1
|
Tanaka D, Kobayashi M, Fujita R, Yoon DH, Sekiguchi T, Akitsu T, Shoji S, Tanii T, Furuya M. Synthesis and isolation of metalloprotein on a super water-repellent umbrella-shaped pillar array with double re-entrant structure. SOFT MATTER 2025; 21:2251-2257. [PMID: 39992277 DOI: 10.1039/d4sm01334d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
This paper reports the generation of microdroplets on a water-repellent device equipped with an array of tiny umbrella-shaped pillar structures. The microdroplets were used for chemical synthesis, docking, and crystallization of a functional protein. The umbrella-shaped water-repellent devices were easily fabricated from SU-8 by soft micro-electromechanical systems technology, which would suit mass production. We used simulations to visually clarify how water and methanol were repelled and quantitatively determined the umbrella-shaped structure's water-repellency by measuring a microdroplet's contact angle. Pillar array devices reduce the amount of reagents used in chemical synthesis experiments and facilitate chemical analysis. Furthermore, the reaction speed in microdroplets is often faster. The synthesis of a Zn(II) complex, which usually takes 4 h in a beaker, was completed in less than 120 s. The reaction inside the microdroplets was observed with a high-speed camera, and the products were identified by optical analysis. A metal complex and protein were docked and crystallized in microdroplets on the water-repellent device. The crystallization was observed under an optical microscope, producing beautiful single protein crystals. The metal complex and protein docking was confirmed by elemental analysis of the crystals.
Collapse
Affiliation(s)
- Daiki Tanaka
- Faculty of Science and Engineering, Waseda University, Tokyo 169-8555, Japan.
| | - Masashi Kobayashi
- Faculty of Science and Engineering, Waseda University, Tokyo 169-8555, Japan.
| | - Risa Fujita
- Research Organization for Nano & Life Innovation, Waseda University, Tokyo 162-0041, Japan
| | - Dong Hyun Yoon
- Research Organization for Nano & Life Innovation, Waseda University, Tokyo 162-0041, Japan
- Research Institute of Industrial Science & Technology (RIST), Pohang, 37673, Republic of Korea
| | - Tetsushi Sekiguchi
- Research Organization for Nano & Life Innovation, Waseda University, Tokyo 162-0041, Japan
| | - Takashiro Akitsu
- Department of Chemistry, Faculty of Science, Tokyo University of Science, Tokyo 162-8601, Japan
| | - Shuichi Shoji
- Faculty of Science and Engineering, Waseda University, Tokyo 169-8555, Japan.
| | - Takashi Tanii
- Faculty of Science and Engineering, Waseda University, Tokyo 169-8555, Japan.
| | - Masahiro Furuya
- Faculty of Science and Engineering, Waseda University, Tokyo 169-8555, Japan.
| |
Collapse
|
2
|
Watanabe S, Inouchi S, Kunitake M. Open micro-combinatorial analysis systems of crystal growth critical points of a π-conjugated molecule in ionic liquid nanoliter droplets. RSC Adv 2025; 15:8404-8410. [PMID: 40103985 PMCID: PMC11917208 DOI: 10.1039/d5ra00170f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 02/28/2025] [Indexed: 03/20/2025] Open
Abstract
Crystal engineering methodologies based on reproducible and high-throughput fabrication of high-quality single crystals have attracted much attention. Crystal formation and growth are governed by crystal growth theory. The driving force of crystallization is systematically represented with phase diagrams. However, constructing phase diagrams usually requires relatively large quantities of samples (milligrams to grams) and substantial time (weeks to months) to evaluate many conditions. Therefore, an easy and quick methodology to obtain phase diagrams, revealing critical conditions for valuable samples, is required. Here, we proposed a new method to obtain phase diagrams based on nanoliter droplet arrays of nonvolatile ionic liquids prepared by inkjet printing. Anthracene derivatives and 1-octyl-4-methylpyridinium derivatives were used as the solute and solvent, respectively. Optimization of ejection conditions, such as applied voltage, frequency, pulse width, and head temperature, enabled the formation of a 0.5 nL droplet per ejection. Inkjet printing under these conditions formed nanodroplet arrays on substrates at a droplet-patterned density of ca. 50 dots per cm2. The volume of each patterned droplet was varied from 10 to 100 nL by changing the number of ejections. The dissolution temperature of anthracene at each concentration was obtained at a heating rate of 0.2 °C min-1. This heating rate was found to be 10 times faster than the conventional technique. The same phase diagram as that prepared by the conventional technique was obtained in the range of 75-300 mM. The standard deviation of the dissolution temperatures was 0.8 °C (2.5%). This technique will facilitate the crystallization of multiple and valuable samples.
Collapse
Affiliation(s)
- Satoshi Watanabe
- Division of Applied Chemistry and Biochemistry, National Institute of Technology, Tomakomai College Nishikioka 443 Tomakomai Hokkaido 059-1275 Japan
| | - Shun Inouchi
- Graduate School of Science and Technology, Kumamoto University 2-39-1 Kurokami, Chuo-ku Kumamoto City Kumamoto 860-8555 Japan
| | - Masashi Kunitake
- Institute of Industrial Nanomaterials, Kumamoto University 2-39-1 Kurokami, Chuo-ku Kumamoto City Kumamoto 860-8555 Japan
| |
Collapse
|
3
|
Lin J, Hou Y, Zhang Q, Lin JM. Droplets in open microfluidics: generation, manipulation, and application in cell analysis. LAB ON A CHIP 2025; 25:787-805. [PMID: 39774470 DOI: 10.1039/d4lc00646a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Open droplet microfluidics is an emerging technology that generates, manipulates, and analyzes droplets in open configuration systems. Droplets function as miniaturized reactors for high-throughput analysis due to their compartmentalization and parallelization, while openness enables addressing and accessing the targeted contents. The convergence of two technologies facilitates the localization and intricate manipulation of droplets using external tools, showing great potential in large-scale chemical and biological applications, particularly in cell analysis. In this review, we first introduce various methods of droplet generation and manipulation in open environments. Next, we summarize the typical applications of open droplet systems in cell culture. Then, a comprehensive overview of cell analysis is provided, including nucleic acids, proteins, metabolites, and behaviors. Finally, we present a discussion of current challenges and perspectives in this field.
Collapse
Affiliation(s)
- Jiaxu Lin
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, P. R. China.
| | - Ying Hou
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, P. R. China.
| | - Qiang Zhang
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, P. R. China.
| | - Jin-Ming Lin
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, P. R. China.
| |
Collapse
|
4
|
Zhang R, Zhang C, Fan X, Au Yeung CCK, Li H, Lin H, Shum HC. A droplet robotic system enabled by electret-induced polarization on droplet. Nat Commun 2024; 15:6220. [PMID: 39043732 PMCID: PMC11266649 DOI: 10.1038/s41467-024-50520-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 07/12/2024] [Indexed: 07/25/2024] Open
Abstract
Robotics for scientific research are evolving from grasping macro-scale solid materials to directly actuating micro-scale liquid samples. However, current liquid actuation mechanisms often restrict operable liquid types or compromise the activity of biochemical samples by introducing interfering mediums. Here, we propose a robotic liquid handling system enabled by a novel droplet actuation mechanism, termed electret-induced polarization on droplet (EPD). EPD enables all-liquid actuation in principle and experimentally exhibits generality for actuating various inorganic/organic liquids with relative permittivity ranging from 2.25 to 84.2 and volume from 500 nL to 1 mL. Moreover, EPD is capable of actuating various biochemical samples without compromising their activities, including various body fluids, living cells, and proteins. A robotic system is also coupled with the EPD mechanism to enable full automation. EPD's high adaptability with liquid types and biochemical samples thus promotes the automation of liquid-based scientific experiments across multiple disciplines.
Collapse
Affiliation(s)
- Ruotong Zhang
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR, China
| | - Chengzhi Zhang
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR, China
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Xiaoxue Fan
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR, China
| | - Christina C K Au Yeung
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR, China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Hong Kong SAR, China
| | - Huiyanchen Li
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Hong Kong SAR, China
| | - Haisong Lin
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR, China.
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Hong Kong SAR, China.
| | - Ho Cheung Shum
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR, China.
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Hong Kong SAR, China.
| |
Collapse
|
5
|
Strutt R, Xiong B, Abegg VF, Dittrich PS. Open microfluidics: droplet microarrays as next generation multiwell plates for high throughput screening. LAB ON A CHIP 2024; 24:1064-1075. [PMID: 38356285 PMCID: PMC10898417 DOI: 10.1039/d3lc01024d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/04/2024] [Indexed: 02/16/2024]
Abstract
Multiwell plates are prominent in the biological and chemical sciences; however, they face limitations in terms of throughput and deployment in emerging bioengineering fields. Droplet microarrays, as an open microfluidic technology, organise tiny droplets typically in the order of thousands, on an accessible plate. In this perspective, we summarise current approaches for generating droplets, fluid handling on them, and analysis within droplet microarrays. By enabling unique plate engineering opportunities, demonstrating the necessary experimental procedures required for manipulating and interacting with biological cells, and integrating with label-free analytical techniques, droplet microarrays can be deployed across a more extensive experimental domain than what is currently covered by multiwell plates. Droplet microarrays thus offer a solution to the bottlenecks associated with multiwell plates, particularly in the areas of biological cultivation and high-throughput compound screening.
Collapse
Affiliation(s)
- Robert Strutt
- Department of Biosystems Science and Engineering, ETH Zürich, Schanzenstrasse 44, 4056 Basel, Switzerland.
| | - Bijing Xiong
- Department of Biosystems Science and Engineering, ETH Zürich, Schanzenstrasse 44, 4056 Basel, Switzerland.
| | - Vanessa Fabienne Abegg
- Department of Biosystems Science and Engineering, ETH Zürich, Schanzenstrasse 44, 4056 Basel, Switzerland.
| | - Petra S Dittrich
- Department of Biosystems Science and Engineering, ETH Zürich, Schanzenstrasse 44, 4056 Basel, Switzerland.
| |
Collapse
|
6
|
Zhang D, Qiao L. Microfluidics Coupled Mass Spectrometry for Single Cell Multi-Omics. SMALL METHODS 2024; 8:e2301179. [PMID: 37840412 DOI: 10.1002/smtd.202301179] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/02/2023] [Indexed: 10/17/2023]
Abstract
Population-level analysis masks significant heterogeneity between individual cells, making it difficult to accurately reflect the true intricacies of life activities. Microfluidics is a technique that can manipulate individual cells effectively and is commonly coupled with a variety of analytical methods for single-cell analysis. Single-cell omics provides abundant molecular information at the single-cell level, fundamentally revealing differences in cell types and biological states among cell individuals, leading to a deeper understanding of cellular phenotypes and life activities. Herein, this work summarizes the microfluidic chips designed for single-cell isolation, manipulation, trapping, screening, and sorting, including droplet microfluidic chips, microwell arrays, hydrodynamic microfluidic chips, and microchips with microvalves. This work further reviews the studies on single-cell proteomics, metabolomics, lipidomics, and multi-omics based on microfluidics and mass spectrometry. Finally, the challenges and future application of single-cell multi-omics are discussed.
Collapse
Affiliation(s)
- Dongxue Zhang
- Department of Chemistry, Institutes of Biomedical Sciences, and Minhang Hospital, Fudan University, Shanghai, 20000, China
| | - Liang Qiao
- Department of Chemistry, Institutes of Biomedical Sciences, and Minhang Hospital, Fudan University, Shanghai, 20000, China
| |
Collapse
|
7
|
Wu B, Xu X, Li G, Yang X, Du F, Tan W, Wang J, Dong S, Luo J, Wang X, Cao Z. High-Throughput Microfluidic Production of Droplets and Hydrogel Microspheres through Monolithically Integrated Microchannel Plates. Anal Chem 2023; 95:13586-13595. [PMID: 37624148 DOI: 10.1021/acs.analchem.3c02250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
In this paper, we present a highly effective microfluidic emulsion system using an integrated microchannel plate (MCP), a porous glass membrane that is readily available and densely packs millions of through-microchannels, for high-throughput production of monodisperse droplets. The physical controls of droplet formation, including viscosity, flow rate, and pore size, have been extensively explored for optimum emulsification conditions. The performance of the device has been validated where monodisperse droplets with a narrow coefficient of variance (<5%) can be achieved at a dispersed phase flux of 3 mL h-1 from a piece of 4 × 4 mm2 MCP. The average droplet size is two times the nominal membrane pore diameter and thus can be easily controlled by choosing the appropriate membrane type. The preparation of hydrogel microspheres has also been demonstrated with a high throughput of 1.5 × 106 particles min-1. These microspheres with a uniform size range and rough surface morphology provide suitable bioenvironments and serve as ideal carriers for cell culture. Mouse fibroblasts are shown to be cultured on these 3D scaffolds with an average cell viability of over 96%. The cell attachment rate can reach up to 112 ± 7% in 24 h and the proliferation ability increases with the number of culture days. Furthermore, the device has been applied in the droplet digital polymerase chain reaction for absolute quantification of lung cancer-related PLAU genes. The detection limit achieved was noted to be 0.5 copies/μL with a dynamic range of 105 ranging from 1 × 102 to 1 × 106 copies/μL. Given the easy fabrication, robust performance, and simple operation, the emulsion system sets the stage for the laboratory's droplet-based assays and applications in tissue engineering.
Collapse
Affiliation(s)
- Boxuan Wu
- College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, P. R. China
- International Joint Innovation Center, Zhejiang University, Haining 314400, P. R. China
| | - Xuefeng Xu
- College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Guangyang Li
- College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Xi Yang
- College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Feiya Du
- Department of Plastic and Cosmetic Center, First Affiliated Hospital of Zhejiang University, Hangzhou 310006, P. R. China
| | - Weiqiang Tan
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, P. R. China
| | - Jianmin Wang
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310016, P. R. China
| | - Shurong Dong
- College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, P. R. China
- International Joint Innovation Center, Zhejiang University, Haining 314400, P. R. China
| | - Jikui Luo
- College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, P. R. China
- International Joint Innovation Center, Zhejiang University, Haining 314400, P. R. China
| | - Xiaozhi Wang
- College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Zhen Cao
- College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, P. R. China
- International Joint Innovation Center, Zhejiang University, Haining 314400, P. R. China
| |
Collapse
|
8
|
Vasina M, Kovar D, Damborsky J, Ding Y, Yang T, deMello A, Mazurenko S, Stavrakis S, Prokop Z. In-depth analysis of biocatalysts by microfluidics: An emerging source of data for machine learning. Biotechnol Adv 2023; 66:108171. [PMID: 37150331 DOI: 10.1016/j.biotechadv.2023.108171] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/04/2023] [Accepted: 05/04/2023] [Indexed: 05/09/2023]
Abstract
Nowadays, the vastly increasing demand for novel biotechnological products is supported by the continuous development of biocatalytic applications which provide sustainable green alternatives to chemical processes. The success of a biocatalytic application is critically dependent on how quickly we can identify and characterize enzyme variants fitting the conditions of industrial processes. While miniaturization and parallelization have dramatically increased the throughput of next-generation sequencing systems, the subsequent characterization of the obtained candidates is still a limiting process in identifying the desired biocatalysts. Only a few commercial microfluidic systems for enzyme analysis are currently available, and the transformation of numerous published prototypes into commercial platforms is still to be streamlined. This review presents the state-of-the-art, recent trends, and perspectives in applying microfluidic tools in the functional and structural analysis of biocatalysts. We discuss the advantages and disadvantages of available technologies, their reproducibility and robustness, and readiness for routine laboratory use. We also highlight the unexplored potential of microfluidics to leverage the power of machine learning for biocatalyst development.
Collapse
Affiliation(s)
- Michal Vasina
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, 602 00 Brno, Czech Republic; International Clinical Research Centre, St. Anne's University Hospital, 656 91 Brno, Czech Republic
| | - David Kovar
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, 602 00 Brno, Czech Republic; International Clinical Research Centre, St. Anne's University Hospital, 656 91 Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, 602 00 Brno, Czech Republic; International Clinical Research Centre, St. Anne's University Hospital, 656 91 Brno, Czech Republic
| | - Yun Ding
- Institute for Chemical and Bioengineering, ETH Zürich, 8093 Zürich, Switzerland
| | - Tianjin Yang
- Institute for Chemical and Bioengineering, ETH Zürich, 8093 Zürich, Switzerland; Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Andrew deMello
- Institute for Chemical and Bioengineering, ETH Zürich, 8093 Zürich, Switzerland
| | - Stanislav Mazurenko
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, 602 00 Brno, Czech Republic; International Clinical Research Centre, St. Anne's University Hospital, 656 91 Brno, Czech Republic.
| | - Stavros Stavrakis
- Institute for Chemical and Bioengineering, ETH Zürich, 8093 Zürich, Switzerland.
| | - Zbynek Prokop
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, 602 00 Brno, Czech Republic; International Clinical Research Centre, St. Anne's University Hospital, 656 91 Brno, Czech Republic.
| |
Collapse
|
9
|
Lin TT, Wang JW, Shi QN, Wang HF, Pan JZ, Fang Q. An automated, fully-integrated nucleic acid analyzer based on microfluidic liquid handling robot technique. Anal Chim Acta 2023; 1239:340698. [PMID: 36628766 DOI: 10.1016/j.aca.2022.340698] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 10/29/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022]
Abstract
On-site nucleic acid testing (NAT) plays an important role for disease monitoring and pathogen diagnosis. In this work, we developed an automated and fully-integrated nucleic acid analyzer by combining the automated liquid handling robot technique with the microfluidic droplet-based real-time PCR assay technique. The present analyzer could achieve multiple operations including sample introduction, nucleic acid extraction based on magnetic solid-phase extraction, reverse transcription and, sample droplet generation, PCR amplification, real-time and dual fluorescence detection of droplet array. A strategy of constructing an integrated compact and low-cost system was adopted to minimize the analyzer size to 50 × 45 × 45 cm (length × width × height), and reduce the instrument cost to ca. $900 with a single analysis cost less than $5. A simple chip was also designed to pre-load reagents and carry oil-covered PCR reaction droplets. We applied the analyzer to identify eight types of influenza pathogens in human throat swabs, and the results were consistent with the colloidal gold method.
Collapse
Affiliation(s)
- Tong-Tong Lin
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Jian-Wei Wang
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Qian-Nuan Shi
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Hui-Feng Wang
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, China
| | - Jian-Zhang Pan
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, China.
| | - Qun Fang
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, China; Key Laboratory of Excited-State Materials of Zhejiang Province, Zhejiang University, Hangzhou, 310007, China; College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
10
|
Microfluidic encapsulation of soluble reagents with large-scale concentration gradients in a sequence of droplets for comparative analysis. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Abstract
Water in oil emulsions have a wide range of applications from chemical technology to microfluidics, where the stability of water droplets is of paramount importance. Here, using an accessible and easily reproducible experimental setup we describe and characterize the dissolution of water in oil, which renders nanoliter-sized droplets unstable, resulting in their shrinkage and disappearance in a time scale of hours. This process has applicability in creating miniature reactors for crystallization. We test multiple oils and their combinations with surfactants exhibiting widely different rates of dissolution. We derived simple analytical equations to determine the product of the diffusion coefficient and the relative saturation density of water in oil from the measured dissolution data. By measuring the moisture content of mineral and silicone oils with Karl Fischer titration before and after saturating them with water, we calculated the diffusion coefficient of water in these two oils.
Collapse
|
12
|
Jia TZ, Caudan M, Mamajanov I. Origin of Species before Origin of Life: The Role of Speciation in Chemical Evolution. Life (Basel) 2021; 11:154. [PMID: 33671365 PMCID: PMC7922636 DOI: 10.3390/life11020154] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/11/2021] [Accepted: 02/15/2021] [Indexed: 11/17/2022] Open
Abstract
Speciation, an evolutionary process by which new species form, is ultimately responsible for the incredible biodiversity that we observe on Earth every day. Such biodiversity is one of the critical features which contributes to the survivability of biospheres and modern life. While speciation and biodiversity have been amply studied in organismic evolution and modern life, it has not yet been applied to a great extent to understanding the evolutionary dynamics of primitive life. In particular, one unanswered question is at what point in the history of life did speciation as a phenomenon emerge in the first place. Here, we discuss the mechanisms by which speciation could have occurred before the origins of life in the context of chemical evolution. Specifically, we discuss that primitive compartments formed before the emergence of the last universal common ancestor (LUCA) could have provided a mechanism by which primitive chemical systems underwent speciation. In particular, we introduce a variety of primitive compartment structures, and associated functions, that may have plausibly been present on early Earth, followed by examples of both discriminate and indiscriminate speciation affected by primitive modes of compartmentalization. Finally, we discuss modern technologies, in particular, droplet microfluidics, that can be applied to studying speciation phenomena in the laboratory over short timescales. We hope that this discussion highlights the current areas of need in further studies on primitive speciation phenomena while simultaneously proposing directions as important areas of study to the origins of life.
Collapse
Affiliation(s)
- Tony Z. Jia
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan;
- Blue Marble Space Institute of Science, 1001 4th Ave., Suite 3201, Seattle, WA 98154, USA
| | - Melina Caudan
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan;
| | - Irena Mamajanov
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan;
| |
Collapse
|
13
|
Lu JM, Wang HF, Pan JZ, Fang Q. Research Progress of Microfluidic Technique in Synthesis of Micro/Nano Materials. ACTA CHIMICA SINICA 2021. [DOI: 10.6023/a21030086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
14
|
Maeki M, Ito S, Takeda R, Ueno G, Ishida A, Tani H, Yamamoto M, Tokeshi M. Room-temperature crystallography using a microfluidic protein crystal array device and its application to protein-ligand complex structure analysis. Chem Sci 2020; 11:9072-9087. [PMID: 34094189 PMCID: PMC8162031 DOI: 10.1039/d0sc02117b] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Room-temperature (RT) protein crystallography provides significant information to elucidate protein function under physiological conditions. In particular, contrary to typical binding assays, X-ray crystal structure analysis of a protein–ligand complex can determine the three-dimensional (3D) configuration of its binding site. This allows the development of effective drugs by structure-based and fragment-based (FBDD) drug design. However, RT crystallography and RT crystallography-based protein–ligand complex analyses require the preparation and measurement of numerous crystals to avoid the X-ray radiation damage. Thus, for the application of RT crystallography to protein–ligand complex analysis, the simultaneous preparation of protein–ligand complex crystals and sequential X-ray diffraction measurement remain challenging. Here, we report an RT crystallography technique using a microfluidic protein crystal array device for protein–ligand complex structure analysis. We demonstrate the microfluidic sorting of protein crystals into microwells without any complicated procedures and apparatus, whereby the sorted protein crystals are fixed into microwells and sequentially measured to collect X-ray diffraction data. This is followed by automatic data processing to calculate the 3D protein structure. The microfluidic device allows the high-throughput preparation of the protein–ligand complex solely by the replacement of the microchannel content with the required ligand solution. We determined eight trypsin–ligand complex structures for the proof of concept experiment and found differences in the ligand coordination of the corresponding RT and conventional cryogenic structures. This methodology can be applied to easily obtain more natural structures. Moreover, drug development by FBDD could be more effective using the proposed methodology. Room temperature protein crystallography and its application to protein–ligand complex structure analysis was demonstrated using a microfluidic protein crystal array device.![]()
Collapse
Affiliation(s)
- Masatoshi Maeki
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University Kita 13 Nishi 8, Kita-ku Sapporo 060-8628 Japan +81-11-706-6745 +81-11-706-6745 +81-11-706-6744.,RIKEN SPring-8 Center 1-1-1 Kouto, Sayo-cho Sayo-gun Hyogo 679-5148 Japan
| | - Sho Ito
- Graduate School of Life Science, University of Hyogo 3-2-1 Kouto, Kamigori Ako Hyogo 678-1297 Japan.,ROD (Single Crystal Analysis) Group, Application Laboratories, Rigaku Corporation 3-9-12 Matubara-cho Akishima Tokyo 196-8666 Japan
| | - Reo Takeda
- Graduate School of Chemical Sciences and Engineering, Hokkaido University Kita 13 Nishi 8, Kita-ku Sapporo 060-8628 Japan
| | - Go Ueno
- RIKEN SPring-8 Center 1-1-1 Kouto, Sayo-cho Sayo-gun Hyogo 679-5148 Japan
| | - Akihiko Ishida
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University Kita 13 Nishi 8, Kita-ku Sapporo 060-8628 Japan +81-11-706-6745 +81-11-706-6745 +81-11-706-6744
| | - Hirofumi Tani
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University Kita 13 Nishi 8, Kita-ku Sapporo 060-8628 Japan +81-11-706-6745 +81-11-706-6745 +81-11-706-6744
| | - Masaki Yamamoto
- RIKEN SPring-8 Center 1-1-1 Kouto, Sayo-cho Sayo-gun Hyogo 679-5148 Japan.,Graduate School of Life Science, University of Hyogo 3-2-1 Kouto, Kamigori Ako Hyogo 678-1297 Japan
| | - Manabu Tokeshi
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University Kita 13 Nishi 8, Kita-ku Sapporo 060-8628 Japan +81-11-706-6745 +81-11-706-6745 +81-11-706-6744
| |
Collapse
|
15
|
Choi JW, Vasamsetti BMK, Choo J, Kim HY. Analysis of deoxyribonuclease activity by conjugation-free fluorescence polarisation in sub-nanolitre droplets. Analyst 2020; 145:3222-3228. [PMID: 32118224 DOI: 10.1039/c9an02380a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We report the analysis of deoxyribonuclease (DNase) activity by conjugation-free fluorescence polarisation in a droplet-based microfluidic chip. DNase is a DNA cleaving enzyme and its activity is important in the maintenance of normal cellular functions. Alterations in DNase activity have been implicated as the cause of various cancers and autoimmune diseases. To date, various methods for the analysis of DNase activity have been reported. However, they are not cost effective due to the requirement of large sample volumes and the need for the conjugation of fluorescent dyes. In this study, we have used ethidium bromide (EtBr), a DNA intercalating reagent, as a fluorescent reporter without any prior conjugation or modification of DNA. Degradation of DNA by DNase 1 was monitored at a steady state by making changes in the fluorescence polarisation of EtBr in droplets with a volume of 330 picolitre at a 40 hertz frequency under visible light. Using this technique, we successfully determined the half-maximal inhibitory concentration (IC50) of ethylenediaminetetraacetic acid (EDTA) for the inhibition of DNase 1 activity to be 1.56 ± 0.91 mM.
Collapse
Affiliation(s)
- Jae-Won Choi
- Department of Biochemistry, Chungbuk National University, Cheongju 28644, Republic of Korea.
| | | | | | | |
Collapse
|
16
|
Liu Y, Tronser T, Peravali R, Reischl M, Levkin PA. High‐Throughput Screening of Cell Transfection Enhancers Using Miniaturized Droplet Microarrays. ACTA ACUST UNITED AC 2020; 4:e1900257. [DOI: 10.1002/adbi.201900257] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/04/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Yanxi Liu
- Institute of Toxicology and Genetics (ITG)Karlsruhe Institute of Technology (KIT) Hermann‐von Helmholtz‐Platz 1 Eggenstein‐Leopoldshafen 76344 Germany
| | - Tina Tronser
- Institute of Toxicology and Genetics (ITG)Karlsruhe Institute of Technology (KIT) Hermann‐von Helmholtz‐Platz 1 Eggenstein‐Leopoldshafen 76344 Germany
| | - Ravindra Peravali
- Institute of Toxicology and Genetics (ITG)Karlsruhe Institute of Technology (KIT) Hermann‐von Helmholtz‐Platz 1 Eggenstein‐Leopoldshafen 76344 Germany
| | - Markus Reischl
- Institute for Automation and Applied Informatics (IAI)Karlsruhe Institute of Technology (KIT) Hermann‐von Helmholtz‐Platz 1 Eggenstein‐Leopoldshafen 76344 Germany
| | - Pavel A. Levkin
- Institute of Toxicology and Genetics (ITG)Karlsruhe Institute of Technology (KIT) Hermann‐von Helmholtz‐Platz 1 Eggenstein‐Leopoldshafen 76344 Germany
- Institute of Organic ChemistryKarlsruhe Institute of Technology (KIT) Fritz‐Haber‐Weg 6 Karlsruhe 76131 Germany
| |
Collapse
|
17
|
Complete inclusion of bioactive molecules and particles in polydimethylsiloxane: a straightforward process under mild conditions. Sci Rep 2019; 9:17575. [PMID: 31772250 PMCID: PMC6879495 DOI: 10.1038/s41598-019-54155-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/17/2019] [Indexed: 11/18/2022] Open
Abstract
By applying a slow curing process, we show that biomolecules can be incorporated via a simple process as liquid stable phases inside a polydimethylsiloxane (PDMS) matrix. The process is carried out under mild conditions with regards to temperature, pH and relative humidity, and is thus suitable for application to biological entities. Fluorescence and enzymatic activity measurements show that the biochemical properties of the proteins and enzyme tested are preserved, without loss due to adsorption at the liquid-polymer interface. Protected from external stimuli by the PDMS matrix, these soft liquid composite materials are new tools of interest for robotics, microfluidics, diagnostics and chemical microreactors.
Collapse
|
18
|
Xu JG, Huang MS, Wang HF, Fang Q. Forming a Large-Scale Droplet Array in a Microcage Array Chip for High-Throughput Screening. Anal Chem 2019; 91:10757-10763. [DOI: 10.1021/acs.analchem.9b02288] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jin-Gang Xu
- Institute of Analytical Chemistry, Department of Chemistry and Center for Chemistry of Novel & High-Performance Materials, Zhejiang University, Hangzhou, 310058, China
| | - Meng-Shi Huang
- Institute of Analytical Chemistry, Department of Chemistry and Center for Chemistry of Novel & High-Performance Materials, Zhejiang University, Hangzhou, 310058, China
| | - Hui-Feng Wang
- Institute of Analytical Chemistry, Department of Chemistry and Center for Chemistry of Novel & High-Performance Materials, Zhejiang University, Hangzhou, 310058, China
| | - Qun Fang
- Institute of Analytical Chemistry, Department of Chemistry and Center for Chemistry of Novel & High-Performance Materials, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
19
|
Wang JW, Gao J, Wang HF, Jin QH, Rao B, Deng W, Cao Y, Lei M, Ye S, Fang Q. Miniaturization of the Whole Process of Protein Crystallographic Analysis by a Microfluidic Droplet Robot: From Nanoliter-Scale Purified Proteins to Diffraction-Quality Crystals. Anal Chem 2019; 91:10132-10140. [PMID: 31276402 DOI: 10.1021/acs.analchem.9b02138] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
To obtain diffraction-quality crystals is one of the largest barriers to analyze the protein structure using X-ray crystallography. Here we describe a microfluidic droplet robot that enables successful miniaturization of the whole process of crystallization experiments including large-scale initial crystallization screening, crystallization optimization, and crystal harvesting. The combination of the state-of-the-art droplet-based microfluidic technique with the microbatch crystallization mode dramatically reduces the volumes of droplet crystallization reactors to tens nanoliter range, allowing large-scale initial screening of 1536 crystallization conditions and multifactor crystallization condition optimization with extremely low protein consumption, and on-chip harvesting of diffraction-quality crystals directly from the droplet reactors. We applied the droplet robot in miniaturized crystallization experiments of seven soluble proteins and two membrane proteins, and on-chip crystal harvesting of six proteins. The X-ray diffraction data sets of these crystals were collected using synchrotron radiation for analyzing the structures with similar diffraction qualities as conventional crystallization methods.
Collapse
Affiliation(s)
- Jian-Wei Wang
- Institute of Microanalytical Systems, Department of Chemistry , Zhejiang University , Hangzhou , 310058 , China
| | - Jie Gao
- Institute of Microanalytical Systems, Department of Chemistry , Zhejiang University , Hangzhou , 310058 , China
| | - Hui-Feng Wang
- Institute of Microanalytical Systems, Department of Chemistry , Zhejiang University , Hangzhou , 310058 , China
| | - Qiu-Heng Jin
- Life Sciences Institute , Zhejiang University , Hangzhou , 310058 , China
| | - Bing Rao
- State Key Laboratory of Molecular Biology , National Center for Protein Science · Shanghai , Shanghai , 201210 , China
| | - Wei Deng
- State Key Laboratory of Molecular Biology , National Center for Protein Science · Shanghai , Shanghai , 201210 , China
| | - Yu Cao
- State Key Laboratory of Molecular Biology , National Center for Protein Science · Shanghai , Shanghai , 201210 , China
| | - Ming Lei
- State Key Laboratory of Molecular Biology , National Center for Protein Science · Shanghai , Shanghai , 201210 , China
| | - Sheng Ye
- Life Sciences Institute , Zhejiang University , Hangzhou , 310058 , China.,School of Life Sciences , Tianjin University , Tianjin , 300072 , China
| | - Qun Fang
- Institute of Microanalytical Systems, Department of Chemistry , Zhejiang University , Hangzhou , 310058 , China
| |
Collapse
|
20
|
Li Y, Xuan J, Hu R, Zhang P, Lou X, Yang Y. Microfluidic triple-gradient generator for efficient screening of chemical space. Talanta 2019; 204:569-575. [PMID: 31357335 DOI: 10.1016/j.talanta.2019.06.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/27/2019] [Accepted: 06/06/2019] [Indexed: 12/22/2022]
Abstract
Generation of a combinatorial gradient for multiple chemicals is essential for studies of biochemical stimuli, chemoattraction, protein crystallization and others. While currently available platforms require complex design/settings to obtain a double-gradient chemical matrix, we herein report for the first time a simple triple-gradient matrix (TGM) device for efficient screening of chemical space. The TGM device is composed of two glass slides and works following the concept of SlipChip. The device utilizes XYZ space to distribute three chemicals and establishes a chemical gradient matrix within 5 min. The established matrix contains 24 or 104 screening conditions depending on the device used, which covers a concentration range of [0.117-1, 0.117-1 and 0.686-1] and [0.0830-1, 0.0830-1, 0.686-1] respectively for the three chemicals. With the triple gradients built simultaneously, this TGM device provides order-of-magnitude improvement in screening efficiency over existing single- or double-gradient generators. As a proof of concept, we applied the device to screen the crystallization conditions for two model proteins of lysozyme and trypsin and confirmed the crystal structures using X-ray diffraction. Furthermore, we successfully obtained the crystallization condition of adhesin competence repressor, a protein that senses the alterations in intracellular zinc concentrations. We expect the TGM system to be widely used as an analytical platform for material synthesis and chemical screening beyond for protein crystallization.
Collapse
Affiliation(s)
- Ying Li
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan National Laboratory for Optoelectronics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China.
| | - Jie Xuan
- Chemistry and Biochemistry Department, Brigham Young University, Provo, UT 84602, USA
| | - Rui Hu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan National Laboratory for Optoelectronics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Pengchao Zhang
- Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Xiaohua Lou
- Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Yunhuang Yang
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan National Laboratory for Optoelectronics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China.
| |
Collapse
|
21
|
WEI YY, SUN ZQ, REN HH, LI L. Advances in Microdroplet Generation Methods. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2019. [DOI: 10.1016/s1872-2040(19)61162-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
22
|
Liu Y, Chen X, Zhang Y, Liu J. Advancing single-cell proteomics and metabolomics with microfluidic technologies. Analyst 2019; 144:846-858. [PMID: 30351310 DOI: 10.1039/c8an01503a] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Recent advances in single-cell analysis have unraveled substantial heterogeneity among seemingly identical cells at genomic and transcriptomic levels. These discoveries have urged scientists to develop new tools that are capable of investigating single cells from a broader set of "omics". Proteomics and metabolomics, for instance, are of particular interest as they are closely correlated with a dynamic picture of cellular behaviors and phenotypic identities. The development of such tools requires highly efficient isolation and processing of a large number of individual cells, where techniques such as microfluidics are extremely useful. Here, we review the recent advances in single-cell proteomics and metabolomics, with a focus on microfluidics-based platforms. We highlight a vast array of emerging microfluidic formats for single-cell isolation and manipulation, and how the state-of-the-art analytical tools are coupled with such platforms for proteomic and metabolomic profiling.
Collapse
Affiliation(s)
- Yifan Liu
- Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu Province 215123, China.
| | | | | | | |
Collapse
|
23
|
Wei Y, Zhu Y, Fang Q. Nanoliter Quantitative High-Throughput Screening with Large-Scale Tunable Gradients Based on a Microfluidic Droplet Robot under Unilateral Dispersion Mode. Anal Chem 2019; 91:4995-5003. [DOI: 10.1021/acs.analchem.8b04564] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yan Wei
- Institute of Microanalytical Systems, Department of Chemistry and Center for Chemistry of Novel & High-Performance Materials, Zhejiang University, Hangzhou 310058, China
| | - Ying Zhu
- Institute of Microanalytical Systems, Department of Chemistry and Center for Chemistry of Novel & High-Performance Materials, Zhejiang University, Hangzhou 310058, China
| | - Qun Fang
- Institute of Microanalytical Systems, Department of Chemistry and Center for Chemistry of Novel & High-Performance Materials, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
24
|
Liang Y, Zhu Y, Dou M, Xu K, Chu RK, Chrisler WB, Zhao R, Hixson KK, Kelly RT. Spatially Resolved Proteome Profiling of <200 Cells from Tomato Fruit Pericarp by Integrating Laser-Capture Microdissection with Nanodroplet Sample Preparation. Anal Chem 2018; 90:11106-11114. [PMID: 30118597 DOI: 10.1021/acs.analchem.8b03005] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Due to sensitivity limitations, global proteome measurements generally require large amounts of biological starting material, which masks heterogeneity within the samples and differential protein expression among constituent cell types. Methods for spatially resolved proteomics are being developed to resolve protein expression for distinct cell types among highly heterogeneous tissues, but have primarily been applied to mammalian systems. Here we evaluate the performance of cell-type-specific proteome analysis of tomato fruit pericarp tissues by a platform integrating laser-capture microdissection (LCM) and a recently developed automated sample preparation system (nanoPOTS, nanodroplet processing in one pot for trace samples). Tomato fruits were cryosectioned prior to LCM and tissues were dissected and captured directly into nanoPOTS chips for processing. Following processing, samples were analyzed by nanoLC-MS/MS. Approximately 1900 unique peptides and 422 proteins were identified on average from ∼0.04 mm2 tissues comprising ∼8-15 parenchyma cells. Spatially resolved proteome analyses were performed using cells of outer epidermis, collenchyma, and parenchyma. Using ≤200 cells, a total of 1,870 protein groups were identified and the various tissues were easily resolved. The results provide spatial and tissue-specific insights into key enzymes and pathways involved in carbohydrate transport and source-sink relationships in tomato fruit. Of note, at the time of fruit ripening studied here, we identified differentially abundant proteins throughout the pericarp related to chlorophyll biogenesis, photosynthesis, and especially transport.
Collapse
Affiliation(s)
- Yiran Liang
- Environmental Molecular Sciences Laboratory , Pacific Northwest National Laboratory , Richland , Washington 99354 , United States
| | - Ying Zhu
- Environmental Molecular Sciences Laboratory , Pacific Northwest National Laboratory , Richland , Washington 99354 , United States
| | - Maowei Dou
- Environmental Molecular Sciences Laboratory , Pacific Northwest National Laboratory , Richland , Washington 99354 , United States
| | - Kerui Xu
- Environmental Molecular Sciences Laboratory , Pacific Northwest National Laboratory , Richland , Washington 99354 , United States
| | - Rosalie K Chu
- Environmental Molecular Sciences Laboratory , Pacific Northwest National Laboratory , Richland , Washington 99354 , United States
| | - William B Chrisler
- Biological Sciences Division , Pacific Northwest National Laboratory , Richland , Washington 99354 , United States
| | - Rui Zhao
- Environmental Molecular Sciences Laboratory , Pacific Northwest National Laboratory , Richland , Washington 99354 , United States
| | - Kim K Hixson
- Environmental Molecular Sciences Laboratory , Pacific Northwest National Laboratory , Richland , Washington 99354 , United States
| | - Ryan T Kelly
- Environmental Molecular Sciences Laboratory , Pacific Northwest National Laboratory , Richland , Washington 99354 , United States.,Department of Chemistry and Biochemistry , Brigham Young University , Provo , Utah 84602 , United States
| |
Collapse
|
25
|
Chatzimichail S, Supramaniam P, Ces O, Salehi-Reyhani A. Counting Proteins in Single Cells with Addressable Droplet Microarrays. J Vis Exp 2018. [PMID: 30035757 DOI: 10.3791/56110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Often cellular behavior and cellular responses are analyzed at the population level where the responses of many cells are pooled together as an average result masking the rich single cell behavior within a complex population. Single cell protein detection and quantification technologies have made a remarkable impact in recent years. Here we describe a practical and flexible single cell analysis platform based on addressable droplet microarrays. This study describes how the absolute copy numbers of target proteins may be measured with single cell resolution. The tumor suppressor p53 is the most commonly mutated gene in human cancer, with more than 50% of total cancer cases exhibiting a non-healthy p53 expression pattern. The protocol describes steps to create 10 nL droplets within which single human cancer cells are isolated and the copy number of p53 protein is measured with single molecule resolution to precisely determine the variability in expression. The method may be applied to any cell type including primary material to determine the absolute copy number of any target proteins of interest.
Collapse
Affiliation(s)
| | | | - Oscar Ces
- Institute of Chemical Biology, Department of Chemistry, Imperial College London
| | - Ali Salehi-Reyhani
- Institute of Chemical Biology, Department of Chemistry, Imperial College London;
| |
Collapse
|
26
|
Abstract
Many proofs of concept have demonstrated the potential of microfluidics in cell biology. However, the technology remains inaccessible to many biologists, as it often requires complex manufacturing facilities (such as soft lithography) and uses materials foreign to cell biology (such as polydimethylsiloxane). Here, we present a method for creating microfluidic environments by simply reshaping fluids on a substrate. For applications in cell biology, we use cell media on a virgin Petri dish overlaid with an immiscible fluorocarbon. A hydrophobic/fluorophilic stylus then reshapes the media into any pattern by creating liquid walls of fluorocarbon. Microfluidic arrangements suitable for cell culture are made in minutes using materials familiar to biologists. The versatility of the method is demonstrated by creating analogs of a common platform in cell biology, the microtiter plate. Using this vehicle, we demonstrate many manipulations required for cell culture and downstream analysis, including feeding, replating, cloning, cryopreservation, lysis plus RT-PCR, transfection plus genome editing, and fixation plus immunolabeling (when fluid walls are reconfigured during use). We also show that mammalian cells grow and respond to stimuli normally, and worm eggs develop into adults. This simple approach provides biologists with an entrée into microfluidics.
Collapse
|
27
|
Wang C, Liu W, Wei Q, Ren L, Tan M, Yu Y. A novel dual-well array chip for efficiently trapping single-cell in large isolated micro-well without complicated accessory equipment. BIOMICROFLUIDICS 2018; 12:034103. [PMID: 29774084 PMCID: PMC5938174 DOI: 10.1063/1.5030203] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 04/20/2018] [Indexed: 06/08/2023]
Abstract
Conventional cell-sized well arrays have advantages of high occupancy, simple operation, and low cost for capturing single-cells. However, they have insufficient space for including reagents required for cell treatment or analysis, which restricts the wide application of cell-sized well arrays as a single-cell research tool alone. Here, we present a novel dual-well array chip, which integrates capture-wells (20 μm in diameter) with reaction-wells (100 μm in diameter) and describe a flow method for convenient single-cell analysis requiring neither complicated infra-structure nor high expenditure, while enabling highly efficient single cell trapping (75.8%) with only 11.3% multi-cells. Briefly, the cells are first loaded into the dual-wells by gravity and then multi-cells in the reaction-wells are washed out by phosphate buffer saline. Next, biochemical reagents are loaded into reaction-wells using the scraping method and the chip is packed as a sandwich structure. We thereby successfully measured intracellular β-galactosidase activity of K562 cells at the single-cell level. We also used computational simulations to illustrate the working principle of dual-well structure and found out a relationship between the wall shear stress distribution and the aspect ratio of the dual-well array chip which provides theoretical guidance for designing multi-wells chip for convenient single-cell analysis. Our work produced the first dual-well chip that can simultaneously provide a high occupancy rate for single cells and sufficient space for reagents, as well as being low in cost and simple to operate. We believe that the feasibility and convenience of our method will enhance its use as a practical single-cell research tool.
Collapse
Affiliation(s)
| | | | | | | | | | - Yude Yu
- Author to whom correspondence should be addressed: . Tel.: 86-10-82304979
| |
Collapse
|
28
|
Guo XL, Wei Y, Lou Q, Zhu Y, Fang Q. Manipulating Femtoliter to Picoliter Droplets by Pins for Single Cell Analysis and Quantitative Biological Assay. Anal Chem 2018; 90:5810-5817. [PMID: 29648445 DOI: 10.1021/acs.analchem.8b00343] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Herein, we developed an automated and flexible system for performing miniaturized liquid-liquid reactions and assays in the femtoliter to picoliter range, by combining the contact printing and the droplet-based microfluidics techniques. The system mainly consisted of solid pins and an oil-covered hydrophilic micropillar array chip fixed on an automated x- y- z translation stage. A novel droplet manipulation mode called "dipping-depositing-moving" (DDM) was proposed, which was based on the programmable combination of three basic operations, dipping liquids and depositing liquids with the solid pins and moving the two-dimensional oil-covered hydrophilic pillar microchip. With the DDM mode, flexible generation and manipulation of small droplets with volumes down to 179 fL could be achieved. For overcoming the scale phenomenon specially appeared in picoliter-scale droplets, we used a design of water moat to protect the femtoliter to picoliter droplets from volume loss through the cover oil during the droplet generation, manipulation, reaction and assay processes. Moreover, we also developed a precise quantitative method, quantitative droplet dilution method, to accurately measure the volumes of femtoliter to picoliter droplets. To demonstrate its feasibility and adaptability, we applied the present system in the determination of kinetics parameter for matrix metalloproteinases (MMP-9) in 1.81 pL reactors and the measurement the activity of β-galactosidase in single cells (HepG2 cells) in picoliter droplet array. The ultrasmall volumes of the droplet reactors avoided the excessive dilution to the reaction solutions and enabled the highly sensitive measurement of enzyme activity in the single cell level.
Collapse
Affiliation(s)
- Xiao-Li Guo
- Institute of Microanalytical Systems, Department of Chemistry and Innovation Center for Cell Signaling Network , Zhejiang University , Hangzhou , 310058 , China
| | - Yan Wei
- Institute of Microanalytical Systems, Department of Chemistry and Innovation Center for Cell Signaling Network , Zhejiang University , Hangzhou , 310058 , China
| | - Qi Lou
- Institute of Microanalytical Systems, Department of Chemistry and Innovation Center for Cell Signaling Network , Zhejiang University , Hangzhou , 310058 , China
| | - Ying Zhu
- Institute of Microanalytical Systems, Department of Chemistry and Innovation Center for Cell Signaling Network , Zhejiang University , Hangzhou , 310058 , China
| | - Qun Fang
- Institute of Microanalytical Systems, Department of Chemistry and Innovation Center for Cell Signaling Network , Zhejiang University , Hangzhou , 310058 , China
| |
Collapse
|
29
|
Li ZY, Huang M, Wang XK, Zhu Y, Li JS, Wong CCL, Fang Q. Nanoliter-Scale Oil-Air-Droplet Chip-Based Single Cell Proteomic Analysis. Anal Chem 2018; 90:5430-5438. [PMID: 29551058 DOI: 10.1021/acs.analchem.8b00661] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Single cell proteomic analysis provides crucial information on cellular heterogeneity in biological systems. Herein, we describe a nanoliter-scale oil-air-droplet (OAD) chip for achieving multistep complex sample pretreatment and injection for single cell proteomic analysis in the shotgun mode. By using miniaturized stationary droplet microreaction and manipulation techniques, our system allows all sample pretreatment and injection procedures to be performed in a nanoliter-scale droplet with minimum sample loss and a high sample injection efficiency (>99%), thus substantially increasing the analytical sensitivity for single cell samples. We applied the present system in the proteomic analysis of 100 ± 10, 50 ± 5, 10, and 1 HeLa cell(s), and protein IDs of 1360, 612, 192, and 51 were identified, respectively. The OAD chip-based system was further applied in single mouse oocyte analysis, with 355 protein IDs identified at the single oocyte level, which demonstrated its special advantages of high enrichment of sequence coverage, hydrophobic proteins, and enzymatic digestion efficiency over the traditional in-tube system.
Collapse
Affiliation(s)
- Zi-Yi Li
- Institute of Microanalytical Systems, Chemistry Department and Innovation Center for Cell Signaling Network , Zhejiang University , Hangzhou , 310058 , China
| | - Min Huang
- National Center for Protein Science (Shanghai), Institute of Biochemistry and Cell Biology , Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai , 200031 , China
| | - Xiu-Kun Wang
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science , Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences , Shanghai , 200031 , China
| | - Ying Zhu
- Institute of Microanalytical Systems, Chemistry Department and Innovation Center for Cell Signaling Network , Zhejiang University , Hangzhou , 310058 , China
| | - Jin-Song Li
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science , Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences , Shanghai , 200031 , China
| | - Catherine C L Wong
- Center for Precision Medicine Multi-Omics Research , Peking University Health Science Center , Beijing , 100191 , China.,State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences , Peking University , Beijing , 100191 , China.,National Center for Protein Science (Shanghai), Institute of Biochemistry and Cell Biology , Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai , 200031 , China
| | - Qun Fang
- Institute of Microanalytical Systems, Chemistry Department and Innovation Center for Cell Signaling Network , Zhejiang University , Hangzhou , 310058 , China
| |
Collapse
|
30
|
Zhu Y, Piehowski PD, Zhao R, Chen J, Shen Y, Moore RJ, Shukla AK, Petyuk VA, Campbell-Thompson M, Mathews CE, Smith RD, Qian WJ, Kelly RT. Nanodroplet processing platform for deep and quantitative proteome profiling of 10-100 mammalian cells. Nat Commun 2018; 9:882. [PMID: 29491378 PMCID: PMC5830451 DOI: 10.1038/s41467-018-03367-w] [Citation(s) in RCA: 383] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 02/02/2018] [Indexed: 12/24/2022] Open
Abstract
Nanoscale or single-cell technologies are critical for biomedical applications. However, current mass spectrometry (MS)-based proteomic approaches require samples comprising a minimum of thousands of cells to provide in-depth profiling. Here, we report the development of a nanoPOTS (nanodroplet processing in one pot for trace samples) platform for small cell population proteomics analysis. NanoPOTS enhances the efficiency and recovery of sample processing by downscaling processing volumes to <200 nL to minimize surface losses. When combined with ultrasensitive liquid chromatography-MS, nanoPOTS allows identification of ~1500 to ~3000 proteins from ~10 to ~140 cells, respectively. By incorporating the Match Between Runs algorithm of MaxQuant, >3000 proteins are consistently identified from as few as 10 cells. Furthermore, we demonstrate quantification of ~2400 proteins from single human pancreatic islet thin sections from type 1 diabetic and control donors, illustrating the application of nanoPOTS for spatially resolved proteome measurements from clinical tissues. There is a great need of developing highly sensitive mass spectrometry-based proteomics analysis for small cell populations. Here, the authors establish a robotically controlled chip-based nanodroplet processing platform and demonstrate its ability to profile the proteome from 10–100 mammalian cells.
Collapse
Affiliation(s)
- Ying Zhu
- The Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Paul D Piehowski
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Rui Zhao
- The Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Jing Chen
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Yufeng Shen
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Ronald J Moore
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Anil K Shukla
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Vladislav A Petyuk
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Martha Campbell-Thompson
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Clayton E Mathews
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Ryan T Kelly
- The Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA.
| |
Collapse
|
31
|
Yi L, Piehowski PD, Shi T, Smith RD, Qian WJ. Advances in microscale separations towards nanoproteomics applications. J Chromatogr A 2017; 1523:40-48. [PMID: 28765000 PMCID: PMC6042839 DOI: 10.1016/j.chroma.2017.07.055] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 07/14/2017] [Accepted: 07/17/2017] [Indexed: 01/22/2023]
Abstract
Microscale separation (e.g., liquid chromatography or capillary electrophoresis) coupled with mass spectrometry (MS) has become the primary tool for advanced proteomics, an indispensable technology for gaining understanding of complex biological processes. In recent decades significant advances have been achieved in MS-based proteomics. However, the current proteomics platforms still face an analytical challenge in overall sensitivity towards nanoproteomics applications for starting materials of less than 1μg total proteins (e.g., cellular heterogeneity in tissue pathologies). Herein, we review recent advances in microscale separation techniques and integrated sample processing strategies that improve the overall sensitivity and proteome coverage of the proteomics workflow, and their contributions towards nanoproteomics applications.
Collapse
Affiliation(s)
- Lian Yi
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Paul D Piehowski
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Tujin Shi
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Richard D Smith
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Wei-Jun Qian
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, United States.
| |
Collapse
|
32
|
Wang T, Lu H, Wang J, Xiao Y, Zhou Y, Bao Y, Hao H. Recent progress of continuous crystallization. J IND ENG CHEM 2017. [DOI: 10.1016/j.jiec.2017.06.009] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
33
|
Zhao SP, Ma Y, Lou Q, Zhu H, Yang B, Fang Q. Three-Dimensional Cell Culture and Drug Testing in a Microfluidic Sidewall-Attached Droplet Array. Anal Chem 2017; 89:10153-10157. [PMID: 28885822 DOI: 10.1021/acs.analchem.7b02267] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Three-dimensional (3D) cell culture provides an effective way over conventional two-dimensional (2D) monolayer culture to more closely imitate the complex cellular organization, heterogeneity, and interactions as well as tissue microenvironments in vivo. Here we present a novel droplet-based 3D cell culture method by using droplet array attached on the sidewall of a PDMS piece. Such an arrangement not only avoids cells from adhering on the chip surface for achieving 3D cell culture in nanoliter-scale droplets, but also facilitates performing multiple operations to cells in droplets, including cell suspension droplet generation, drug treatment, and cell staining with a capillary-based liquid handling system, as well as in situ observation and direct scanning with a confocal laser scanning microscope. We optimized the system by studying the effects of various conditions to cell culture including droplet volume, cell density and fabrication methods of the PDMS pieces. We have applied this system in the 3D culture of HepG2 cells and the stimulation testing of an anticancer drug, doxorubicin, to 3D cell spheroids.
Collapse
Affiliation(s)
- Shi-Ping Zhao
- Institute of Microanalytical Systems, Department of Chemistry and Innovation Center for Cell Signaling Network, Zhejiang University , Hangzhou, 310058, China
| | - Yan Ma
- Institute of Microanalytical Systems, Department of Chemistry and Innovation Center for Cell Signaling Network, Zhejiang University , Hangzhou, 310058, China
| | - Qi Lou
- Institute of Microanalytical Systems, Department of Chemistry and Innovation Center for Cell Signaling Network, Zhejiang University , Hangzhou, 310058, China
| | - Hong Zhu
- College of Pharmaceutical Sciences, Zhejiang University , Hangzhou, 310058, China
| | - Bo Yang
- College of Pharmaceutical Sciences, Zhejiang University , Hangzhou, 310058, China
| | - Qun Fang
- Institute of Microanalytical Systems, Department of Chemistry and Innovation Center for Cell Signaling Network, Zhejiang University , Hangzhou, 310058, China
| |
Collapse
|
34
|
Huang CM, Zhu Y, Jin DQ, Kelly RT, Fang Q. Direct Surface and Droplet Microsampling for Electrospray Ionization Mass Spectrometry Analysis with an Integrated Dual-Probe Microfluidic Chip. Anal Chem 2017; 89:9009-9016. [PMID: 28780855 DOI: 10.1021/acs.analchem.7b01679] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Ambient mass spectrometry (MS) has revolutionized the way of MS analysis and broadened its application in various fields. This paper describes the use of microfluidic techniques to simplify the setup and improve the functions of ambient MS by integrating the sampling probe, electrospray emitter probe, and online mixer on a single glass microchip. Two types of sampling probes, including a parallel-channel probe and a U-shaped channel probe, were designed for dry-spot and liquid-phase droplet samples, respectively. We demonstrated that the microfabrication techniques not only enhanced the capability of ambient MS methods in analysis of dry-spot samples on various surfaces, but also enabled new applications in the analysis of nanoliter-scale chemical reactions in an array of droplets. The versatility of the microchip-based ambient MS method was demonstrated in multiple different applications including evaluation of residual pesticide on fruit surfaces, sensitive analysis of low-ionizable analytes using postsampling derivatization, and high-throughput screening of Ugi-type multicomponent reactions.
Collapse
Affiliation(s)
- Cong-Min Huang
- Institute of Microanalytical Systems, Department of Chemistry and Innovation Center for Cell Signaling Network, Zhejiang University , Hangzhou, 310058, China
| | - Ying Zhu
- Institute of Microanalytical Systems, Department of Chemistry and Innovation Center for Cell Signaling Network, Zhejiang University , Hangzhou, 310058, China
| | - Di-Qiong Jin
- Institute of Microanalytical Systems, Department of Chemistry and Innovation Center for Cell Signaling Network, Zhejiang University , Hangzhou, 310058, China
| | - Ryan T Kelly
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , Richland, Washington 99354, United States
| | - Qun Fang
- Institute of Microanalytical Systems, Department of Chemistry and Innovation Center for Cell Signaling Network, Zhejiang University , Hangzhou, 310058, China
| |
Collapse
|
35
|
Espinosa S, Zhang L, Li X, Zhao R. Understanding pre-mRNA splicing through crystallography. Methods 2017; 125:55-62. [PMID: 28506657 PMCID: PMC5546983 DOI: 10.1016/j.ymeth.2017.04.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 04/11/2017] [Accepted: 04/26/2017] [Indexed: 01/07/2023] Open
Abstract
Crystallography is a powerful tool to determine the atomic structures of proteins and RNAs. X-ray crystallography has been used to determine the structure of many splicing related proteins and RNAs, making major contributions to our understanding of the molecular mechanism and regulation of pre-mRNA splicing. Compared to other structural methods, crystallography has its own advantage in the high-resolution structural information it can provide and the unique biological questions it can answer. In addition, two new crystallographic methods - the serial femtosecond crystallography and 3D electron crystallography - were developed to overcome some of the limitations of traditional X-ray crystallography and broaden the range of biological problems that crystallography can solve. This review discusses the theoretical basis, instrument requirements, troubleshooting, and exciting potential of these crystallographic methods to further our understanding of pre-mRNA splicing, a critical event in gene expression of all eukaryotes.
Collapse
|
36
|
Wang C, Liu W, Tan M, Sun H, Yu Y. An open-pattern droplet-in-oil planar array for single cell analysis based on sequential inkjet printing technology. BIOMICROFLUIDICS 2017; 11:044106. [PMID: 28794816 PMCID: PMC5519398 DOI: 10.1063/1.4995294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 07/10/2017] [Indexed: 05/08/2023]
Abstract
Cellular heterogeneity represents a fundamental principle of cell biology for which a readily available single-cell research tool is urgently required. Here, we present a novel method combining cell-sized well arrays with sequential inkjet printing. Briefly, K562 cells with phosphate buffer saline buffer were captured at high efficiency (74.5%) in a cell-sized well as a "primary droplet" and sealed using fluorinated oil. Then, piezoelectric inkjet printing technology was adapted to precisely inject the cell lysis buffer and the fluorogenic substrate, fluorescein-di-β-D-galactopyranoside, as a "secondary droplet" to penetrate the sealing oil and fuse with the "primary droplet." We thereby successfully measured the intracellular β-galactosidase activity of K562 cells at the single-cell level. Our method allows, for the first time, the ability to simultaneously accommodate the high occupancy rate of single cells and sequential addition of reagents while retaining an open structure. We believe that the feasibility and flexibility of our method will enhance its use as a universal single-cell research tool as well as accelerate the adoption of inkjet printing in the study of cellular heterogeneity.
Collapse
Affiliation(s)
| | | | | | - Hongbo Sun
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China
| | | |
Collapse
|
37
|
Backholm M, Vuckovac M, Schreier J, Latikka M, Hummel M, Linder MB, Ras RHA. Oscillating Ferrofluid Droplet Microrheology of Liquid-Immersed Sessile Droplets. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:6300-6306. [PMID: 28590760 DOI: 10.1021/acs.langmuir.7b01327] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The damped oscillations of liquid-immersed ferrofluid sessile droplets were studied with high-speed imaging experiments and analytical modeling to develop a novel microrheology technique. Droplet oscillations were induced with an external magnetic field, thereby avoiding transients in the resulting vibrational response of the droplet. By following the droplet relaxation with a high-speed camera, the frequency and relaxation time of the damped harmonic oscillations were measured. We extend upon existing analytical theories to describe our liquid-immersed sessile droplet system, and directly quantify the droplet relaxation with the viscosity of the internal and external fluid as well as the interfacial tension between these. The easily controllable magnetic droplets make our oscillating ferrofluid droplet technique a potential candidate for high-throughput microrheology and tensiometry in the future.
Collapse
Affiliation(s)
- Matilda Backholm
- Department of Applied Physics, Aalto University , P.O. Box 15100, 02150 Espoo, Finland
| | - Maja Vuckovac
- Department of Applied Physics, Aalto University , P.O. Box 15100, 02150 Espoo, Finland
| | - Jan Schreier
- Department of Applied Physics, Aalto University , P.O. Box 15100, 02150 Espoo, Finland
| | - Mika Latikka
- Department of Applied Physics, Aalto University , P.O. Box 15100, 02150 Espoo, Finland
| | - Michael Hummel
- Department of Bioproducts and Biosystems, Aalto University , P.O. Box 16000, 02150 Espoo, Finland
| | - Markus B Linder
- Department of Bioproducts and Biosystems, Aalto University , P.O. Box 16000, 02150 Espoo, Finland
| | - Robin H A Ras
- Department of Applied Physics, Aalto University , P.O. Box 15100, 02150 Espoo, Finland
- Department of Bioproducts and Biosystems, Aalto University , P.O. Box 16000, 02150 Espoo, Finland
| |
Collapse
|
38
|
Shi HH, Xiao Y, Ferguson S, Huang X, Wang N, Hao HX. Progress of crystallization in microfluidic devices. LAB ON A CHIP 2017; 17:2167-2185. [PMID: 28585942 DOI: 10.1039/c6lc01225f] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Microfluidic technology provides a unique environment for the investigation of crystallization processes at the nano or meso scale. The convenient operation and precise control of process parameters, at these scales of operation enabled by microfluidic devices, are attracting significant and increasing attention in the field of crystallization. In this paper, developments and applications of microfluidics in crystallization research including: crystal nucleation and growth, polymorph and cocrystal screening, preparation of nanocrystals, solubility and metastable zone determination, are summarized and discussed. The materials used in the construction and the structure of these microfluidic devices are also summarized and methods for measuring and modelling crystal nucleation and growth process as well as the enabling analytical methods are also briefly introduced. The low material consumption, high efficiency and precision of microfluidic crystallizations are of particular significance for active pharmaceutical ingredients, proteins, fine chemicals, and nanocrystals. Therefore, it is increasingly adopted as a mainstream technology in crystallization research and development.
Collapse
Affiliation(s)
- Huan-Huan Shi
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | | | | | | | | | | |
Collapse
|
39
|
Liu WW, Zhu Y, Fang Q. Femtomole-Scale High-Throughput Screening of Protein Ligands with Droplet-Based Thermal Shift Assay. Anal Chem 2017; 89:6678-6685. [DOI: 10.1021/acs.analchem.7b00899] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Wen-Wen Liu
- Institute of Microanalytical
Systems, Department of Chemistry and Innovation Center for Cell Signaling
Network, Zhejiang University, Hangzhou, 310058, China
| | - Ying Zhu
- Institute of Microanalytical
Systems, Department of Chemistry and Innovation Center for Cell Signaling
Network, Zhejiang University, Hangzhou, 310058, China
| | - Qun Fang
- Institute of Microanalytical
Systems, Department of Chemistry and Innovation Center for Cell Signaling
Network, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
40
|
Liang YR, Zhu LN, Gao J, Zhao HX, Zhu Y, Ye S, Fang Q. 3D-Printed High-Density Droplet Array Chip for Miniaturized Protein Crystallization Screening under Vapor Diffusion Mode. ACS APPLIED MATERIALS & INTERFACES 2017; 9:11837-11845. [PMID: 28306245 DOI: 10.1021/acsami.6b15933] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Here we describe the combination of three-dimensional (3D) printed chip and automated microfluidic droplet-based screening techniques for achieving massively parallel, nanoliter-scale protein crystallization screening under vapor diffusion mode. We fabricated high-density microwell array chips for sitting-drop vapor diffusion crystallization utilizing the advantage of the 3D-printing technique in producing high-aspect-ratio chips. To overcome the obstacle of 3D-printed microchips in performing long-term reactions caused by their porousness and gas permeability properties in chip body, we developed a two-step postprocessing method, including paraffin filling and parylene coating, to achieve high sealability and stability. We also developed a simple method especially suitable for controlling the vapor diffusion speed of nanoliter-scale droplets by changing the layer thickness of covering oil. With the above methods, 84 tests of nanoliter-scale protein crystallization under vapor diffusion mode were successfully achieved in the 7 × 12 droplet array chip with a protein consumption of 10 nL for each test, which is 20-100 times lower than that in the conventional large-volume screening system. Such a nanoliter-scale vapor diffusion system was applied to two model proteins with commercial precipitants and displayed advantages over that under microbatch mode. It identified more crystallization conditions, especially for the protein samples with lower concentrations.
Collapse
Affiliation(s)
- Yi-Ran Liang
- Institute of Microanalytical Systems, Department of Chemistry and Innovation Center for Cell Signaling Network, and ‡Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University , Hangzhou, 310058, China
| | - Li-Na Zhu
- Institute of Microanalytical Systems, Department of Chemistry and Innovation Center for Cell Signaling Network, and ‡Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University , Hangzhou, 310058, China
| | - Jie Gao
- Institute of Microanalytical Systems, Department of Chemistry and Innovation Center for Cell Signaling Network, and ‡Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University , Hangzhou, 310058, China
| | - Hong-Xia Zhao
- Institute of Microanalytical Systems, Department of Chemistry and Innovation Center for Cell Signaling Network, and ‡Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University , Hangzhou, 310058, China
| | - Ying Zhu
- Institute of Microanalytical Systems, Department of Chemistry and Innovation Center for Cell Signaling Network, and ‡Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University , Hangzhou, 310058, China
| | - Sheng Ye
- Institute of Microanalytical Systems, Department of Chemistry and Innovation Center for Cell Signaling Network, and ‡Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University , Hangzhou, 310058, China
| | - Qun Fang
- Institute of Microanalytical Systems, Department of Chemistry and Innovation Center for Cell Signaling Network, and ‡Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University , Hangzhou, 310058, China
| |
Collapse
|
41
|
Li M, Jiang W, Chen Z, Suryaprakash S, Lv S, Tang Z, Chen X, Leong KW. A versatile platform for surface modification of microfluidic droplets. LAB ON A CHIP 2017; 17:635-639. [PMID: 28154857 PMCID: PMC5328679 DOI: 10.1039/c7lc00079k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
To advance emulsion droplet technology, we synthesize functional derivatives of Pluronic F127 that can simultaneously act as surfactants and as reactive sites for droplet surface decoration. The amine-, carboxyl-, N-hydroxysuccinimide ester-, maleimide- and biotin-terminated Pluronic F127 allows ligand immobilization on single-emulsion or double-emulsion droplets via electrostatic adsorption, covalent conjugation or site-specific avidin-biotin interaction.
Collapse
Affiliation(s)
- Mingqiang Li
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA.
| | - Weiqian Jiang
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA.
| | - Zaozao Chen
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA.
| | - Smruthi Suryaprakash
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA.
| | - Shixian Lv
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China and University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhaohui Tang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
42
|
Liu WW, Zhu Y, Feng YM, Fang J, Fang Q. Droplet-Based Multivolume Digital Polymerase Chain Reaction by a Surface-Assisted Multifactor Fluid Segmentation Approach. Anal Chem 2016; 89:822-829. [DOI: 10.1021/acs.analchem.6b03687] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Wen-Wen Liu
- Institute of Microanalytical Systems, Department
of Chemistry and Innovation Center for Cell Signaling
Network, Zhejiang University, Hangzhou, 310058, China
| | - Ying Zhu
- Institute of Microanalytical Systems, Department
of Chemistry and Innovation Center for Cell Signaling
Network, Zhejiang University, Hangzhou, 310058, China
| | - Yi-Ming Feng
- Department
of Cell Biology, China Medical University, Shenyang, 110001, China
| | - Jin Fang
- Department
of Cell Biology, China Medical University, Shenyang, 110001, China
| | - Qun Fang
- Institute of Microanalytical Systems, Department
of Chemistry and Innovation Center for Cell Signaling
Network, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
43
|
Jing T, Lai Z, Wu L, Han J, Lim CT, Chen CH. Single Cell Analysis of Leukocyte Protease Activity Using Integrated Continuous-Flow Microfluidics. Anal Chem 2016; 88:11750-11757. [PMID: 27797505 DOI: 10.1021/acs.analchem.6b03370] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Leukocytes are the essential cells of the immune system that protect the human body against bacteria, viruses, and other foreign invaders. Secretory products of individual leukocytes, such as matrix metalloproteinases (MMPs) and a disintegrin and metalloproteinase (ADAMs), are critical for regulating the inflammatory response and mediating host defense. Conventional single cell analytical methods, such as flow cytometry for cellular surface biomarker studies, are insufficient for performing functional assays of the protease activity of individual leukocytes. Here, an integrated continuous-flow microfluidic assay is developed to effectively detect secretory protease activity of individual viable leukocytes. Leukocytes in blood are first washed on-chip with defined buffer to remove background activity, followed by encapsulating individual leukocytes with protease sensors in water-in-oil droplets and incubating for 1 h to measure protease secretion. With this design, single leukocyte protease profiles under naive and phorbol 12-myristate 13-acetate (PMA)-stimulated conditions are reliably measured. It is found that PMA treatment not only elevates the average protease activity level but also reduces the cellular heterogeneity in protease secretion, which is important in understanding immune capability and the disease condition of individual patients.
Collapse
Affiliation(s)
- Tengyang Jing
- Department of Biomedical Engineering, National University of Singapore , Singapore 119077.,Singapore-MIT Alliance for Research and Technology , Singapore 138602
| | - Zhangxing Lai
- Department of Biomedical Engineering, National University of Singapore , Singapore 119077
| | | | - Jongyoon Han
- Singapore-MIT Alliance for Research and Technology , Singapore 138602
| | - Chwee Teck Lim
- Department of Biomedical Engineering, National University of Singapore , Singapore 119077.,Singapore-MIT Alliance for Research and Technology , Singapore 138602.,Mechanobiology Institute , Singapore 117411
| | - Chia-Hung Chen
- Department of Biomedical Engineering, National University of Singapore , Singapore 119077.,Singapore-MIT Alliance for Research and Technology , Singapore 138602.,Singapore Institute for Neurotechnology (SINAPSE) , Singapore 117456
| |
Collapse
|
44
|
Claes K, Vandewalle K, Laukens B, Laeremans T, Vosters O, Langer I, Parmentier M, Steyaert J, Callewaert N. Modular Integrated Secretory System Engineering in Pichia pastoris To Enhance G-Protein Coupled Receptor Expression. ACS Synth Biol 2016; 5:1070-1075. [PMID: 27176489 DOI: 10.1021/acssynbio.6b00032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Membrane protein research is still hampered by the generally very low levels at which these proteins are naturally expressed, necessitating heterologous expression. Protein degradation, folding problems, and undesired post-translational modifications often occur, together resulting in low expression levels of heterogeneous protein products that are unsuitable for structural studies. We here demonstrate how the integration of multiple engineering modules in Pichia pastoris can be used to increase both the quality and the quantity of overexpressed integral membrane proteins, with the human CXCR4 G-protein coupled receptor as an example. The combination of reduced proteolysis, enhanced ER folding capacity, GlycoDelete-based N-Glycan trimming, and nanobody-based fold stabilization improved the expression of this GPCR in P. pastoris from a low expression level of a heterogeneously glycosylated, proteolyzed product to substantial quantities (2-3 mg/L shake flask culture) of a nonproteolyzed, homogeneously glycosylated proteoform. We expect that this set of tools will contribute to successful expression of more membrane proteins in a quantity and quality suitable for functional and structural studies.
Collapse
Affiliation(s)
- Katrien Claes
- Unit
for Medical Biotechnology, Medical Biotechnology Center, VIB, Technologiepark 927, 9052 Ghent, Belgium
- Laboratory
for Protein Biochemistry and Biomolecular Engineering, Department
of Biochemistry and Microbiology, Ghent University, K.L.-Ledeganckstraat
35, 9000 Ghent, Belgium
| | - Kristof Vandewalle
- Unit
for Medical Biotechnology, Medical Biotechnology Center, VIB, Technologiepark 927, 9052 Ghent, Belgium
- Laboratory
for Protein Biochemistry and Biomolecular Engineering, Department
of Biochemistry and Microbiology, Ghent University, K.L.-Ledeganckstraat
35, 9000 Ghent, Belgium
| | - Bram Laukens
- Unit
for Medical Biotechnology, Medical Biotechnology Center, VIB, Technologiepark 927, 9052 Ghent, Belgium
- Laboratory
for Protein Biochemistry and Biomolecular Engineering, Department
of Biochemistry and Microbiology, Ghent University, K.L.-Ledeganckstraat
35, 9000 Ghent, Belgium
| | - Toon Laeremans
- Structural
Biology Research Center, VIB, Pleinlaan 2, 1050 Brussels, Belgium
- Structural
Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Olivier Vosters
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Campus Erasme,
808 Route de Lennik, B-1070 Brussels, Belgium
| | - Ingrid Langer
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Campus Erasme,
808 Route de Lennik, B-1070 Brussels, Belgium
| | - Marc Parmentier
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Campus Erasme,
808 Route de Lennik, B-1070 Brussels, Belgium
- Welbio, Université Libre de Bruxelles (U.L.B.), Campus Erasme, 808 Route de Lennik, B-1070 Brussels, Belgium
| | - Jan Steyaert
- Structural
Biology Research Center, VIB, Pleinlaan 2, 1050 Brussels, Belgium
- Structural
Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Nico Callewaert
- Unit
for Medical Biotechnology, Medical Biotechnology Center, VIB, Technologiepark 927, 9052 Ghent, Belgium
- Laboratory
for Protein Biochemistry and Biomolecular Engineering, Department
of Biochemistry and Microbiology, Ghent University, K.L.-Ledeganckstraat
35, 9000 Ghent, Belgium
| |
Collapse
|
45
|
Gorrec F. Protein crystallization screens developed at the MRC Laboratory of Molecular Biology. Drug Discov Today 2016; 21:819-25. [PMID: 27032894 PMCID: PMC4911435 DOI: 10.1016/j.drudis.2016.03.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 02/04/2016] [Accepted: 03/08/2016] [Indexed: 12/12/2022]
Abstract
In order to solve increasingly challenging protein structures with crystallography, crystallization reagents and screen formulations are regularly investigated. Here, we briefly describe 96-condition screens developed at the MRC Laboratory of Molecular Biology: the LMB sparse matrix screen, Pi incomplete factorial screens, the MORPHEUS grid screens and the ANGSTROM optimization screen. In this short review, we also discuss the difficulties and advantages associated with the development of protein crystallization screens.
Collapse
Affiliation(s)
- Fabrice Gorrec
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK.
| |
Collapse
|
46
|
Shang W, Lu H, Wan W, Fukuda T, Shen Y. Vision-based Nano Robotic System for High-throughput Non-embedded Cell Cutting. Sci Rep 2016; 6:22534. [PMID: 26941071 PMCID: PMC4778025 DOI: 10.1038/srep22534] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 02/17/2016] [Indexed: 12/25/2022] Open
Abstract
Cell cutting is a significant task in biology study, but the highly productive non-embedded cell cutting is still a big challenge for current techniques. This paper proposes a vision-based nano robotic system and then realizes automatic non-embedded cell cutting with this system. First, the nano robotic system is developed and integrated with a nanoknife inside an environmental scanning electron microscopy (ESEM). Then, the positions of the nanoknife and the single cell are recognized, and the distance between them is calculated dynamically based on image processing. To guarantee the positioning accuracy and the working efficiency, we propose a distance-regulated speed adapting strategy, in which the moving speed is adjusted intelligently based on the distance between the nanoknife and the target cell. The results indicate that the automatic non-embedded cutting is able to be achieved within 1–2 mins with low invasion benefiting from the high precise nanorobot system and the sharp edge of nanoknife. This research paves a way for the high-throughput cell cutting at cell’s natural condition, which is expected to make significant impact on the biology studies, especially for the in-situ analysis at cellular and subcellular scale, such as cell interaction investigation, neural signal transduction and low invasive cell surgery.
Collapse
Affiliation(s)
- Wanfeng Shang
- Mechanical Engineering Department, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Haojian Lu
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Wenfeng Wan
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Toshio Fukuda
- School of Mechatronic Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yajing Shen
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong, China.,City University of Hong Kong Shenzhen Research Institute, Shen Zhen 518057, China
| |
Collapse
|
47
|
Simone G. An alternative approach to the phase change of proteins in an aqueous mixture with ethanol. Chem Eng Res Des 2016. [DOI: 10.1016/j.cherd.2015.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
48
|
Lach S, Yoon SM, Grzybowski BA. Tactic, reactive, and functional droplets outside of equilibrium. Chem Soc Rev 2016; 45:4766-96. [DOI: 10.1039/c6cs00242k] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Droplets subject to non-equilibrium conditions can exhibit a range of biomimetic and “intelligent” behaviors.
Collapse
Affiliation(s)
- Sławomir Lach
- IBS Center for Soft and Living Matter, and Department of Chemistry
- UNIST
- Ulsan
- Republic of Korea
| | - Seok Min Yoon
- IBS Center for Soft and Living Matter, and Department of Chemistry
- UNIST
- Ulsan
- Republic of Korea
| | - Bartosz A. Grzybowski
- IBS Center for Soft and Living Matter, and Department of Chemistry
- UNIST
- Ulsan
- Republic of Korea
| |
Collapse
|
49
|
Nonlinear Optical Characterization of Membrane Protein Microcrystals and Nanocrystals. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 922:91-103. [DOI: 10.1007/978-3-319-35072-1_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
50
|
A Double Emulsion-Based, Plastic-Glass Hybrid Microfluidic Platform for Protein Crystallization. MICROMACHINES 2015. [DOI: 10.3390/mi6111446] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|