1
|
Kang J, Rashid F, Murray PJ, Merino-Urteaga R, Gavrilov M, Shang T, Jo W, Ahmed A, Aksel T, Barrick D, Berger JM, Ha T. Reliable amplification of highly repetitive or low complexity sequence DNA enabled by superhelicase-mediated isothermal amplification. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.27.625726. [PMID: 39651128 PMCID: PMC11623625 DOI: 10.1101/2024.11.27.625726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Polymerase Chain Reaction (PCR) requires thermal cycling to melt DNA and proceed through the subsequent cycles of DNA synthesis needed for exponential amplification. Previously, we engineered a superhelicase, with enhanced processivity and speed, to replace this traditional PCR melting step with enzymatic DNA unwinding while retaining desired PCR characteristics, such as multi-kb amplicon size and applicability to cloning and gene editing outcome assessment. This isothermal amplification method is named SHARP (SSB-Helicase Assisted Rapid PCR) because single-stranded DNA binding protein (SSB) and superhelicases are added to standard PCR reagents. Here, we show that SHARP can be effective for DNA sequences that PCR is unable to amplify or that produce side products of. SHARP is demonstrated to be capable of amplifying up to six identical repeats of the Widom 601 nucleosome positioning sequence and up to 35 identical repeats of ankyrin sequence. We also show that a sequence with 91% AT-content can be amplified using SHARP and that the amplification product can be validated using single-molecule optical tweezers experiments.
Collapse
|
2
|
Ng BW, Kaukonen MK, McClements ME, Shamsnajafabadi H, MacLaren RE, Cehajic-Kapetanovic J. Genetic therapies and potential therapeutic applications of CRISPR activators in the eye. Prog Retin Eye Res 2024; 102:101289. [PMID: 39127142 DOI: 10.1016/j.preteyeres.2024.101289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Conventional gene therapy involving supplementation only treats loss-of-function diseases and is limited by viral packaging sizes, precluding therapy of large genes. The discovery of CRISPR/Cas has led to a paradigm shift in the field of genetic therapy, with the promise of precise gene editing, thus broadening the range of diseases that can be treated. The initial uses of CRISPR/Cas have focused mainly on gene editing or silencing of abnormal variants via utilising Cas endonuclease to trigger the target cell endogenous non-homologous end joining. Subsequently, the technology has evolved to modify the Cas enzyme and even its guide RNA, leading to more efficient editing tools in the form of base and prime editing. Further advancements of this CRISPR/Cas technology itself have expanded its functional repertoire from targeted editing to programmable transactivation, shifting the therapeutic focus to precise endogenous gene activation or upregulation with the potential for epigenetic modifications. In vivo experiments using this platform have demonstrated the potential of CRISPR-activators (CRISPRa) to treat various loss-of-function diseases, as well as in regenerative medicine, highlighting their versatility to overcome limitations associated with conventional strategies. This review summarises the molecular mechanisms of CRISPRa platforms, the current applications of this technology in vivo, and discusses potential solutions to translational hurdles for this therapy, with a focus on ophthalmic diseases.
Collapse
Affiliation(s)
- Benjamin Wj Ng
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Maria K Kaukonen
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK; Department of Medical and Clinical Genetics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Michelle E McClements
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Hoda Shamsnajafabadi
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Robert E MacLaren
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Jasmina Cehajic-Kapetanovic
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK.
| |
Collapse
|
3
|
Cheng WX, Wang J, Mao ML, Lu YB, Zou JX. The mitochondrial genome of Bottapotamon fukienense (Brachiura: Potamidae) is fragmented into two chromosomes. BMC Genomics 2024; 25:755. [PMID: 39095713 PMCID: PMC11295360 DOI: 10.1186/s12864-024-10657-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND China is the hotspot of global freshwater crab diversity, but their wild populations are facing severe pressures associated with anthropogenic factors, necessitating the need to map their taxonomic and genetic diversity and design conservation policies. RESULTS Herein, we sequenced the mitochondrial genome of a Chinese freshwater crab species Bottapotamon fukienense, and found that it is fragmented into two chromosomes. We confirmed that fragmentation was not limited to a single specimen or population. Chromosome 1 comprised 15,111 base pairs (bp) and there were 26 genes and one pseudogene (pseudo-nad1) encoded on it. Chromosome 2 comprised 8,173 bp and there were 12 genes and two pseudogenes (pseudo-trnL2 and pseudo-rrnL) encoded on it. Combined, they comprise the largest mitogenome (23,284 bp) among the Potamidae. Bottapotamon was the only genus in the Potamidae dataset exhibiting rearrangements of protein-coding genes. Bottapotamon fukienense exhibited average rates of sequence evolution in the dataset and did not differ in selection pressures from the remaining Potamidae. CONCLUSIONS This is the first experimentally confirmed fragmentation of a mitogenome in crustaceans. While the mitogenome of B. fukienense exhibited multiple signs of elevated mitogenomic architecture evolution rates, including the exceptionally large size, duplicated genes, pseudogenisation, rearrangements of protein-coding genes, and fragmentation, there is no evidence that this is matched by elevated sequence evolutionary rates or changes in selection pressures.
Collapse
Affiliation(s)
- Wang-Xinjun Cheng
- Research Laboratory of Freshwater Crustacean Decapoda & Paragonimus, School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi Province, 330031, China
| | - Jun Wang
- Research Laboratory of Freshwater Crustacean Decapoda & Paragonimus, School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi Province, 330031, China
| | - Mei-Lin Mao
- Research Laboratory of Freshwater Crustacean Decapoda & Paragonimus, School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi Province, 330031, China
| | - Yuan-Biao Lu
- Research Laboratory of Freshwater Crustacean Decapoda & Paragonimus, School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi Province, 330031, China
| | - Jie-Xin Zou
- Research Laboratory of Freshwater Crustacean Decapoda & Paragonimus, School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi Province, 330031, China.
- Provincial Key Laboratory for Drug Targeting and Drug Screening, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
4
|
Fernandez‐Moreno J, Yaschenko AE, Neubauer M, Marchi AJ, Zhao C, Ascencio‐Ibanez JT, Alonso JM, Stepanova AN. A rapid and scalable approach to build synthetic repetitive hormone-responsive promoters. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1942-1956. [PMID: 38379432 PMCID: PMC11182585 DOI: 10.1111/pbi.14313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 02/22/2024]
Abstract
Advancement of DNA-synthesis technologies has greatly facilitated the development of synthetic biology tools. However, high-complexity DNA sequences containing tandems of short repeats are still notoriously difficult to produce synthetically, with commercial DNA synthesis companies usually rejecting orders that exceed specific sequence complexity thresholds. To overcome this limitation, we developed a simple, single-tube reaction method that enables the generation of DNA sequences containing multiple repetitive elements. Our strategy involves commercial synthesis and PCR amplification of padded sequences that contain the repeats of interest, along with random intervening sequence stuffers that include type IIS restriction enzyme sites. GoldenBraid molecular cloning technology is then employed to remove the stuffers, rejoin the repeats together in a predefined order, and subclone the tandem(s) in a vector using a single-tube digestion-ligation reaction. In our hands, this new approach is much simpler, more versatile and efficient than previously developed solutions to this problem. As a proof of concept, two different phytohormone-responsive, synthetic, repetitive proximal promoters were generated and tested in planta in the context of transcriptional reporters. Analysis of transgenic lines carrying the synthetic ethylene-responsive promoter 10x2EBS-S10 fused to the GUS reporter gene uncovered several developmentally regulated ethylene response maxima, indicating the utility of this reporter for monitoring the involvement of ethylene in a variety of physiologically relevant processes. These encouraging results suggest that this reporter system can be leveraged to investigate the ethylene response to biotic and abiotic factors with high spatial and temporal resolution.
Collapse
Affiliation(s)
| | - Anna E. Yaschenko
- Department of Plant and Microbial BiologyNorth Carolina State UniversityRaleighNCUSA
| | - Matthew Neubauer
- Department of Plant and Microbial BiologyNorth Carolina State UniversityRaleighNCUSA
| | - Alex J. Marchi
- Department of Plant and Microbial BiologyNorth Carolina State UniversityRaleighNCUSA
| | - Chengsong Zhao
- Department of Plant and Microbial BiologyNorth Carolina State UniversityRaleighNCUSA
| | - José T. Ascencio‐Ibanez
- Department of Molecular and Structural BiochemistryNorth Carolina State UniversityRaleighNCUSA
| | - Jose M. Alonso
- Department of Plant and Microbial BiologyNorth Carolina State UniversityRaleighNCUSA
| | - Anna N. Stepanova
- Department of Plant and Microbial BiologyNorth Carolina State UniversityRaleighNCUSA
| |
Collapse
|
5
|
Haque MM, Kuppusamy P, Melemedjian OK. Disruption of mitochondrial pyruvate oxidation in dorsal root ganglia drives persistent nociceptive sensitization and causes pervasive transcriptomic alterations. Pain 2024; 165:1531-1549. [PMID: 38285538 PMCID: PMC11189764 DOI: 10.1097/j.pain.0000000000003158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/04/2023] [Accepted: 10/18/2023] [Indexed: 01/31/2024]
Abstract
ABSTRACT Metabolism is inextricably linked to every aspect of cellular function. In addition to energy production and biosynthesis, metabolism plays a crucial role in regulating signal transduction and gene expression. Altered metabolic states have been shown to maintain aberrant signaling and transcription, contributing to diseases like cancer, cardiovascular disease, and neurodegeneration. Metabolic gene polymorphisms and defects are also associated with chronic pain conditions, as are increased levels of nerve growth factor (NGF). However, the mechanisms by which NGF may modulate sensory neuron metabolism remain unclear. This study demonstrated that intraplantar NGF injection reprograms sensory neuron metabolism. Nerve growth factor suppressed mitochondrial pyruvate oxidation and enhanced lactate extrusion, requiring 24 hours to increase lactate dehydrogenase A and pyruvate dehydrogenase kinase 1 (PDHK1) expression. Inhibiting these metabolic enzymes reversed NGF-mediated effects. Remarkably, directly disrupting mitochondrial pyruvate oxidation induced severe, persistent allodynia, implicating this metabolic dysfunction in chronic pain. Nanopore long-read sequencing of poly(A) mRNA uncovered extensive transcriptomic changes upon metabolic disruption, including altered gene expression, splicing, and poly(A) tail lengths. By linking metabolic disturbance of dorsal root ganglia to transcriptome reprogramming, this study enhances our understanding of the mechanisms underlying persistent nociceptive sensitization. These findings imply that impaired mitochondrial pyruvate oxidation may drive chronic pain, possibly by impacting transcriptomic regulation. Exploring these metabolite-driven mechanisms further might reveal novel therapeutic targets for intractable pain.
Collapse
Affiliation(s)
- Md Mamunul Haque
- Deptartmen of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, United States
| | - Panjamurthy Kuppusamy
- Deptartmen of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, United States
| | - Ohannes K. Melemedjian
- Deptartmen of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, United States
- UM Center to Advance Chronic Pain Research, Baltimore, MD, United States
- UM Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
| |
Collapse
|
6
|
Yang C, Yang Y, Chu G, Wang R, Li H, Mao Y, Wang M, Zhang J, Liao X, Ma H. AutoESDCas: A Web-Based Tool for the Whole-Workflow Editing Sequence Design for Microbial Genome Editing Based on the CRISPR/Cas System. ACS Synth Biol 2024; 13:1737-1749. [PMID: 38845097 DOI: 10.1021/acssynbio.4c00063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Genome editing is the basis for the modification of engineered microbes. In the process of genome editing, the design of editing sequences, such as primers and sgRNA, is very important for the accurate positioning of editing sites and efficient sequence editing. The whole process of genome editing involves multiple rounds and types of editing sequence design, while the development of related whole-workflow design tools for high-throughput experimental requirements lags. Here, we propose AutoESDCas, an online tool for the end-to-end editing sequence design for microbial genome editing based on the CRISPR/Cas system. This tool facilitates all types of genetic manipulation covering diverse experimental requirements and design scenarios, enables biologists to quickly and efficiently obtain all editing sequences needed for the entire genome editing process, and empowers high-throughput strain modification. Notably, with its off-target risk assessment function for editing sequences, the usability of the design results is significantly improved. AutoESDCas is freely available at https://autoesdcas.biodesign.ac.cn/with the source code at https://github.com/tibbdc/AutoESDCas/.
Collapse
Affiliation(s)
- Chunhe Yang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- Biodesign Center, Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Yi Yang
- Biodesign Center, Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Guangyun Chu
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Ruoyu Wang
- Biodesign Center, Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Haoran Li
- Biodesign Center, Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Yufeng Mao
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Meng Wang
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Jian Zhang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiaoping Liao
- Haihe Laboratory of Synthetic Biology, 300308 Tianjin, China
- Biodesign Center, Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Hongwu Ma
- Biodesign Center, Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| |
Collapse
|
7
|
Fischer J, Fedotova A, Jaki L, Sallard E, Erhardt A, Fuchs J, Ruzsics Z. Combining CRISPR-Cas-mediated terminal resolution with a novel genetic workflow to achieve high-diversity adenoviral libraries. Mol Ther Methods Clin Dev 2024; 32:101241. [PMID: 38585687 PMCID: PMC10995876 DOI: 10.1016/j.omtm.2024.101241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/14/2024] [Indexed: 04/09/2024]
Abstract
While recombinant adenoviruses (rAds) are widely used in both laboratory and medical gene transfer, library-based applications using this vector platform are not readily available. Recently, we developed a new method, the CRISPR-Cas9 mediated in vivo terminal resolution aiding high-efficiency rescue of rAds from recombinant DNA. Here we report on a genetic workflow that allows construction of bacterial artificial chromosome-based rAd libraries reconstituted using highly efficient terminal resolution. We utilized frequent, pre-existing genomic sequences to allow the insertion of a selection marker, complementing two selected target sites into novel endonuclease recognition sites. In the second step, this selection marker is replaced with a transgene or mutation of interest via Gibson assembly. Our approach does not cause unwanted genomic off-target mutations while providing substantial flexibility for the site and nature of the genetic modification. This new genetic workflow, which we termed half site-directed fragment replacement (HFR) allows the introduction of more than 106 unique modifications into rAd encoding BACs using laboratory scale methodology. To demonstrate the power of HFR, we rescued barcoded viral vector libraries yielding a diversity of approximately 2.5 × 104 unique rAds per cm2 of transfected cell culture.
Collapse
Affiliation(s)
- Julian Fischer
- Institute of Virology, University Medical Center Freiburg, Medical Faculty, University of Freiburg, 79104 Freiburg, Germany
| | - Ariana Fedotova
- Institute of Virology, University Medical Center Freiburg, Medical Faculty, University of Freiburg, 79104 Freiburg, Germany
| | - Lena Jaki
- Institute of Virology, University Medical Center Freiburg, Medical Faculty, University of Freiburg, 79104 Freiburg, Germany
| | - Erwan Sallard
- Virology and Microbiology, Centre for Biomedical Education & Research (ZBAF), Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany
| | - Anja Erhardt
- Virology and Microbiology, Centre for Biomedical Education & Research (ZBAF), Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany
| | - Jonas Fuchs
- Institute of Virology, University Medical Center Freiburg, Medical Faculty, University of Freiburg, 79104 Freiburg, Germany
| | - Zsolt Ruzsics
- Institute of Virology, University Medical Center Freiburg, Medical Faculty, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
8
|
Kwok van der Giezen F, Honkanen S, Colas des Francs-Small C, Bond C, Small I. Applications of Synthetic Pentatricopeptide Repeat Proteins. PLANT & CELL PHYSIOLOGY 2024; 65:503-515. [PMID: 38035801 PMCID: PMC11094755 DOI: 10.1093/pcp/pcad150] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/20/2023] [Accepted: 11/29/2023] [Indexed: 12/02/2023]
Abstract
RNA-binding proteins play integral roles in the regulation of essential processes in cells and as such are attractive targets for engineering to manipulate gene expression at the RNA level. Expression of transcripts in chloroplasts and mitochondria is heavily regulated by pentatricopeptide repeat (PPR) proteins. The diverse roles of PPR proteins and their naturally modular architecture make them ideal candidates for engineering. Synthetic PPR proteins are showing great potential to become valuable tools for controlling the expression of plastid and mitochondrial transcripts. In this review, by 'synthetic', we mean both rationally modified natural PPR proteins and completely novel proteins designed using the principles learned from their natural counterparts. We focus on the many different applications of synthetic PPR proteins, covering both their use in basic research to learn more about protein-RNA interactions and their use to achieve specific outcomes in RNA processing and the control of gene expression. We describe the challenges associated with the design, construction and deployment of synthetic PPR proteins and provide perspectives on how they might be assembled and used in future biotechnology applications.
Collapse
Affiliation(s)
- Farley Kwok van der Giezen
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| | - Suvi Honkanen
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| | - Catherine Colas des Francs-Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| | - Charles Bond
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| | - Ian Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| |
Collapse
|
9
|
Yu M, Tang X, Li Z, Wang W, Wang S, Li M, Yu Q, Xie S, Zuo X, Chen C. High-throughput DNA synthesis for data storage. Chem Soc Rev 2024; 53:4463-4489. [PMID: 38498347 DOI: 10.1039/d3cs00469d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
With the explosion of digital world, the dramatically increasing data volume is expected to reach 175 ZB (1 ZB = 1012 GB) in 2025. Storing such huge global data would consume tons of resources. Fortunately, it has been found that the deoxyribonucleic acid (DNA) molecule is the most compact and durable information storage medium in the world so far. Its high coding density and long-term preservation properties make itself one of the best data storage carriers for the future. High-throughput DNA synthesis is a key technology for "DNA data storage", which encodes binary data stream (0/1) into quaternary long DNA sequences consisting of four bases (A/G/C/T). In this review, the workflow of DNA data storage and the basic methods of artificial DNA synthesis technology are outlined first. Then, the technical characteristics of different synthesis methods and the state-of-the-art of representative commercial companies, with a primary focus on silicon chip microarray-based synthesis and novel enzymatic DNA synthesis are presented. Finally, the recent status of DNA storage and new opportunities for future development in the field of high-throughput, large-scale DNA synthesis technology are summarized.
Collapse
Affiliation(s)
- Meng Yu
- Institute of Medical Chips, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
- School of Microelectronics, Shanghai University, 201800, Shanghai, China
- Shanghai Industrial μTechnology Research Institute, 201800, Shanghai, China
| | - Xiaohui Tang
- Institute of Medical Chips, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
- Shanghai Industrial μTechnology Research Institute, 201800, Shanghai, China
| | - Zhenhua Li
- Institute of Medical Chips, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
- Shanghai Industrial μTechnology Research Institute, 201800, Shanghai, China
| | - Weidong Wang
- Shanghai Industrial μTechnology Research Institute, 201800, Shanghai, China
| | - Shaopeng Wang
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China.
| | - Min Li
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China.
| | - Qiuliyang Yu
- Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
| | - Sijia Xie
- Institute of Medical Chips, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
- School of Microelectronics, Shanghai University, 201800, Shanghai, China
- Shanghai Industrial μTechnology Research Institute, 201800, Shanghai, China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China.
| | - Chang Chen
- Institute of Medical Chips, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
- School of Microelectronics, Shanghai University, 201800, Shanghai, China
- Shanghai Industrial μTechnology Research Institute, 201800, Shanghai, China
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 200050, Shanghai, China
| |
Collapse
|
10
|
Tang NC, Su JC, Shmidov Y, Kelly G, Deshpande S, Sirohi P, Peterson N, Chilkoti A. Synthetic intrinsically disordered protein fusion tags that enhance protein solubility. Nat Commun 2024; 15:3727. [PMID: 38697982 PMCID: PMC11066018 DOI: 10.1038/s41467-024-47519-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 04/03/2024] [Indexed: 05/05/2024] Open
Abstract
We report the de novo design of small (<20 kDa) and highly soluble synthetic intrinsically disordered proteins (SynIDPs) that confer solubility to a fusion partner with minimal effect on the activity of the fused protein. To identify highly soluble SynIDPs, we create a pooled gene-library utilizing a one-pot gene synthesis technology to create a large library of repetitive genes that encode SynIDPs. We identify three small (<20 kDa) and highly soluble SynIDPs from this gene library that lack secondary structure and have high solvation. Recombinant fusion of these SynIDPs to three known inclusion body forming proteins rescue their soluble expression and do not impede the activity of the fusion partner, thereby eliminating the need for removal of the SynIDP tag. These findings highlight the utility of SynIDPs as solubility tags, as they promote the soluble expression of proteins in E. coli and are small, unstructured proteins that minimally interfere with the biological activity of the fused protein.
Collapse
Affiliation(s)
- Nicholas C Tang
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Jonathan C Su
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Yulia Shmidov
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Garrett Kelly
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Sonal Deshpande
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Parul Sirohi
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Nikhil Peterson
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
11
|
Fulghum B, Tanker SH, White RA. DeGenPrime provides robust primer design and optimization unlocking the biosphere. BIOINFORMATICS ADVANCES 2024; 4:vbae044. [PMID: 38590916 PMCID: PMC11001487 DOI: 10.1093/bioadv/vbae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/19/2024] [Accepted: 03/12/2024] [Indexed: 04/10/2024]
Abstract
Motivation Polymerase chain reaction (PCR) is the world's most important molecular diagnostic with applications ranging from medicine to ecology. PCR can fail because of poor primer design. The nearest-neighbor thermodynamic properties, picking conserved regions, and filtration via penalty of oligonucleotides form the basis for good primer design. Results DeGenPrime is a console-based high-quality PCR primer design tool that can utilize MSA formats and degenerate bases expanding the target range for a single primer set. Our software utilizes thermodynamic properties, filtration metrics, penalty scoring, and conserved region finding of any proposed primer. It has degeneracy, repeated k-mers, relative GC content, and temperature range filters. Minimal penalty scoring is included according to secondary structure self-dimerization metrics, GC clamping, tri- and tetra-loop hairpins, and internal repetition. We compared PrimerDesign-M, DegePrime, ConsensusPrimer, and DeGenPrime on acceptable primer yield. PrimerDesign-M, DegePrime, and ConsensusPrimer provided 0%, 11%, and 17% yield, respectively, for the alternative iron nitrogenase (anfD) gene target. DeGenPrime successfully identified quality primers within the conserved regions of the T4-like phage major capsid protein (g23), conserved regions of molybdenum-based nitrogenase (nif), and its alternatives vanadium (vnf) and iron (anf) nitrogenase. DeGenPrime provides a universal and scalable primer design tool for the entire tree of life. Availability and implementation DeGenPrime is written in C++ and distributed under a BSD-3-Clause license. The source code for DeGenPrime is freely available on www.github.com/raw-lab/degenprime.
Collapse
Affiliation(s)
- Bryan Fulghum
- Department of Bioinformatics and Genomics, North Carolina Research Campus (NCRC), The University of North Carolina at Charlotte, Kannapolis, NC 28081, United States
- Department of Bioinformatics and Genomics, Computational Intelligence to Predict Health and Environmental Risks (CIPHER) Research Center, The University of North Carolina at Charlotte, Charlotte, NC 28223, United States
| | - Sophie H Tanker
- Department of Bioinformatics and Genomics, North Carolina Research Campus (NCRC), The University of North Carolina at Charlotte, Kannapolis, NC 28081, United States
- Department of Bioinformatics and Genomics, Computational Intelligence to Predict Health and Environmental Risks (CIPHER) Research Center, The University of North Carolina at Charlotte, Charlotte, NC 28223, United States
| | - Richard Allen White
- Department of Bioinformatics and Genomics, North Carolina Research Campus (NCRC), The University of North Carolina at Charlotte, Kannapolis, NC 28081, United States
- Department of Bioinformatics and Genomics, Computational Intelligence to Predict Health and Environmental Risks (CIPHER) Research Center, The University of North Carolina at Charlotte, Charlotte, NC 28223, United States
| |
Collapse
|
12
|
Sanchez-Flores M, Corral-Juan M, Gasch-Navalón E, Cirillo D, Sanchez I, Matilla-Dueñas A. Novel genotype-phenotype correlations, differential cerebellar allele-specific methylation, and a common origin of the (ATTTC) n insertion in spinocerebellar ataxia type 37. Hum Genet 2024; 143:211-232. [PMID: 38396267 PMCID: PMC11043136 DOI: 10.1007/s00439-024-02644-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 01/17/2024] [Indexed: 02/25/2024]
Abstract
Spinocerebellar ataxia subtype 37 (SCA37) is a rare disease originally identified in ataxia patients from the Iberian Peninsula with a pure cerebellar syndrome. SCA37 patients carry a pathogenic intronic (ATTTC)n repeat insertion flanked by two polymorphic (ATTTT)n repeats in the Disabled-1 (DAB1) gene leading to cerebellar dysregulation. Herein, we determine the precise configuration of the pathogenic 5'(ATTTT)n-(ATTTC)n-3'(ATTTT)n SCA37 alleles by CRISPR-Cas9 and long-read nanopore sequencing, reveal their epigenomic signatures in SCA37 lymphocytes, fibroblasts, and cerebellar samples, and establish new molecular and clinical correlations. The 5'(ATTTT)n-(ATTTC)n-3'(ATTTT)n pathogenic allele configurations revealed repeat instability and differential methylation signatures. Disease age of onset negatively correlated with the (ATTTC)n, and positively correlated with the 3'(ATTTT)n. Geographic origin and gender significantly correlated with age of onset. Furthermore, significant predictive regression models were obtained by machine learning for age of onset and disease evolution by considering gender, the (ATTTC)n, the 3'(ATTTT)n, and seven CpG positions differentially methylated in SCA37 cerebellum. A common 964-kb genomic region spanning the (ATTTC)n insertion was identified in all SCA37 patients analysed from Portugal and Spain, evidencing a common origin of the SCA37 mutation in the Iberian Peninsula originating 859 years ago (95% CI 647-1378). In conclusion, we demonstrate an accurate determination of the size and configuration of the regulatory 5'(ATTTT)n-(ATTTC)n-3'(ATTTT)n repeat tract, avoiding PCR bias amplification using CRISPR/Cas9-enrichment and nanopore long-read sequencing, resulting relevant for accurate genetic diagnosis of SCA37. Moreover, we determine novel significant genotype-phenotype correlations in SCA37 and identify differential cerebellar allele-specific methylation signatures that may underlie DAB1 pathogenic dysregulation.
Collapse
Affiliation(s)
- Marina Sanchez-Flores
- Neurogenetics Unit, Department of Neuroscience, Germans Trias i Pujol Research Institute (IGTP), Universitat Autònoma de Barcelona-Can Ruti Campus, Carretera de Can Ruti, Camí de les Escoles s/n, 08916, Badalona, Spain
| | - Marc Corral-Juan
- Neurogenetics Unit, Department of Neuroscience, Germans Trias i Pujol Research Institute (IGTP), Universitat Autònoma de Barcelona-Can Ruti Campus, Carretera de Can Ruti, Camí de les Escoles s/n, 08916, Badalona, Spain
| | - Esther Gasch-Navalón
- Neurogenetics Unit, Department of Neuroscience, Germans Trias i Pujol Research Institute (IGTP), Universitat Autònoma de Barcelona-Can Ruti Campus, Carretera de Can Ruti, Camí de les Escoles s/n, 08916, Badalona, Spain
| | | | - Ivelisse Sanchez
- Neurogenetics Unit, Department of Neuroscience, Germans Trias i Pujol Research Institute (IGTP), Universitat Autònoma de Barcelona-Can Ruti Campus, Carretera de Can Ruti, Camí de les Escoles s/n, 08916, Badalona, Spain
| | - Antoni Matilla-Dueñas
- Neurogenetics Unit, Department of Neuroscience, Germans Trias i Pujol Research Institute (IGTP), Universitat Autònoma de Barcelona-Can Ruti Campus, Carretera de Can Ruti, Camí de les Escoles s/n, 08916, Badalona, Spain.
| |
Collapse
|
13
|
Yu Z, Li Y, Deng L, Luo B, Wu P, Geng D. A high-performance cell-phone based polarized microscope for malaria diagnosis. JOURNAL OF BIOPHOTONICS 2023; 16:e202200290. [PMID: 36541739 DOI: 10.1002/jbio.202200290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/09/2022] [Accepted: 12/08/2022] [Indexed: 05/17/2023]
Abstract
We present a cell-phone based polarized microscope for diagnosing malaria through hemozoin recognition over a wide field-of-view (FOV) accompanied with decent image performance. The system is constructed based on attachment method using a lens assembly as objective, two mobile phones and two linear polarizers. A ~0.92 μm resolution across a FOV of ~3.27 mm × 3.27 mm with high imaging quality is realized, demonstrating an increased resolving power, four times improvement in FOV and better imaging quality over mobile-optical-polarization imaging device. Importantly, we also demonstrate it has capability of recognizing hemozoin within the sample for malaria diagnosis by imaging malaria-infected blood samples with similar sensitivity comparable to Leica microscopy. It is more compact, portable, and insensitive to alignment, making it highly suitable for malaria detection in a portable, easy to setup and use way in low-resource areas.
Collapse
Affiliation(s)
- Zhenfang Yu
- Analysis and Test Center of Sichuan Province, Chengdu, China
- Scientific Equipments Company of Sichuan Province, Chengdu, China
| | - Yunfei Li
- Analysis and Test Center of Sichuan Province, Chengdu, China
- Scientific Equipments Company of Sichuan Province, Chengdu, China
| | - Lin Deng
- Analysis and Test Center of Sichuan Province, Chengdu, China
| | - Bing Luo
- Analysis and Test Center of Sichuan Province, Chengdu, China
| | - Pinghui Wu
- College of Physics & Information Engineering, Quanzhou Normal University, QuanZhou, China
| | - Dongxian Geng
- Analysis and Test Center of Sichuan Province, Chengdu, China
- Scientific Equipments Company of Sichuan Province, Chengdu, China
| |
Collapse
|
14
|
Minhas BF, Beck EA, Cheng CHC, Catchen J. Novel mitochondrial genome rearrangements including duplications and extensive heteroplasmy could underlie temperature adaptations in Antarctic notothenioid fishes. Sci Rep 2023; 13:6939. [PMID: 37117267 PMCID: PMC10147917 DOI: 10.1038/s41598-023-34237-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/25/2023] [Indexed: 04/30/2023] Open
Abstract
Mitochondrial genomes are known for their compact size and conserved gene order, however, recent studies employing long-read sequencing technologies have revealed the presence of atypical mitogenomes in some species. In this study, we assembled and annotated the mitogenomes of five Antarctic notothenioids, including four icefishes (Champsocephalus gunnari, C. esox, Chaenocephalus aceratus, and Pseudochaenichthys georgianus) and the cold-specialized Trematomus borchgrevinki. Antarctic notothenioids are known to harbor some rearrangements in their mt genomes, however the extensive duplications in icefishes observed in our study have never been reported before. In the icefishes, we observed duplications of the protein coding gene ND6, two transfer RNAs, and the control region with different copy number variants present within the same individuals and with some ND6 duplications appearing to follow the canonical Duplication-Degeneration-Complementation (DDC) model in C. esox and C. gunnari. In addition, using long-read sequencing and k-mer analysis, we were able to detect extensive heteroplasmy in C. aceratus and C. esox. We also observed a large inversion in the mitogenome of T. borchgrevinki, along with the presence of tandem repeats in its control region. This study is the first in using long-read sequencing to assemble and identify structural variants and heteroplasmy in notothenioid mitogenomes and signifies the importance of long-reads in resolving complex mitochondrial architectures. Identification of such wide-ranging structural variants in the mitogenomes of these fishes could provide insight into the genetic basis of the atypical icefish mitochondrial physiology and more generally may provide insights about their potential role in cold adaptation.
Collapse
Affiliation(s)
- Bushra Fazal Minhas
- Informatics Programs, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Emily A Beck
- Data Science Initiative, University of Oregon, Eugene, USA
| | - C-H Christina Cheng
- Department of Evolution, Ecology, and Behavior, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Julian Catchen
- Informatics Programs, University of Illinois at Urbana-Champaign, Urbana, USA.
- Department of Evolution, Ecology, and Behavior, University of Illinois at Urbana-Champaign, Urbana, USA.
| |
Collapse
|
15
|
Nix JL, Schettini GP, Biase FH. Sexing of cattle embryos using RNA-sequencing data or polymerase chain reaction based on a complete sequence of cattle chromosome Y. Front Genet 2023; 14:1038291. [PMID: 37077537 PMCID: PMC10106624 DOI: 10.3389/fgene.2023.1038291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 03/24/2023] [Indexed: 04/05/2023] Open
Abstract
When necessary, RNA-sequencing data or polymerase chain reaction (PCR) assays can be used to determine the presence of the chromosome Y (ChrY) in samples. This information allows for biological variation due to sexual dimorphism to be studied. A prime example is when researchers conduct RNA-sequencing of single embryos, or conceptuses, prior to the development of gonads. A recent publication of a complete sequence of the ChrY has removed limitations for the development of these procedures in cattle, otherwise imposed by the absence of a ChrY in the reference genome. Using the sequence of the cattle ChrY and transcriptome data, we conducted a systematic search for genes in the ChrY that are exclusively expressed in male tissues. The genes ENSBIXG00000029763, ENSBIXG00000029774, ENSBIXG00000029788, and ENSBIXG00000029892 were consistently expressed across male tissues and lowly expressed or absent in female samples. We observed that the cumulative values of counts per million were 2688-fold greater in males than the equivalent values in female samples. Thus, we deemed these genes suitable for the sexing of samples using RNA-sequencing data. We successfully used this set of genes to infer the sex of 22 cattle blastocysts (8 females and 14 males). Additionally, the completed sequence of the cattle ChrY has segments in the male-specific region that are not repeated. We designed a pair of oligonucleotides that targets one of these non-repeated regions in the male-specific sequence of the ChrY. Using this pair of oligonucleotides, in a multiplexed PCR assay with oligonucleotides that anneal to an autosome chromosome, we accurately identified the sex of cattle blastocysts. We developed efficient procedures for the sexing of samples in cattle using either transcriptome data or their DNA. The procedures using RNA-sequencing will greatly benefit researchers who work with samples limited in cell numbers which are only sufficient to produce transcriptome data. The oligonucleotides used for the accurate sexing of samples using PCR are transferable to other cattle tissue samples.
Collapse
Affiliation(s)
| | | | - Fernando Henrique Biase
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| |
Collapse
|
16
|
Stopar A, Nicholson AW. Multivalent forms of the ribonuclease H1 hybrid binding domain are high-affinity binders of RNA-DNA hybrids. FEBS Lett 2023; 597:472-482. [PMID: 36443824 DOI: 10.1002/1873-3468.14541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 10/18/2022] [Accepted: 10/22/2022] [Indexed: 11/30/2022]
Abstract
The hybrid binding domain (HBD) is a conserved fold present in ribonucleases H1 that selectively recognizes RNA-DNA hybrids, which are structures present in cellular R-loops and participate in diverse biological processes. We engineered multivalent HBD proteins to create high-affinity hybrid binders. Using EMSA- and SPR-based analyses, we showed that the triple-HBD protein exhibits a ~ 22 000-fold increase in hybrid affinity (KD 370 pm) relative to the single HBD (KD 8.29 μm), with the length and sequence of the linkers enabling optimal function. These findings provide a framework for testing models that correlate multivalency and affinity to understand how multivalent proteins function and also can serve to guide applications that exploit multivalency as a strategy to enhance binding affinity.
Collapse
Affiliation(s)
- Alex Stopar
- Department of Biology, Temple University, Philadelphia, PA, USA
| | | |
Collapse
|
17
|
Doerfler AM, Park SH, Assini JM, Youssef A, Saxena L, Yaseen AB, De Giorgi M, Chuecos M, Hurley AE, Li A, Marcovina SM, Bao G, Boffa MB, Koschinsky ML, Lagor WR. LPA disruption with AAV-CRISPR potently lowers plasma apo(a) in transgenic mouse model: A proof-of-concept study. Mol Ther Methods Clin Dev 2022; 27:337-351. [PMID: 36381302 PMCID: PMC9630778 DOI: 10.1016/j.omtm.2022.10.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022]
Abstract
Lipoprotein(a) (Lp(a)) represents a unique subclass of circulating lipoprotein particles and consists of an apolipoprotein(a) (apo(a)) molecule covalently bound to apolipoprotein B-100. The metabolism of Lp(a) particles is distinct from that of low-density lipoprotein (LDL) cholesterol, and currently approved lipid-lowering drugs do not provide substantial reductions in Lp(a), a causal risk factor for cardiovascular disease. Somatic genome editing has the potential to be a one-time therapy for individuals with extremely high Lp(a). We generated an LPA transgenic mouse model expressing apo(a) of physiologically relevant size. Adeno-associated virus (AAV) vector delivery of CRISPR-Cas9 was used to disrupt the LPA transgene in the liver. AAV-CRISPR nearly completely eliminated apo(a) from the circulation within a week. We performed genome-wide off-target assays to determine the specificity of CRISPR-Cas9 editing within the context of the human genome. Interestingly, we identified intrachromosomal rearrangements within the LPA cDNA in the transgenic mice as well as in the LPA gene in HEK293T cells, due to the repetitive sequences within LPA itself and neighboring pseudogenes. This proof-of-concept study establishes the feasibility of using CRISPR-Cas9 to disrupt LPA in vivo, and highlights the importance of examining the diverse consequences of CRISPR cutting within repetitive loci and in the genome globally.
Collapse
Affiliation(s)
- Alexandria M. Doerfler
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - So Hyun Park
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Julia M. Assini
- Department of Biochemistry, Schulich School of Medicine and Dentistry, the University of Western Ontario, London, ON N6A 5B7, Canada
| | - Amer Youssef
- Robarts Research Institute, Schulich School of Medicine and Dentistry, London, ON N6G 2V4, Canada
| | - Lavanya Saxena
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Adam B. Yaseen
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Marco De Giorgi
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Marcel Chuecos
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ayrea E. Hurley
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ang Li
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | | | - Gang Bao
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Michael B. Boffa
- Department of Biochemistry, Schulich School of Medicine and Dentistry, the University of Western Ontario, London, ON N6A 5B7, Canada
- Robarts Research Institute, Schulich School of Medicine and Dentistry, London, ON N6G 2V4, Canada
| | - Marlys L. Koschinsky
- Robarts Research Institute, Schulich School of Medicine and Dentistry, London, ON N6G 2V4, Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, London, ON N6A 5B7, Canada
| | - William R. Lagor
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| |
Collapse
|
18
|
Zhang N, Li Y, Halanych KM, Kong L, Li Q. A comparative analysis of mitochondrial ORFs provides new insights on expansion of mitochondrial genome size in Arcidae. BMC Genomics 2022; 23:809. [PMID: 36474182 PMCID: PMC9727918 DOI: 10.1186/s12864-022-09040-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Arcidae, comprising about 260 species of ark shells, is an ecologically and economically important lineage of bivalve mollusks. Interestingly, mitochondrial genomes of several Arcidae species are 2-3 times larger than those of most bilaterians, and are among the largest bilaterian mitochondrial genomes reported to date. The large mitochondrial genome size is mainly due to expansion of unassigned regions (regions that are functionally unassigned). Previous work on unassigned regions of Arcidae mtDNA genomes has focused on nucleotide-level analyses to observe sequence characteristics, however the origin of expansion remains unclear. RESULTS We assembled six new mitogenomes and sequenced six transcriptomes of Scapharca broughtonii to identify conserved functional ORFs that are transcribed in unassigned regions. Sixteen lineage-specific ORFs with different copy numbers were identified from seven Arcidae species, and 11 of 16 ORFs were expressed and likely biologically active. Unassigned regions of 32 Arcidae mitogenomes were compared to verify the presence of these novel mitochondrial ORFs and their distribution. Strikingly, multiple structural analyses and functional prediction suggested that these additional mtDNA-encoded proteins have potential functional significance. In addition, our results also revealed that the ORFs have a strong connection to the expansion of Arcidae mitochondrial genomes and their large-scale duplication play an important role in multiple expansion events. We discussed the possible origin of ORFs and hypothesized that these ORFs may originate from duplication of mitochondrial genes. CONCLUSIONS The presence of lineage-specific mitochondrial ORFs with transcriptional activity and potential functional significance supports novel features for Arcidae mitochondrial genomes. Given our observation and analyses, these ORFs may be products of mitochondrial gene duplication. These findings shed light on the origin and function of novel mitochondrial genes in bivalves and provide new insights into evolution of mitochondrial genome size in metazoans.
Collapse
Affiliation(s)
- Ning Zhang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | | | - Kenneth M Halanych
- Center for Marine Science, University of North Carolina Wilmington, Wilmington, NC, 28409, USA
| | - Lingfeng Kong
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
19
|
Alfano M, De Antoni L, Centofanti F, Visconti VV, Maestri S, Degli Esposti C, Massa R, D'Apice MR, Novelli G, Delledonne M, Botta A, Rossato M. Characterization of full-length CNBP expanded alleles in myotonic dystrophy type 2 patients by Cas9-mediated enrichment and nanopore sequencing. eLife 2022; 11:80229. [PMID: 36018009 PMCID: PMC9462847 DOI: 10.7554/elife.80229] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/25/2022] [Indexed: 11/30/2022] Open
Abstract
Myotonic dystrophy type 2 (DM2) is caused by CCTG repeat expansions in the CNBP gene, comprising 75 to >11,000 units and featuring extensive mosaicism, making it challenging to sequence fully expanded alleles. To overcome these limitations, we used PCR-free Cas9-mediated nanopore sequencing to characterize CNBP repeat expansions at the single-nucleotide level in nine DM2 patients. The length of normal and expanded alleles can be assessed precisely using this strategy, agreeing with traditional methods, and revealing the degree of mosaicism. We also sequenced an entire ~50 kbp expansion, which has not been achieved previously for DM2 or any other repeat-expansion disorders. Our approach precisely counted the repeats and identified the repeat pattern for both short interrupted and uninterrupted alleles. Interestingly, in the expanded alleles, only two DM2 samples featured the expected pure CCTG repeat pattern, while the other seven presented also TCTG blocks at the 3′ end, which have not been reported before in DM2 patients, but confirmed hereby with orthogonal methods. The demonstrated approach simultaneously determines repeat length, structure/motif, and the extent of somatic mosaicism, promising to improve the molecular diagnosis of DM2 and achieve more accurate genotype–phenotype correlations for the better stratification of DM2 patients in clinical trials.
Collapse
Affiliation(s)
| | - Luca De Antoni
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Federica Centofanti
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | | | - Simone Maestri
- Department of Biotechnology, University of Verona, Verona, Italy
| | | | - Roberto Massa
- Department of Systems Medicine (Neurology), University of Rome Tor Vergata, Rome, Italy
| | | | - Giuseppe Novelli
- Laboratory of Medical Genetics, University of Rome Tor Vergata, Rome, Italy
| | | | - Annalisa Botta
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Marzia Rossato
- Department of Biotechnology, University of Verona, Verona, Italy
| |
Collapse
|
20
|
Liu SC, Feng YL, Sun XN, Chen RD, Liu Q, Xiao JJ, Zhang JN, Huang ZC, Xiang JF, Chen GQ, Yang Y, Lou C, Li HD, Cai Z, Xu SM, Lin H, Xie AY. Target residence of Cas9-sgRNA influences DNA double-strand break repair pathway choices in CRISPR/Cas9 genome editing. Genome Biol 2022; 23:165. [PMID: 35915475 PMCID: PMC9341079 DOI: 10.1186/s13059-022-02736-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 07/22/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Due to post-cleavage residence of the Cas9-sgRNA complex at its target, Cas9-induced DNA double-strand breaks (DSBs) have to be exposed to engage DSB repair pathways. Target interaction of Cas9-sgRNA determines its target binding affinity and modulates its post-cleavage target residence duration and exposure of Cas9-induced DSBs. This exposure, via different mechanisms, may initiate variable DNA damage responses, influencing DSB repair pathway choices and contributing to mutational heterogeneity in genome editing. However, this regulation of DSB repair pathway choices is poorly understood. RESULTS In repair of Cas9-induced DSBs, repair pathway choices vary widely at different target sites and classical nonhomologous end joining (c-NHEJ) is not even engaged at some sites. In mouse embryonic stem cells, weakening the target interaction of Cas9-sgRNA promotes bias towards c-NHEJ and increases target dissociation and reduces target residence of Cas9-sgRNAs in vitro. As an important strategy for enhancing homology-directed repair, inactivation of c-NHEJ aggravates off-target activities of Cas9-sgRNA due to its weak interaction with off-target sites. By dislodging Cas9-sgRNA from its cleaved targets, DNA replication alters DSB end configurations and suppresses c-NHEJ in favor of other repair pathways, whereas transcription has little effect on c-NHEJ engagement. Dissociation of Cas9-sgRNA from its cleaved target by DNA replication may generate three-ended DSBs, resulting in palindromic fusion of sister chromatids, a potential source for CRISPR/Cas9-induced on-target chromosomal rearrangements. CONCLUSIONS Target residence of Cas9-sgRNA modulates DSB repair pathway choices likely through varying dissociation of Cas9-sgRNA from cleaved DNA, thus widening on-target and off-target mutational spectra in CRISPR/Cas9 genome editing.
Collapse
Affiliation(s)
- Si-Cheng Liu
- Innovation Center for Minimally Invasive Technique and Device, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310019, People's Republic of China
- Institute of Translational Medicine, Zhejiang University School of Medicine and Zhejiang University Cancer Center, Hangzhou, Zhejiang, 310029, People's Republic of China
| | - Yi-Li Feng
- Innovation Center for Minimally Invasive Technique and Device, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310019, People's Republic of China
- Institute of Translational Medicine, Zhejiang University School of Medicine and Zhejiang University Cancer Center, Hangzhou, Zhejiang, 310029, People's Republic of China
- Department of Biochemistry and Molecular Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, People's Republic of China
| | - Xiu-Na Sun
- Innovation Center for Minimally Invasive Technique and Device, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310019, People's Republic of China
- Institute of Translational Medicine, Zhejiang University School of Medicine and Zhejiang University Cancer Center, Hangzhou, Zhejiang, 310029, People's Republic of China
| | - Ruo-Dan Chen
- Innovation Center for Minimally Invasive Technique and Device, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310019, People's Republic of China
- Institute of Translational Medicine, Zhejiang University School of Medicine and Zhejiang University Cancer Center, Hangzhou, Zhejiang, 310029, People's Republic of China
- Department of Biochemistry and Molecular Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, People's Republic of China
| | - Qian Liu
- Innovation Center for Minimally Invasive Technique and Device, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310019, People's Republic of China
- Institute of Translational Medicine, Zhejiang University School of Medicine and Zhejiang University Cancer Center, Hangzhou, Zhejiang, 310029, People's Republic of China
| | - Jing-Jing Xiao
- Innovation Center for Minimally Invasive Technique and Device, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310019, People's Republic of China
- Institute of Translational Medicine, Zhejiang University School of Medicine and Zhejiang University Cancer Center, Hangzhou, Zhejiang, 310029, People's Republic of China
| | - Jin-Na Zhang
- Institute of Translational Medicine, Zhejiang University School of Medicine and Zhejiang University Cancer Center, Hangzhou, Zhejiang, 310029, People's Republic of China
- The First affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310019, People's Republic of China
| | - Zhi-Cheng Huang
- Innovation Center for Minimally Invasive Technique and Device, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310019, People's Republic of China
- Institute of Translational Medicine, Zhejiang University School of Medicine and Zhejiang University Cancer Center, Hangzhou, Zhejiang, 310029, People's Republic of China
| | - Ji-Feng Xiang
- Innovation Center for Minimally Invasive Technique and Device, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310019, People's Republic of China
- Institute of Translational Medicine, Zhejiang University School of Medicine and Zhejiang University Cancer Center, Hangzhou, Zhejiang, 310029, People's Republic of China
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 400013, People's Republic of China
| | - Guo-Qiao Chen
- Innovation Center for Minimally Invasive Technique and Device, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310019, People's Republic of China
- Institute of Translational Medicine, Zhejiang University School of Medicine and Zhejiang University Cancer Center, Hangzhou, Zhejiang, 310029, People's Republic of China
| | - Yi Yang
- Institute of Translational Medicine, Zhejiang University School of Medicine and Zhejiang University Cancer Center, Hangzhou, Zhejiang, 310029, People's Republic of China
| | - Chao Lou
- Shurui Tech Ltd, Hangzhou, Zhejiang, 310005, People's Republic of China
| | - Hao-Dan Li
- Shurui Tech Ltd, Hangzhou, Zhejiang, 310005, People's Republic of China
| | - Zhen Cai
- The First affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310019, People's Republic of China
| | - Shi-Ming Xu
- Institute of Translational Medicine, Zhejiang University School of Medicine and Zhejiang University Cancer Center, Hangzhou, Zhejiang, 310029, People's Republic of China
| | - Hui Lin
- Innovation Center for Minimally Invasive Technique and Device, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310019, People's Republic of China
| | - An-Yong Xie
- Innovation Center for Minimally Invasive Technique and Device, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310019, People's Republic of China.
- Institute of Translational Medicine, Zhejiang University School of Medicine and Zhejiang University Cancer Center, Hangzhou, Zhejiang, 310029, People's Republic of China.
| |
Collapse
|
21
|
Trinca V, Uliana JVC, Ribeiro GKS, Torres TT, Monesi N. Characterization of the mitochondrial genomes of Bradysia hygida, Phytosciara flavipes and Trichosia splendens (Diptera: Sciaridae) and novel insights on the control region of sciarid mitogenomes. INSECT MOLECULAR BIOLOGY 2022; 31:482-496. [PMID: 35332955 DOI: 10.1111/imb.12774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 02/12/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
Sciarids, also called "fungus gnats" are small, almost entirely dark-coloured insects. Sciarid larvae feed on different substrates and can infest agricultural crops and mushroom nurseries, causing economic losses. Of the 2174 Diptera mitogenome sequences currently available in GenBank, only eight are from the Sciaridae family, none of which are complete circular molecules. Here we describe the mitogenome sequences of three sciarid species: Phytosciara flavipes, Trichosia splendens and Bradysia hygida and provide novel insights on the control region of sciarid mitogenomes. The assembled mitogenomes range from 16,062 bp in P. flavipes to 17,095 bp in B. hygida. All 13 protein coding genes, 22 tRNAs and 2 rRNAs characteristic of insect mitogenomes were identified, but the sequence of the control region could not be determined. Experimental results suggest that the B. hygida control region is about 21 kb long resulting in a 37 kb long mitogenome which constitutes the largest insect mitochondrial genome described so far. Phylogenetic analysis using all Bibionomorpha mitogenome sequences available in GenBank strongly supports the Sciaridae monophyly and led to the identification of species and subfamily specific gene rearrangements. Our study extends the knowledge of this large and diverse insect family that includes agricultural pest species.
Collapse
Affiliation(s)
- Vitor Trinca
- Programa de Biologia Celular e Molecular, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - João Vitor Cardoso Uliana
- Programa de Biologia Celular e Molecular, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Geyza Katrinny Sousa Ribeiro
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Tatiana Teixeira Torres
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Nadia Monesi
- Programa de Biologia Celular e Molecular, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
22
|
Population Scale Analysis of Centromeric Satellite DNA Reveals Highly Dynamic Evolutionary Patterns and Genomic Organization in Long-Tailed and Rhesus Macaques. Cells 2022; 11:cells11121953. [PMID: 35741082 PMCID: PMC9221937 DOI: 10.3390/cells11121953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 02/04/2023] Open
Abstract
Centromeric satellite DNA (cen-satDNA) consists of highly divergent repeat monomers, each approximately 171 base pairs in length. Here, we investigated the genetic diversity in the centromeric region of two primate species: long-tailed (Macaca fascicularis) and rhesus (Macaca mulatta) macaques. Fluorescence in situ hybridization and bioinformatic analysis showed the chromosome-specific organization and dynamic nature of cen-satDNAsequences, and their substantial diversity, with distinct subfamilies across macaque populations, suggesting increased turnovers. Comparative genomics identified high level polymorphisms spanning a 120 bp deletion region and a remarkable interspecific variability in cen-satDNA size and structure. Population structure analysis detected admixture patterns within populations, indicating their high divergence and rapid evolution. However, differences in cen-satDNA profiles appear to not be involved in hybrid incompatibility between the two species. Our study provides a genomic landscape of centromeric repeats in wild macaques and opens new avenues for exploring their impact on the adaptive evolution and speciation of primates.
Collapse
|
23
|
The Utility of Repetitive Cell-Free DNA in Cancer Liquid Biopsies. Diagnostics (Basel) 2022; 12:diagnostics12061363. [PMID: 35741173 PMCID: PMC9221655 DOI: 10.3390/diagnostics12061363] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 02/05/2023] Open
Abstract
Liquid biopsy is a broad term that refers to the testing of body fluids for biomarkers that correlate with a pathological condition. While a variety of body-fluid components (e.g., circulating tumor cells, extracellular vesicles, RNA, proteins, and metabolites) are studied as potential liquid biopsy biomarkers, cell-free DNA (cfDNA) has attracted the most attention in recent years. The total cfDNA population in a typical biospecimen represents an immensely rich source of biological and pathological information and has demonstrated significant potential as a versatile biomarker in oncology, non-invasive prenatal testing, and transplant monitoring. As a significant portion of cfDNA is composed of repeat DNA sequences and some families (e.g., pericentric satellites) were recently shown to be overrepresented in cfDNA populations vs their genomic abundance, it holds great potential for developing liquid biopsy-based biomarkers for the early detection and management of patients with cancer. By outlining research that employed cell-free repeat DNA sequences, in particular the ALU and LINE-1 elements, we highlight the clinical potential of the repeat-element content of cfDNA as an underappreciated marker in the cancer liquid biopsy repertoire.
Collapse
|
24
|
Alharbi AH, V AC, Lin M, Ashwini B, Jabarulla MY, Shah MA. Detection of Peripheral Malarial Parasites in Blood Smears Using Deep Learning Models. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:3922763. [PMID: 35655511 PMCID: PMC9155968 DOI: 10.1155/2022/3922763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/17/2022] [Accepted: 04/25/2022] [Indexed: 11/28/2022]
Abstract
Due to the plasmodium parasite, malaria is transmitted mostly through red blood cells. Manually counting blood cells is extremely time consuming and tedious. In a recommendation for the advanced technology stage and analysis of malarial disease, the performance of the XG-Boost, SVM, and neural networks is compared. In comparison to machine learning models, convolutional neural networks provide reliable results when analyzing and recognizing the same datasets. To reduce discrepancies and improve robustness and generalization, we developed a model that analyzes blood samples to determine whether the cells are parasitized or not. Experiments were conducted on 13,750 parasitized and 13,750 parasitic samples. Support vector machines achieved 94% accuracy, XG-Boost models achieved 90% accuracy, and neural networks achieved 80% accuracy. Among these three models, the support vector machine was the most accurate at distinguishing parasitized cells from uninfected ones. An accuracy rate of 97% was achieved by the convolution neural network in recognizing the samples. The deep learning model is useful for decision making because of its better accuracy.
Collapse
Affiliation(s)
- Amal H. Alharbi
- Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Aravinda C. V
- N. M. A. M. Institute of Technology, Nitte 574110, Karkala, India
| | - Meng Lin
- Ritsumeikan University, Kyoto, Japan
| | - B Ashwini
- N. M. A. M. Institute of Technology, Nitte 574110, Karkala, India
| | - Mohamed Yaseen Jabarulla
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | | |
Collapse
|
25
|
Petrone JR, Muñoz-Beristain A, Glusberger PR, Russell JT, Triplett EW. Unamplified, Long-Read Metagenomic Sequencing Approach to Close Endosymbiont Genomes of Low-Biomass Insect Populations. Microorganisms 2022; 10:microorganisms10030513. [PMID: 35336091 PMCID: PMC8948638 DOI: 10.3390/microorganisms10030513] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/23/2022] [Accepted: 02/23/2022] [Indexed: 02/04/2023] Open
Abstract
With the current advancements in DNA sequencing technology, the limiting factor in long-read metagenomic assemblies is now the quantity and quality of input DNA. Although these requirements can be met through the use of axenic bacterial cultures or large amounts of biological material, insect systems that contain unculturable bacteria or that contain a low amount of available DNA cannot fully utilize the benefits of third-generation sequencing. The citrus greening disease insect vector Diaphorina citri is an example that exhibits both of these limitations. Although endosymbiont genomes have mostly been closed after the short-read sequencing of amplified template DNA, creating de novo long-read genomes from the unamplified DNA of an insect population may benefit communities using bioinformatics to study insect pathosystems. Here all four genomes of the infected D. citri microbiome were sequenced to closure using unamplified template DNA and two long-read sequencing technologies. Avoiding amplification bias and using long reads to assemble the bacterial genomes allowed for the circularization of the Wolbachia endosymbiont of Diaphorina citri for the first time and paralleled the annotation context of all four reference genomes without utilizing a traditional hybrid assembly. The strategies detailed here are suitable for the sequencing of other insect systems for which the input DNA, time, and cost are an issue.
Collapse
|
26
|
Dhatterwal P, Mehrotra S, Mehrotra R. Primer Designing for Amplifying an AT-Rich Promoter from Arabidopsis thaliana. Methods Mol Biol 2022; 2392:115-123. [PMID: 34773619 DOI: 10.1007/978-1-0716-1799-1_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The aim of the present study is to optimize the PCR conditions required to amplify the promoter sequence of an amino acid transporter having an AT-rich base composition with a high number of tandem repeats. The present study also covers the key parameters that need to be kept in mind while designing primers. Results show that successful can be achieved by performing a 2-step PCR reaction at a lower extension temperature of 65 ̊C for an increased extension period of 1.5 min/kb, with MgCl2 concentration ranging from 2.5 to 3.0mM. The results also suggest that the DNA concentration of around 25-30 ng/µl was essential to achieve this amplification.
Collapse
Affiliation(s)
- Pinky Dhatterwal
- Department of Biological Sciences, Birla Institute of Technology & Science Pilani, Sancoale, Goa, India
| | - Sandhya Mehrotra
- Department of Biological Sciences, Birla Institute of Technology & Science Pilani, Sancoale, Goa, India
| | - Rajesh Mehrotra
- Department of Biological Sciences, Birla Institute of Technology & Science Pilani, Sancoale, Goa, India.
| |
Collapse
|
27
|
Gall-Duncan T, Sato N, Yuen RKC, Pearson CE. Advancing genomic technologies and clinical awareness accelerates discovery of disease-associated tandem repeat sequences. Genome Res 2022; 32:1-27. [PMID: 34965938 PMCID: PMC8744678 DOI: 10.1101/gr.269530.120] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/29/2021] [Indexed: 11/25/2022]
Abstract
Expansions of gene-specific DNA tandem repeats (TRs), first described in 1991 as a disease-causing mutation in humans, are now known to cause >60 phenotypes, not just disease, and not only in humans. TRs are a common form of genetic variation with biological consequences, observed, so far, in humans, dogs, plants, oysters, and yeast. Repeat diseases show atypical clinical features, genetic anticipation, and multiple and partially penetrant phenotypes among family members. Discovery of disease-causing repeat expansion loci accelerated through technological advances in DNA sequencing and computational analyses. Between 2019 and 2021, 17 new disease-causing TR expansions were reported, totaling 63 TR loci (>69 diseases), with a likelihood of more discoveries, and in more organisms. Recent and historical lessons reveal that properly assessed clinical presentations, coupled with genetic and biological awareness, can guide discovery of disease-causing unstable TRs. We highlight critical but underrecognized aspects of TR mutations. Repeat motifs may not be present in current reference genomes but will be in forthcoming gapless long-read references. Repeat motif size can be a single nucleotide to kilobases/unit. At a given locus, repeat motif sequence purity can vary with consequence. Pathogenic repeats can be "insertions" within nonpathogenic TRs. Expansions, contractions, and somatic length variations of TRs can have clinical/biological consequences. TR instabilities occur in humans and other organisms. TRs can be epigenetically modified and/or chromosomal fragile sites. We discuss the expanding field of disease-associated TR instabilities, highlighting prospects, clinical and genetic clues, tools, and challenges for further discoveries of disease-causing TR instabilities and understanding their biological and pathological impacts-a vista that is about to expand.
Collapse
Affiliation(s)
- Terence Gall-Duncan
- Program of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Nozomu Sato
- Program of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
| | - Ryan K C Yuen
- Program of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Christopher E Pearson
- Program of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
28
|
Chae YK, Um Y, Kim H. A simple and sensitive detection of the binding ligands by using the receptor aggregation and NMR spectroscopy: a test case of the maltose binding protein. JOURNAL OF BIOMOLECULAR NMR 2021; 75:371-381. [PMID: 34524563 PMCID: PMC8441238 DOI: 10.1007/s10858-021-00381-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
Protein-ligand interaction is one of the highlights of molecular recognition. The most popular application of this type of interaction is drug development which requires a high throughput screening of a ligand that binds to the target protein. Our goal was to find a binding ligand with a simple detection, and once this type of ligand was found, other methods could then be used to measure the detailed kinetic or thermodynamic parameters. We started with the idea that the ligand NMR signal would disappear if it was bound to the non-tumbling mass. In order to create the non-tumbling mass, we tried the aggregates of a target protein, which was fused to the elastin-like polypeptide. We chose the maltose binding proteinas a test case, and we tried it with several sugars, which included maltose, glucose, sucrose, lactose, galactose, maltotriose, and β-cyclodextrin. The maltose signal in the H-1 NMR spectrum disappeared completely as hoped around the protein to ligand ratio of 1:3 at 298 K where the proteins aggregated. The protein signals also disappeared upon aggregation except for the fast-moving part, which resulted in a cleaner background than the monomeric form. Since we only needed to look for a disappearing signal amongst those from the mixture, it should be useful in high throughput screening. Other types of sugars except for the maltotriose and β-cyclodextrin, which are siblings of the maltose, did not seem to bind at all. We believe that our system would be especially more effective when dealing with a smaller target protein, so both the protein and the bound ligand would lose their signals only when the aggregates formed. We hope that our proposed method would contribute to accelerating the development of the potent drug candidates by simultaneously identifying several binders directly from a mixture.
Collapse
Affiliation(s)
- Young Kee Chae
- Department of Chemistry, Sejong University, 209 Neungdong-Ro, Gwangjin-Gu, Seoul, 05006, Korea.
| | - Yoonjin Um
- Department of Chemistry, Sejong University, 209 Neungdong-Ro, Gwangjin-Gu, Seoul, 05006, Korea
| | - Hakbeom Kim
- Department of Chemistry, Sejong University, 209 Neungdong-Ro, Gwangjin-Gu, Seoul, 05006, Korea
| |
Collapse
|
29
|
Rykachevsky A, Stepakov A, Muzyukina P, Medvedeva S, Dobrovolski M, Burnaev E, Severinov K, Savitskaya E. SCRAMBLER: A Tool for De Novo CRISPR Array Reconstruction and Its Application for Analysis of the Structure of Prokaryotic Populations. CRISPR J 2021; 4:673-685. [PMID: 34661428 DOI: 10.1089/crispr.2021.0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
CRISPR arrays are prokaryotic genomic loci consisting of repeat sequences alternating with unique spacers acquired from foreign nucleic acids. As one of the fastest-evolving parts of the genome, CRISPR arrays can be used to differentiate closely related prokaryotic lineages and track individual strains in prokaryotic communities. However, the assembly of full-length CRISPR arrays sequences remains a problem. Here, we developed SCRAMBLER, a tool that includes several pipelines for assembling CRISPR arrays from high-throughput short-read sequencing data. We assessed its performance with model data sets (Escherichia coli strains containing different CRISPR arrays and imitating prokaryotic communities of different complexities) and intestinal microbiomes of extant and extinct pachyderms. Evaluation of SCRAMBLER's performance using model data sets demonstrated its ability to assemble CRISPR arrays correctly from reads containing pairs of spacers, yielding a precision rate of >80% and a recall rate of 60-85% when checked against ground-truth data. Likewise, SCRAMBLER successfully assembled CRISPR arrays from the environmental samples, as attested by their matching with database entries. SCRAMBLER, an open-source software (github.com/biolab-tools/SCRAMBLER), can facilitate analysis of the composition and dynamics of CRISPR arrays in complex communities.
Collapse
Affiliation(s)
- Anton Rykachevsky
- Center for Computational and Data-Intensive Science and Engineering and Rutgers, State University of New Jersey, Piscataway, USA
| | - Alexander Stepakov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia; Rutgers, State University of New Jersey, Piscataway, USA
| | - Polina Muzyukina
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia; Rutgers, State University of New Jersey, Piscataway, USA
| | - Sofia Medvedeva
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia; Rutgers, State University of New Jersey, Piscataway, USA
| | - Mark Dobrovolski
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia; Rutgers, State University of New Jersey, Piscataway, USA
| | - Evgeny Burnaev
- Center for Computational and Data-Intensive Science and Engineering and Rutgers, State University of New Jersey, Piscataway, USA
| | - Konstantin Severinov
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia; Rutgers, State University of New Jersey, Piscataway, USA.,Laboratory of Genetic Regulation of Prokaryotic Mobile Genetic Elements, Institute of Molecular Genetics of National Research Center "Kurchatov Institute," Moscow, Russia; and Rutgers, State University of New Jersey, Piscataway, USA.,Waksman Institute, Rutgers, State University of New Jersey, Piscataway, USA
| | - Ekaterina Savitskaya
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia; Rutgers, State University of New Jersey, Piscataway, USA
| |
Collapse
|
30
|
Chang MP, Huang W, Mai DJ. Monomer‐scale design of functional protein polymers using consensus repeat sequences. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210506] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Marina P. Chang
- Department of Materials Science and Engineering Stanford University Stanford California USA
| | - Winnie Huang
- Department of Chemical Engineering Stanford University Stanford California USA
| | - Danielle J. Mai
- Department of Chemical Engineering Stanford University Stanford California USA
| |
Collapse
|
31
|
Jedrzejczak-Silicka M, Lepczynski A, Gołębiowski F, Dolata D, Dybus A. Application of PCR-HRM method for microsatellite polymorphism genotyping in the LDHA gene of pigeons (Columba livia). PLoS One 2021; 16:e0256065. [PMID: 34411134 PMCID: PMC8376019 DOI: 10.1371/journal.pone.0256065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 08/01/2021] [Indexed: 11/19/2022] Open
Abstract
High-resolution melting (HRM) is a post-PCR method that allows to discriminate genotypes based on fluorescence changes during the melting phase. HRM is used to detect mutations or polymorphisms (e.g. microsatellites, SNPs, indels). Here, the (TTTAT)3-5 microsatellite polymorphism within intron 6 of the LDHA gene in pigeons was analysed using the HRM method. Individuals (123 homing pigeons) were genotyped using conventional PCR. Birds were classified into groups based on genotype type and the results were tested by qPCR-HRM and verified using sequencing. Based on the evaluated protocol, five genotypes were identified that vary in the number of TTTAT repeat units (3/3, 4/4, 3/4, 4/5, and 5/5). Sequencing have confirmed the results obtained with qPCR-HRM and verified that HRM is a suitable method for identification of three-allele microsatellite polymorphisms. It can be concluded that the high-resolution melting (HRM) method can be effectively used for rapid (one-step) discrimination of the (TTTAT)3-5 microsatellite polymorphism in the pigeon’s LDHA gene.
Collapse
Affiliation(s)
- Magdalena Jedrzejczak-Silicka
- Faculty of Biotechnology and Animal Husbandry, Laboratory of Molecular Biology, West Pomeranian University of Technology, Szczecin, Poland
- * E-mail:
| | - Adam Lepczynski
- Department of Physiology, Cytobiology and Proteomics, West Pomeranian University of Technology, Szczecin, Poland
| | | | | | - Andrzej Dybus
- Faculty of Biotechnology and Animal Husbandry, Department of Genetics, West Pomeranian University of Technology, Szczecin, Poland
| |
Collapse
|
32
|
Emrich-Mills TZ, Yates G, Barrett J, Girr P, Grouneva I, Lau CS, Walker CE, Kwok TK, Davey JW, Johnson MP, Mackinder LCM. A recombineering pipeline to clone large and complex genes in Chlamydomonas. THE PLANT CELL 2021; 33:1161-1181. [PMID: 33723601 PMCID: PMC8633747 DOI: 10.1093/plcell/koab024] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 01/18/2021] [Indexed: 05/10/2023]
Abstract
The ability to clone genes has greatly advanced cell and molecular biology research, enabling researchers to generate fluorescent protein fusions for localization and confirm genetic causation by mutant complementation. Most gene cloning is polymerase chain reaction (PCR)�or DNA synthesis-dependent, which can become costly and technically challenging as genes increase in size, particularly if they contain complex regions. This has been a long-standing challenge for the Chlamydomonas reinhardtii research community, as this alga has a high percentage of genes containing complex sequence structures. Here we overcame these challenges by developing a recombineering pipeline for the rapid parallel cloning of genes from a Chlamydomonas bacterial artificial chromosome collection. To generate fluorescent protein fusions for localization, we applied the pipeline at both batch and high-throughput scales to 203 genes related to the Chlamydomonas CO2 concentrating mechanism (CCM), with an overall cloning success rate of 77%. Cloning success was independent of gene size and complexity, with cloned genes as large as 23 kb. Localization of a subset of CCM targets confirmed previous mass spectrometry data, identified new pyrenoid components, and enabled complementation of mutants. We provide vectors and detailed protocols to facilitate easy adoption of this technology, which we envision will open up new possibilities in algal and plant research.
Collapse
Affiliation(s)
- Tom Z Emrich-Mills
- Department of Biology, University of York, York YO10 5DD, UK
- Department Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - Gary Yates
- Department of Biology, University of York, York YO10 5DD, UK
| | - James Barrett
- Department of Biology, University of York, York YO10 5DD, UK
| | - Philipp Girr
- Department of Biology, University of York, York YO10 5DD, UK
| | - Irina Grouneva
- Department of Biology, University of York, York YO10 5DD, UK
| | - Chun Sing Lau
- Department of Biology, University of York, York YO10 5DD, UK
| | | | - Tsz Kam Kwok
- Department of Biology, University of York, York YO10 5DD, UK
| | - John W Davey
- Department of Biology, University of York, York YO10 5DD, UK
| | - Matthew P Johnson
- Department Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - Luke C M Mackinder
- Department of Biology, University of York, York YO10 5DD, UK
- Author for correspondence: (L.C.M.M.)
| |
Collapse
|
33
|
Zlobin N, Lebedeva M, Monakhova Y, Ustinova V, Taranov V. An ERF121 transcription factor from Brassica oleracea is a target for the conserved TAL-effectors from different Xanthomonas campestris pv. campestris strains. MOLECULAR PLANT PATHOLOGY 2021; 22:618-624. [PMID: 33650275 PMCID: PMC8035633 DOI: 10.1111/mpp.13048] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/19/2021] [Accepted: 02/04/2021] [Indexed: 05/19/2023]
Abstract
Transcription activator-like effectors (TALEs), which induce the expression of specific plant genes to promote infection, are the main pathogenic determinants of various Xanthomonas bacteria. However, investigation of TALEs from Xanthomonas campestris pv. campestris, which causes black rot disease of crucifers, received little attention. In this study, we used PCR-based amplification followed by SMRT amplicon sequencing to identify TALE genes in several X. campestris pv. campestris strains. Computational prediction in conjunction with quantitative reverse transcription PCR analysis was used to find their targets in the Brassica oleracea genome. Transcription factor ERF121, from the AP2/ERF family, was identified as target gene for the conserved TALEs from multiple X. campestris pv. campestris strains. Several members of this family from diverse plants were previously identified as targets of TALEs from different Xanthomonas species. We propose that TALE-dependent activation of AP2/ERF transcription factors promotes susceptibility to Xanthomonas through the misregulation of plant defence pathways.
Collapse
Affiliation(s)
- Nikolay Zlobin
- Laboratory of Plant Stress ToleranceAll‐Russia Research Institute of Agricultural BiotechnologyMoscowRussia
| | - Marina Lebedeva
- Laboratory of Plant Stress ToleranceAll‐Russia Research Institute of Agricultural BiotechnologyMoscowRussia
| | - Yuliya Monakhova
- Laboratory of Synthesis and Analysis of Bioorganic CompoundsAll‐Russia Research Institute of Agricultural BiotechnologyMoscowRussia
| | - Vera Ustinova
- Pushchino Scientific Center for Biological Research of the Russian Academy of SciencesG.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms of the Russian Academy of SciencesPushchinoRussia
- Syntol LLCMoscowRussia
| | - Vasiliy Taranov
- Laboratory of Plant Stress ToleranceAll‐Russia Research Institute of Agricultural BiotechnologyMoscowRussia
| |
Collapse
|
34
|
Nanopore Sequencing Resolves Elusive Long Tandem-Repeat Regions in Mitochondrial Genomes. Int J Mol Sci 2021; 22:ijms22041811. [PMID: 33670420 PMCID: PMC7918261 DOI: 10.3390/ijms22041811] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 02/08/2021] [Indexed: 01/06/2023] Open
Abstract
Long non-coding, tandem-repetitive regions in mitochondrial (mt) genomes of many metazoans have been notoriously difficult to characterise accurately using conventional sequencing methods. Here, we show how the use of a third-generation (long-read) sequencing and informatic approach can overcome this problem. We employed Oxford Nanopore technology to sequence genomic DNAs from a pool of adult worms of the carcinogenic parasite, Schistosoma haematobium, and used an informatic workflow to define the complete mt non-coding region(s). Using long-read data of high coverage, we defined six dominant mt genomes of 33.4 kb to 22.6 kb. Although no variation was detected in the order or lengths of the protein-coding genes, there was marked length (18.5 kb to 7.6 kb) and structural variation in the non-coding region, raising questions about the evolution and function of what might be a control region that regulates mt transcription and/or replication. The discovery here of the largest tandem-repetitive, non-coding region (18.5 kb) in a metazoan organism also raises a question about the completeness of some of the mt genomes of animals reported to date, and stimulates further explorations using a Nanopore-informatic workflow.
Collapse
|
35
|
Niazi AM, Krause M, Valen E. Transcript Isoform-Specific Estimation of Poly(A) Tail Length by Nanopore Sequencing of Native RNA. Methods Mol Biol 2021; 2284:543-567. [PMID: 33835463 DOI: 10.1007/978-1-0716-1307-8_30] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The poly(A) tail is a homopolymeric stretch of adenosine at the 3'-end of mature RNA transcripts and its length plays an important role in nuclear export, stability, and translational regulation of mRNA. Existing techniques for genome-wide estimation of poly(A) tail length are based on short-read sequencing. These methods are limited because they sequence a synthetic DNA copy of mRNA instead of the native transcripts. Furthermore, they can identify only a short segment of the transcript proximal to the poly(A) tail which makes it difficult to assign the measured poly(A) length uniquely to a single transcript isoform. With the introduction of native RNA sequencing by Oxford Nanopore Technologies, it is now possible to sequence full-length native RNA. A single long read contains both the transcript and the associated poly(A) tail, thereby making transcriptome-wide isoform-specific poly(A) tail length assessment feasible. We developed tailfindr-an R-based package for estimating poly(A) tail length from Oxford Nanopore sequencing data. In this chapter, we describe in detail the pipeline for transcript isoform-specific poly(A) tail profiling based on native RNA Nanopore sequencing-from library preparation to downstream data analysis with tailfindr.
Collapse
Affiliation(s)
- Adnan M Niazi
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
| | - Maximilian Krause
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway.
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway.
| | - Eivind Valen
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| |
Collapse
|
36
|
Cowley JA. The genomes of Mourilyan virus and Wēnzhōu shrimp virus 1 of prawns comprise 4 RNA segments. Virus Res 2020; 292:198225. [PMID: 33181202 DOI: 10.1016/j.virusres.2020.198225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 12/16/2022]
Abstract
Reported here is the complete genome sequence of Mourilyan virus (MoV) that infects giant tiger (Penaeus monodon) and kuruma prawns (P. japonicas) in Australia. Its genome was determined using various PCR strategies based on the sequences of 3 randomly-amplified cDNA clones to its L and M RNA segments discovered in a library generated to determine the genome sequence of gill-associated ronivirus. The sequences of PCR products and clones obtained showed the MoV genome to comprise 4 ssRNA segments (L, M, S1 and S2), as confirmed by Northern blotting using RNA from naïve and MoV-infected prawns, and by Illumina sequence analysis of semi-purified MoV. BLASTn searches identified the MoV L, M and S1 RNA segments to be homologous to Wēnzhōu shrimp virus 1 (WzSV1) segments discovered recently in a P. monodon RNA-Seq library (SRR1745808). Mapping this read library to the MoV S2 RNA segment identified WzSV1 to also possess an equivalent segment. BLASTp searches identified the putative non-structural protein (NSs2; 393-394 aa) encoded in their S2 RNA segments to have no homologs in GenBank. Possibly due to NSs2 being encoded in a discrete RNA segment rather than in ambisense relative to the N protein as in the S RNA segments of other phenuiviruses, each of 6 MoV S1 RNA segment clones sequenced possessed a variable-length (≤ 645 nt) imperfect GA-repeat extending from the N protein stop codon to the more variable ∼90 nt segment terminal sequence. Read mapping of RNA-Seq library SRR1745808 showed the WzSV1 S1 RNA segment to possess a similar GA-repeat. However, paired-read variations hindered definitive assembly of a consensus sequence. All 4 MoV and WzSV1 RNA segments terminated with a 10 nt inverted repeat sequence (5'-ACACAAAGAC.) identical to the RNA segment termini of uukuviruses. Phylogenetic analyses of MoV/WzSV1 RNA-dependant RNA polymerase (L RNA), G1G2 precursor glycoprotein (M RNA) and nucleocapsid (N) protein (S1 RNA) sequences generally clustered them with as yet unassigned crustacean/diptera bunya-like viruses on branches positioned closely to others containing tick-transmitted phenuiviruses. As genome sequences of most phenuiviruses discovered recently have originated from meta-transcriptomics studies, the data presented here showing the MoV and WzSV1 genomes to comprise more than 3 RNA segments, like the plant tenuiviruses, suggests a need to investigate the genomes of these unassigned viruses more closely.
Collapse
Affiliation(s)
- Jeff A Cowley
- Livestock & Aquaculture, CSIRO Agriculture & Food, Queensland Bioscience Precinct, 306 Carmody Road, St. Lucia, QLD, 4067, Australia.
| |
Collapse
|
37
|
Čermák V, Tyč D, Přibylová A, Fischer L. Unexpected variations in posttranscriptional gene silencing induced by differentially produced dsRNAs in tobacco cells. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2020; 1863:194647. [PMID: 33127485 DOI: 10.1016/j.bbagrm.2020.194647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 10/15/2020] [Accepted: 10/19/2020] [Indexed: 11/17/2022]
Abstract
In plants, posttranscriptional gene silencing (PTGS) is induced by small RNAs (sRNAs) generated from various dsRNA precursors. To assess the impact of dsRNA origin, we compared downregulation of GFP expression triggered by inverted repeat (IR), antisense (AS) and unterminated sense (UT) transcripts transiently expressed from the estradiol-inducible promoter. The use of homogeneously responding tobacco BY-2 cell lines allowed monitoring the onset of silencing and its reversibility. In this system, IR induced the strongest and fastest silencing accompanied by dense DNA methylation. At low induction, silencing in individual cells was binary (either strong or missing), suggesting that a certain threshold sRNA level had to be exceeded. The AS variant specifically showed a deviated sRNA-strand ratio shifted in favor of antisense orientation. In AS lines and weakly induced IR lines, only the silencer DNA was methylated, but the same target GFP sequence was not, showing that DNA methylation accompanying PTGS was influenced both by the level and origin of sRNAs, and possibly also by the epigenetic state of the locus. UT silencing appeared to be the least effective and resembled classical sense PTGS. The best responding UT lines behaved relatively heterogeneously possibly due to complexly arranged T-DNA insertions. Unlike IR and AS variants that fully restored GFP expression upon removal of the inducer, only partial reactivation was observed in some UT lines. Our results pointed out several not yet described phenomena and differences between the long-known silencer variants that may direct further research and affect selection of proper silencer variants for specific applications.
Collapse
Affiliation(s)
- Vojtěch Čermák
- Charles University, Faculty of Science, Department of Experimental Plant Biology, Viničná 5, Prague 2 128 44, Czech Republic
| | - Dimitrij Tyč
- Charles University, Faculty of Science, Department of Experimental Plant Biology, Viničná 5, Prague 2 128 44, Czech Republic
| | - Adéla Přibylová
- Charles University, Faculty of Science, Department of Experimental Plant Biology, Viničná 5, Prague 2 128 44, Czech Republic
| | - Lukáš Fischer
- Charles University, Faculty of Science, Department of Experimental Plant Biology, Viničná 5, Prague 2 128 44, Czech Republic.
| |
Collapse
|
38
|
Sergeeva D, Lee GM, Nielsen LK, Grav LM. Multicopy Targeted Integration for Accelerated Development of High-Producing Chinese Hamster Ovary Cells. ACS Synth Biol 2020; 9:2546-2561. [PMID: 32835482 DOI: 10.1021/acssynbio.0c00322] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The ever-growing biopharmaceutical industry relies on the production of recombinant therapeutic proteins in Chinese hamster ovary (CHO) cells. The traditional timelines of CHO cell line development can be significantly shortened by the use of targeted gene integration (TI). However, broad use of TI has been limited due to the low specific productivity (qP) of TI-generated clones. Here, we show a 10-fold increase in the qP of therapeutic glycoproteins in CHO cells through the development and optimization of a multicopy TI method. We used a recombinase-mediated cassette exchange (RMCE) platform to investigate the effect of gene copy number, 5' and 3' gene regulatory elements, and landing pad features on qP. We evaluated the limitations of multicopy expression from a single genomic site as well as multiple genomic sites and found that a transcriptional bottleneck can appear with an increase in gene dosage. We created a dual-RMCE system for simultaneous multicopy TI in two genomic sites and generated isogenic high-producing clones with qP of 12-14 pg/cell/day and product titer close to 1 g/L in fed-batch. Our study provides an extensive characterization of the multicopy TI method and elucidates the relationship between gene copy number and protein expression in mammalian cells. Moreover, it demonstrates that TI-generated CHO cells are capable of producing therapeutic proteins at levels that can support their industrial manufacture.
Collapse
Affiliation(s)
- Daria Sergeeva
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | - Gyun Min Lee
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| | - Lars Keld Nielsen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane 4072, Australia
| | - Lise Marie Grav
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| |
Collapse
|
39
|
Unusual mtDNA Control Region Length Heteroplasmy in the COS-7 Cell Line. Genes (Basel) 2020; 11:genes11060607. [PMID: 32486194 PMCID: PMC7348793 DOI: 10.3390/genes11060607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/22/2020] [Accepted: 05/29/2020] [Indexed: 11/29/2022] Open
Abstract
The COS-7 cell line is a workhorse of virology research. To expand this cell line’s utility and to enable studies on mitochondrial DNA (mtDNA) transcription and replication, we determined the complete nucleotide sequence of its mitochondrial genome by Sanger sequencing. In contrast to other available mtDNA sequences from Chlorocebus aethiops, the mtDNA of the COS-7 cell line was found to contain a variable number of perfect copies of a 108 bp unit tandemly repeated in the control region. We established that COS-7 cells are heteroplasmic with at least two variants being present: with four and five repeat units. The analysis of the mitochondrial genome sequences from other primates revealed that tandem repeats are absent from examined mtDNA control regions of humans and great apes, but appear in lower primates, where they are present in a homoplasmic state. To our knowledge, this is the first report of mtDNA length heteroplasmy in primates.
Collapse
|
40
|
Jensen NJ, Depledge DP, Ng TFF, Leung J, Quinlivan M, Radford KW, Folster J, Tseng HF, LaRussa P, Jacobsen SJ, Breuer J, Schmid DS. Analysis of the reiteration regions (R1 to R5) of varicella-zoster virus. Virology 2020; 546:38-50. [PMID: 32452416 DOI: 10.1016/j.virol.2020.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/12/2020] [Accepted: 03/31/2020] [Indexed: 10/24/2022]
Abstract
The varicella-zoster virus (VZV) genome, comprises both unique and repeated regions. The genome also includes reiteration regions, designated R1 to R5, which are tandemly repeating sequences termed elements. These regions represent an understudied feature of the VZV genome. The R4 region is duplicated, with one copy in the internal repeat short (IRs) which we designated R4A and a second copy in the terminal repeat short (TRs) termed R4B. We developed primers to amplify and Sanger sequence these regions, including independent amplification of both R4 regions. Reiteration regions from >80 cases of PCR-confirmed shingles were sequenced and analyzed. Complete genome sequences for the remaining portions of these viruses were determined using Illumina MiSeq. We identified 28 elements not previously reported, including at least one element for each R region. Length heterogeneity was substantial in R3, R4A and R4B. Length heterogeneity between the two copies of R4 was common.
Collapse
Affiliation(s)
- Nancy J Jensen
- Division of Viral Diseases, National Center for Immunizations and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Daniel P Depledge
- Division of Infection and Immunity, University College London, London, United Kingdom; Department of Microbiology, New York University School of Medicine, New York, NY, USA
| | - Terry Fei Fan Ng
- Division of Viral Diseases, National Center for Immunizations and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jessica Leung
- Division of Viral Diseases, National Center for Immunizations and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Mark Quinlivan
- Division of Viral Diseases, National Center for Immunizations and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Kay W Radford
- Division of Viral Diseases, National Center for Immunizations and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jennifer Folster
- Division of Viral Diseases, National Center for Immunizations and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Hung-Fu Tseng
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
| | - Philip LaRussa
- Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Steven J Jacobsen
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
| | - Judith Breuer
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - D Scott Schmid
- Division of Viral Diseases, National Center for Immunizations and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| |
Collapse
|
41
|
Rubinfien J, Atabay KD, Nichols NM, Tanner NA, Pezza JA, Gray MM, Wagner BM, Poppin JN, Aken JT, Gleason EJ, Foley KD, Copeland DS, Kraves S, Alvarez Saavedra E. Nucleic acid detection aboard the International Space Station by colorimetric loop-mediated isothermal amplification (LAMP). FASEB Bioadv 2020; 2:160-165. [PMID: 32161905 PMCID: PMC7059625 DOI: 10.1096/fba.2019-00088] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 10/30/2019] [Accepted: 12/30/2019] [Indexed: 12/22/2022] Open
Abstract
Human spaceflight endeavors present an opportunity to expand our presence beyond Earth. To this end, it is crucial to understand and diagnose effects of long‐term space travel on the human body. Developing tools for targeted, on‐site detection of specific DNA sequences will allow us to establish research and diagnostics platforms that will benefit space programs. We describe a simple DNA diagnostic method that utilizes colorimetric loop‐mediated isothermal amplification (LAMP) to enable detection of a repetitive telomeric DNA sequence in as little as 30 minutes. A proof of concept assay for this method was carried out using existing hardware on the International Space Station and the results were read instantly by an astronaut through a simple color change of the reaction mixture. LAMP offers a novel platform for on‐orbit DNA‐based diagnostics that can be deployed on the International Space Station and to the broader benefit of space programs.
Collapse
Affiliation(s)
| | - Kutay D Atabay
- Whitehead Institute for Biomedical Research Massachusetts Institute of Technology Cambridge MA USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Ma C, Wang Y, Zhang L, Li J. Mitochondrial genome characterization of the family Trigonidiidae (Orthoptera) reveals novel structural features and nad1 transcript ends. Sci Rep 2019; 9:19092. [PMID: 31836821 PMCID: PMC6911046 DOI: 10.1038/s41598-019-55740-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/02/2019] [Indexed: 11/13/2022] Open
Abstract
The Trigonidiidae, a family of crickets, comprises 981 valid species with only one mitochondrial genome (mitogenome) sequenced to date. To explore mitogenome features of Trigonidiidae, six mitogenomes from its two subfamilies (Nemobiinae and Trigonidiinae) were determined. Two types of gene rearrangements involving a trnN-trnS1-trnE inversion and a trnV shuffling were shared by Trigonidiidae. A long intergenic spacer was observed between trnQ and trnM in Trigonidiinae (210-369 bp) and Nemobiinae (80-216 bp), which was capable of forming extensive stem-loop secondary structures in Trigonidiinae but not in Nemobiinae. The anticodon of trnS1 was TCT in Trigonidiinae, rather than GCT in Nemobiinae and other related subfamilies. There was no overlap between nad4 and nad4l in Dianemobius, as opposed to a conserved 7-bp overlap commonly found in insects. Furthermore, combined comparative analysis and transcript verification revealed that nad1 transcripts ended with a U, corresponding to the T immediately preceding a conserved motif GAGAC in the superfamily Grylloidea, plus poly-A tails. The resultant UAA served as a stop codon for species lacking full stop codons upstream of the motif. Our findings gain novel understanding of mitogenome structural diversity and provide insight into accurate mitogenome annotation.
Collapse
Affiliation(s)
- Chuan Ma
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Yeying Wang
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Guizhou Normal University, Guiyang, 550025, China
| | - Licui Zhang
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Jianke Li
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100093, China.
| |
Collapse
|
43
|
Tørresen OK, Star B, Mier P, Andrade-Navarro MA, Bateman A, Jarnot P, Gruca A, Grynberg M, Kajava AV, Promponas VJ, Anisimova M, Jakobsen KS, Linke D. Tandem repeats lead to sequence assembly errors and impose multi-level challenges for genome and protein databases. Nucleic Acids Res 2019; 47:10994-11006. [PMID: 31584084 PMCID: PMC6868369 DOI: 10.1093/nar/gkz841] [Citation(s) in RCA: 183] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 09/03/2019] [Accepted: 10/01/2019] [Indexed: 12/13/2022] Open
Abstract
The widespread occurrence of repetitive stretches of DNA in genomes of organisms across the tree of life imposes fundamental challenges for sequencing, genome assembly, and automated annotation of genes and proteins. This multi-level problem can lead to errors in genome and protein databases that are often not recognized or acknowledged. As a consequence, end users working with sequences with repetitive regions are faced with 'ready-to-use' deposited data whose trustworthiness is difficult to determine, let alone to quantify. Here, we provide a review of the problems associated with tandem repeat sequences that originate from different stages during the sequencing-assembly-annotation-deposition workflow, and that may proliferate in public database repositories affecting all downstream analyses. As a case study, we provide examples of the Atlantic cod genome, whose sequencing and assembly were hindered by a particularly high prevalence of tandem repeats. We complement this case study with examples from other species, where mis-annotations and sequencing errors have propagated into protein databases. With this review, we aim to raise the awareness level within the community of database users, and alert scientists working in the underlying workflow of database creation that the data they omit or improperly assemble may well contain important biological information valuable to others.
Collapse
Affiliation(s)
- Ole K Tørresen
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, NO-0316 Oslo, Norway
| | - Bastiaan Star
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, NO-0316 Oslo, Norway
| | - Pablo Mier
- Faculty of Biology, Johannes Gutenberg University Mainz, Hans-Dieter-Husch-Weg 15, 55128 Mainz, Germany
| | - Miguel A Andrade-Navarro
- Faculty of Biology, Johannes Gutenberg University Mainz, Hans-Dieter-Husch-Weg 15, 55128 Mainz, Germany
| | - Alex Bateman
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton. CB10 1SD, UK
| | - Patryk Jarnot
- Institute of Informatics, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland
| | - Aleksandra Gruca
- Institute of Informatics, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland
| | - Marcin Grynberg
- Institute of Biochemistry and Biophysics PAS, Pawińskiego 5A, 02-106 Warsaw, Poland
| | - Andrey V Kajava
- Centre de Recherche en Biologie cellulaire de Montpellier, UMR 5237 CNRS, Universite Montpellier 1919 Route de Mende, CEDEX 5, 34293 Montpellier, France
- Institut de Biologie Computationnelle, 34095 Montpellier, France
| | - Vasilis J Promponas
- Bioinformatics Research Laboratory, Department of Biological Sciences, University of Cyprus, PO Box 20537, CY 1678 Nicosia, Cyprus
| | - Maria Anisimova
- Institute of Applied Simulations, School of Life Sciences and Facility Management, Zurich University of Applied Sciences (ZHAW), Wädenswil, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Kjetill S Jakobsen
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, NO-0316 Oslo, Norway
| | - Dirk Linke
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, NO-0316 Oslo, Norway
| |
Collapse
|
44
|
Krause M, Niazi AM, Labun K, Torres Cleuren YN, Müller FS, Valen E. tailfindr: alignment-free poly(A) length measurement for Oxford Nanopore RNA and DNA sequencing. RNA (NEW YORK, N.Y.) 2019; 25:1229-1241. [PMID: 31266821 PMCID: PMC6800471 DOI: 10.1261/rna.071332.119] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 06/25/2019] [Indexed: 05/02/2023]
Abstract
Polyadenylation at the 3'-end is a major regulator of messenger RNA and its length is known to affect nuclear export, stability, and translation, among others. Only recently have strategies emerged that allow for genome-wide poly(A) length assessment. These methods identify genes connected to poly(A) tail measurements indirectly by short-read alignment to genetic 3'-ends. Concurrently, Oxford Nanopore Technologies (ONT) established full-length isoform-specific RNA sequencing containing the entire poly(A) tail. However, assessing poly(A) length through base-calling has so far not been possible due to the inability to resolve long homopolymeric stretches in ONT sequencing. Here we present tailfindr, an R package to estimate poly(A) tail length on ONT long-read sequencing data. tailfindr operates on unaligned, base-called data. It measures poly(A) tail length from both native RNA and DNA sequencing, which makes poly(A) tail studies by full-length cDNA approaches possible for the first time. We assess tailfindr's performance across different poly(A) lengths, demonstrating that tailfindr is a versatile tool providing poly(A) tail estimates across a wide range of sequencing conditions.
Collapse
Affiliation(s)
- Maximilian Krause
- Computational Biology Unit, Department of Informatics, University of Bergen, 5008 Bergen, Norway
- Sars International Centre for Marine Molecular Biology, University of Bergen, 5008 Bergen, Norway
| | - Adnan M Niazi
- Computational Biology Unit, Department of Informatics, University of Bergen, 5008 Bergen, Norway
| | - Kornel Labun
- Computational Biology Unit, Department of Informatics, University of Bergen, 5008 Bergen, Norway
| | - Yamila N Torres Cleuren
- Computational Biology Unit, Department of Informatics, University of Bergen, 5008 Bergen, Norway
| | - Florian S Müller
- Computational Biology Unit, Department of Informatics, University of Bergen, 5008 Bergen, Norway
| | - Eivind Valen
- Computational Biology Unit, Department of Informatics, University of Bergen, 5008 Bergen, Norway
- Sars International Centre for Marine Molecular Biology, University of Bergen, 5008 Bergen, Norway
| |
Collapse
|
45
|
Werten MWT, Eggink G, Cohen Stuart MA, de Wolf FA. Production of protein-based polymers in Pichia pastoris. Biotechnol Adv 2019; 37:642-666. [PMID: 30902728 PMCID: PMC6624476 DOI: 10.1016/j.biotechadv.2019.03.012] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 02/03/2019] [Accepted: 03/17/2019] [Indexed: 01/09/2023]
Abstract
Materials science and genetic engineering have joined forces over the last three decades in the development of so-called protein-based polymers. These are proteins, typically with repetitive amino acid sequences, that have such physical properties that they can be used as functional materials. Well-known natural examples are collagen, silk, and elastin, but also artificial sequences have been devised. These proteins can be produced in a suitable host via recombinant DNA technology, and it is this inherent control over monomer sequence and molecular size that renders this class of polymers of particular interest to the fields of nanomaterials and biomedical research. Traditionally, Escherichia coli has been the main workhorse for the production of these polymers, but the methylotrophic yeast Pichia pastoris is finding increased use in view of the often high yields and potential bioprocessing benefits. We here provide an overview of protein-based polymers produced in P. pastoris. We summarize their physicochemical properties, briefly note possible applications, and detail their biosynthesis. Some challenges that may be faced when using P. pastoris for polymer production are identified: (i) low yields and poor process control in shake flask cultures; i.e., the need for bioreactors, (ii) proteolytic degradation, and (iii) self-assembly in vivo. Strategies to overcome these challenges are discussed, which we anticipate will be of interest also to readers involved in protein expression in P. pastoris in general.
Collapse
Affiliation(s)
- Marc W T Werten
- Wageningen Food & Biobased Research, NL-6708 WG Wageningen, The Netherlands.
| | - Gerrit Eggink
- Wageningen Food & Biobased Research, NL-6708 WG Wageningen, The Netherlands; Bioprocess Engineering, Wageningen University & Research, NL-6708 PB Wageningen, The Netherlands
| | - Martien A Cohen Stuart
- Physical Chemistry and Soft Matter, Wageningen University & Research, NL-6708 WE Wageningen, The Netherlands
| | - Frits A de Wolf
- Wageningen Food & Biobased Research, NL-6708 WG Wageningen, The Netherlands
| |
Collapse
|
46
|
Tasan I, Sustackova G, Zhang L, Kim J, Sivaguru M, HamediRad M, Wang Y, Genova J, Ma J, Belmont AS, Zhao H. CRISPR/Cas9-mediated knock-in of an optimized TetO repeat for live cell imaging of endogenous loci. Nucleic Acids Res 2019; 46:e100. [PMID: 29912475 PMCID: PMC6158506 DOI: 10.1093/nar/gky501] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 06/13/2018] [Indexed: 12/30/2022] Open
Abstract
Nuclear organization has an important role in determining genome function; however, it is not clear how spatiotemporal organization of the genome relates to functionality. To elucidate this relationship, a method for tracking any locus of interest is desirable. Recently clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) or transcription activator-like effectors were adapted for imaging endogenous loci; however, they are mostly limited to visualization of repetitive regions. Here, we report an efficient and scalable method named SHACKTeR (Short Homology and CRISPR/Cas9-mediated Knock-in of a TetO Repeat) for live cell imaging of specific chromosomal regions without the need for a pre-existing repetitive sequence. SHACKTeR requires only two modifications to the genome: CRISPR/Cas9-mediated knock-in of an optimized TetO repeat and its visualization by TetR-EGFP expression. Our simplified knock-in protocol, utilizing short homology arms integrated by polymerase chain reaction, was successful at labeling 10 different loci in HCT116 cells. We also showed the feasibility of knock-in into lamina-associated, heterochromatin regions, demonstrating that these regions prefer non-homologous end joining for knock-in. Using SHACKTeR, we were able to observe DNA replication at a specific locus by long-term live cell imaging. We anticipate the general applicability and scalability of our method will enhance causative analyses between gene function and compartmentalization in a high-throughput manner.
Collapse
Affiliation(s)
- Ipek Tasan
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Gabriela Sustackova
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Liguo Zhang
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jiah Kim
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Mayandi Sivaguru
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Mohammad HamediRad
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yuchuan Wang
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Justin Genova
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jian Ma
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Andrew S Belmont
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Huimin Zhao
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
47
|
Margulis M, Danielli A. Rapid and Sensitive Detection of Repetitive Nucleic Acid Sequences Using Magnetically Modulated Biosensors. ACS OMEGA 2019; 4:11749-11755. [PMID: 31460281 PMCID: PMC6682110 DOI: 10.1021/acsomega.9b01071] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/05/2019] [Indexed: 05/11/2023]
Abstract
Repetitive DNA sequences are abundant in the genome of most biological species. These sequences are naturally "preamplified", which makes them a preferential target for a variety of biological assays. Current methods to detect specific DNA sequences are based on the quantitative polymerase chain reaction (PCR), which relies on target amplification by Taq polymerase and uses a fluorescent resonance energy transfer (FRET)-based probe. Here, to rapidly detect a repetitive DNA sequence, we combine a highly sensitive magnetic modulation biosensing (MMB) system and a modified double-quenched FRET-based probe. The high numbers of copies of the female-specific XhoI sequence of the domestic chicken (Gallus gallus), combined with the low background fluorescence levels of the modified double-quenched probe and the high sensitivity of the MMB system, allow us to determine the chick sex in ovo within 13 min, with 100% sensitivity and specificity. Compared to quantitative PCR, the presented assay is 4-9 times faster. More broadly, by specifically tailoring the primers and probe, the proposed assay can detect any target DNA sequence, either repetitive or nonrepetitive.
Collapse
|
48
|
Liu S, Xiao H, Zhang F, Lu Z, Zhang Y, Deng A, Li Z, Yang C, Wen T. A seamless and iterative DNA assembly method named PS-Brick and its assisted metabolic engineering for threonine and 1-propanol production. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:180. [PMID: 31338122 PMCID: PMC6628500 DOI: 10.1186/s13068-019-1520-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/03/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND DNA assembly is an essential technique enabling metabolic engineering and synthetic biology. Combining novel DNA assembly technologies with rational metabolic engineering can facilitate the construction of microbial cell factories. Amino acids and derived biochemicals are important products in industrial biotechnology with wide application and huge markets. DNA assembly scenarios encountered in metabolic engineering for the construction of amino acid and related compound producers, such as design-build-test-learn cycles, construction of precise genetic circuits and repetitive DNA molecules, usually require for iterative, scarless and repetitive sequence assembly methods, respectively. RESULTS Restriction endonuclease (RE)-assisted strategies constitute one of the major categories of DNA assembly. Here, we developed a Type IIP and IIS RE-assisted method named PS-Brick that comprehensively takes advantage of the properties of PCR fragments and REs for iterative, seamless and repetitive sequence assembly. One round of PS-Brick reaction using purified plasmids and PCR fragments was accomplished within several hours, and transformation of the resultant reaction product from this PS-Brick assembly reaction exhibited high efficiency (104-105 CFUs/µg DNA) and high accuracy (~ 90%). An application of metabolic engineering to threonine production, including the release of feedback regulation, elimination of metabolic bottlenecks, intensification of threonine export and inactivation of threonine catabolism, was stepwise resolved in E. coli by rounds of "design-build-test-learn" cycles through the iterative PS-Brick paradigm, and 45.71 g/L threonine was obtained through fed-batch fermentation. In addition to the value of the iterative character of PS-Brick for sequential strain engineering, seamless cloning enabled precise in-frame fusion for codon saturation mutagenesis and bicistronic design, and the repetitive sequence cloning ability of PS-Brick enabled construction of tandem CRISPR sgRNA arrays for genome editing. Moreover, the heterologous pathway deriving 1-propanol pathway from threonine, composed of Lactococcus lactis kivD and Saccharomyces cerevisiae ADH2, was assembled by one cycle of PS-Brick, resulting in 1.35 g/L 1-propanol in fed-batch fermentation. CONCLUSIONS To the best of our knowledge, the PS-Brick framework is the first RE-assisted DNA assembly method using the strengths of both Type IIP and IIS REs. In this study, PS-Brick was demonstrated to be an efficient DNA assembly method for pathway construction and genome editing and was successfully applied in design-build-test-learn (DBTL) cycles of metabolic engineering for the production of threonine and threonine-derived 1-propanol. The PS-Brick presents a valuable addition to the current toolbox of synthetic biology and metabolic engineering.
Collapse
Affiliation(s)
- Shuwen Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Haihan Xiao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Fangfang Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, 230039 China
| | - Zheng Lu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Yun Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Aihua Deng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Zhongcai Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Cui Yang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Tingyi Wen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
49
|
Jiang F, Zhang J, Liu Q, Liu X, Wang H, He J, Kang L. Long-read direct RNA sequencing by 5'-Cap capturing reveals the impact of Piwi on the widespread exonization of transposable elements in locusts. RNA Biol 2019; 16:950-959. [PMID: 30982421 PMCID: PMC6546357 DOI: 10.1080/15476286.2019.1602437] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 12/20/2022] Open
Abstract
The large genome of the migratory locust (Locusta migratoria) genome accumulates massive amount of accumulated transposable elements (TEs), which show intrinsic transcriptional activities. Hampering the ability to precisely determine full-length RNA transcript sequences are exonized TEs, which produce numerous highly similar fragments that are difficult to resolve using short-read sequencing technology. Here, we applied a 5'-Cap capturing method using Nanopore long-read direct RNA sequencing to characterize full-length transcripts in their native RNA form and to analyze the TE exonization pattern in the locust transcriptome. Our results revealed the widespread establishment of TE exonization and a substantial contribution of TEs to RNA splicing in the locust transcriptome. The results of the transcriptomic spectrum influenced by Piwi expression indicated that TE-derived sequences were the main targets of Piwi-mediated repression. Furthermore, our study showed that Piwi expression regulates the length of RNA transcripts containing TE-derived sequences, creating an alternative UTR usage. Overall, our results reveal the transcriptomic characteristics of TE exonization in the species characterized by large and repetitive genomes.
Collapse
Affiliation(s)
- Feng Jiang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jie Zhang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Qing Liu
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
| | - Xiang Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Huimin Wang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Jing He
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Le Kang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
50
|
The Nopp140 gene in Drosophila melanogaster displays length polymorphisms in its large repetitive second exon. Mol Genet Genomics 2019; 294:1073-1083. [PMID: 31006039 DOI: 10.1007/s00438-019-01568-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 04/10/2019] [Indexed: 12/21/2022]
Abstract
Nopp140, often called the nucleolar and Cajal body phosphoprotein (NOLC1), is an evolutionarily conserved chaperone for the transcription and processing of rRNA during ribosome subunit assembly. Metazoan Nopp140 contains an amino terminal LisH dimerization domain and a highly conserved carboxyl domain. A large central domain consists of alternating basic and acidic motifs of low sequence complexity. Orthologous versions of Nopp140 contain variable numbers of repeating basic-acidic units. While vertebrate Nopp140 genes use multiple exons to encode the central domain, the Nopp140 gene in Drosophila uses exclusively exon 2 to encode the central domain. Here, we define three overlapping repeat sequence patterns (P, P', and P″) within the central domain of D. melanogaster Nopp140. These repeat patterns are poorly conserved in other Drosophila species. We also describe a length polymorphism in exon 2 that pertains specifically to the P' pattern in D. melanogaster. The pattern displays either two or three 96 base pair repeats, respectively, referred to as Nopp140-Short and Nopp140-Long. Fly lines homozygous for one or the other allele, or heterozygous for both alleles, show no discernible phenotypes. PCR characterization of the long and short alleles shows a poorly defined, artifactual bias toward amplifying the long allele over the short allele. The significance of this polymorphism will be in discerning the largely unknown properties of Nopp140's large central domain in rDNA transcription and ribosome biogenesis.
Collapse
|