1
|
Tang X, Liu G, Lin L, Xiao N, Chen Y. The recurrent WASF1 nonsense variant identified in two unaffected Chinese families with neurodevelopmental disorder: case report and review of the literatures. BMC Med Genomics 2023; 16:203. [PMID: 37641121 PMCID: PMC10464119 DOI: 10.1186/s12920-023-01630-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 08/11/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Neurodevelopmental disorder with absent language and variable seizures (NEDALVS, # 618707) are characterized by delayed speech and motor development, ocular abnormalities, and seizures. NEDAVLS is an autosomal dominant disorder caused by de novo mutations in the wasp protein family member 1 (WASF1) gene. CASE PRESENTATION We identified a de novo nonsense variant c.1516 C > T (p.Arg506*) of WASF1 gene (NM_003931.3) in two pediatric female patients with delayed motor and language development. CONCLUSION This case demonstrates the effective role of WES in the diagnosis of NEDALVS. To the best of our knowledge, this variant has not been reported in the Chinese population. This contributes to our further understanding of the disease and to research related to the genetic and clinical heterogeneity, the treatment and prognosis of the disease.
Collapse
Affiliation(s)
- Xiang Tang
- Department of Rehabilitation, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, P.R. China
- National Clinical Research Center for Child Health and Disorders, Chongqing, P.R. China
- China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing, P.R. China
- Children's Hospital of Chongqing Medical University, Chongqing, P.R. China
- Chongqing Key Laboratory of Pediatric, Chongqing, P.R. China
| | - Guoqing Liu
- Department of Rehabilitation, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, P.R. China
- National Clinical Research Center for Child Health and Disorders, Chongqing, P.R. China
- China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing, P.R. China
- Children's Hospital of Chongqing Medical University, Chongqing, P.R. China
- Chongqing Key Laboratory of Pediatric, Chongqing, P.R. China
| | - Li Lin
- Department of Rehabilitation, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, P.R. China
- National Clinical Research Center for Child Health and Disorders, Chongqing, P.R. China
- China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing, P.R. China
- Children's Hospital of Chongqing Medical University, Chongqing, P.R. China
- Chongqing Key Laboratory of Pediatric, Chongqing, P.R. China
| | - Nong Xiao
- Department of Rehabilitation, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, P.R. China
- National Clinical Research Center for Child Health and Disorders, Chongqing, P.R. China
- China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing, P.R. China
- Children's Hospital of Chongqing Medical University, Chongqing, P.R. China
- Chongqing Key Laboratory of Pediatric, Chongqing, P.R. China
| | - Yuxia Chen
- Department of Rehabilitation, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China.
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, P.R. China.
- National Clinical Research Center for Child Health and Disorders, Chongqing, P.R. China.
- China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing, P.R. China.
- Children's Hospital of Chongqing Medical University, Chongqing, P.R. China.
- Chongqing Key Laboratory of Pediatric, Chongqing, P.R. China.
| |
Collapse
|
2
|
Yuen WS, Zhang QH, Bourdais A, Adhikari D, Halet G, Carroll J. Polo-like kinase 1 promotes Cdc42-induced actin polymerization for asymmetric division in oocytes. Open Biol 2023; 13:220326. [PMID: 36883283 PMCID: PMC9993042 DOI: 10.1098/rsob.220326] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
Abstract
Polo-like kinase I (Plk1) is a highly conserved seronine/threonine kinase essential in meiosis and mitosis for spindle formation and cytokinesis. Here, through temporal application of Plk1 inhibitors, we identify a new role for Plk1 in the establishment of cortical polarity essential for highly asymmetric cell divisions of oocyte meiosis. Application of Plk1 inhibitors in late metaphase I abolishes pPlk1 from spindle poles and prevents the induction of actin polymerization at the cortex through inhibition of local recruitment of Cdc42 and Neuronal Wiskott-Aldrich Syndrome protein (N-WASP). By contrast, an already established polar actin cortex is insensitive to Plk1 inhibitors, but if the polar cortex is first depolymerized, Plk1 inhibitors completely prevent its restoration. Thus, Plk1 is essential for establishment but not maintenance of cortical actin polarity. These findings indicate that Plk1 regulates recruitment of Cdc42 and N-Wasp to coordinate cortical polarity and asymmetric cell division.
Collapse
Affiliation(s)
- Wai Shan Yuen
- Department of Anatomy and Developmental Biology and Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Qing Hua Zhang
- Department of Anatomy and Developmental Biology and Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Anne Bourdais
- University of Rennes, CNRS, IGDR - UMR 6290, F-35000 Rennes, France
| | - Deepak Adhikari
- Department of Anatomy and Developmental Biology and Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Guillaume Halet
- University of Rennes, CNRS, IGDR - UMR 6290, F-35000 Rennes, France
| | - John Carroll
- Department of Anatomy and Developmental Biology and Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
3
|
Gunawardhana KL, Hong L, Rugira T, Uebbing S, Kucharczak J, Mehta S, Karunamuni DR, Cabera-Mendoza B, Gandotra N, Scharfe C, Polimanti R, Noonan JP, Mani A. A systems biology approach identifies the role of dysregulated PRDM6 in the development of hypertension. J Clin Invest 2023; 133:e160036. [PMID: 36602864 PMCID: PMC9927944 DOI: 10.1172/jci160036] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 12/07/2022] [Indexed: 01/06/2023] Open
Abstract
Genetic variants in the third intron of the PRDM6 gene have been associated with BP traits in multiple GWAS. By combining fine mapping, massively parallel reporter assays, and gene editing, we identified super enhancers that drive the expression of PRDM6 and are partly regulated by STAT1 as the causal variants for hypertension. The heterozygous disruption of Prdm6 in mice expressing Cre recombinase under the control of mouse smooth muscle cell protein 22-α promoter (Prdm6fl/+ SM22-Cre) exhibited a markedly higher number of renin-producing cells in the kidneys at E18.5 compared with WT littermates and developed salt-induced systemic hypertension that was completely responsive to the renin inhibitor aliskiren. Strikingly, RNA-Seq analysis of the mouse aortas identified a network of PRDM6-regulated genes that are located in GWAS-associated loci for blood pressure, most notably Sox6, which modulates renin expression in the kidney. Accordingly, the smooth muscle cell-specific disruption of Sox6 in Prdm6fl/+ SM22-Cre mice resulted in a dramatic reduction of renin. Fate mapping and histological studies also showed increased numbers of neural crest-derived cells accompanied by increased collagen deposition in the kidneys of Prdm6fl/+ Wnt1Cre-ZsGreen1Cre mice compared with WT mice. These findings establish the role of PRDM6 as a regulator of renin-producing cell differentiation into smooth muscle cells and as an attractive target for the development of antihypertensive drugs.
Collapse
Affiliation(s)
| | - Lingjuan Hong
- Cardiovascular Research Center, Department of Internal Medicine, and
| | - Trojan Rugira
- Cardiovascular Research Center, Department of Internal Medicine, and
| | - Severin Uebbing
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Joanna Kucharczak
- Trinity Hall College, University of Cambridge, Cambridge, United Kingdom
| | - Sameet Mehta
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Dineth R. Karunamuni
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Brenda Cabera-Mendoza
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Neeru Gandotra
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Curt Scharfe
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Renato Polimanti
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
| | - James P. Noonan
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Arya Mani
- Cardiovascular Research Center, Department of Internal Medicine, and
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
4
|
Buratini J, Dellaqua TT, Dal Canto M, La Marca A, Carone D, Mignini Renzini M, Webb R. The putative roles of FSH and AMH in the regulation of oocyte developmental competence: from fertility prognosis to mechanisms underlying age-related subfertility. Hum Reprod Update 2021; 28:232-254. [PMID: 34969065 DOI: 10.1093/humupd/dmab044] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 11/18/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Fertility loss during female ageing is associated with increasing basal FSH and decreasing anti-Müllerian hormone (AMH) concentrations, together with compromised oocyte quality, presumably due to increased oxidative stress (OS) and DNA damage, as well as reduced metabolic and meiotic competences. Basal FSH and AMH circulatory concentrations have been broadly utilized as IVF success predictors, regardless of fluctuations in prognostic accuracy; basal FSH and AMH perform better in pre-advanced maternal age (AMA: >35 years) and AMA patients, respectively. The relationships between FSH and AMH intrafollicular levels and IVF outcomes suggest, nevertheless, that both hormones regulate oocyte competence, supporting the hypothesis that changes in FSH/AMH levels cause, at least in part, oocyte quality degradation during ageing. To understand the reasons behind the fluctuations in FSH and AMH prognostic accuracies and to clarify their participation in mechanisms determining oocyte competence and age-related subfertility, a deeper knowledge of the regulation of FSH and AMH intrafollicular signalling during the female reproductive lifespan, and of their effects on the cumulus-oocyte complex, is required. OBJECTIVE AND RATIONALE An extensive body of information on the regulation of FSH and AMH intrafollicular availability and signalling, as well as on the control of folliculogenesis and oocyte metabolism, has been accumulated. However, these datasets have been explored within the relatively narrow boundaries of their specific subjects. Given the aforementioned gaps in knowledge and their clinical relevance, herein we integrate clinical and basic data, within a wide biological perspective, aiming to shed light on (i) the reasons for the variability in the accuracy of serum FSH and AMH as fertility markers, and on (ii) the potential roles of these hormones in mechanisms regulating oocyte quality, particularly those associated with ageing. SEARCH METHODS The PubMed database encompassing the period between 1960 and 2021 was searched. Principal search terms were FSH, FSH receptor, AMH, oocyte, maternal age, cumulus, transzonal projections (TZPs), actin, OS, redox, reactive oxygen species, mitochondria, DNA damage, DNA repair, aneuploidy, spindle, meiosis, gene expression, transcription, translation, oocyte secreted factors (OSFs), cAMP, cyclic guanosine monophosphate, natriuretic peptide C, growth differentiation factor 9, bone morphogenetic protein 15 and fibroblast growth factor. OUTCOMES Our analysis suggests that variations in the accuracy of fertility prognosis reflect a modest association between circulatory AMH levels and oocyte quality as well as increasing basal FSH inter-cycle variability with age. In addition, the basic and clinical data articulated herein support the hypothesis that increased intrafollicular FSH levels, as maternal age advances, may override the physiological protective influences of AMH and OSFs against excessive FSH signalling in cumulus cells. This would result in the disruption of oocyte homeostasis via reduced TZP-mediated transfer of cumulus-derived molecules essential for meiotic competence, gene expression, redox activity and DNA repair. WIDER IMPLICATIONS In-depth data analysis, encompassing a wide biological perspective has revealed potential causative mechanisms of age-related subfertility triggered by alterations in FSH/AMH signalling during the female reproductive life. Insights from new mechanistic models arising from this analysis should contribute to advancing our comprehension of oocyte biology in humans and serve as a valuable reference for novel AMA subfertility treatments aimed at improving oocyte quality through the modulation of AMH/FSH action.
Collapse
Affiliation(s)
- Jose Buratini
- Biogenesi Reproductive Medicine Centre-Eugin Group, Istituti Clinici Zucchi, Monza, Italy.,Clinica Eugin Modena, Modena, Italy.,Department of Structural and Functional Biology, Sao Paulo State University, Botucatu, Brazil
| | - Thaisy Tino Dellaqua
- Department of Structural and Functional Biology, Sao Paulo State University, Botucatu, Brazil
| | - Mariabeatrice Dal Canto
- Biogenesi Reproductive Medicine Centre-Eugin Group, Istituti Clinici Zucchi, Monza, Italy.,Clinica Eugin Modena, Modena, Italy
| | - Antonio La Marca
- Clinica Eugin Modena, Modena, Italy.,Department of Medical and Surgical Sciences of the Mother, Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Mario Mignini Renzini
- Biogenesi Reproductive Medicine Centre-Eugin Group, Istituti Clinici Zucchi, Monza, Italy.,Clinica Eugin Modena, Modena, Italy
| | - Robert Webb
- Division of Animal Sciences, School of Biosciences, University of Nottingham, Nottinghamshire, UK
| |
Collapse
|
5
|
Fujimoto K, Nakano K, Kuwayama H, Yumura S. Deletion of gmfA induces keratocyte-like migration in Dictyostelium. FEBS Open Bio 2021; 12:306-319. [PMID: 34855306 PMCID: PMC8727941 DOI: 10.1002/2211-5463.13339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/15/2021] [Accepted: 11/30/2021] [Indexed: 11/06/2022] Open
Abstract
Glia maturation factor (GMF) has been established as an inactivating factor of the actin‐related protein 2/3 (Arp2/3) complex, which regulates actin assembly. Regulation of actin assembly and reorganization is crucial for various cellular events, such as cell migration, cell division, and development. Here, to examine the roles of ADF‐H domain‐containing protein (also known as glia maturation factor; GmfA), the product of a single GMF homologous gene in Dictyostelium, gmfA‐null cells were generated. They had moderate defects in cell growth and cytokinesis. Interestingly, they showed a keratocyte‐like fan shape with a broader pseudopod, where Arp3 accumulated at higher levels than in wild‐type cells. They migrated with higher persistence, but their velocities were comparable to those of wild‐type cells. The polar pseudopods during cell division were also broader than those in wild‐type cells. However, GmfA did not localize at the pseudopods in migrating cells or the polar pseudopods in dividing cells. Adhesions of mutant cells to the substratum were much stronger than that of wild‐type cells. Although the mutant cells showed chemotaxis comparable to that of wild‐type cells, they formed disconnected streams during the aggregation stage; however, they finally formed normal fruiting bodies. These results suggest that GmfA plays a crucial role in cell migration.
Collapse
Affiliation(s)
- Koushiro Fujimoto
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Japan
| | - Kentaro Nakano
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Japan
| | - Hidekazu Kuwayama
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Japan
| | - Shigehiko Yumura
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Japan
| |
Collapse
|
6
|
Placidi G, Campa CC. Deliver on Time or Pay the Fine: Scheduling in Membrane Trafficking. Int J Mol Sci 2021; 22:11773. [PMID: 34769203 PMCID: PMC8583995 DOI: 10.3390/ijms222111773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/23/2021] [Accepted: 10/27/2021] [Indexed: 12/12/2022] Open
Abstract
Membrane trafficking is all about time. Automation in such a biological process is crucial to ensure management and delivery of cellular cargoes with spatiotemporal precision. Shared molecular regulators and differential engagement of trafficking components improve robustness of molecular sorting. Sequential recruitment of low affinity protein complexes ensures directionality of the process and, concomitantly, serves as a kinetic proofreading mechanism to discriminate cargoes from the whole endocytosed material. This strategy helps cells to minimize losses and operating errors in membrane trafficking, thereby matching the appealed deadline. Here, we summarize the molecular pathways of molecular sorting, focusing on their timing and efficacy. We also highlight experimental procedures and genetic approaches to robustly probe these pathways, in order to guide mechanistic studies at the interface between biochemistry and quantitative biology.
Collapse
Affiliation(s)
- Giampaolo Placidi
- Italian Institute for Genomic Medicine, c/o IRCCS, Str. Prov.le 142, km 3.95, 10060 Candiolo, Italy;
- Candiolo Cancer Institute, FPO-IRCCS, Str. Prov.le 142, km 3.95, 10060 Candiolo, Italy
| | - Carlo C. Campa
- Italian Institute for Genomic Medicine, c/o IRCCS, Str. Prov.le 142, km 3.95, 10060 Candiolo, Italy;
- Candiolo Cancer Institute, FPO-IRCCS, Str. Prov.le 142, km 3.95, 10060 Candiolo, Italy
| |
Collapse
|
7
|
Pal D, Ellis A, Sepúlveda-Ramírez SP, Salgado T, Terrazas I, Reyes G, De La Rosa R, Henson JH, Shuster CB. Rac and Arp2/3-Nucleated Actin Networks Antagonize Rho During Mitotic and Meiotic Cleavages. Front Cell Dev Biol 2020; 8:591141. [PMID: 33282870 PMCID: PMC7705106 DOI: 10.3389/fcell.2020.591141] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/20/2020] [Indexed: 12/01/2022] Open
Abstract
In motile cells, the activities of the different Rho family GTPases are spatially segregated within the cell, and during cytokinesis there is evidence that this may also be the case. But while Rho’s role as the central organizer for contractile ring assembly is well established, the role of Rac and the branched actin networks it promotes is less well understood. To characterize the contributions of these proteins during cytokinesis, we manipulated Rac and Arp2/3 activity during mitosis and meiosis in sea urchin embryos and sea star oocytes. While neither Rac nor Arp2/3 were essential for early embryonic divisions, loss of either Rac or Arp2/3 activity resulted in polar body defects. Expression of activated Rac resulted in cytokinesis failure as early as the first division, and in oocytes, activated Rac suppressed both the Rho wave that traverses the oocyte prior to polar body extrusion as well as polar body formation itself. However, the inhibitory effect of Rac on cytokinesis, polar body formation and the Rho wave could be suppressed by effector-binding mutations or direct inhibition of Arp2/3. Together, these results suggest that Rac- and Arp2/3 mediated actin networks may directly antagonize Rho signaling, thus providing a potential mechanism to explain why Arp2/3-nucleated branched actin networks must be suppressed at the cell equator for successful cytokinesis.
Collapse
Affiliation(s)
- Debadrita Pal
- Department of Biology, New Mexico State University, Las Cruces, NM, United States
| | - Andrea Ellis
- Department of Biology, New Mexico State University, Las Cruces, NM, United States
| | | | - Torey Salgado
- Department of Biology, New Mexico State University, Las Cruces, NM, United States
| | - Isabella Terrazas
- Department of Biology, New Mexico State University, Las Cruces, NM, United States
| | - Gabriela Reyes
- Department of Biology, New Mexico State University, Las Cruces, NM, United States
| | - Richard De La Rosa
- Department of Biology, New Mexico State University, Las Cruces, NM, United States
| | - John H Henson
- Department of Biology, Dickinson College, Carlisle, PA, United States
| | - Charles B Shuster
- Department of Biology, New Mexico State University, Las Cruces, NM, United States
| |
Collapse
|
8
|
Wu H, Yu J, Kong D, Xu Y, Zhang Z, Shui J, Li Z, Luo H, Wang K. Population and single‑cell transcriptome analyses reveal diverse transcriptional changes associated with radioresistance in esophageal squamous cell carcinoma. Int J Oncol 2019; 55:1237-1248. [PMID: 31638164 PMCID: PMC6831193 DOI: 10.3892/ijo.2019.4897] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/09/2019] [Indexed: 12/13/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a tumor composed of heterogeneous cells that easily become radioresistant, which leads to tumor recurrence. The most commonly used treatment for ESCC is fractionated irradiation (FIR) therapy that utilizes ionizing radiation to directly induce cytotoxic cell death. However, this treatment may not be able to eliminate all cancer cells due to high adaptive evolution. To determine whether the transcriptome dynamics during ESCC recurrence formation are associated with FIR response, an in vitro cell culture model for ESCC radioresistance that mimics the common radiotherapy process in patients with ESCC was established in the present study. High‑throughput sequencing analysis of in vitro cultured ESCC cells was performed using different cumulative irradiation doses, as well as tumor samples from FIR‑treated patients with ESCC before and after the development of radioresistance. Radioresistance‑associated genes and signaling pathways that were aberrantly expressed in radioresistant ESCC cells were identified, including autophagy‑related 9B (regulation of autophagy), DNA damage‑inducible transcript 4, myoglobin and plasminogen activator tissue type, which are associated with response to hypoxia, Bcl2‑binding component 3, tumor protein P63 and interferon γ‑inducible protein 16, which are associated with DNA damage response. The heterogeneity and dynamic gene expression of ESCC cells during acquired radioresistance were further studied in primary (41 single cells), 12 Gy FIR‑treated (87 single cells) and 30 Gy FIR‑treated (89 single cells) cancer cells using a single‑cell RNA sequencing approach. The results of the present study comprehensively characterized the transcriptome dynamics during acquired radioresistance in an in vitro model of ESCC and patient tumor samples at the population and single cell level. Single‑cell RNA sequencing revealed the heterogeneity of irradiated ESCC cells and an increase in the radioresistant ESCC cell subpopulation during acquired radioresistance. Overall, these results are of potential clinical relevance as they identify a number of signaling molecules associated with radioresistance, as well as opportunities for the development of novel therapeutic options for the treatment of ESCC.
Collapse
Affiliation(s)
- Hongjin Wu
- NHC Key Laboratory of Drug Addiction Medicine (Kunming Medical University), The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Juehua Yu
- NHC Key Laboratory of Drug Addiction Medicine (Kunming Medical University), The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Deshengyue Kong
- Yunnan Institute of Digestive Disease, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Yu Xu
- NHC Key Laboratory of Drug Addiction Medicine (Kunming Medical University), The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Zunyue Zhang
- NHC Key Laboratory of Drug Addiction Medicine (Kunming Medical University), The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Jing Shui
- Shanghai International Travel Healthcare Center, Shanghai 200000, P.R. China
| | - Ziwei Li
- NHC Key Laboratory of Drug Addiction Medicine (Kunming Medical University), The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Huayou Luo
- Yunnan Institute of Digestive Disease, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Kunhua Wang
- NHC Key Laboratory of Drug Addiction Medicine (Kunming Medical University), The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| |
Collapse
|
9
|
Ali A, Abd El Halim HM. Re-thinking adaptive immunity in the beetles: Evolutionary and functional trajectories of lncRNAs. Genomics 2019; 112:1425-1436. [PMID: 31442561 DOI: 10.1016/j.ygeno.2019.08.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/04/2019] [Accepted: 08/16/2019] [Indexed: 12/24/2022]
Abstract
Unlike vertebrate animals, invertebrates lack lymphocytes and therefore have historically been believed not to develop immune memory. A few studies have reported evidence of immune priming in insects; however, these studies lack the molecular mechanism and proposed it might be different among taxa. Since lncRNAs are known to regulate the immune response, we identified 10,120 lncRNAs in Tribolium castaneum genome-wide followed by transcriptome analysis of primed and unprimed larvae of different infectious status. A shift in lncRNA expression between Btt primed larvae and other treatment groups provides evidence of immune memory response. A few "priming" lncRNAs (n = 9) were uniquely regulated in Btt primed larvae. Evidence suggests these lncRNAs are likely controlling immune priming in Tribolium by regulating expression of genes involved in proteasomal machinery, Notch system, zinc metabolism, and methyltransferase activity, which are necessary to modulate phagocytosis. Our results support a conserved immune priming mechanism in a macrophage-dependent manner.
Collapse
Affiliation(s)
- Ali Ali
- Department of Biology and Molecular Biosciences Program, Middle Tennessee State University, Murfreesboro, TN 37132, United States of America; Department of Zoology, Faculty of Science, Benha University, Benha, Egypt.
| | | |
Collapse
|
10
|
Embryonic lethality in mice lacking Trim59 due to impaired gastrulation development. Cell Death Dis 2018; 9:302. [PMID: 29467473 PMCID: PMC5833458 DOI: 10.1038/s41419-018-0370-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 01/21/2018] [Accepted: 02/01/2018] [Indexed: 01/13/2023]
Abstract
TRIM family members have been implicated in a variety of biological processes such as differentiation and development. We here found that Trim59 plays a critical role in early embryo development from blastocyst stage to gastrula. There existed delayed development and empty yolk sacs from embryonic day (E) 8.5 in Trim59−/− embryos. No viable Trim59−/− embryos were observed beyond E9.5. Trim59 deficiency affected primary germ layer formation at the beginning of gastrulation. At E6.5 and E7.5, the expression of primary germ layer formation-associated genes including Brachyury, lefty2, Cer1, Otx2, Wnt3, and BMP4 was reduced in Trim59−/− embryos. Homozygous mutant embryonic epiblasts were contracted and the mesoderm was absent. Trim59 could interact with actin- and myosin-associated proteins. Its deficiency disturbed F-actin polymerization during inner cell mass differentiation. Trim59-mediated polymerization of F-actin was via WASH K63-linked ubiquitination. Thus, Trim59 may be a critical regulator for early embryo development from blastocyst stage to gastrula through modulating F-actin assembly.
Collapse
|
11
|
Vesicular transport protein Arf6 modulates cytoskeleton dynamics for polar body extrusion in mouse oocyte meiosis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:455-462. [DOI: 10.1016/j.bbamcr.2017.11.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 10/30/2017] [Accepted: 11/27/2017] [Indexed: 01/08/2023]
|
12
|
He SW, Xu BH, Liu Y, Wang YL, Chen MH, Xu L, Liao BQ, Lui R, Li FP, Lin YH, Fu XP, Fu BB, Hong ZW, Liu YX, Qi ZQ, Wang HL. SKAP2 regulates Arp2/3 complex for actin-mediated asymmetric cytokinesis by interacting with WAVE2 in mouse oocytes. Cell Cycle 2017; 16:2272-2281. [PMID: 28933599 PMCID: PMC5788478 DOI: 10.1080/15384101.2017.1380126] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
SKAP2 (Src kinase-associated phosphoprotein 2), a substrate of Src family kinases, has been suggested to be involved in actin-mediated cellular processes. However, little is known about its role in mouse oocyte maturation. In this study, we thus investigated the expression, localization, and functions of SKAP2 during mouse oocyte asymmetric division. SKAP2 protein expression was detected at all developmental stages in mouse oocytes. Immunofluorescent staining showed that SKAP2 was mainly distributed at the cortex of the oocytes during maturation. Treatment with cytochalasin B in oocytes confirmed that SKAP2 was co-localized with actin. Depletion of SKAP2 by injection with specific short interfering RNA caused failure of spindle migration, polar body extrusion, and cytokinesis defects. Meanwhile, the staining of actin filaments at the oocyte membrane and in the cytoplasm was significantly reduced after these treatments. SKAP2 depletion also disrupted actin cap and cortical granule-free domain formation, and arrested a large proportion of oocytes at the telophase stage. Moreover, Arp2/3 complex and WAVE2 expression was decreased after the depletion of SKAP2 activity. Our results indicate that SKAP2 regulates the Arp2/3 complex and is essential for actin-mediated asymmetric cytokinesis by interacting with WAVE2 in mouse oocytes.
Collapse
Affiliation(s)
- Shu-Wen He
- a Organ Transplantation Institute, Medical College, Xiamen University , Xiamen, Fujian , China.,b Fujian Key Laboratory of Organ and Tissue Regeneration , Xiamen, Fujian , China
| | - Bai-Hui Xu
- a Organ Transplantation Institute, Medical College, Xiamen University , Xiamen, Fujian , China.,g Department of Workshop 25, Shangdong new time Pharmaceutical Company Limited , Shangdong , China
| | - Yu Liu
- a Organ Transplantation Institute, Medical College, Xiamen University , Xiamen, Fujian , China.,b Fujian Key Laboratory of Organ and Tissue Regeneration , Xiamen, Fujian , China
| | - Ya-Long Wang
- a Organ Transplantation Institute, Medical College, Xiamen University , Xiamen, Fujian , China.,b Fujian Key Laboratory of Organ and Tissue Regeneration , Xiamen, Fujian , China
| | - Ming-Huang Chen
- a Organ Transplantation Institute, Medical College, Xiamen University , Xiamen, Fujian , China.,b Fujian Key Laboratory of Organ and Tissue Regeneration , Xiamen, Fujian , China.,c Department of Gynaecology and Obstetrics , Zhongshan Hospital , Xiamen, Fujian , China
| | - Lin Xu
- a Organ Transplantation Institute, Medical College, Xiamen University , Xiamen, Fujian , China.,b Fujian Key Laboratory of Organ and Tissue Regeneration , Xiamen, Fujian , China
| | - Bao-Qiong Liao
- a Organ Transplantation Institute, Medical College, Xiamen University , Xiamen, Fujian , China.,b Fujian Key Laboratory of Organ and Tissue Regeneration , Xiamen, Fujian , China
| | - Rui Lui
- c Department of Gynaecology and Obstetrics , Zhongshan Hospital , Xiamen, Fujian , China.,d Department of Gynaecology and Obstetrics , Zhongxin Hospital , Qingdao, Shangdong , China
| | - Fei-Ping Li
- b Fujian Key Laboratory of Organ and Tissue Regeneration , Xiamen, Fujian , China.,f Department of Life Science, Biological College, Southwest Forestry University , Kunming , China
| | - Yan-Hong Lin
- a Organ Transplantation Institute, Medical College, Xiamen University , Xiamen, Fujian , China.,e Department of Gynaecology and Obstetrics , the First Clinical Medical College, Fujian Medical University , Fuzhou , China
| | - Xian-Pei Fu
- a Organ Transplantation Institute, Medical College, Xiamen University , Xiamen, Fujian , China.,b Fujian Key Laboratory of Organ and Tissue Regeneration , Xiamen, Fujian , China
| | - Bin-Bin Fu
- a Organ Transplantation Institute, Medical College, Xiamen University , Xiamen, Fujian , China.,b Fujian Key Laboratory of Organ and Tissue Regeneration , Xiamen, Fujian , China
| | - Zi-Wei Hong
- a Organ Transplantation Institute, Medical College, Xiamen University , Xiamen, Fujian , China.,b Fujian Key Laboratory of Organ and Tissue Regeneration , Xiamen, Fujian , China
| | - Yu-Xin Liu
- a Organ Transplantation Institute, Medical College, Xiamen University , Xiamen, Fujian , China.,b Fujian Key Laboratory of Organ and Tissue Regeneration , Xiamen, Fujian , China
| | - Zhong-Quan Qi
- a Organ Transplantation Institute, Medical College, Xiamen University , Xiamen, Fujian , China.,b Fujian Key Laboratory of Organ and Tissue Regeneration , Xiamen, Fujian , China
| | - Hai-Long Wang
- a Organ Transplantation Institute, Medical College, Xiamen University , Xiamen, Fujian , China.,b Fujian Key Laboratory of Organ and Tissue Regeneration , Xiamen, Fujian , China
| |
Collapse
|
13
|
Nayyar N, Kaur I, Malhotra P, Bhatnagar RK. Quantitative proteomics of Sf21 cells during Baculovirus infection reveals progressive host proteome changes and its regulation by viral miRNA. Sci Rep 2017; 7:10902. [PMID: 28883418 PMCID: PMC5589936 DOI: 10.1038/s41598-017-10787-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 08/11/2017] [Indexed: 11/09/2022] Open
Abstract
System level knowledge of alterations in host is crucial to elucidate the molecular events of viral pathogenesis and to develop strategies to block viral establishment and amplification. Here, we applied quantitative proteomics approach to study global proteome changes in the host; Spodoptera frugiperda upon infection by a baculovirus, Spodoptera litura NPV at two stages i.e. 12 h and 72 h post infection. At 12 hpi, >95% of host proteins remained stable, however at 72 hpi, 52% host proteins exhibited downregulation of 2-fold or more. Functional analysis revealed significant upregulation of transposition and proteasomal machinery while translation, transcription, protein export and oxidative phosphorylation pathways were adversely affected. An assessment of perturbed proteome after viral infection and viral miRNA expression led to the identification of 117 genes that are potential targets of 10 viral miRNAs. Using miRNA mimics, we confirmed the down regulation of 9 host genes. The results comprehensively show dynamics of host responses after viral infection.
Collapse
Affiliation(s)
- Nishtha Nayyar
- Insect Resistance Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India.,Institute of Stem Cell Biology and Regenerative Medicine, National Centre for Biological Sciences, GKVK, Bellary Road, Bangalore, 560065, India
| | - Inderjeet Kaur
- Malaria Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Pawan Malhotra
- Malaria Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Raj K Bhatnagar
- Insect Resistance Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
14
|
Lu Y, Zhang Y, Pan MH, Kim NH, Sun SC, Cui XS. Daam1 regulates fascin for actin assembly in mouse oocyte meiosis. Cell Cycle 2017; 16:1350-1356. [PMID: 28682694 DOI: 10.1080/15384101.2017.1325045] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
As a formin protein, Daam1 (Dishevelled-associated activator of morphogenesis 1) is reported to regulate series of cell processes like endocytosis, cell morphology and migration via its effects on actin assembly in mitosis. However, whether Daam1 plays roles in female meiosis remains uncertain. In this study, we investigated the expression and functions of Daam1 during mouse oocyte meiosis. Our results indicated that Daam1 localized at the cortex of oocytes, which was similar with actin filaments. After Daam1 morpholino (MO) microinjection, the expression of Daam1 significantly decreased, which resulted in the failure of oocyte polar body extrusion. These results might be due to the defects of actin assembly, since the decreased fluorescence intensity of actin filaments in oocyte cortex and cytoplasm were observed. However, Daam1 knockdown seemed not to affect the meiotic spindle movement. In addition, we found that fascin might be the down effector of Daam1, since the protein expression of fascin decreased after Daam1 knockdown. Thus, our data suggested that Daam1 affected actin assembly during oocyte meiotic division via the regulation of fascin expression.
Collapse
Affiliation(s)
- Yujie Lu
- a College of Animal Science and Technology , Nanjing Agricultural University , Nanjing , China
| | - Yu Zhang
- a College of Animal Science and Technology , Nanjing Agricultural University , Nanjing , China
| | - Meng-Hao Pan
- a College of Animal Science and Technology , Nanjing Agricultural University , Nanjing , China
| | - Nam-Hyung Kim
- b Department of Animal Sciences , Chungbuk National University , Cheongju , Korea
| | - Shao-Chen Sun
- a College of Animal Science and Technology , Nanjing Agricultural University , Nanjing , China
| | - Xiang-Shun Cui
- b Department of Animal Sciences , Chungbuk National University , Cheongju , Korea
| |
Collapse
|
15
|
Huang Y, Pan J, Chen D, Zheng J, Qiu F, Li F, Wu Y, Wu W, Huang X, Qian J. Identification and functional analysis of differentially expressed genes in poorly differentiated hepatocellular carcinoma using RNA-seq. Oncotarget 2017; 8:35973-35983. [PMID: 28415592 PMCID: PMC5482631 DOI: 10.18632/oncotarget.16415] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 03/12/2017] [Indexed: 02/06/2023] Open
Abstract
Poorly differentiated (PD) hepatocellular carcinoma (HCC) has a worse prognosis compared to moderately differentiated (MD) and well differentiated (WD) HCC. We aimed to identify differentially expressed genes (DEGs) to explore the mechanism of PD HCC. Transcriptome sequencing was performed on tumor and adjacent non-tumorous tissues of PD, MD and WD HCC patients (3 for each group). DEGs were thus identified and functionally analyzed. Further RT-PCR was performed to validate DEGs specific for PD HCC in 47 pairs of samples (15 for PD, 18 for MD, 14 for WD). A total of 681 PD DEGs were detected, including 368 up-regulated and 313 down-regulated genes. Less DEGs were found for MD and especially for WD HCC. Through bioinformatics analysis, PD HCC DEGs were enriched in liver tissue and liver cancer cells, and in biological process and pathway including metabolism, cell cycle, translation and blood coagulation. Potential drugs and genetic perturbations were found to reverse the cancer condition. The RT-PCR results showed consistency with RNA-seq in the validation of 4 DEGs specific for PD HCC. This study detected and validated DEGs of PD HCC, which provides useful information on molecular mechanism of PD HCC for development of new biomarkers, therapeutic targets and drugs.
Collapse
Affiliation(s)
- Yi Huang
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, Fujian 350001, China.,Provincial Clinical College, Fujian Medical University, Fuzhou, Fujian 350001, China
| | - Jianbo Pan
- Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Dunyan Chen
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, Fujian 350001, China.,Provincial Clinical College, Fujian Medical University, Fuzhou, Fujian 350001, China
| | - Jiaying Zheng
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, Fujian 350001, China.,Provincial Clinical College, Fujian Medical University, Fuzhou, Fujian 350001, China
| | - Funan Qiu
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, Fujian 350001, China.,Department of Hepatobiliary Surgery, Fujian Provincial Hospital, Fuzhou, Fujian 350001, China
| | - Feng Li
- Provincial Clinical College, Fujian Medical University, Fuzhou, Fujian 350001, China.,Department of Pathology, Fujian Provincial Hospital, Fuzhou, Fujian 350001, China
| | - Yanan Wu
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, Fujian 350001, China.,Provincial Clinical College, Fujian Medical University, Fuzhou, Fujian 350001, China
| | - Wenbing Wu
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, Fujian 350001, China.,Provincial Clinical College, Fujian Medical University, Fuzhou, Fujian 350001, China
| | - Xiaoli Huang
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, Fujian 350001, China.,Provincial Clinical College, Fujian Medical University, Fuzhou, Fujian 350001, China
| | - Jiang Qian
- Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.,The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
16
|
Mulligan MK, Mozhui K, Pandey AK, Smith ML, Gong S, Ingels J, Miles MF, Lopez MF, Lu L, Williams RW. Genetic divergence in the transcriptional engram of chronic alcohol abuse: A laser-capture RNA-seq study of the mouse mesocorticolimbic system. Alcohol 2017; 58:61-72. [PMID: 27894806 DOI: 10.1016/j.alcohol.2016.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 09/12/2016] [Accepted: 09/16/2016] [Indexed: 12/14/2022]
Abstract
Genetic factors that influence the transition from initial drinking to dependence remain enigmatic. Recent studies have leveraged chronic intermittent ethanol (CIE) paradigms to measure changes in brain gene expression in a single strain at 0, 8, 72 h, and even 7 days following CIE. We extend these findings using LCM RNA-seq to profile expression in 11 brain regions in two inbred strains - C57BL/6J (B6) and DBA/2J (D2) - 72 h following multiple cycles of ethanol self-administration and CIE. Linear models identified differential expression based on treatment, region, strain, or interactions with treatment. Nearly 40% of genes showed a robust effect (FDR < 0.01) of region, and hippocampus CA1, cortex, bed nucleus stria terminalis, and nucleus accumbens core had the highest number of differentially expressed genes after treatment. Another 8% of differentially expressed genes demonstrated a robust effect of strain. As expected, based on similar studies in B6, treatment had a much smaller impact on expression; only 72 genes (p < 0.01) are modulated by treatment (independent of region or strain). Strikingly, many more genes (415) show a strain-specific and largely opposite response to treatment and are enriched in processes related to RNA metabolism, transcription factor activity, and mitochondrial function. Over 3 times as many changes in gene expression were detected in D2 compared to B6, and weighted gene co-expression network analysis (WGCNA) module comparison identified more modules enriched for treatment effects in D2. Substantial strain differences exist in the temporal pattern of transcriptional neuroadaptation to CIE, and these may drive individual differences in risk of addiction following excessive alcohol consumption.
Collapse
Affiliation(s)
- Megan K Mulligan
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, United States.
| | - Khyobeni Mozhui
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, United States
| | - Ashutosh K Pandey
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, United States
| | - Maren L Smith
- Department of Molecular Biology and Genetics, Virginia Commonwealth University, United States
| | - Suzhen Gong
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, United States
| | - Jesse Ingels
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, United States
| | - Michael F Miles
- Department of Molecular Biology and Genetics, Virginia Commonwealth University, United States
| | - Marcelo F Lopez
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, United States
| | - Lu Lu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, United States
| | - Robert W Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, United States
| |
Collapse
|
17
|
Tropomodulin-3 is essential in asymmetric division during mouse oocyte maturation. Sci Rep 2016; 6:29204. [PMID: 27374327 PMCID: PMC4931587 DOI: 10.1038/srep29204] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 06/16/2016] [Indexed: 11/08/2022] Open
Abstract
The dynamic polymerization and depolymerization of actin filaments is essential for various cellular processes such as cell migration, rotation, cytokinesis, and mammalian oocyte maturation. Tropomodulin 3 (Tmod3) binds to the slow-growing (pointed) ends of the actin filament, thereby protecting the filament from depolymerization. However, the roles of Tmod3 in mammalian oocyte maturation remain elusive. Tmod3 mRNA and protein is present at all stages of mouse oocyte maturation. Tmod3 protein is mainly localized in the cytoplasm and appears enriched near the chromosome during maturation. By knocking down or ectopically overexpressing Tmod3, we confirmed that Tmod3 regulate the level of the intracytoplasmic actin mesh and asymmetric spindle migration. Expression of N-terminal Tmod3 (correspond to 1–155 amino acids), which contains the tropomyosin-binding site, results in decreased density of the actin mesh, thereby demonstrating the importance of the interaction between tropomyosin and tropomodulin for the maintenance of the actin mesh. Taken together, these findings indicate that Tmod3 plays crucial roles in oocyte maturation, presumably by protecting the actin filament from depolymerization and thereby controlling the density of the cytoplasmic actin mesh.
Collapse
|
18
|
Namgoong S, Kim NH. Roles of actin binding proteins in mammalian oocyte maturation and beyond. Cell Cycle 2016; 15:1830-43. [PMID: 27152960 DOI: 10.1080/15384101.2016.1181239] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Actin nucleation factors, which promote the formation of new actin filaments, have emerged in the last decade as key regulatory factors controlling asymmetric division in mammalian oocytes. Actin nucleators such as formin-2, spire, and the ARP2/3 complex have been found to be important regulators of actin remodeling during oocyte maturation. Another class of actin-binding proteins including cofilin, tropomyosin, myosin motors, capping proteins, tropomodulin, and Ezrin-Radixin-Moesin proteins are thought to control actin cytoskeleton dynamics at various steps of oocyte maturation. In addition, actin dynamics controlling asymmetric-symmetric transitions after fertilization is a new area of investigation. Taken together, defining the mechanisms by which actin-binding proteins regulate actin cytoskeletons is crucial for understanding the basic biology of mammalian gamete formation and pre-implantation development.
Collapse
Affiliation(s)
- Suk Namgoong
- a Department of Animal Sciences , Chungbuk National University , Cheong-Ju , ChungChungBuk-do , Republic of Korea
| | - Nam-Hyung Kim
- a Department of Animal Sciences , Chungbuk National University , Cheong-Ju , ChungChungBuk-do , Republic of Korea
| |
Collapse
|
19
|
Huang C, Wu D, Khan FA, Jiao X, Guan K, Huo L. The GTPase SPAG-1 orchestrates meiotic program by dictating meiotic resumption and cytoskeleton architecture in mouse oocytes. Mol Biol Cell 2016; 27:1776-85. [PMID: 27053660 PMCID: PMC4884068 DOI: 10.1091/mbc.e16-02-0132] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 03/31/2016] [Indexed: 12/28/2022] Open
Abstract
GTPase sperm-associated antigen 1 is studied in the context of mammalian oogenesis and female fertility. It is found to have a role in oocyte meiotic execution via its involvement in AMPK and MAPK signaling pathways. In mammals, a finite population of oocytes is generated during embryogenesis, and proper oocyte meiotic divisions are crucial for fertility. Sperm-associated antigen 1 (SPAG-1) has been implicated in infertility and tumorigenesis; however, its relevance in cell cycle programs remains rudimentary. Here we explore a novel role of SPAG-1 during oocyte meiotic progression. SPAG-1 associated with meiotic spindles and its depletion severely compromised M-phase entry (germinal vesicle breakdown [GVBD]) and polar body extrusion. The GVBD defect observed was due to an increase in intraoocyte cAMP abundance and decrease in ATP production, as confirmed by the activation of AMP-dependent kinase (AMPK). SPAG-1 RNA interference (RNAi)–elicited defective spindle morphogenesis was evidenced by the dysfunction of γ-tubulin, which resulted from substantially reduced phosphorylation of MAPK and irregularly dispersed distribution of phospho-MAPK around spindles instead of concentration at spindle poles. Significantly, actin expression abruptly decreased and formation of cortical granule–free domains, actin caps, and contractile ring disrupted by SPAG-1 RNAi. In addition, the spindle assembly checkpoint remained functional upon SPAG-1 depletion. The findings broaden our knowledge of SPAG-1, showing that it exerts a role in oocyte meiotic execution via its involvement in AMPK and MAPK signaling pathways.
Collapse
Affiliation(s)
- Chunjie Huang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Di Wu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Faheem Ahmed Khan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaofei Jiao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Kaifeng Guan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lijun Huo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
20
|
Wang HH, Cui Q, Zhang T, Wang ZB, Ouyang YC, Shen W, Ma JY, Schatten H, Sun QY. Rab3A, Rab27A, and Rab35 regulate different events during mouse oocyte meiotic maturation and activation. Histochem Cell Biol 2016; 145:647-57. [PMID: 26791531 DOI: 10.1007/s00418-015-1404-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/31/2015] [Indexed: 01/22/2023]
Abstract
Rab family members play important roles in membrane trafficking, cell growth, and differentiation. Almost all components of the cell endomembrane system, the nucleus, and the plasma membrane are closely related to RAB proteins. In this study, we investigated the distribution and functions of three members of the Rab family, Rab3A, Rab27A, and Rab35, in mouse oocyte meiotic maturation and activation. The three Rab family members showed different localization patterns in oocytes. Microinjection of siRNA, antibody injection, or inhibitor treatment showed that (1) Rab3A regulates peripheral spindle and cortical granule (CG) migration, polarity establishment, and asymmetric division; (2) Rab27A regulates CG exocytosis following MII-stage oocyte activation; and (3) Rab35 plays an important role in spindle organization and morphology maintenance, and thus meiotic nuclear maturation. These results show that Rab proteins play important roles in mouse oocyte meiotic maturation and activation and that different members exert different distinct functions.
Collapse
Affiliation(s)
- H H Wang
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Q Cui
- Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| | - T Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Z B Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Y C Ouyang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - W Shen
- Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| | - J Y Ma
- Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| | - H Schatten
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, 65211, USA
| | - Q Y Sun
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China. .,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China. .,Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
21
|
Macaulay AD, Gilbert I, Scantland S, Fournier E, Ashkar F, Bastien A, Saadi HAS, Gagné D, Sirard MA, Khandjian ÉW, Richard FJ, Hyttel P, Robert C. Cumulus Cell Transcripts Transit to the Bovine Oocyte in Preparation for Maturation. Biol Reprod 2015; 94:16. [PMID: 26586844 PMCID: PMC4809558 DOI: 10.1095/biolreprod.114.127571] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 11/13/2015] [Indexed: 11/30/2022] Open
Abstract
So far, the characteristics of a good quality egg have been elusive, similar to the nature of the physiological, cellular, and molecular cues leading to its production both in vivo and in vitro. Current understanding highlights a strong and complex interdependence between the follicular cells and the gamete. Secreted factors induce cellular responses in the follicular cells, and direct exchange of small molecules from the cumulus cells to the oocyte through gap junctions controls meiotic arrest. Studying the interconnection between the cumulus cells and the oocyte, we previously demonstrated that the somatic cells also contribute transcripts to the gamete. Here, we show that these transcripts can be visualized moving down the transzonal projections (TZPs) to the oocyte, and that a time course analysis revealed progressive RNA accumulation in the TZPs, indicating that RNA transfer occurs before the initiation of meiosis resumption under a timetable fitting with the acquisition of developmental competence. A comparison of the identity of the nascent transcripts trafficking in the TZPs, with those in the oocyte increasing in abundance during maturation, and that are present on the oocyte's polyribosomes, revealed transcripts common to all three fractions, suggesting the use of transferred transcripts for translation. Furthermore, the removal of potential RNA trafficking by stripping the cumulus cells caused a significant reduction in maturation rates, indicating the need for the cumulus cell RNA transfer to the oocyte. These results offer a new perspective to the determinants of oocyte quality and female fertility, as well as provide insight that may eventually be used to improve in vitro maturation conditions.
Collapse
Affiliation(s)
- Angus D Macaulay
- Département des sciences animales, Centre de recherche en biologie de la reproduction, Institut sur la nutrition et les aliments fonctionnels, Université Laval, Québec, Québec, Canada
| | - Isabelle Gilbert
- Département des sciences animales, Centre de recherche en biologie de la reproduction, Institut sur la nutrition et les aliments fonctionnels, Université Laval, Québec, Québec, Canada
| | - Sara Scantland
- Département des sciences animales, Centre de recherche en biologie de la reproduction, Institut sur la nutrition et les aliments fonctionnels, Université Laval, Québec, Québec, Canada
| | - Eric Fournier
- Département des sciences animales, Centre de recherche en biologie de la reproduction, Institut sur la nutrition et les aliments fonctionnels, Université Laval, Québec, Québec, Canada
| | - Fazl Ashkar
- Department of Biomedical Sciences, Reproductive Biology Lab, University of Guelph, Guelph, Ontario, Canada
| | - Alexandre Bastien
- Département des sciences animales, Centre de recherche en biologie de la reproduction, Institut sur la nutrition et les aliments fonctionnels, Université Laval, Québec, Québec, Canada
| | - Habib A Shojaei Saadi
- Département des sciences animales, Centre de recherche en biologie de la reproduction, Institut sur la nutrition et les aliments fonctionnels, Université Laval, Québec, Québec, Canada
| | - Dominic Gagné
- Département des sciences animales, Centre de recherche en biologie de la reproduction, Institut sur la nutrition et les aliments fonctionnels, Université Laval, Québec, Québec, Canada
| | - Marc-André Sirard
- Département de Psychiatrie et Neurosciences, Institut universitaire en santé mentale de Québec, Université Laval, Québec City, Québec, Canada
| | - Édouard W Khandjian
- Département de Psychiatrie et Neurosciences, Institut universitaire en santé mentale de Québec, Université Laval, Québec City, Québec, Canada
| | - François J Richard
- Département des sciences animales, Centre de recherche en biologie de la reproduction, Institut sur la nutrition et les aliments fonctionnels, Université Laval, Québec, Québec, Canada
| | - Poul Hyttel
- Department of Veterinary Clinical and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Claude Robert
- Département des sciences animales, Centre de recherche en biologie de la reproduction, Institut sur la nutrition et les aliments fonctionnels, Université Laval, Québec, Québec, Canada
| |
Collapse
|
22
|
Kim HC, Jo YJ, Kim NH, Namgoong S. Small molecule inhibitor of formin homology 2 domains (SMIFH2) reveals the roles of the formin family of proteins in spindle assembly and asymmetric division in mouse oocytes. PLoS One 2015; 10:e0123438. [PMID: 25837661 PMCID: PMC4383420 DOI: 10.1371/journal.pone.0123438] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 03/03/2015] [Indexed: 11/19/2022] Open
Abstract
Dynamic actin reorganization is the main driving force for spindle migration and asymmetric cell division in mammalian oocytes. It has been reported that various actin nucleators including Formin-2 are involved in the polarization of the spindle and in asymmetric cell division. In mammals, the formin family is comprised of 15 proteins. However, their individual roles in spindle migration and/or asymmetric division have not been elucidated yet. In this study, we employed a newly developed inhibitor for formin family proteins, small molecule inhibitor of formin homology 2 domains (SMIFH2), to assess the functions of the formin family in mouse oocyte maturation. Treatment with SMIFH2 during in vitro maturation of mouse oocytes inhibited maturation by decreasing cytoplasmic and cortical actin levels. In addition, treatment with SMIFH2, especially at higher concentrations (500 μM), impaired the proper formation of meiotic spindles, indicating that formins play a role in meiotic spindle formation. Knockdown of the mDia2 formins caused a similar decrease in oocyte maturation and abnormal spindle morphology, mimicking the phenotype of SMIFH2-treated cells. Collectively, these results suggested that besides Formin-2, the other proteins of the formin, including mDia family play a role in asymmetric division and meiotic spindle formation in mammalian oocytes.
Collapse
Affiliation(s)
- Hak-Cheol Kim
- Department of Animal Sciences, Chungbuk National University, Cheong-Ju, ChungBuk, Republic of Korea
| | - Yu-Jin Jo
- Department of Animal Sciences, Chungbuk National University, Cheong-Ju, ChungBuk, Republic of Korea
| | - Nam-Hyung Kim
- Department of Animal Sciences, Chungbuk National University, Cheong-Ju, ChungBuk, Republic of Korea
- * E-mail: (SN); (NHK)
| | - Suk Namgoong
- Department of Animal Sciences, Chungbuk National University, Cheong-Ju, ChungBuk, Republic of Korea
- * E-mail: (SN); (NHK)
| |
Collapse
|