1
|
Althiab-Almasaud R, Teyssier E, Chervin C, Johnson MA, Mollet JC. Pollen viability, longevity, and function in angiosperms: key drivers and prospects for improvement. PLANT REPRODUCTION 2024; 37:273-293. [PMID: 37926761 DOI: 10.1007/s00497-023-00484-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/19/2023] [Indexed: 11/07/2023]
Abstract
Pollen grains are central to sexual plant reproduction and their viability and longevity/storage are critical for plant physiology, ecology, plant breeding, and many plant product industries. Our goal is to present progress in assessing pollen viability/longevity along with recent advances in our understanding of the intrinsic and environmental factors that determine pollen performance: the capacity of the pollen grain to be stored, germinate, produce a pollen tube, and fertilize the ovule. We review current methods to measure pollen viability, with an eye toward advancing basic research and biotechnological applications. Importantly, we review recent advances in our understanding of how basic aspects of pollen/stigma development, pollen molecular composition, and intra- and intercellular signaling systems interact with the environment to determine pollen performance. Our goal is to point to key questions for future research, especially given that climate change will directly impact pollen viability/longevity. We find that the viability and longevity of pollen are highly sensitive to environmental conditions that affect complex interactions between maternal and paternal tissues and internal pollen physiological events. As pollen viability and longevity are critical factors for food security and adaptation to climate change, we highlight the need to develop further basic research for better understanding the complex molecular mechanisms that modulate pollen viability and applied research on developing new methods to maintain or improve pollen viability and longevity.
Collapse
Affiliation(s)
- Rasha Althiab-Almasaud
- Université de Toulouse, LRSV, Toulouse INP, CNRS, UPS, 31326, Castanet-Tolosan, France
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, 02912, USA
| | - Eve Teyssier
- Université de Toulouse, LRSV, Toulouse INP, CNRS, UPS, 31326, Castanet-Tolosan, France
| | - Christian Chervin
- Université de Toulouse, LRSV, Toulouse INP, CNRS, UPS, 31326, Castanet-Tolosan, France
| | - Mark A Johnson
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, 02912, USA
| | - Jean-Claude Mollet
- Univ Rouen Normandie, GLYCOMEV UR4358, SFR NORVEGE, Fédération Internationale Normandie-Québec NORSEVE, Carnot I2C, RMT BESTIM, GDR Chemobiologie, IRIB, F-76000, Rouen, France.
| |
Collapse
|
2
|
Kamel H, Geitmann A. Strength in numbers: An isoform variety of homogalacturonan modifying enzymes may contribute to pollen tube fitness. PLANT PHYSIOLOGY 2023; 194:67-80. [PMID: 37819032 DOI: 10.1093/plphys/kiad544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 10/13/2023]
Abstract
Pectin is a major component of the cell wall in land plants. It plays crucial roles in cell wall assembly, cell growth, shaping, and signaling. The relative abundance of pectin in the cell wall is particularly high in rapidly growing organ regions and cell types. Homogalacturonan (HG), a polymer of 1,4-linked α-D-galacturonic acid, is a major pectin constituent in growing and dividing plant cells. In pollen tubes, an extremely rapidly growing cell type, HG is secreted at and inserted into the apical cell wall and is subject to further modification in muro by HG modifying enzymes (HGMEs). These enzymes, including pectin esterases and depolymerases, have multiple isoforms, some of which are specifically expressed in pollen. Given the importance of pectin chemistry for the fitness of pollen tubes, it is of interest to interrogate the potentially crucial roles these isoforms play in pollen germination and elongation. It is hypothesized that different HGME isoforms, through their action on apoplastic HG, may generate differential methylation and acetylation patterns endowing HG polysaccharides with specific, spatially and temporally varying properties that lead to a fine-tuned pattern of cell wall modification. In addition, these isoforms may be differentially activated and/or inhibited depending on the local conditions that may vary at subcellular resolution. In this Update we review the different HGME isoforms identified in recent years in Arabidopsis thaliana and postulate that the multiplicity of these isoforms may allow for specialized substrate recognition and conditional activation, leading to a sophisticated regulation scheme exemplified in the process that governs the dynamic properties of the cell wall in pollen tube growth.
Collapse
Affiliation(s)
- Hiba Kamel
- Department of Plant Science, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | - Anja Geitmann
- Department of Plant Science, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| |
Collapse
|
3
|
Zhao W, Hou Q, Qi Y, Wu S, Wan X. Structural and molecular basis of pollen germination. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108042. [PMID: 37738868 DOI: 10.1016/j.plaphy.2023.108042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/27/2023] [Accepted: 09/14/2023] [Indexed: 09/24/2023]
Abstract
Pollen germination is a prerequisite for double fertilization of flowering plants. A comprehensive understanding of the structural and molecular basis of pollen germination holds great potential for crop yield improvement. The pollen aperture serves as the foundation for most plant pollen germination and pollen aperture formation involves the establishment of cellular polarity, the formation of distinct membrane domains, and the precise deposition of extracellular substances. Successful pollen germination requires precise material exchange and signal transduction between the pollen grain and the stigma. Recent cytological and mutant analysis of pollen germination process in Arabidopsis and rice has expanded our understanding of this biological process. However, the overall changes in germination site structure and energy-related metabolites during pollen germination remain to be further explored. This review summarizes and compares the recent advances in the processes of pollen aperture formation, pollen adhesion, hydration, and germination between eudicot Arabidopsis and monocot rice, and provides insights into the structural basis and molecular mechanisms underlying pollen germination process.
Collapse
Affiliation(s)
- Wei Zhao
- Research Institute of Biology and Agriculture, Shunde Innovation School, University of Science and Technology Beijing (USTB), Beijing, 100083, China
| | - Quancan Hou
- Research Institute of Biology and Agriculture, Shunde Innovation School, University of Science and Technology Beijing (USTB), Beijing, 100083, China; Zhongzhi International Institute of Agricultural Biosciences, Beijing, 100083, China
| | - Yuchen Qi
- Research Institute of Biology and Agriculture, Shunde Innovation School, University of Science and Technology Beijing (USTB), Beijing, 100083, China
| | - Suowei Wu
- Research Institute of Biology and Agriculture, Shunde Innovation School, University of Science and Technology Beijing (USTB), Beijing, 100083, China; Zhongzhi International Institute of Agricultural Biosciences, Beijing, 100083, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing, 100192, China.
| | - Xiangyuan Wan
- Research Institute of Biology and Agriculture, Shunde Innovation School, University of Science and Technology Beijing (USTB), Beijing, 100083, China; Zhongzhi International Institute of Agricultural Biosciences, Beijing, 100083, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing, 100192, China.
| |
Collapse
|
4
|
Noack LC, Bayle V, Armengot L, Rozier F, Mamode-Cassim A, Stevens FD, Caillaud MC, Munnik T, Mongrand S, Pleskot R, Jaillais Y. A nanodomain-anchored scaffolding complex is required for the function and localization of phosphatidylinositol 4-kinase alpha in plants. THE PLANT CELL 2022; 34:302-332. [PMID: 34010411 PMCID: PMC8774046 DOI: 10.1093/plcell/koab135] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 05/10/2021] [Indexed: 05/24/2023]
Abstract
Phosphoinositides are low-abundant lipids that participate in the acquisition of membrane identity through their spatiotemporal enrichment in specific compartments. Phosphatidylinositol 4-phosphate (PI4P) accumulates at the plant plasma membrane driving its high electrostatic potential, and thereby facilitating interactions with polybasic regions of proteins. PI4Kα1 has been suggested to produce PI4P at the plasma membrane, but how it is recruited to this compartment is unknown. Here, we pin-point the mechanism that tethers Arabidopsis thaliana phosphatidylinositol 4-kinase alpha1 (PI4Kα1) to the plasma membrane via a nanodomain-anchored scaffolding complex. We established that PI4Kα1 is part of a complex composed of proteins from the NO-POLLEN-GERMINATION, EFR3-OF-PLANTS, and HYCCIN-CONTAINING families. Comprehensive knockout and knockdown strategies revealed that subunits of the PI4Kα1 complex are essential for pollen, embryonic, and post-embryonic development. We further found that the PI4Kα1 complex is immobilized in plasma membrane nanodomains. Using synthetic mis-targeting strategies, we demonstrate that a combination of lipid anchoring and scaffolding localizes PI4Kα1 to the plasma membrane, which is essential for its function. Together, this work opens perspectives on the mechanisms and function of plasma membrane nanopatterning by lipid kinases.
Collapse
Affiliation(s)
- Lise C Noack
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, F-69342, Lyon, France
| | - Vincent Bayle
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, F-69342, Lyon, France
| | - Laia Armengot
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, F-69342, Lyon, France
| | - Frédérique Rozier
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, F-69342, Lyon, France
| | - Adiilah Mamode-Cassim
- Laboratoire de Biogenèse Membranaire, UMR5200, Université de Bordeaux, CNRS, 33140 Villenave d’Ornon, France
- Agroécologie, AgroSup Dijon, CNRS, INRA, University Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Floris D Stevens
- Research Cluster Green Life Sciences, Section Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, 1090 GE, The Netherlands
| | - Marie-Cécile Caillaud
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, F-69342, Lyon, France
| | - Teun Munnik
- Research Cluster Green Life Sciences, Section Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, 1090 GE, The Netherlands
| | - Sébastien Mongrand
- Laboratoire de Biogenèse Membranaire, UMR5200, Université de Bordeaux, CNRS, 33140 Villenave d’Ornon, France
| | - Roman Pleskot
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, 16502 Prague 6, Czech Republic
| | | |
Collapse
|
5
|
Ghosh N, Sircar G, Asam C, Wolf M, Hauser M, Saha S, Ferreira F, Bhattacharya SG. Purification and biochemical characterization of Hel a 6, a cross-reactive pectate lyase allergen from Sunflower (Helianthus annuus L.) pollen. Sci Rep 2020; 10:20177. [PMID: 33214682 PMCID: PMC7677321 DOI: 10.1038/s41598-020-77247-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 11/06/2020] [Indexed: 11/09/2022] Open
Abstract
Sunflower pollen was reported to contain respiratory allergens responsible for occupational allergy and pollinosis. The present study describes the comprehensive characterization of a major sunflower allergen Hel a 6. Natural Hel a 6 was purified from sunflower pollen by anion exchange and gel filtration chromatography. Hel a 6 reacted with IgE-antibodies from 57% of 39 sunflower-sensitized patient sera suggesting it to be a major allergen. The patients were of Indian origin and suffering from pollinosis and allergic rhinitis. Hel a 6 exhibited allergenic activity by stimulating mediator release from basophils. Monomeric Hel a 6 displayed pectate lyase activity. The effect of various physicochemical parameters such as temperature, pH, and calcium ion on the functional activity of Hel a 6 revealed a stable nature of the protein. Hel a 6 was folded, and its melting curve showed reversible denaturation in which it refolded back to its native conformation from a denatured state. Hel a 6 displayed a high degree of sequence conservation with the pectate lyase allergens from related taxonomic families such as Amb a 1 (67%) and Art v 6 (57%). The IgE-cross reactivity was observed between Hel a 6 and its ragweed and mugwort homologs. The cross-reactivity was further substantiated by the mediator release when Hel a 6-sensitized effector cells were cross-stimulated with Art v 6 and Amb a 1. Several putative B cell epitopes were predicted and mapped on these 3 allergens. Two antigenic regions were found to be commonly shared by these 3 allergens, which could be crucial for cross-reactivity. In conclusion, Hel a 6 serves as a candidate molecule for diagnosis and immunotherapy for weed allergy.
Collapse
Affiliation(s)
- Nandini Ghosh
- Department of Microbiology, Vidyasagar University, Paschim Medinipur, India.
- Division of Plant Biology, Bose Institute, Kolkata, India.
| | - Gaurab Sircar
- Department of Botany, Institute of Sciences, Visva-Bharati, Santiniketan, India
| | - Claudia Asam
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Martin Wolf
- Department of Biosciences, University of Salzburg, Salzburg, Austria
- Cell Therapy Institute, (SCI-TReCS), Paracelsus Medical University (PMU), Salzburg, Austria
| | - Michael Hauser
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Sudipto Saha
- Division of Bioinformatics, Bose Institute, Kolkata, India
| | - Fatima Ferreira
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | | |
Collapse
|
6
|
Wang M, Yan W, Peng X, Chen Z, Xu C, Wu J, Deng XW, Tang X. Identification of late-stage pollen-specific promoters for construction of pollen-inactivation system in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:1246-1263. [PMID: 31965735 DOI: 10.1111/jipb.12912] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/16/2020] [Indexed: 05/07/2023]
Abstract
Large-scale production of male sterile seeds can be achieved by introducing a fertility-restoration gene linked with a pollen-killer gene into a recessive male sterile mutant. We attempted to construct this system in rice by using a late-stage pollen-specific (LSP) promoter driving the expression of maize α-amylase gene ZM-AA1. To obtain such promoters in rice, we conducted comparative RNA-seq analysis of mature pollen with meiosis anther, and compared this with the transcriptomic data of various tissues in the Rice Expression Database, resulting in 269 candidate LSP genes. Initial test of nine LSP genes showed that only the most active OsLSP3 promoter could drive ZM-AA1 to disrupt pollen. We then analyzed an additional 22 LSP genes and found 12 genes stronger than OsLSP3 in late-stage anthers. The promoters of OsLSP5 and OsLSP6 showing higher expression than OsLSP3 at stages 11 and 12 could drive ZM-AA1 to inactivate pollen, while the promoter of OsLSP4 showing higher expression at stage 12 only could not drive ZM-AA1 to disrupt pollen, suggesting that strong promoter activity at stage 11 was critical for pollen inactivation. The strong pollen-specific promoters identified in this study provided valuable tools for genetic engineering of rice male sterile system for hybrid rice production.
Collapse
Affiliation(s)
- Menglong Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Wei Yan
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107, China
| | - Xiaoqun Peng
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107, China
| | - Zhufeng Chen
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107, China
| | - Chunjue Xu
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107, China
| | - Jianxin Wu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Xing Wang Deng
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107, China
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xiaoyan Tang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107, China
| |
Collapse
|
7
|
Kim YJ, Zhang D, Jung KH. Molecular Basis of Pollen Germination in Cereals. TRENDS IN PLANT SCIENCE 2019; 24:1126-1136. [PMID: 31610991 DOI: 10.1016/j.tplants.2019.08.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/22/2019] [Accepted: 08/22/2019] [Indexed: 05/22/2023]
Abstract
Understanding the molecular basis of pollen germination in cereals holds great potential to improve yield. Pollen, a highly specialized haploid male gametophyte, transports sperm cells through a pollen tube to the female ovule for fertilization, directly determining grain yield in cereal crops. Although insights into the regulation of pollen germination and gamete interaction have advanced rapidly in the model Arabidopsis thaliana (arabidopsis), the molecular mechanisms in monocot cereals remain largely unknown. Recently, pollen-specific genome-wide and mutant analyses in rice and maize have extended our understanding of monocot regulatory components. We highlight conserved and diverse mechanisms underlying pollen hydration, germination, and tube growth in cereals that provide ideas for translating this research from arabidopsis. Recent developments in gene-editing systems may facilitate further functional genetic research.
Collapse
Affiliation(s)
- Yu-Jin Kim
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Korea
| | - Dabing Zhang
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Korea; Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China; School of Agriculture, Food, and Wine, University of Adelaide, South Australia 5064, Australia.
| | - Ki-Hong Jung
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Korea.
| |
Collapse
|
8
|
Dehors J, Mareck A, Kiefer-Meyer MC, Menu-Bouaouiche L, Lehner A, Mollet JC. Evolution of Cell Wall Polymers in Tip-Growing Land Plant Gametophytes: Composition, Distribution, Functional Aspects and Their Remodeling. FRONTIERS IN PLANT SCIENCE 2019; 10:441. [PMID: 31057570 PMCID: PMC6482432 DOI: 10.3389/fpls.2019.00441] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/22/2019] [Indexed: 05/22/2023]
Abstract
During evolution of land plants, the first colonizing species presented leafy-dominant gametophytes, found in non-vascular plants (bryophytes). Today, bryophytes include liverworts, mosses, and hornworts. In the first seedless vascular plants (lycophytes), the sporophytic stage of life started to be predominant. In the seed producing plants, gymnosperms and angiosperms , the gametophytic stage is restricted to reproduction. In mosses and ferns, the haploid spores germinate and form a protonema, which develops into a leafy gametophyte producing rhizoids for anchorage, water and nutrient uptakes. The basal gymnosperms (cycads and Ginkgo) reproduce by zooidogamy. Their pollen grains develop a multi-branched pollen tube that penetrates the nucellus and releases flagellated sperm cells that swim to the egg cell. The pollen grain of other gymnosperms (conifers and gnetophytes) as well as angiosperms germinates and produces a pollen tube that directly delivers the sperm cells to the ovule (siphonogamy). These different gametophytes, which are short or long-lived structures, share a common tip-growing mode of cell expansion. Tip-growth requires a massive cell wall deposition to promote cell elongation, but also a tight spatial and temporal control of the cell wall remodeling in order to modulate the mechanical properties of the cell wall. The growth rate of these cells is very variable depending on the structure and the species, ranging from very slow (protonemata, rhizoids, and some gymnosperm pollen tubes), to a slow to fast-growth in other gymnosperms and angiosperms. In addition, the structural diversity of the female counterparts in angiosperms (dry, semi-dry vs wet stigmas, short vs long, solid vs hollow styles) will impact the speed and efficiency of sperm delivery. As the evolution and diversity of the cell wall polysaccharides accompanied the diversification of cell wall structural proteins and remodeling enzymes, this review focuses on our current knowledge on the biochemistry, the distribution and remodeling of the main cell wall polymers (including cellulose, hemicelluloses, pectins, callose, arabinogalactan-proteins and extensins), during the tip-expansion of gametophytes from bryophytes, pteridophytes (lycophytes and monilophytes), gymnosperms and the monocot and eudicot angiosperms.
Collapse
Affiliation(s)
| | | | | | | | | | - Jean-Claude Mollet
- Normandie Univ, UNIROUEN, Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, Rouen, France
| |
Collapse
|
9
|
Pinus massoniana Introgression Hybrids Display Differential Expression of Reproductive Genes. FORESTS 2019. [DOI: 10.3390/f10030230] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pinus massoniana and P. hwangshanensis are two conifer species located in southern China, which are of both economic and ornamental value. Around the middle and lower reaches of the Yangtze River, P. massoniana occurs mainly at altitudes below 700 m, while P. hwangshanensis can be found above 900 m. At altitudes where the distribution of both pines overlaps, a natural introgression hybrid exists, which we will further refer to as the Z pine. This pine has a morphological character that shares attributes of both P. massoniana and P. hwangshanensis. However, compared to the other two pines, its reproductive structure, the pinecone, has an ultra-low ripening rate with seeds that germinate poorly. In this study, we aimed to find the reason for the impaired cone maturation by comparing transcriptome libraries of P. massoniana and Z pine cones at seven successive growth stages. After sequencing and assembly, we obtained unigenes and then annotated them against NCBI’s non-redundant nucleotide and protein sequences, Swiss-Prot, Clusters of Orthologous Groups, Gene Ontology and KEGG Orthology databases. Gene expression levels were estimated and differentially expressed genes (DEGs) of the two pines were mined and analyzed. We found that several of them indeed relate to reproductive process. At every growth stage, these genes are expressed at a higher level in P. massoniana than in the Z pine. These data provide insight into understanding which molecular mechanisms are altered between P. massoniana and the Z pine that might cause changes in the reproductive process.
Collapse
|
10
|
Wu HC, Bulgakov VP, Jinn TL. Pectin Methylesterases: Cell Wall Remodeling Proteins Are Required for Plant Response to Heat Stress. FRONTIERS IN PLANT SCIENCE 2018; 9:1612. [PMID: 30459794 PMCID: PMC6232315 DOI: 10.3389/fpls.2018.01612] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 10/17/2018] [Indexed: 05/21/2023]
Abstract
Heat stress (HS) is expected to be of increasing worldwide concern in the near future, especially with regard to crop yield and quality as a consequence of rising or varying temperatures as a result of global climate change. HS response (HSR) is a highly conserved mechanism among different organisms but shows remarkable complexity and unique features in plants. The transcriptional regulation of HSR is controlled by HS transcription factors (HSFs) which allow the activation of HS-responsive genes, among which HS proteins (HSPs) are best characterized. Cell wall remodeling constitutes an important component of plant responses to HS to maintain overall function and growth; however, little is known about the connection between cell wall remodeling and HSR. Pectin controls cell wall porosity and has been shown to exhibit structural variation during plant growth and in response to HS. Pectin methylesterases (PMEs) are present in multigene families and encode isoforms with different action patterns by removal of methyl esters to influencing the properties of cell wall. We aimed to elucidate how plant cell walls respond to certain environmental cues through cell wall-modifying proteins in connection with modifications in cell wall machinery. An overview of recent findings shed light on PMEs contribute to a change in cell-wall composition/structure. The fine-scale modulation of apoplastic calcium ions (Ca2+) content could be mediated by PMEs in response to abiotic stress for both the assembly and disassembly of the pectic network. In particular, this modulation is prevalent in guard cell walls for regulating cell wall plasticity as well as stromal aperture size, which comprise critical determinants of plant adaptation to HS. These insights provide a foundation for further research to reveal details of the cell wall machinery and stress-responsive factors to provide targets and strategies to facilitate plant adaptation.
Collapse
Affiliation(s)
- Hui-Chen Wu
- Department of Biological Sciences and Technology, National University of Tainan, Tainan, Taiwan
| | - Victor P. Bulgakov
- Institute of Biology and Soil Science, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Tsung-Luo Jinn
- Department of Life Science, Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
11
|
Chen P, Li R, Zhou R. Comparative phosphoproteomic analysis reveals differentially phosphorylated proteins regulate anther and pollen development in kenaf cytoplasmic male sterility line. Amino Acids 2018; 50:841-862. [DOI: 10.1007/s00726-018-2564-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/29/2018] [Indexed: 12/28/2022]
|
12
|
Ghiani A, Ciappetta S, Gentili R, Asero R, Citterio S. Is ragweed pollen allergenicity governed by environmental conditions during plant growth and flowering? Sci Rep 2016; 6:30438. [PMID: 27457754 PMCID: PMC4960655 DOI: 10.1038/srep30438] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 07/01/2016] [Indexed: 01/01/2023] Open
Abstract
Pollen allergenicity is one of the main factors influencing the prevalence and/or severity of allergic diseases. However, how genotype and environment contribute to ragweed pollen allergenicity has still to be established. To throw some light on the factors governing allergenicity, in this work 180 ragweed plants from three Regions (Canada, France, Italy) were grown in both controlled (constant) and standard environmental conditions (seasonal changes in temperature, relative humidity and light). Pollen from single plants was characterized for its allergenic potency and for the underlying regulation mechanisms by studying the qualitative and quantitative variations of the main isoforms of the major ragweed allergen Amb a 1. Results showed a statistically higher variability in allergenicity of pollen from standard conditions than from controlled conditions growing plants. This variability was due to differences among single plants, regardless of their origin, and was not ascribed to differences in the expression and IgE reactivity of individual Amb a 1 isoforms but rather to quantitative differences involving all the studied isoforms. It suggests that the allergenic potency of ragweed pollen and thus the severity of ragweed pollinosis mainly depends on environmental conditions during plant growth and flowering, which regulate the total Amb a 1 content.
Collapse
Affiliation(s)
- Alessandra Ghiani
- Dipartimento di Science Ambientali, Università di Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| | - Silvia Ciappetta
- Dipartimento di Science Ambientali, Università di Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| | - Rodolfo Gentili
- Dipartimento di Science Ambientali, Università di Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| | - Riccardo Asero
- Ambulatorio di Allergologia, Clinica San Carlo, Paderno Dugnano (MI), Italy
| | - Sandra Citterio
- Dipartimento di Science Ambientali, Università di Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| |
Collapse
|
13
|
Hybrid Sterility in Rice (Oryza sativa L.) Involves the Tetratricopeptide Repeat Domain Containing Protein. Genetics 2016; 203:1439-51. [PMID: 27182946 DOI: 10.1534/genetics.115.183848] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 04/20/2016] [Indexed: 11/18/2022] Open
Abstract
Intersubspecific hybrid sterility is a common form of reproductive isolation in rice (Oryza sativa L.), which significantly hampers the utilization of heterosis between indica and japonica varieties. Here, we elucidated the mechanism of S7, which specially causes Aus-japonica/indica hybrid female sterility, through cytological and genetic analysis, map-based cloning, and transformation experiments. Abnormal positioning of polar nuclei and smaller embryo sac were observed in F1 compared with male and female parents. Female gametes carrying S7(cp) and S7(i) were aborted in S7(ai)/S7(cp) and S7(ai)/S7(i), respectively, whereas they were normal in both N22 and Dular possessing a neutral allele, S7(n) S7 was fine mapped to a 139-kb region in the centromere region on chromosome 7, where the recombination was remarkably suppressed due to aggregation of retrotransposons. Among 16 putative open reading frames (ORFs) localized in the mapping region, ORF3 encoding a tetratricopeptide repeat domain containing protein was highly expressed in the pistil. Transformation experiments demonstrated that ORF3 is the candidate gene: downregulated expression of ORF3 restored spikelet fertility and eliminated absolutely preferential transmission of S7(ai) in heterozygote S7(ai)/S7(cp); sterility occurred in the transformants Cpslo17-S7(ai) Our results may provide implications for overcoming hybrid embryo sac sterility in intersubspecific hybrid rice and utilization of hybrid heterosis for cultivated rice improvement.
Collapse
|