in defining the pathological pathways likely also involved in the sporadic forms of the disease. Mutations affecting the DJ-1 gene appear to explain a subset of familial ALS forms. DJ-1 is involved in multiple molecular mechanisms, acting primarily as a protective agent against oxidative stress. Here, we focus on the involvement of DJ-1 in interconnected cellular functions related to mitochondrial homeostasis, reactive oxygen species (ROS) levels, energy metabolism, and hypoxia response, in both physiological and pathological conditions. We discuss the possibility that impairments in one of these pathways may affect the others, contributing to a pathological background in which additional environmental or genetic factors may act in favor of the onset and/or progression of ALS. These pathways may represent potential therapeutic targets to reduce the likelihood of developing ALS and/or slow disease progression.
Collapse
Affiliation(s)
| | - Marco Bisaglia
- Department of Biology, University of Padova, 35131 Padova, Italy
- Study Center for Neurodegeneration (CESNE), 35100 Padova, Italy
| |
Collapse
|
6
|
De Lazzari F, Agostini F, Plotegher N, Sandre M, Greggio E, Megighian A, Bubacco L, Sandrelli F, Whitworth AJ, Bisaglia M. DJ-1 promotes energy balance by regulating both mitochondrial and autophagic homeostasis. Neurobiol Dis 2023; 176:105941. [PMID: 36473592 DOI: 10.1016/j.nbd.2022.105941] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/23/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
The protein DJ-1 is mutated in rare familial forms of recessive Parkinson's disease and in parkinsonism accompanied by amyotrophic lateral sclerosis symptoms and dementia. DJ-1 is considered a multitasking protein able to confer protection under various conditions of stress. However, the precise cellular function still remains elusive. In the present work, we evaluated fruit flies lacking the expression of the DJ-1 homolog dj-1β as compared to control aged-matched individuals. Behavioral evaluations included lifespan, locomotion in an open field arena, sensitivity to oxidative insults, and resistance to starvation. Molecular analyses were carried out by analyzing the mitochondrial morphology and functionality, and the autophagic response. We demonstrated that dj-1β null mutant flies are hypoactive and display higher sensitivity to oxidative insults and food deprivation. Analysis of mitochondrial homeostasis revealed that loss of dj-1β leads to larger and more circular mitochondria, characterized by impaired complex-I-linked respiration while preserving ATP production capacity. Additionally, dj-1β null mutant flies present an impaired autophagic response, which is suppressed by treatment with the antioxidant molecule N-Acetyl-L-Cysteine. Overall, our data point to a mechanism whereby DJ-1 plays a critical role in the maintenance of energy homeostasis, by sustaining mitochondrial homeostasis and affecting the autophagic flux through the maintenance of the cellular redox state. In light of the involvement of DJ-1 in neurodegenerative diseases and considering that neurons are highly energy-demanding cells, particularly sensitive to redox stress, our study sheds light on a key role of DJ-1 in the maintenance of cellular homeostasis.
Collapse
Affiliation(s)
- Federica De Lazzari
- Department of Biology, University of Padua, Padua 35121, Italy; Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK.
| | | | | | - Michele Sandre
- Department of Neuroscience, University of Padua, Padua 35121, Italy.
| | - Elisa Greggio
- Department of Biology, University of Padua, Padua 35121, Italy; Study Center for Neurodegeneration (CESNE), Padua 35121, Italy.
| | - Aram Megighian
- Department of Biomedical Sciences, University of Padua, Padua 35121, Italy.
| | - Luigi Bubacco
- Department of Biology, University of Padua, Padua 35121, Italy; Study Center for Neurodegeneration (CESNE), Padua 35121, Italy.
| | | | - Alexander J Whitworth
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK.
| | - Marco Bisaglia
- Department of Biology, University of Padua, Padua 35121, Italy; Study Center for Neurodegeneration (CESNE), Padua 35121, Italy.
| |
Collapse
|
7
|
PARK7 is induced to protect against endotoxic acute kidney injury by suppressing NF-κB. Clin Sci (Lond) 2022; 136:1877-1891. [PMID: 36449316 DOI: 10.1042/cs20220493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/30/2022] [Accepted: 11/30/2022] [Indexed: 12/02/2022]
Abstract
Sepsis is a leading cause of acute kidney injury (AKI), and the pathogenesis of septic AKI remains largely unclear. Parkinson disease protein 7 (PARK7) is a protein of multiple functions that was recently implicated in septic AKI, but the underlying mechanism is unknown. In the present study, we determined the role of PARK7 in septic AKI and further explored the underlying mechanism in lipopolysaccharide (LPS)-induced endotoxic models. PARK7 was induced both in vivo and in vitro following LPS treatment. Compared with wild-type (WT) mice, Park7-deficient mice experienced aggravated kidney tissue damage and dysfunction, and enhanced tubular apoptosis and inflammation following LPS treatment. Consistently, LPS-induced apoptosis and inflammation in renal tubular cells in vitro were exacerbated by Park7 knockdown, whereas they were alleviated by PARK7 overexpression. Mechanistically, silencing Park7 facilitated nuclear translocation and phosphorylation of p65 (a key component of the nuclear factor kappa B [NF-κB] complex) during LPS treatment, whereas PARK7 overexpression partially prevented these changes. Moreover, we detected PARK7 interaction with p65 in the cytoplasm in renal tubular cells, which was enhanced by LPS treatment. Collectively, these findings suggest that PARK7 is induced to protect against septic AKI through suppressing NF-κB signaling.
Collapse
|
8
|
Pap D, Veres-Székely A, Szebeni B, Vannay Á. PARK7/DJ-1 as a Therapeutic Target in Gut-Brain Axis Diseases. Int J Mol Sci 2022; 23:6626. [PMID: 35743072 PMCID: PMC9223539 DOI: 10.3390/ijms23126626] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/10/2022] [Accepted: 06/12/2022] [Indexed: 11/16/2022] Open
Abstract
It is increasingly known that Parkinson's (PD) and Alzheimer's (AD) diseases occur more frequently in patients with inflammatory gastrointestinal diseases including inflammatory bowel (IBD) or celiac disease, indicating a pathological link between them. Although epidemiological observations suggest the existence of the gut-brain axis (GBA) involving systemic inflammatory and neural pathways, little is known about the exact molecular mechanisms. Parkinson's disease 7 (PARK7/DJ-1) is a multifunctional protein whose protective role has been widely demonstrated in neurodegenerative diseases, including PD, AD, or ischemic stroke. Recent studies also revealed the importance of PARK7/DJ-1 in the maintenance of the gut microbiome and also in the regulation of intestinal inflammation. All these findings suggest that PARK7/DJ-1 may be a link and also a potential therapeutic target in gut and brain diseases. In this review, therefore, we discuss our current knowledge about PARK7/DJ-1 in the context of GBA diseases.
Collapse
Grants
- TKP2020-NKA-09 Ministry for Innovation and Technology, Hungary
- TKP2020-NKA-13 Ministry for Innovation and Technology, Hungary
- K125470 National Research, Development and Innovation Office (NKFI), Hungary
- STIA-KFI-2020 Semmelweis Science and Innovation Fund, Hungary
- 20382-3/2018 FEKUTSTRAT National Research, Development and Innovation Office, Hungary
- STIA-KFI-2021 (1492-15/IKP/2022) Semmelweis Science and Innovation Fund, Hungary
- K124549 National Research, Development and Innovation Office (NKFI), Hungary
Collapse
Affiliation(s)
- Domonkos Pap
- 1st Department of Pediatrics, Semmelweis University, 1083 Budapest, Hungary; (D.P.); (A.V.-S.); (B.S.)
- ELKH-SE Pediatrics and Nephrology Research Group, 1052 Budapest, Hungary
| | - Apor Veres-Székely
- 1st Department of Pediatrics, Semmelweis University, 1083 Budapest, Hungary; (D.P.); (A.V.-S.); (B.S.)
- ELKH-SE Pediatrics and Nephrology Research Group, 1052 Budapest, Hungary
| | - Beáta Szebeni
- 1st Department of Pediatrics, Semmelweis University, 1083 Budapest, Hungary; (D.P.); (A.V.-S.); (B.S.)
- ELKH-SE Pediatrics and Nephrology Research Group, 1052 Budapest, Hungary
| | - Ádám Vannay
- 1st Department of Pediatrics, Semmelweis University, 1083 Budapest, Hungary; (D.P.); (A.V.-S.); (B.S.)
- ELKH-SE Pediatrics and Nephrology Research Group, 1052 Budapest, Hungary
| |
Collapse
|
9
|
Sivasubramaniyam T, Yang J, Cheng HS, Zyla A, Li A, Besla R, Dotan I, Revelo XS, Shi SY, Le H, Schroer SA, Dodington DW, Park YJ, Kim MJ, Febbraro D, Ruel I, Genest J, Kim RH, Mak TW, Winer DA, Robbins CS, Woo M. Dj1 deficiency protects against atherosclerosis with anti-inflammatory response in macrophages. Sci Rep 2021; 11:4723. [PMID: 33633277 PMCID: PMC7907332 DOI: 10.1038/s41598-021-84063-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/08/2021] [Indexed: 11/09/2022] Open
Abstract
Inflammation is a key contributor to atherosclerosis with macrophages playing a pivotal role through the induction of oxidative stress and cytokine/chemokine secretion. DJ1, an anti-oxidant protein, has shown to paradoxically protect against chronic and acute inflammation. However, the role of DJ1 in atherosclerosis remains elusive. To assess the role of Dj1 in atherogenesis, we generated whole-body Dj1-deficient atherosclerosis-prone Apoe null mice (Dj1-/-Apoe-/-). After 21 weeks of atherogenic diet, Dj1-/- Apoe-/-mice were protected against atherosclerosis with significantly reduced plaque macrophage content. To assess whether haematopoietic or parenchymal Dj1 contributed to atheroprotection in Dj1-deficient mice, we performed bone-marrow (BM) transplantation and show that Dj1-deficient BM contributed to their attenuation in atherosclerosis. To assess cell-autonomous role of macrophage Dj1 in atheroprotection, BM-derived macrophages from Dj1-deficient mice and Dj1-silenced macrophages were assessed in response to oxidized low-density lipoprotein (oxLDL). In both cases, there was an enhanced anti-inflammatory response which may have contributed to atheroprotection in Dj1-deficient mice. There was also an increased trend of plasma DJ-1 levels from individuals with ischemic heart disease compared to those without. Our findings indicate an atheropromoting role of Dj1 and suggests that targeting Dj1 may provide a novel therapeutic avenue for atherosclerosis treatment or prevention.
Collapse
Affiliation(s)
- Tharini Sivasubramaniyam
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, M5G 2C4, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, M5G 2M9, Canada
| | - Jiaqi Yang
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, M5G 2C4, Canada
| | - Henry S Cheng
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, M5G 2C4, Canada
| | - Alexandra Zyla
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, M5G 2C4, Canada
| | - Angela Li
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, M5G 2C4, Canada.,Department of Immunology, University of Toronto, Toronto, ON, M5G 2M9, Canada
| | - Rickvinder Besla
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, M5G 2C4, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5G 2M9, Canada
| | - Idit Dotan
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, M5G 2C4, Canada
| | - Xavier S Revelo
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, M5G 2C4, Canada
| | - Sally Yu Shi
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, M5G 2C4, Canada
| | - Helen Le
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, M5G 2C4, Canada
| | - Stephanie A Schroer
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, M5G 2C4, Canada
| | - David W Dodington
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, M5G 2C4, Canada
| | - Yoo Jin Park
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, M5G 2C4, Canada
| | - Min Jeong Kim
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, M5G 2C4, Canada.,Institute of Medical Research, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, 03181, Korea
| | - Daniella Febbraro
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, M5G 2C4, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, M5G 2M9, Canada
| | - Isabelle Ruel
- Research Institute of the McGill University Health Centre, Royal Victoria Hospital, Montreal, QC, H4A 3J1, Canada
| | - Jacques Genest
- Research Institute of the McGill University Health Centre, Royal Victoria Hospital, Montreal, QC, H4A 3J1, Canada.,Department of Medicine, McGill University, Royal Victoria Hospital, Montreal, QC, H4A 3J1, Canada
| | - Raymond H Kim
- Department of Medicine, University Health Network/Sinai Health System, University of Toronto, Toronto, ON, M5G 2C4, Canada
| | - Tak W Mak
- Department of Immunology, University of Toronto, Toronto, ON, M5G 2M9, Canada
| | - Daniel A Winer
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, M5G 2C4, Canada.,Department of Immunology, University of Toronto, Toronto, ON, M5G 2M9, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5G 2M9, Canada.,Department of Pathology, University Health Network, Toronto, M5G 2C4, Canada
| | - Clinton S Robbins
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, M5G 2C4, Canada.,Department of Immunology, University of Toronto, Toronto, ON, M5G 2M9, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5G 2M9, Canada
| | - Minna Woo
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, M5G 2C4, Canada. .,Institute of Medical Science, University of Toronto, Toronto, ON, M5G 2M9, Canada. .,Department of Immunology, University of Toronto, Toronto, ON, M5G 2M9, Canada. .,Department of Medicine, University Health Network/Sinai Health System, University of Toronto, Toronto, ON, M5G 2C4, Canada. .,Division of Endocrinology and Metabolism, University Health Network/Sinai Health System, University of Toronto, Toronto, ON, M5G 2C4, Canada. .,MaRS Centre, Toronto Medical Discovery Tower, 101 College Street, 10th floor, Room 10-361, Toronto, ON, M5G 1L7, Canada.
| |
Collapse
|
10
|
Wang ZY, Cheng J, Liu B, Xie F, Li CL, Qiao W, Lu QH, Wang Y, Zhang MX. Protein deglycase DJ-1 deficiency induces phenotypic switching in vascular smooth muscle cells and exacerbates atherosclerotic plaque instability. J Cell Mol Med 2021; 25:2816-2827. [PMID: 33501750 PMCID: PMC7957272 DOI: 10.1111/jcmm.16311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 12/14/2020] [Accepted: 01/12/2021] [Indexed: 12/25/2022] Open
Abstract
Protein deglycase DJ‐1 (DJ‐1) is a multifunctional protein involved in various biological processes. However, it is unclear whether DJ‐1 influences atherosclerosis development and plaque stability. Accordingly, we evaluated the influence of DJ‐1 deletion on the progression of atherosclerosis and elucidate the underlying mechanisms. We examine the expression of DJ‐1 in atherosclerotic plaques of human and mouse models which showed that DJ‐1 expression was significantly decreased in human plaques compared with that in healthy vessels. Consistent with this, the DJ‐1 levels were persistently reduced in atherosclerotic lesions of ApoE−/− mice with the increasing time fed by western diet. Furthermore, exposure of vascular smooth muscle cells (VSMCs) to oxidized low‐density lipoprotein down‐regulated DJ‐1 in vitro. The canonical markers of plaque stability and VSMC phenotypes were evaluated in vivo and in vitro. DJ‐1 deficiency in Apoe−/− mice promoted the progression of atherosclerosis and exaggerated plaque instability. Moreover, isolated VSMCs from Apoe−/−DJ‐1−/− mice showed lower expression of contractile markers (α‐smooth muscle actin and calponin) and higher expression of synthetic indicators (osteopontin, vimentin and tropoelastin) and Kruppel‐like factor 4 (KLF4) by comparison with Apoe−/−DJ‐1+/+ mice. Furthermore, genetic inhibition of KLF4 counteracted the adverse effects of DJ‐1 deletion. Therefore, our results showed that DJ‐1 deletion caused phenotype switching of VSMCs and exacerbated atherosclerotic plaque instability in a KLF4‐dependent manner.
Collapse
Affiliation(s)
- Zhao-Yang Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Jie Cheng
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Bin Liu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Fei Xie
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Chang-Ling Li
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Wen Qiao
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Qing-Hua Lu
- Department of Cardiology, The Second Hospital of Shandong University, Jinan, China
| | - Ying Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Ming-Xiang Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
11
|
Tamara C, Nerea LB, Belén BS, Aurelio S, Iván C, Fernando S, Javier B, Felipe CF, María P. Vesicles Shed by Pathological Murine Adipocytes Spread Pathology: Characterization and Functional Role of Insulin Resistant/Hypertrophied Adiposomes. Int J Mol Sci 2020; 21:E2252. [PMID: 32214011 PMCID: PMC7139903 DOI: 10.3390/ijms21062252] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 12/16/2022] Open
Abstract
Extracellular vesicles (EVs) have recently emerged as a relevant way of cell to cell communication, and its analysis has become an indirect approach to assess the cell/tissue of origin status. However, the knowledge about their nature and role on metabolic diseases is still very scarce. We have established an insulin resistant (IR) and two lipid (palmitic/oleic) hypertrophied adipocyte cell models to isolate EVs to perform a protein cargo qualitative and quantitative Sequential Window Acquisition of All Theoretical Mass Spectra (SWATH) analysis by mass spectrometry. Our results show a high proportion of obesity and IR-related proteins in pathological EVs; thus, we propose a panel of potential obese adipose tissue EV-biomarkers. Among those, lipid hypertrophied vesicles are characterized by ceruloplasmin, mimecan, and perilipin 1 adipokines, and those from the IR by the striking presence of the adiposity and IR related transforming growth factor-beta-induced protein ig-h3 (TFGBI). Interestingly, functional assays show that IR and hypertrophied adipocytes induce differentiation/hypertrophy and IR in healthy adipocytes through secreted EVs. Finally, we demonstrate that lipid atrophied adipocytes shed EVs promote macrophage inflammation by stimulating IL-6 and TNFα expression. Thus, we conclude that pathological adipocytes release vesicles containing representative protein cargo of the cell of origin that are able to induce metabolic alterations on healthy cells probably exacerbating the disease once established.
Collapse
Affiliation(s)
- Camino Tamara
- Grupo Obesidómica, Área de Endocrinología, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), 15706 Santiago de Compostela, Spain; (C.T.); (L.-B.N.); (C.I.); (S.F.); (B.J.)
| | - Lago-Baameiro Nerea
- Grupo Obesidómica, Área de Endocrinología, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), 15706 Santiago de Compostela, Spain; (C.T.); (L.-B.N.); (C.I.); (S.F.); (B.J.)
| | - Bravo Susana Belén
- Unidad de Proteómica, Instituto de Investigación Sanitaria de Santiago (IDIS), Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), 15706 Santiago de Compostela, Spain;
| | - Sueiro Aurelio
- Grupo Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), 15706 Santiago de Compostela, Spain; (S.A.); (C.F.F.)
- CIBER Fisiopatología Obesidad y Nutrición, Instituto de Salud Carlos III, 15706 Santiago de Compostela, Spain
| | - Couto Iván
- Grupo Obesidómica, Área de Endocrinología, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), 15706 Santiago de Compostela, Spain; (C.T.); (L.-B.N.); (C.I.); (S.F.); (B.J.)
- Servicio de Cirugía Plástica y Reparadora, Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), 15706 Santiago de Compostela, Spain
| | - Santos Fernando
- Grupo Obesidómica, Área de Endocrinología, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), 15706 Santiago de Compostela, Spain; (C.T.); (L.-B.N.); (C.I.); (S.F.); (B.J.)
- Servicio de Cirugía General, Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), 15706 Santiago de Compostela, Spain
| | - Baltar Javier
- Grupo Obesidómica, Área de Endocrinología, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), 15706 Santiago de Compostela, Spain; (C.T.); (L.-B.N.); (C.I.); (S.F.); (B.J.)
- Servicio de Cirugía General, Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), 15706 Santiago de Compostela, Spain
| | - Casanueva F. Felipe
- Grupo Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), 15706 Santiago de Compostela, Spain; (S.A.); (C.F.F.)
- CIBER Fisiopatología Obesidad y Nutrición, Instituto de Salud Carlos III, 15706 Santiago de Compostela, Spain
| | - Pardo María
- Grupo Obesidómica, Área de Endocrinología, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), 15706 Santiago de Compostela, Spain; (C.T.); (L.-B.N.); (C.I.); (S.F.); (B.J.)
- CIBER Fisiopatología Obesidad y Nutrición, Instituto de Salud Carlos III, 15706 Santiago de Compostela, Spain
| |
Collapse
|
12
|
Luo F, Shu M, Gong S, Wen Y, He B, Su S, Li Z. Antiapoptotic activity of Chlamydia trachomatis Pgp3 protein involves activation of the ERK1/2 pathway mediated by upregulation of DJ-1 protein. Pathog Dis 2020; 77:5714752. [PMID: 31971555 DOI: 10.1093/femspd/ftaa003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 01/22/2020] [Indexed: 02/07/2023] Open
Abstract
Chlamydia trachomatis has evolved strategies to prevent host cell apoptosis to evade the host immune defense. However, the precise mechanisms of antiapoptotic activity of C. trachomatis still need to be clarified. Pgp3, one of eight plasmid proteins of C. trachomatis, has been identified to be closely associated with chlamydial virulence. In this study, we attempted to explore the effects and the mechanisms of Pgp3 protein on apoptosis in HeLa cells; the results showed that Pgp3 increased Bcl-2/Bax ratio and prevented caspase-3 activation to suppress apoptosis induced by TNF-α and cycloheximide (CHX) through ERK1/2 pathway activation. Downregulation of DJ-1 with siRNA-DJ-1(si-DJ-1) reduced ERK1/2 phosphorylation and elevated apoptotic rate significantly in Pgp3-HeLa cells. However, inhibition of ERK1/2 signal pathway with ERK inhibitor PD98059 had little effect on DJ-1 expression. These findings confirm that plasmid protein Pgp3 contributes to apoptosis resistance through ERK1/2 signal pathway mediated by upregulation of DJ-1 expression. Therefore, the present study provided novel insights into the role of Pgp3 in apoptosis and suggested that manipulation of the host apoptosis response could be a new approach for the prevention and treatment of C. trachomatis infection.
Collapse
Affiliation(s)
- Fangzhen Luo
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, P. R. China
| | - Mingyi Shu
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, P. R. China
| | - Silu Gong
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, P. R. China
| | - Yating Wen
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, P. R. China
| | - Bei He
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, P. R. China
| | - Shengmei Su
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, P. R. China
| | - Zhongyu Li
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, P. R. China
| |
Collapse
|
13
|
Liu X, Zhang W, Chen N, Wang L, Wang S, Yu Y, Ao H. Can Preoperative C-Reactive Protein Predict Bleeding After On-Pump Coronary Artery Bypass Grafting? Ann Thorac Surg 2019; 109:541-546. [PMID: 31404545 DOI: 10.1016/j.athoracsur.2019.06.059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 04/30/2019] [Accepted: 06/12/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND Bleeding after cardiac surgery remains a challenge. Numerous studies suggest that higher level of C-reactive protein (CRP) increases cardiovascular risk. There is limited information revealing the association of preoperative CRP concentration and postoperative bleeding while undergoing on-pump coronary artery bypass grafting (CABG). This study aimed to investigate the relationship between preoperative CRP level and postoperative bleeding within 24 hours after CABG. METHODS Data on 1055 patients accepting isolated primary CABG at Fuwai Hospital, Chinese Academy of Medical Sciences from September 2017 to July 2018 were recorded. Preoperative CRP concentration, laboratory coagulation parameters, intraoperative data, and postoperative bleeding volume within 24 hours after surgery were recorded. The primary endpoint was bleeding volume within 24 hours after surgery. We analyzed the correlation between bleeding volume within 24 hours after surgery and preoperative data with univariate and multiple linear regression. RESULTS Preoperative CRP concentration (B = -0.094, P < .001), platelet count (B = -0.115, P < .01), thrombocytocrit (B = -0.127, P < .001), prothrombin time (B = 0.052, P < .01), and fibrinogen (B = -0.096, P < .01) were univariably correlated with postoperative bleeding volume. However preoperative CRP concentration (B = -0.089, P < .05) was an independent predictor of postoperative bleeding volume after multiple linear regression. Preoperative CRP concentration was also associated with body mass index (B = 0.068, P = .038), activated partial thromboplastin time (B = 0.089, P < .01), and fibrinogen (B = 0.519, P < .01) after multiple linear regression. CONCLUSIONS Our findings suggested that preoperative CRP concentration independently correlated with postoperative bleeding volume within 24 hours and that it could be a new potential coagulation biomarker for patients undergoing CABG surgery.
Collapse
Affiliation(s)
- Xiaojie Liu
- Department of Anesthesiology, State Key Laboratory of Cardiovascular Disease, National Clinical Research Center of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenyuan Zhang
- Department of Anesthesiology, the First Affiliated Hospital, Nanchang University, Nanchang, China
| | | | - Lijuan Wang
- Department of Anesthesiology, State Key Laboratory of Cardiovascular Disease, National Clinical Research Center of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Sudena Wang
- Department of Anesthesiology, State Key Laboratory of Cardiovascular Disease, National Clinical Research Center of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yang Yu
- Department of Anesthesiology, State Key Laboratory of Cardiovascular Disease, National Clinical Research Center of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hushan Ao
- Department of Anesthesiology, State Key Laboratory of Cardiovascular Disease, National Clinical Research Center of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
14
|
Qiu K, Xie Q, Jiang S, Lin T. Silencing of DJ-1 reduces proliferation, invasion, and migration of papillary thyroid cancer cells in vitro, probably by increase of PTEN expression. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:2046-2055. [PMID: 31934026 PMCID: PMC6949646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 03/28/2019] [Indexed: 06/10/2023]
Abstract
AIMS To explore the function of DJ-1 on cell proliferation, migration, and invasion in human papillary thyroid carcinoma (PTC) cells. MATERIALS AND METHODS DJ-1 was knocked out by siRNA in K1 and TPC-1 cells and the efficiency of siRNA was examined by qRT-PCR and western blot. Cell proliferation, cell cycle, migration, and invasion were measured by CCK-8 assay, flow cytometry, colony formation assay and trans-well assay, respectively. RESULTS K1 and TPC-1 cells that were transfected with siRNA of DJ-1 had significantly lower expression levels of DJ-1 mRNA and protein. Down-regulation of DJ-1 significantly suppressed the cell proliferation, migration, and invasion. siRNA-mediated knock-down of DJ-1 increased the number of cells in the G0/G1 phase but reduced it in the S phase, while the G2/M phase was not affected. Moreover, the expression level of PTEN (Phosphatase and Tensin Homolog, PTEN) was found up-regulated in DJ-1-null cells. CONCLUSIONS This work suggested that DJ-1 implicated in cell proliferation, migration, and invasion of papillary thyroid cancer cells, possibly by the DJ-1/PTEN/PI3K/Akt signal pathway.
Collapse
Affiliation(s)
- Kai Qiu
- Department of Vascular and Thyroid Surgery, Fujian Medical University Union Hospital Fuzhou, Fujian, P. R. China
| | - Qingji Xie
- Department of Vascular and Thyroid Surgery, Fujian Medical University Union Hospital Fuzhou, Fujian, P. R. China
| | - Shan Jiang
- Department of Vascular and Thyroid Surgery, Fujian Medical University Union Hospital Fuzhou, Fujian, P. R. China
| | - Ting Lin
- Department of Vascular and Thyroid Surgery, Fujian Medical University Union Hospital Fuzhou, Fujian, P. R. China
| |
Collapse
|
15
|
Lim R, Barker G, Lappas M. PARK7 regulates inflammation-induced pro-labour mediators in myometrial and amnion cells. Reproduction 2018; 155:207-218. [PMID: 29358306 DOI: 10.1530/rep-17-0604] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 11/13/2017] [Accepted: 12/04/2017] [Indexed: 01/18/2023]
Abstract
Preterm birth is a prevalent cause of neonatal deaths worldwide. Inflammation has been implicated in spontaneous preterm birth involved in the processes of uterine contractility and membrane rupture. Parkinson protein 7 (PARK7) has been found to play an inflammatory role in non-gestational tissues. The aims of this study were to determine the expression of PARK7 in myometrium and fetal membranes with respect to term labour onset and to elucidate the effect of PARK7 silencing in primary myometrium and amnion cells on pro-inflammatory and pro-labour mediators. PARK7 mRNA expression was higher in term myometrium and fetal membranes from women in labour compared to non-labouring samples and in amnion from preterm deliveries with chorioamnionitis. In human primary myometrial cells transfected with PARK7 siRNA (siPARK7), there was a significant decrease in IL1B, TNF, fsl-1 and poly(I:C)-induced expression of pro-inflammatory cytokine IL6, chemokines (CXCL8, CCL2), adhesion molecule ICAM1, prostaglandin PGF2α and its receptor PTGFR. Similarly, amnion cells transfected with siPARK7 displayed a decrease in IL1B-induced expression of IL6, CXCL8 and ICAM1. In myometrial cells transfected with siPARK7, there was a significant reduction of NF-κB RELA transcriptional activity when stimulated with fsl-1, flagellin and poly(I:C), but not with IL1B or TNF. Collectively, our novel data describe a role for PARK7 in regulating inflammation-induced pro-inflammatory and pro-labour mediators in human myometrial and amnion cells.
Collapse
Affiliation(s)
- Ratana Lim
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of MelbourneMelbourne, Victoria, Australia.,Mercy Perinatal Research CentreMercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Gillian Barker
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of MelbourneMelbourne, Victoria, Australia.,Mercy Perinatal Research CentreMercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Martha Lappas
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of MelbourneMelbourne, Victoria, Australia .,Mercy Perinatal Research CentreMercy Hospital for Women, Heidelberg, Victoria, Australia
| |
Collapse
|
16
|
Xu M, Wu H, Li M, Wen Y, Yu C, Xia L, Xia Q, Kong X. DJ-1 Deficiency Protects Hepatic Steatosis by Enhancing Fatty Acid Oxidation in Mice. Int J Biol Sci 2018; 14:1892-1900. [PMID: 30443192 PMCID: PMC6231226 DOI: 10.7150/ijbs.28620] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/07/2018] [Indexed: 01/16/2023] Open
Abstract
Our previous studies have shown that DJ-1 play important roles in progression of liver diseases through modulating hepatic ROS production and immune response, but its role in hepatic steatosis remains obscure. In the present study, by adopting a high-fat-diet (HFD) induced mice model, we found that DJ-1 knockout (DJ-1-/-) mice showing decreased HFD-induced obesity and visceral adipose accumulation. In line with these changes, there were also reduced liver weight and ameliorated hepatic triglyceride (TG) accumulation in DJ-1-/- mice compared to wild-type (WT) mice. And there were also decreased blood glucose levels and insulin resistance and reduced glucose metabolic disorder in DJ-1-/- mice, whereas there were no significant differences in total cholesterol (TC) and serum lipid in two groups of mice. Mechanistically, we found that there were no differences in food intake in these two genotypes of mice. Furthermore, there were no significant differences in fatty acid synthesis and glycolysis, but the expression of key enzymes in fatty acid oxidation and the tricarboxylic acid (TCA) cycle, such as Cpt1α, Pparα, Acox1, Cs, Idh1 and Idh2, was increased in DJ-1-/- mice liver, suggesting that there was enhanced fatty acids oxidation and TCA cycle in DJ-1-/- mice. Our data indicate that deletion of DJ-1 enhancing fatty acids oxidation resulting in lower hepatic TG accumulation in mice, which protecting mice hepatic steatosis.
Collapse
Affiliation(s)
- Min Xu
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hailong Wu
- Shanghai Key Laboratory for Molecular Imaging, Collaborative Research Center, Shanghai University of Medicine & Health Science, Shanghai, China
| | - Meng Li
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yankai Wen
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chang Yu
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Xia
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoni Kong
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
17
|
Silvester AJ, Aseer KR, Jang HJ, Ryu R, Kwon EY, Park JG, Cho KH, Chaudhari HN, Choi MS, Suh PG, Yun JW. Loss of DJ-1 promotes browning of white adipose tissue in diet-induced obese mice. J Nutr Biochem 2018; 61:56-67. [PMID: 30189364 DOI: 10.1016/j.jnutbio.2018.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/21/2018] [Indexed: 11/26/2022]
Abstract
The seminal discovery of browning of white adipose tissue (WAT) holds great promise for the treatment of obesity and metabolic syndrome. DJ-1 is evolutionarily conserved across species, and mutations in DJ-1 have been identified in Parkinson's disease. Higher levels of DJ-1 are associated with obesity, but the underlying mechanism is less understood. Here, we report the previously unappreciated role of DJ-1 in white adipocyte biology in mature models of obesity. We used DJ-1 knockout (KO) mouse models and wild-type littermates maintained on a normal diet or high-fat diet as well as in vitro cell models to show the direct effects of DJ-1 depletion on adipocyte phenotype, thermogenic capacity, fat metabolism, and microenvironment profile. Global DJ-1 KO mice show increased sympathetic input to WAT and β3-adrenergic receptor intracellular signaling, leading to a previously unrecognized compensatory mechanism through browning of WAT with associated characteristics, including high mitochondrial contents, reduced lipid accumulation, adequate vascularization and attenuated autophagy. DJ-1 KO mice had normal body weight, energy balance, and adiposity, which were associated with protective effects on healthy WAT expansion by hyperplasia. Our findings revealed that browning of inguinal WAT occurred in DJ-1 KO mice that do not show increased predisposition to obesity and suggest that such potential mechanism may overcome the adverse metabolic consequences of obesity independent of an effect on body weight. Here, we provide the first direct evidence that targeting DJ-1 in adipocyte metabolic health may offer a unique therapeutic strategy for the treatment of obesity.
Collapse
Affiliation(s)
| | - Kanikkai Raja Aseer
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk 38453, Republic of Korea
| | - Hyun-Jun Jang
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Ri Ryu
- Department of Food Science and Nutrition, Center for Food and Nutritional Genomics Research, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Eun-Young Kwon
- Department of Food Science and Nutrition, Center for Food and Nutritional Genomics Research, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jae Gyu Park
- Advanced Bio Convergence Center, Pohang Technopark Foundation, Pohang 37668, Republic of Korea
| | - Kiu-Hyung Cho
- Gyeongbuk Institute for Bioindustry, Andong 31984, Republic of Korea
| | - Harmesh N Chaudhari
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk 38453, Republic of Korea
| | - Myung-Sook Choi
- Department of Food Science and Nutrition, Center for Food and Nutritional Genomics Research, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Pann-Ghill Suh
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Jong Won Yun
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk 38453, Republic of Korea.
| |
Collapse
|
18
|
Silvester AJ, Aseer KR, Yun JW. Ablation of DJ-1 impairs brown fat function in diet-induced obese mice. Biochimie 2018; 154:107-118. [PMID: 30142366 DOI: 10.1016/j.biochi.2018.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 08/16/2018] [Indexed: 10/28/2022]
Abstract
This study was conducted to investigate the effects of DJ-1 deficiency on brown adipose tissue (BAT) function in mice. DJ-1 knockout (KO) mouse models and wild-type littermates placed on a normal diet or high-fat diet were utilized to demonstrate the direct consequences of DJ-1 deletion on BAT characteristics, thermogenic ability, lipid metabolism, and microenvironment regulation. Global DJ-1 KO mice had defective brown adipose tissue activity culminating in a profound whitening of BAT. Despite aberrations in inactive BAT associated with greater lipid accretion, decreased sympathetic activity, mitochondrial dysfunction, reduced vascularity, and autophagy activation, we found that the body weight and energy balance were unaffected in male mice depleted of DJ-1. Taken together, the results of this study suggest that male DJ-1 KO mice exhibit defects in BAT activity but do not gain more weight, revealing that BAT activity is not necessarily required for predisposing DJ-1 KO mice to obesity. Therefore, therapeutic targeting of DJ-1 in BAT could provide novel insights into the treatment of obesity.
Collapse
Affiliation(s)
| | - Kanikkai Raja Aseer
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk 38453, Republic of Korea
| | - Jong Won Yun
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk 38453, Republic of Korea.
| |
Collapse
|
19
|
Xu M, Chen L, Li J, Wu H, Xia Q, Kong X. Emerging roles of DJ-1 in liver diseases through regulation of oxidative stress and immune response. LIVER RESEARCH 2018. [DOI: 10.1016/j.livres.2018.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
20
|
Xu S, Yang X, Qian Y, Xiao Q. Parkinson's disease-related DJ-1 modulates the expression of uncoupling protein 4 against oxidative stress. J Neurochem 2018; 145:312-322. [PMID: 29315581 DOI: 10.1111/jnc.14297] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/21/2017] [Accepted: 12/26/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Shaoqing Xu
- Department of Neurology & Collaborative Innovation Center for Brain Science; Ruijin Hospital affiliated to Shanghai JiaoTong University School of Medicine; Shanghai China
| | - Xiaodong Yang
- Department of Neurology & Collaborative Innovation Center for Brain Science; Ruijin Hospital affiliated to Shanghai JiaoTong University School of Medicine; Shanghai China
| | - Yiwei Qian
- Department of Neurology & Collaborative Innovation Center for Brain Science; Ruijin Hospital affiliated to Shanghai JiaoTong University School of Medicine; Shanghai China
| | - Qin Xiao
- Department of Neurology & Collaborative Innovation Center for Brain Science; Ruijin Hospital affiliated to Shanghai JiaoTong University School of Medicine; Shanghai China
| |
Collapse
|
21
|
Downregulation of DJ-1 Fails to Protect Mitochondrial Complex I Subunit NDUFS3 in the Testes and Contributes to the Asthenozoospermia. Mediators Inflamm 2018; 2018:6136075. [PMID: 29849492 PMCID: PMC5903298 DOI: 10.1155/2018/6136075] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/29/2017] [Accepted: 01/14/2018] [Indexed: 12/14/2022] Open
Abstract
Asthenozoospermia (AS), an important cause of male infertility, is characterized by reduced sperm motility. Among the aetiologies of AS, inflammation seems to be the main cause. DJ-1, a conserved protein product of the PARK7 gene, is associated with male infertility and plays a role in oxidative stress and inflammation. Although our previous studies showed that a reduction in DJ-1 was accompanied by mitochondrial dysfunction in the sperm of patients with AS, the specific mechanism underlying this association remained unclear. In this study, we found that compared to the patients without AS, the expression of mitochondrial protein nicotinamide adenine dinucleotide dehydrogenase (ubiquinone) Fe-S protein 3 (NDUFS3) was also significantly decreased in the sperm of patients with AS. Similarly, decreased expression of DJ-1 and NDUFS3 and reduced mitochondria complex I activity were evident in a rat model of AS. Moreover, we showed that the interaction between DJ-1 and NDUFS3 in rat testes was weakened by ORN treatment. These results suggest that the impaired mitochondrial activity could be due to the broken interaction between DJ-1 and NDUFS3 and that downregulation of DJ-1 in sperm and testes contributes to AS pathogenesis.
Collapse
|
22
|
Fakhoury H, Osman S, Ghazale N, Dahdah N, El-Sibai M, Kanaan A. Enhanced Glucose Uptake in Phenylbutyric Acid-Treated 3T3-L1 Adipocytes. CELL AND TISSUE BIOLOGY 2018; 12:48-56. [DOI: 10.1134/s1990519x18010066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Indexed: 01/02/2025]
|
23
|
Han T, Liu M, Yang S. DJ-1 Alleviates Angiotensin II-Induced Endothelial Progenitor Cell Damage by Activating the PPARγ/HO-1 Pathway. J Cell Biochem 2018; 119:392-400. [PMID: 28600848 DOI: 10.1002/jcb.26191] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 06/05/2017] [Indexed: 01/06/2023]
Abstract
There is evidence that angiotensin II (Ang II) may impair the functions of endothelial progenitor cells (EPCs). It was revealed that DJ-1 could resist oxidative stress. In this study, we investigated whether DJ-1 could protect EPCs against Ang II-induced cell damage. The proliferation and migration of EPCs were strongly reduced in the Ang II group and were increased by overexpression of DJ-1. Western blotting indicated that the increased expression of the senescence marker β-galactosidase and decreased expression of adhesion molecules (ICAM-1, VCAM-1) induced by Ang II were reversed after Ad-DJ-1 transfection. The reduced angiogenic capacity of EPCs caused by Ang II was also improved after Ad-DJ-1 transfection. Moreover, Ang II significantly increased the levels of reactive oxygen species (ROS), malondialdehyde (MDA), and inflammatory cytokines (TNF-α and IL-1β), reduced the levels of superoxide dismutase (SOD), glutathione (GSH), and these were reversed by Ad-DJ-1 transfection. Expression of peroxisome proliferator-activated receptor-γ (PPARγ) and heme oxygenase (HO-1) was increased by DJ-1. Therefore, HO-1 siRNA were constructed and transfected into EPCs, and the results showed that HO-1 siRNA transfection inhibited the effects of DJ-1 on EPC function. Thus, our study implies that DJ-1 may protect EPCs against Ang II-induced dysfunction by activating the PPARγ/HO-1. J. Cell. Biochem. 119: 392-400, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Tao Han
- Department of Vascular Surgery, China-Japan Union Hospital, Jilin University, Changchun, 130033,, Jilin, China
| | - Meihan Liu
- Department of Ultrasonography, China-Japan Union Hospital, Jilin University, Changchun, 130033,, Jilin, China
| | - Songbai Yang
- Department of Vascular Surgery, China-Japan Union Hospital, Jilin University, Changchun, 130033,, Jilin, China
| |
Collapse
|
24
|
Kim HS, Nam ST, Mun SH, Lee SK, Kim HW, Park YH, Kim B, Won KJ, Kim HR, Park YM, Kim HS, Beaven MA, Kim YM, Choi WS. DJ-1 controls bone homeostasis through the regulation of osteoclast differentiation. Nat Commun 2017; 8:1519. [PMID: 29142196 PMCID: PMC5688089 DOI: 10.1038/s41467-017-01527-y] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 09/25/2017] [Indexed: 11/09/2022] Open
Abstract
Receptor activator of NF-kB ligand (RANKL) generates intracellular reactive oxygen species (ROS), which increase RANKL-mediated signaling in osteoclast (OC) precursor bone marrow macrophages (BMMs). Here we show that a ROS scavenging protein DJ-1 negatively regulates RANKL-driven OC differentiation, also called osteoclastogenesis. DJ-1 ablation in mice leads to a decreased bone volume and an increase in OC numbers. In vitro, the activation of RANK-dependent signals is enhanced in DJ-1-deficient BMMs as compared to wild-type BMMs. DJ-1 suppresses the activation of both RANK-TRAF6 and RANK-FcRγ/Syk signaling pathways because of activation of Src homology region 2 domain-containing phosphatase-1, which is inhibited by ROS. Ablation of DJ-1 in mouse models of arthritis and RANKL-induced bone disease leads to an increase in the number of OCs, and exacerbation of bone damage. Overall, our results suggest that DJ-1 plays a role in bone homeostasis in normal physiology and in bone-associated pathology by negatively regulating osteoclastogenesis.
Collapse
Affiliation(s)
- Hyuk Soon Kim
- Department of Immunology and Physiology, School of Medicine, Konkuk University, Chungju, 380-701, Republic of Korea
| | - Seung Taek Nam
- Department of Immunology and Physiology, School of Medicine, Konkuk University, Chungju, 380-701, Republic of Korea
| | - Se Hwan Mun
- Department of Immunology and Physiology, School of Medicine, Konkuk University, Chungju, 380-701, Republic of Korea
- Department of Medicine, University of Connecticut Health Center, 263 Farmington Ave, Farmington, CT, 06030, USA
| | - Sun-Kyeong Lee
- Department of Medicine, University of Connecticut Health Center, 263 Farmington Ave, Farmington, CT, 06030, USA
| | - Hyun Woo Kim
- Department of Immunology and Physiology, School of Medicine, Konkuk University, Chungju, 380-701, Republic of Korea
| | - Young Hwan Park
- Department of Immunology and Physiology, School of Medicine, Konkuk University, Chungju, 380-701, Republic of Korea
| | - Bokyung Kim
- Department of Immunology and Physiology, School of Medicine, Konkuk University, Chungju, 380-701, Republic of Korea
| | - Kyung-Jong Won
- Department of Immunology and Physiology, School of Medicine, Konkuk University, Chungju, 380-701, Republic of Korea
| | - Hae-Rim Kim
- Department of Rheumatology, School of Medicine, Konkuk University, Chungju, 380-701, Republic of Korea
| | - Yeong-Min Park
- Department of Immunology and Physiology, School of Medicine, Konkuk University, Chungju, 380-701, Republic of Korea
| | - Hyung Sik Kim
- Department of Toxicology, School of Pharmacy, Sungkyunkwan University, Suwon, 440-746, Republic of Korea
| | - Michael A Beaven
- Laboratory of Molecular Immunology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Young Mi Kim
- Department of Preventive Pharmacy, College of Pharmacy, Duksung Women's University, Seoul, 132-714, Republic of Korea
| | - Wahn Soo Choi
- Department of Immunology and Physiology, School of Medicine, Konkuk University, Chungju, 380-701, Republic of Korea.
| |
Collapse
|
25
|
Drapalo K, Jozwiak J. Parkin, PINK1 and DJ1 as possible modulators of mTOR pathway in ganglioglioma. Int J Neurosci 2017; 128:167-174. [DOI: 10.1080/00207454.2017.1366906] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Katarzyna Drapalo
- Center for Biostructure Research, Department of Histology and Embryology, Medical University of Warsaw, Warsaw, Poland
| | - Jaroslaw Jozwiak
- Center for Biostructure Research, Department of Histology and Embryology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
26
|
DJ-1 maintains energy and glucose homeostasis by regulating the function of brown adipose tissue. Cell Discov 2017; 3:16054. [PMID: 28224045 PMCID: PMC5309696 DOI: 10.1038/celldisc.2016.54] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 12/28/2016] [Indexed: 12/12/2022] Open
Abstract
DJ-1 protein is involved in multiple physiological processes, including Parkinson’s disease. However, the role of DJ-1 in the metabolism is largely unknown. Here we found that DJ-1 maintained energy balance and glucose homeostasisvia regulating brown adipose tissue (BAT) activity. DJ-1-deficient mice reduced body mass, increased energy expenditure and improved insulin sensitivity. DJ-1 deletion also resisted high-fat-diet (HFD) induced obesity and insulin resistance. Accordingly, DJ-1 transgene triggered autonomous obesity and glucose intolerance. Further BAT transplantation experiments clarified DJ-1 regulates energy and glucose homeostasis by modulating BAT function. Mechanistically, we found that DJ-1 promoted PTEN proteasomal degradation via an E3 ligase, mind bomb-2 (Mib2), which led to Akt activation and inhibited FoxO1-dependent Ucp1 (Uncoupling protein-1) expression in BAT. Consistently, ablation of Akt1 mitigated the obesity and BAT dysfunction induced by DJ-1 transgene. These findings define a new biological role of DJ-1 protein in regulating BAT function, with an implication of the therapeutic target in the treatment of metabolic disorders.
Collapse
|
27
|
Eberhard D, Lammert E. The Role of the Antioxidant Protein DJ-1 in Type 2 Diabetes Mellitus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1037:173-186. [PMID: 29147909 DOI: 10.1007/978-981-10-6583-5_11] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is a worldwide escalating health disorder resulting from insulin resistance and functional loss of insulin-producing beta cells that finally cause chronically elevated blood glucose concentrations. Here we review the role of ubiquitously expressed antioxidant protein DJ-1 in the pathogenesis of T2DM. In beta cells, DJ-1 protects against oxidative stress, endoplasmic reticulum stress, and streptozotocin- and cytokine-induced stress and preserves beta cell viability and insulin secretion. In skeletal muscle, DJ-1 controls energy metabolism and efficient fuel utilization, whereas in adipose tissue a role in adipogenesis and obesity-induced inflammation has been reported. This suggests that DJ-1 plays multiple roles in many cell types under metabolically challenging conditions as seen in obesity, insulin resistance, and T2DM.
Collapse
Affiliation(s)
- Daniel Eberhard
- Institute of Metabolic Physiology, Department of Biology, Heinrich Heine University, D-40225, Düsseldorf, Germany.
| | - Eckhard Lammert
- Institute of Metabolic Physiology, Department of Biology, Heinrich Heine University, D-40225, Düsseldorf, Germany. .,Institute for Beta Cell Biology, German Diabetes Center, Leibniz Center for Diabetes, Research at Heinrich Heine University, D-40225, Düsseldorf, Germany. .,German Center for Diabetes Research (DZD e.V.), D-85764, München-Neuherberg, Germany.
| |
Collapse
|
28
|
Ordoñez M, Rivera IG, Presa N, Gomez-Muñoz A. Implication of matrix metalloproteinases 2 and 9 in ceramide 1-phosphate-stimulated macrophage migration. Cell Signal 2016; 28:1066-74. [DOI: 10.1016/j.cellsig.2016.05.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 05/05/2016] [Accepted: 05/05/2016] [Indexed: 01/08/2023]
|
29
|
DJ-1 deficiency attenuates expansion of liver progenitor cells through modulating the inflammatory and fibrogenic niches. Cell Death Dis 2016; 7:e2257. [PMID: 27277679 PMCID: PMC5143389 DOI: 10.1038/cddis.2016.161] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 05/08/2016] [Accepted: 05/10/2016] [Indexed: 12/27/2022]
Abstract
Our previous study suggested that DJ-1 has a critical role in initiating an inflammatory response, but its role in the liver progenitor cell (LPC) expansion, a process highly dependent on the inflammatory niche, remains elusive. The objective of this study is to determine the role of DJ-1 in LPC expansion. The correlation of DJ-1 expression with LPC markers was examined in the liver of patients with hepatitis B or hepatitis C virus (HBV and HCV, respectively) infection, primary biliary cirrhosis (PBC), primary sclerosing cholangitis (PSC), nonalcoholic fatty liver disease (NAFLD), cirrhosis or hepatocellular carcinoma (HCC), respectively. The role of DJ-1 in LPC expansion and the formation of LPC-associated fibrosis and inflammation was examined in a 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) diet-induced liver injury murine model. We also determined the ability of hepatic stellate cells (HSCs) in recruiting macrophages in DJ-1 knockout (KO) mice. The expression levels of DJ-1 were upregulated in the liver of HBV, HCV, PBC and PSC patients and DDC-fed mice. Additionally, DJ-1 expression was positively correlated with LPC proliferation in patients with liver injury and mice with DDC exposure. DJ-1 has no direct effect on LPC proliferation. Reduced activation of HSCs and collagen deposition were observed in DJ-1 KO mice. Furthermore, infiltrated CD11b+Gr-1low macrophages and pro-inflammatory factors (IL-6, TNF-α) were attenuated in DJ-1 KO mice. Mechanistically, we found that HSCs isolated from DJ-1 KO mice had decreased secretion of macrophage-mobilizing chemokines, such as CCL2 and CX3CL1, resulting in impaired macrophage infiltration. DJ-1 positively correlates with LPC expansion during liver injury. DJ-1 deficiency negatively regulates LPC proliferation by impairing the formation of LPC-associated fibrosis and inflammatory niches.
Collapse
|
30
|
Xu S, Ma D, Zhuang R, Sun W, Liu Y, Wen J, Cui L. DJ-1 Is Upregulated in Oral Squamous Cell Carcinoma and Promotes Oral Cancer Cell Proliferation and Invasion. J Cancer 2016; 7:1020-8. [PMID: 27313793 PMCID: PMC4910595 DOI: 10.7150/jca.14539] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 03/13/2016] [Indexed: 12/31/2022] Open
Abstract
Background: The development of oral squamous cell carcinoma (OSCC) is a multistep process that involves in both genetic alterations and epigenetic modifications. DJ-1, a negative regulator of tumor suppressor PTEN, functions as an oncogene in many types of cancers. However, its role in OSCC is poorly known. Methods: Immunohistochemical staining and Western blotting were performed to evaluate the expression level of DJ-1 in oral leukoplakia (OLK) and OSCC tissues respectively. Then lentiviral mediated DJ-1 shRNA was constructed and used to infect the OSCC cell lines (Tca8113 and CAL-27). MTT, cell counting, and Matrigel invasion assay were utilized to examine the effects of DJ-1 down-regulation on proliferation and invasion capacity of oral cancer cells. Results: The immunoreactivity and expression level of DJ-1 protein was significantly increased in OLK and OSCC tissues compared with the controls. Lentiviral-delivered shRNA targeting DJ-1 could effectively knock down DJ-1 at mRNA and protein level (P<0.01). The proliferative and invasion ability of OSCC cell lines was significantly suppressed following DJ-1 inhibition (P<0.01). Conclusions: Our study indicated that DJ-1 is over-expressed in both oral precancer and cancer tissues and shRNA inhibition of DJ-1 expression led to decreased proliferation and invasion capability of oral cancer cells. These findings suggest that DJ-1 might be actively involved in the development of OSCC. Future studies will investigate the potential of DJ-1 as a biomarker for early detection of OSCC.
Collapse
Affiliation(s)
- Shuaimei Xu
- 1. Department of Endodontics, Guangdong Provincial Stomatological Hospital, Guangzhou, China
| | - Dandan Ma
- 2. Department of Dentistry, Nanfang Hospital, Guangzhou, China
| | - Rui Zhuang
- 3. Department of Oral Implantology, School of Stomatology, Capital Medical University, Beijing, China
| | - Wenjuan Sun
- 4. Department of Stomatology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ying Liu
- 1. Department of Endodontics, Guangdong Provincial Stomatological Hospital, Guangzhou, China
| | - Jun Wen
- 1. Department of Endodontics, Guangdong Provincial Stomatological Hospital, Guangzhou, China
| | - Li Cui
- 5. Department of Dentistry, Maoming People's Hospital, Maoming, China
| |
Collapse
|
31
|
DJ-1 deficiency alleviates steatosis in cultured hepatocytes. BIOTECHNOL BIOPROC E 2016. [DOI: 10.1007/s12257-015-0689-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
32
|
Differential effect of DJ-1/PARK7 on development of natural and induced regulatory T cells. Sci Rep 2015; 5:17723. [PMID: 26634899 PMCID: PMC4669505 DOI: 10.1038/srep17723] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 11/04/2015] [Indexed: 12/19/2022] Open
Abstract
Regulatory T cells (Tregs) are essential for maintaining an effective immune tolerance and a homeostatic balance of various other immune cells. To manipulate the immune response during infections and autoimmune disorders, it is essential to know which genes or key molecules are involved in the development of Tregs. Transcription factor Foxp3 is required for the development of Tregs and governs most of the suppressive functions of these cells. Inhibited PI3K/AKT/mTOR signalling is critical for Foxp3 stability. Previous studies have suggested that DJ-1 or PARK7 protein is a positive regulator of the PI3K/AKT/mTOR pathway by negatively regulating the activity of PTEN. Thus, we hypothesised that a lack of DJ-1 could promote the development of Tregs. As a result, loss of DJ-1 decreased the total CD4(+) T cell numbers but increased the fraction of thymic and peripheral nTregs. In contrast, Foxp3 generation was not augmented following differentiation of DJ-1-deficient naïve CD4(+) T cells. DJ-1-deficient-iTregs were imperfect in replication, proliferation and more prone to cell death. Furthermore, DJ-1 deficient iTregs were less sensitive to pSmad2 and pStat5 signalling but had activated AKT/mTOR signalling. These observations reveal an unexpected differential role of DJ-1 in the development of nTregs and iTregs.
Collapse
|
33
|
Jain D, Weber G, Eberhard D, Mehana AE, Eglinger J, Welters A, Bartosinska B, Jeruschke K, Weiss J, Päth G, Ariga H, Seufert J, Lammert E. DJ-1 Protects Pancreatic Beta Cells from Cytokine- and Streptozotocin-Mediated Cell Death. PLoS One 2015; 10:e0138535. [PMID: 26422139 PMCID: PMC4589499 DOI: 10.1371/journal.pone.0138535] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 09/01/2015] [Indexed: 01/07/2023] Open
Abstract
A hallmark feature of type 1 and type 2 diabetes mellitus is the progressive dysfunction and loss of insulin-producing pancreatic beta cells, and inflammatory cytokines are known to trigger beta cell death. Here we asked whether the anti-oxidant protein DJ-1 encoded by the Parkinson’s disease gene PARK7 protects islet cells from cytokine- and streptozotocin-mediated cell death. Wild type and DJ-1 knockout mice (KO) were treated with multiple low doses of streptozotocin (MLDS) to induce inflammatory beta cell stress and cell death. Subsequently, glucose tolerance tests were performed, and plasma insulin as well as fasting and random blood glucose concentrations were monitored. Mitochondrial morphology and number of insulin granules were quantified in beta cells. Moreover, islet cell damage was determined in vitro after streptozotocin and cytokine treatment of isolated wild type and DJ-1 KO islets using calcein AM/ethidium homodimer-1 staining and TUNEL staining. Compared to wild type mice, DJ-1 KO mice became diabetic following MLDS treatment. Insulin concentrations were substantially reduced, and fasting blood glucose concentrations were significantly higher in MLDS-treated DJ-1 KO mice compared to equally treated wild type mice. Rates of beta cell apoptosis upon MLDS treatment were twofold higher in DJ-1 KO mice compared to wild type mice, and in vitro inflammatory cytokines led to twice as much beta cell death in pancreatic islets from DJ-1 KO mice versus those of wild type mice. In conclusion, this study identified the anti-oxidant protein DJ-1 as being capable of protecting pancreatic islet cells from cell death induced by an inflammatory and cytotoxic setting.
Collapse
Affiliation(s)
- Deepak Jain
- Institute of Metabolic Physiology, Heinrich Heine University, Düsseldorf, Germany
- Institute for Beta Cell Biology, German Diabetes Center at Heinrich Heine University, Leibniz Center for Diabetes Research, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Düsseldorf Partner Institute, Düsseldorf, Germany
| | - Gesine Weber
- Institute of Metabolic Physiology, Heinrich Heine University, Düsseldorf, Germany
| | - Daniel Eberhard
- Institute of Metabolic Physiology, Heinrich Heine University, Düsseldorf, Germany
- Institute for Beta Cell Biology, German Diabetes Center at Heinrich Heine University, Leibniz Center for Diabetes Research, Düsseldorf, Germany
| | - Amir E. Mehana
- Division of Endocrinology and Diabetology, Department of Internal Medicine II, University Hospital of Freiburg, Freiburg, Germany
- Department of Zoology, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Jan Eglinger
- Institute of Metabolic Physiology, Heinrich Heine University, Düsseldorf, Germany
- Institute for Beta Cell Biology, German Diabetes Center at Heinrich Heine University, Leibniz Center for Diabetes Research, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Düsseldorf Partner Institute, Düsseldorf, Germany
| | - Alena Welters
- Institute of Metabolic Physiology, Heinrich Heine University, Düsseldorf, Germany
- Institute for Beta Cell Biology, German Diabetes Center at Heinrich Heine University, Leibniz Center for Diabetes Research, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Düsseldorf Partner Institute, Düsseldorf, Germany
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children’s Hospital Düsseldorf, Düsseldorf, Germany
| | - Barbara Bartosinska
- Institute of Metabolic Physiology, Heinrich Heine University, Düsseldorf, Germany
| | - Kay Jeruschke
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at Heinrich Heine University, Leibniz Center for Diabetes Research, Düsseldorf, Germany
| | - Jürgen Weiss
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at Heinrich Heine University, Leibniz Center for Diabetes Research, Düsseldorf, Germany
| | - Günter Päth
- Division of Endocrinology and Diabetology, Department of Internal Medicine II, University Hospital of Freiburg, Freiburg, Germany
| | - Hiroyoshi Ariga
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-Ku, N12 W6, Sapporo, Japan
| | - Jochen Seufert
- Division of Endocrinology and Diabetology, Department of Internal Medicine II, University Hospital of Freiburg, Freiburg, Germany
| | - Eckhard Lammert
- Institute of Metabolic Physiology, Heinrich Heine University, Düsseldorf, Germany
- Institute for Beta Cell Biology, German Diabetes Center at Heinrich Heine University, Leibniz Center for Diabetes Research, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Düsseldorf Partner Institute, Düsseldorf, Germany
- * E-mail:
| |
Collapse
|
34
|
van der Merwe C, Jalali Sefid Dashti Z, Christoffels A, Loos B, Bardien S. Evidence for a common biological pathway linking three Parkinson's disease-causing genes: parkin, PINK1 and DJ-1. Eur J Neurosci 2015; 41:1113-25. [PMID: 25761903 DOI: 10.1111/ejn.12872] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 01/29/2015] [Accepted: 02/10/2015] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is characterised by the loss of dopaminergic neurons in the midbrain. Autosomal recessive, early-onset cases of PD are predominantly caused by mutations in the parkin, PINK1 and DJ-1 genes. Animal and cellular models have verified a direct link between parkin and PINK1, whereby PINK1 phosphorylates and activates parkin at the outer mitochondrial membrane, resulting in removal of dysfunctional mitochondria via mitophagy. Despite the overwhelming evidence for this interaction, few studies have been able to identify a link for DJ-1 with parkin or PINK1. The aim of this review is to summarise the functions of these three proteins, and to analyse the existing evidence for direct and indirect interactions between them. DJ-1 is able to rescue the phenotype of PINK1-knockout Drosophila models, but not of parkin-knockouts, suggesting that DJ-1 may act in a parallel pathway to that of the PINK1/parkin pathway. To further elucidate a commonality between these three proteins, bioinformatics analysis established that Miro (RHOT1) interacts with parkin and PINK1, and HSPA4 interacts with all three proteins. Furthermore, 30 transcription factors were found to be common amongst all three proteins, with many of them being involved in transcriptional regulation. Interestingly, expression of these proteins and their associated transcription factors are found to be significantly down-regulated in PD patients compared to healthy controls. In summary, this review provides insight into common pathways linking three PD-causing genes and highlights some key questions, the answers to which may provide critical insight into the disease process.
Collapse
Affiliation(s)
- Celia van der Merwe
- Division of Molecular Biology & Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 19063, Cape Town, 7505, South Africa
| | | | | | | | | |
Collapse
|