1
|
Ouaksel A, Carboni A, Slomberg D, Vidal V, Proux O, Santaella C, Brousset L, Angeletti B, Thiéry A, Rose J, Auffan M. Behavior and fate of ITER-like tungsten nanoparticles in freshwater ecosystems produced during operation and maintenance. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137201. [PMID: 39854992 DOI: 10.1016/j.jhazmat.2025.137201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/25/2024] [Accepted: 01/11/2025] [Indexed: 01/27/2025]
Abstract
Within the ITER project (International Thermonuclear Experimental Reactor) an international project building a magnetic confinement device to achieve fusion as a sustainable energy source, tungsten (W) is planned to serve as a plasma-facing component (PFC) in the tokamak, a magnetic confinement device used to produce controlled thermonuclear fusion power. Post plasma-W interactions, submicron tungsten particles can be released. This study investigated the exposure of lentic freshwater ecosystems to ITER-like tungsten nanoparticles in indoor aquatic mesocosms. Monitoring included tungsten (bio)distribution, (bio)transformation, speciation, and impacts following a relevant exposure scenario (chronic, medium-term, low-dose contamination). Additionally, mechanistic studies using a combination of microfluidic cells and X-ray Absorption Spectroscopy (XAS) provided a time-resolved understanding of tungsten's oxidative dissolution in freshwater. Following contamination, tungsten persisted in the water column (over 90 %), showing significant (∼40 %) and rapid (< 7 days) oxidation-dissolution and polymerization. This led to significant exposure of planktonic niches, strong affinity of polymeric tungsten species for aquatic vegetation, and potential transfer to higher trophic levels like aquatic snails. Over five weeks, the bio-physicochemical parameters of the mesocosms remained stable, and no acute impacts were observed on micro- and macro-organisms.
Collapse
Affiliation(s)
- A Ouaksel
- CEREGE, CNRS, Aix Marseille Univ, IRD, INRAE, Aix-en-Provence, France.
| | - A Carboni
- CEREGE, CNRS, Aix Marseille Univ, IRD, INRAE, Aix-en-Provence, France
| | - D Slomberg
- CEREGE, CNRS, Aix Marseille Univ, IRD, INRAE, Aix-en-Provence, France
| | - V Vidal
- CEREGE, CNRS, Aix Marseille Univ, IRD, INRAE, Aix-en-Provence, France
| | - O Proux
- OSUG UMR832 UGA, Grenoble, France; FAME-UHD, FAME, ESRF, Grenoble, France
| | - C Santaella
- Aix Marseille Univ, CEA, CNRS, BIAM, Saint-Paul-Lez-Durance, France
| | - L Brousset
- CNRS, Aix-Marseille Université, CNRS, IMBE, UMR 7263, Marseille, France
| | - B Angeletti
- CEREGE, CNRS, Aix Marseille Univ, IRD, INRAE, Aix-en-Provence, France
| | - A Thiéry
- CNRS, Aix-Marseille Université, CNRS, IMBE, UMR 7263, Marseille, France
| | - J Rose
- CEREGE, CNRS, Aix Marseille Univ, IRD, INRAE, Aix-en-Provence, France; Civil and Environmental Engineering, Duke University, Durham, NC, United States
| | - M Auffan
- CEREGE, CNRS, Aix Marseille Univ, IRD, INRAE, Aix-en-Provence, France; Civil and Environmental Engineering, Duke University, Durham, NC, United States
| |
Collapse
|
2
|
Cochran JP, Ngy P, Unrine JM, Matocha CJ, Tsyusko OV. Effects of Multiple Stressors, Pristine or Sulfidized Silver Nanomaterials, and a Pathogen on a Model Soil Nematode Caenorhabditis elegans. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:913. [PMID: 38869540 PMCID: PMC11173860 DOI: 10.3390/nano14110913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/14/2024] [Accepted: 05/21/2024] [Indexed: 06/14/2024]
Abstract
Previous research using the model soil nematode Caenorhabditis elegans has revealed that silver nanoparticles (AgNP) and their transformed counterpart, sulfidized AgNP (sAgNP), reduce their reproduction and survival. To expand our understanding of the environmental consequences of released NP, we examined the synergistic/antagonistic effects of AgNP and sAgNP along with AgNO3 (ionic control) on C. elegans infected with the pathogen Klebsiella pneumoniae. Individual exposures to each stressor significantly decreased nematode reproduction compared to controls. Combined exposures to equitoxic EC30 concentrations of two stressors, Ag in nanoparticulate (AgNP or sAgNP) or ionic form and the pathogen K. pneumoniae, showed a decline in the reproduction that was not significantly different compared to individual exposures of each of the stressors. The lack of enhanced toxicity after simultaneous combined exposure is partially due to Ag decreasing K. pneumoniae pathogenicity by inhibiting biofilm production outside the nematode and significantly reducing viable pathogens inside the host. Taken together, our results indicate that by hindering the ability of K. pneumoniae to colonize the nematode's intestine, Ag reduces K. pneumoniae pathogenicity regardless of Ag form. These results differ from our previous research where simultaneous exposure to zinc oxide (ZnO) NP and K. pneumoniae led to a reproduction level that was not significantly different from the controls.
Collapse
Affiliation(s)
- Jarad P. Cochran
- Department of Plant and Soil Sciences, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA; (J.P.C.); (J.M.U.); (C.J.M.)
| | - Phocheng Ngy
- Department of Plant and Soil Sciences, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA; (J.P.C.); (J.M.U.); (C.J.M.)
| | - Jason M. Unrine
- Department of Plant and Soil Sciences, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA; (J.P.C.); (J.M.U.); (C.J.M.)
- Kentucky Water Research Institute, University of Kentucky, Lexington, KY 40506, USA
| | - Christopher J. Matocha
- Department of Plant and Soil Sciences, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA; (J.P.C.); (J.M.U.); (C.J.M.)
| | - Olga V. Tsyusko
- Department of Plant and Soil Sciences, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA; (J.P.C.); (J.M.U.); (C.J.M.)
| |
Collapse
|
3
|
Harper BJ, Engstrom AM, Harper SL, Mackiewicz MR. Impacts of Differentially Shaped Silver Nanoparticles with Increasingly Complex Hydrophobic Thiol Surface Coatings in Small-Scale Laboratory Microcosms. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:654. [PMID: 38668148 PMCID: PMC11054431 DOI: 10.3390/nano14080654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/01/2024] [Accepted: 04/05/2024] [Indexed: 04/29/2024]
Abstract
We investigated the impacts of spherical and triangular-plate-shaped lipid-coated silver nanoparticles (AgNPs) designed to prevent surface oxidation and silver ion (Ag+) dissolution in a small-scale microcosm to examine the role of shape and surface functionalization on biological interactions. Exposures were conducted in microcosms consisting of algae, bacteria, crustaceans, and fish embryos. Each microcosm was exposed to one of five surface chemistries within each shape profile (at 0, 0.1, or 0.5 mg Ag/L) to investigate the role of shape and surface composition on organismal uptake and toxicity. The hybrid lipid-coated AgNPs did not result in any significant release of Ag+ and had the most significant toxicity to D. magna, the most sensitive species, although the bacterial population growth rate was reduced in all exposures. Despite AgNPs resulting in increasing algal growth over the experiment, we found no correlation between algal growth and the survival of D. magna, suggesting that the impacts of the AgNPs on bacterial survival influenced algal growth rates. No significant impacts on zebrafish embryos were noted in any exposure. Our results demonstrate that the size, shape, and surface chemistry of AgNPs can be engineered to achieve specific goals while mitigating nanoparticle risks.
Collapse
Affiliation(s)
- Bryan J. Harper
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA; (B.J.H.); (A.M.E.)
| | - Arek M. Engstrom
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA; (B.J.H.); (A.M.E.)
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR 97331, USA
| | - Stacey L. Harper
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA; (B.J.H.); (A.M.E.)
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR 97331, USA
- Oregon Nanoscience and Microtechnologies Institute, Corvallis, OR 97331, USA
| | | |
Collapse
|
4
|
Slomberg DL, Auffan M, Payet M, Carboni A, Ouaksel A, Brousset L, Angeletti B, Grisolia C, Thiéry A, Rose J. Tritiated stainless steel (nano)particle release following a nuclear dismantling incident scenario: Significant exposure of freshwater ecosystem benthic zone. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133093. [PMID: 38056254 DOI: 10.1016/j.jhazmat.2023.133093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/07/2023] [Accepted: 11/23/2023] [Indexed: 12/08/2023]
Abstract
Nuclear facilities continue to be developed to help meet global energy demands while reducing fossil fuel use. However, an incident during the dismantling of these facilities could accidentally release tritiated particles (e.g. stainless steel) into the environment. Herein, we investigated the environmental dosimetry, fate, and impact of tritiated stainless steel (nano)particles (1 mg.L-1 particles and 1 MBq.L-1 tritium) using indoor freshwater aquatic mesocosms to mimic a pond ecosystem. The tritium (bio)distribution and particle fate and (bio)transformation were monitored in the different environmental compartments over 4 weeks using beta counting and chemical analysis. Impacts on picoplanktonic and picobenthic communities, and the benthic freshwater snail, Anisus vortex, were assessed as indicators of environmental health. Following contamination, some tritium (∼16%) desorbed into the water column while the particles rapidly settled onto the sediment. After 4 weeks, the particles and the majority of the tritium (>80%) had accumulated in the sediment, indicating a high exposure of the benthic ecological niche. Indeed, the benthic grazers presented significant behavioral changes despite low steel uptake (<0.01%). These results provide knowledge on the potential environmental impacts of incidental tritiated (nano)particles, which will allow for improved hazard and risk management.
Collapse
Affiliation(s)
- Danielle L Slomberg
- CNRS, Aix-Marseille Univ., IRD, INRAE, CEREGE, 13545 Aix-en-Provence, France.
| | - Mélanie Auffan
- CNRS, Aix-Marseille Univ., IRD, INRAE, CEREGE, 13545 Aix-en-Provence, France; Civil and Environmental Engineering Department, Duke University, Durham, NC 27707, United States
| | | | - Andrea Carboni
- CNRS, Aix-Marseille Univ., IRD, INRAE, CEREGE, 13545 Aix-en-Provence, France
| | - Amazigh Ouaksel
- CNRS, Aix-Marseille Univ., IRD, INRAE, CEREGE, 13545 Aix-en-Provence, France
| | - Lenka Brousset
- CNRS, IRD, IMBE, Aix-Marseille Univ, Avignon Univ., Marseille, France
| | - Bernard Angeletti
- CNRS, Aix-Marseille Univ., IRD, INRAE, CEREGE, 13545 Aix-en-Provence, France
| | | | - Alain Thiéry
- CNRS, IRD, IMBE, Aix-Marseille Univ, Avignon Univ., Marseille, France
| | - Jérôme Rose
- CNRS, Aix-Marseille Univ., IRD, INRAE, CEREGE, 13545 Aix-en-Provence, France; Civil and Environmental Engineering Department, Duke University, Durham, NC 27707, United States
| |
Collapse
|
5
|
Gräf T, Koch V, Köser J, Fischer J, Tessarek C, Filser J. Biotic and Abiotic Interactions in Freshwater Mesocosms Determine Fate and Toxicity of CuO Nanoparticles. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12376-12387. [PMID: 37561908 DOI: 10.1021/acs.est.3c00493] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Transformation, dissolution, and sorption of copper oxide nanoparticles (CuO-NP) play an important role in freshwater ecosystems. We present the first mesocosm experiment on the fate of CuO-NP and the dynamics of the zooplankton community over a period of 12 months. Increasingly low (0.08-0.28 mg Cu L-1) and high (0.99-2.99 mg Cu L-1) concentrations of CuO-NP and CuSO4 (0.10-0.34 mg Cu L-1) were tested in a multiple dosing scenario. At the high applied concentration (CuO-NP_H) CuO-NP aggregated and sank onto the sediment layer, where we recovered 63% of Cu applied. For the low concentration (CuO-NP_L) only 41% of applied copper could be recovered in the sediment. In the water column, the percentage of initially applied Cu recovered was on average 3-fold higher for CuO-NP_L than for CuO-NP_H. Zooplankton abundance was substantially compromised in the treatments CuSO4 (p < 0.001) and CuO-NP_L (p < 0.001). Community analysis indicated that Cladocera were most affected (bk = -0.49), followed by Nematocera (bk = -0.32). The abundance of Cladocera over time and of Dixidae in summer was significantly reduced in the treatment CuO-NP_L (p < 0.001; p < 0.05) compared to the Control. Our results indicate a higher potential for negative impacts on the freshwater community when lower concentrations of CuO-NP (<0.1 mg Cu L-1) enter the ecosystem.
Collapse
Affiliation(s)
- Tonya Gräf
- FB 02 UFT - Centre for Environmental Research and Sustainable Technology, General and Theoretical Ecology, University of Bremen, Leobener Str. 6, 28359 Bremen, Germany
| | - Viviane Koch
- FB 02 UFT - Centre for Environmental Research and Sustainable Technology, General and Theoretical Ecology, University of Bremen, Leobener Str. 6, 28359 Bremen, Germany
| | - Jan Köser
- FB 02 UFT - Centre for Environmental Research and Sustainable Technology, Chemical Process Engineering, University of Bremen, Leobener Str. 6, 28359 Bremen, Germany
| | - Jonas Fischer
- FB 02 UFT - Centre for Environmental Research and Sustainable Technology, General and Theoretical Ecology, University of Bremen, Leobener Str. 6, 28359 Bremen, Germany
| | - Christian Tessarek
- Institute of Solid State Physics, University of Bremen, Otto-Hahn-Allee 1, 6, 28359 Bremen, Germany
| | - Juliane Filser
- FB 02 UFT - Centre for Environmental Research and Sustainable Technology, General and Theoretical Ecology, University of Bremen, Leobener Str. 6, 28359 Bremen, Germany
| |
Collapse
|
6
|
Grgić I, Cetinić KA, Karačić Z, Previšić A, Rožman M. Fate and effects of microplastics in combination with pharmaceuticals and endocrine disruptors in freshwaters: Insights from a microcosm experiment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160387. [PMID: 36427730 DOI: 10.1016/j.scitotenv.2022.160387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/03/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Microplastic contamination of freshwater ecosystems has become an increasing environmental concern. To advance the hazard assessment of microplastics, we conducted a microcosm experiment in which we exposed a simplified aquatic ecosystem consisting of moss and caddisflies to microplastics (polyethylene, polystyrene and polypropylene) and pharmaceuticals and personal care products (1H-benzotriazole, bisphenol A, caffeine, gemfibrozil, ketoprofen, methylparaben, estriol, diphenhydramine, tris (1-chloro-2-propyl) phosphate) over the course of 60 days. We monitored the flux of microplastics within the microcosm, as well as the metabolic and total protein variation of organisms. This study offers evidence highlighting the capacity of moss to act as a sink for free-floating microplastics in freshwater environments. Moss is also shown to serve as a source and pathway for microplastic particles to enter aquatic food webs via caddisflies feeding off of the moss. Although most ingested microparticles were eliminated between caddisflies life stages, a small fraction of microplastics was transferred from aquatic to terrestrial ecosystem by emergence. While moss exhibited a mild response to microplastic stress, caddisflies ingesting microplastics showed stress comparable to that caused by exposure to pharmaceuticals. The molecular responses that the stressors triggered were tentatively identified and related to phenotypic responses, such as the delayed development manifested through the delayed emergence of caddisflies exposed to stress. Overall, our study provides valuable insights into the adverse effects of microplastics on aquatic species, compares the impacts of microplastics on freshwater biota to those of pharmaceuticals and endocrine disrupting compounds, and demonstrates the role aquatic organisms have in redistributing microplastics between aquatic and terrestrial ecosystems.
Collapse
Affiliation(s)
| | | | | | - Ana Previšić
- Department of Biology, Zoology, Faculty of Science, University of Zagreb, Zagreb, Croatia.
| | | |
Collapse
|
7
|
Collin B, Auffan M, Doelsch E, Proux O, Kieffer I, Ortet P, Santaella C. Bacterial Metabolites and Particle Size Determine Cerium Oxide Nanomaterial Biotransformation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:16838-16847. [PMID: 36350260 DOI: 10.1021/acs.est.2c05280] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Soil is a major receptor of manufactured nanomaterials (NMs) following unintentional releases or intentional uses. Ceria NMs have been shown to undergo biotransformation in plant and soil organisms with a partial Ce(IV) reduction into Ce(III), but the influence of environmentally widespread soil bacteria is poorly understood. We used high-energy resolution fluorescence-detected X-ray absorption spectroscopy (HERFD-XAS) with an unprecedented detection limit to assess Ce speciation in a model soil bacterium (Pseudomonas brassicacearum) exposed to CeO2 NMs of different sizes and shapes. The findings revealed that the CeO2 NM's size drives the biotransformation process. No biotransformation was observed for the 31 nm CeO2 NMs, contrary to 7 and 4 nm CeO2 NMs, with a Ce reduction of 64 ± 14% and 70 ± 15%, respectively. This major reduction appeared quickly, from the early exponential bacterial growth phase. Environmentally relevant organic acid metabolites secreted by Pseudomonas, especially in the rhizosphere, were investigated. The 2-keto-gluconic and citric acid metabolites alone were able to induce a significant reduction in 4 nm CeO2 NMs. The high biotransformation measured for <7 nm NMs would affect the fate of Ce in the soil and biota.
Collapse
Affiliation(s)
- Blanche Collin
- Aix Marseille Univ, CNRS, IRD, INRAE, Coll France, CEREGE, Aix-en-Provence, France
- Aix Marseille Univ, CEA, CNRS, BIAM, LEMIRE, Laboratory of Microbial Ecology of the Rhizosphere, ECCOREV FR 3098, F-13108 St-Paul-lez-Durance, France
| | - Mélanie Auffan
- Aix Marseille Univ, CNRS, IRD, INRAE, Coll France, CEREGE, Aix-en-Provence, France
| | - Emmanuel Doelsch
- CIRAD, UPR Recyclage et risque, F-34398 Montpellier, France
- Recyclage et risque, Univ Montpellier, CIRAD, Montpellier, France
| | - Olivier Proux
- BM30/CRG-FAME, ESRF, Université Grenoble Alpes, CNRS, IRSTEa, Météo France, IRD, OSUG, 38000 Grenoble, France
| | - Isabelle Kieffer
- BM30/CRG-FAME, ESRF, Université Grenoble Alpes, CNRS, IRSTEa, Météo France, IRD, OSUG, 38000 Grenoble, France
| | - Philippe Ortet
- Aix Marseille Univ, CEA, CNRS, BIAM, LEMIRE, Laboratory of Microbial Ecology of the Rhizosphere, ECCOREV FR 3098, F-13108 St-Paul-lez-Durance, France
| | - Catherine Santaella
- Aix Marseille Univ, CEA, CNRS, BIAM, LEMIRE, Laboratory of Microbial Ecology of the Rhizosphere, ECCOREV FR 3098, F-13108 St-Paul-lez-Durance, France
| |
Collapse
|
8
|
Cetinić KA, Grgić I, Previšić A, Rožman M. The curious case of methylparaben: Anthropogenic contaminant or natural origin? CHEMOSPHERE 2022; 294:133781. [PMID: 35104549 DOI: 10.1016/j.chemosphere.2022.133781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/28/2021] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
The widespread use of methylparaben as a preservative has caused increased exposure to natural aquatic systems in recent decades. However, current studies have suggested that exposure to this compound can result in endocrine disrupting effects, raising much concern regarding its environmental impact. In contast, methylparaben has also been found to be part of the metabolome of some organisms, prompting the question as to whether this compound may be more natural than previously assumed. Through a combination of field studies investigating the natural presence of methylparaben across different taxa, and a 54-day microcosm experiment examining the bioaccumulation and movement of methylparaben across different life stages of aquatic insects (order Trichoptera), our results offer evidence suggesting the natural origin of methylparaben in aquatic and terrestrial biota. This study improves our understanding of the role and impact this compound has on biota and challenges the current paradigm that methylparaben is exclusively a harmful anthropogenic contaminant. Our findings highlight the need for further research on this topic to fully understand the origin and role of parabens in the environment which will allow for a comprehensive understanding of the extent of environmental contamination and result in a representative assessment of the environmental risk that may pose.
Collapse
Affiliation(s)
| | | | - Ana Previšić
- Department of Biology, Zoology, Faculty of Science, University of Zagreb, Zagreb, Croatia.
| | | |
Collapse
|
9
|
Carboni A, Slomberg DL, Nassar M, Santaella C, Masion A, Rose J, Auffan M. Aquatic Mesocosm Strategies for the Environmental Fate and Risk Assessment of Engineered Nanomaterials. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:16270-16282. [PMID: 34854667 DOI: 10.1021/acs.est.1c02221] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In the past decade, mesocosms have emerged as a useful tool for the environmental study of engineered nanomaterials (ENMs) as they can mimic the relevant exposure scenario of contamination. Herein, we analyzed the scientific outcomes of aquatic mesocosm experiments, with regard to their designs, the ENMs tested, and the end points investigated. Several mesocosm designs were consistently applied in the past decade to virtually mimic various contamination scenarios with regard to ecosystem setting as well as ENMs class, dose, and dosing. Statistical analyses were carried out with the literature data to identify the main parameters driving ENM distribution in the mesocosms and the potential risk posed to benthic and planktonic communities as well as global ecosystem responses. These analyses showed that at the end of the exposure, mesocosm size (water volume), experiment duration, and location indoor/outdoor had major roles in defining the ENMs/metal partitioning. Moreover, a higher exposure of the benthic communities is often observed but did not necessarily translate to a higher risk due to the lower hazard posed by transformed ENMs in the sediments (e.g., aggregated, sulfidized). However, planktonic organisms were generally exposed to lower concentrations of potentially more reactive and toxic ENM species. Hence, mesocosms can be complementary tools to existing standard operational procedures for regulatory purposes and environmental fate and risk assessment of ENMs. To date, the research was markedly unbalanced toward the investigation of metal-based ENMs compared to metalloid- and carbon-based ENMs but also nanoenabled products. Future studies are expected to fill this gap, with special regard to high production volume and potentially hazardous ENMs. Finally, to take full advantage of mesocosms, future studies must be carefully planned to incorporate interdisciplinary approaches and ensure that the large data sets produced are fully exploited.
Collapse
Affiliation(s)
- Andrea Carboni
- CNRS, Aix-Marseille Univ., IRD, INRAE, CEREGE, 13545 Aix-en-Provence, France
| | - Danielle L Slomberg
- CNRS, Aix-Marseille Univ., IRD, INRAE, CEREGE, 13545 Aix-en-Provence, France
| | - Mohammad Nassar
- CNRS, Aix-Marseille Univ., IRD, INRAE, CEREGE, 13545 Aix-en-Provence, France
| | - Catherine Santaella
- Laboratory of Microbial Ecology of the Rhizosphere, Aix Marseille Univ, CEA, CNRS, BIAM, LEMiRE, ECCOREV FR 3098, F-13108 Saint Paul-Lez-Durance, France
| | - Armand Masion
- CNRS, Aix-Marseille Univ., IRD, INRAE, CEREGE, 13545 Aix-en-Provence, France
| | - Jerome Rose
- CNRS, Aix-Marseille Univ., IRD, INRAE, CEREGE, 13545 Aix-en-Provence, France
- Civil and Environmental Engineering Department, Duke University, Durham, North Carolina 27707, United States
| | - Melanie Auffan
- CNRS, Aix-Marseille Univ., IRD, INRAE, CEREGE, 13545 Aix-en-Provence, France
- Civil and Environmental Engineering Department, Duke University, Durham, North Carolina 27707, United States
| |
Collapse
|
10
|
Ayadi A, Rose J, de Garidel-Thoron C, Hendren C, Wiesner MR, Auffan M. MESOCOSM: A mesocosm database management system for environmental nanosafety. NANOIMPACT 2021; 21:100288. [PMID: 35559777 DOI: 10.1016/j.impact.2020.100288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/26/2020] [Accepted: 12/15/2020] [Indexed: 06/15/2023]
Abstract
Engineered nanomaterials (ENMs) are intentionally designed and produced by humans to revolutionize the manufacturing sector, such as electronic goods, paints, tires, clothes, cosmetic products, and biomedicine. With the spread of these ENMs in our daily lives, scientific research have generated a huge amount of data related to their potential impacts on human and environment health. To date, these data are gathered in databases mainly focused on the (eco)toxicity and occupational exposure to ENMs. These databases are therefore not suitable to build well-informed environmental exposure scenarios covering the life cycle of ENMs. In this paper, we report the construction of one of the first centralized mesocosm database management system for environmental nanosafety (called MESOCOSM) containing experimental data collected from mesocosm experiments suited for understanding and quantifying both the environmental hazard and exposure. The database, which is publicly available through https://aliayadi.github.io/MESOCOSM-database/, contains 5200 entities covering tens of unique experiments investigating Ag, CeO2, CuO, TiO2-based ENMs as well as nano-enabled products. These entities are divided into different groups i.e. physicochemical properties of ENMS, environmental, exposure and hazard endpoints, and other general information about the mesocosm testing, resulting in more than forty parameters in the database. The MESOCOSM database is equipped with a powerful application, consisting of a graphical user interface (GUI), allowing users to manage and search data using complex queries without relying on programmers. MESOCOSM aims to predict and explain ENMs behavior and fate in different ecosystems as well as their potential impacts on the environment at different stages of the nanoproducts lifecycle. MESOCOSM is expected to benefit the nanosafety community by providing a continuous source of critical information and additional characterization factors for predicting ENMs interactions with the environment and their risks.
Collapse
Affiliation(s)
- Ali Ayadi
- CEREGE, CNRS, Aix Marseille Univ, IRD, INRAE, Coll France, Aix-en-Provence, France.
| | - Jérôme Rose
- CEREGE, CNRS, Aix Marseille Univ, IRD, INRAE, Coll France, Aix-en-Provence, France; Duke university, Civil and Environmental Engineering, Durham, USA
| | | | | | - Mark R Wiesner
- Duke university, Civil and Environmental Engineering, Durham, USA
| | - Mélanie Auffan
- CEREGE, CNRS, Aix Marseille Univ, IRD, INRAE, Coll France, Aix-en-Provence, France; Duke university, Civil and Environmental Engineering, Durham, USA
| |
Collapse
|
11
|
Klaper RD. The Known and Unknown about the Environmental Safety of Nanomaterials in Commerce. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2000690. [PMID: 32407002 DOI: 10.1002/smll.202000690] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 06/11/2023]
Abstract
The widespread nanomaterial use in commercial products has fed significant concern over environmental health and safety ramifications. Initially, little was known as to how these highly reactive particulates interacted with biological systems. Nanomaterials have introduced complexities not normally considered in traditional safety assessments of chemicals and therefore have generated uncertainty in the reliability of standard tests of safety. Advances in understanding the potential impacts of nanomaterials have occurred since their introduction, particularly for those used in the greatest quantities in commerce. The impact of characteristics such as charge, size, surface functionalization, chemical composition, and certain transformations on the potential effect of nanomaterials in the environment continue to move the field forward. However, generalizations of risk based on any one factor across nanomaterials is not possible. Estimating risk also remains difficult due to the introduction of materials that are new and more complex, minimal information on the specific molecular interactions of nanomaterials and organisms, and the need for more tools for measuring the dynamics of nanomaterial state and fate in complex matrices. Finally, exposure estimates are difficult due to difficulty of environmental monitoring which may be exacerbated by lack of information on nanomaterials in products and new uses in the marketplace.
Collapse
Affiliation(s)
- Rebecca D Klaper
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, 600 East Greenfield Ave., Milwaukee, Wisconsin, 53204, USA
| |
Collapse
|
12
|
Albarano L, Costantini M, Zupo V, Lofrano G, Guida M, Libralato G. Marine sediment toxicity: A focus on micro- and mesocosms towards remediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 708:134837. [PMID: 31791766 DOI: 10.1016/j.scitotenv.2019.134837] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/24/2019] [Accepted: 10/03/2019] [Indexed: 06/10/2023]
Abstract
Micro- and/or mesocosms are experimental tools bringing ecologically relevant components of the natural environment under controlled conditions closest to the real world, without losing the advantage of reliable reference conditions and replications, providing a link between laboratory studies and filed studies in natural environments. Here, for the first time, a formal comparison of different types of mesocosm applied to the study of marine contaminants is offered, considering that pollution of coastal areas represented a major concern in the last decades because of the abundance of discharged toxic substances. In particular, the structural characteristics of micro- and mesocosms (m-cosms) used to study marine contaminated sediments were reviewed, focusing on their advantages/disadvantages. Their potentiality to investigate sediment remediation have been discussed, offering new perspective on how the use of m-cosms can be useful for the development of practical application in the development of solutions for contaminated sediment management in the contaminated marine environment.
Collapse
Affiliation(s)
- Luisa Albarano
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia 21, 80126, Napoli, Italy
| | - Maria Costantini
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy.
| | - Valerio Zupo
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Giusy Lofrano
- Centro Servizi Metrologici e Tecnologici Avanzati (CeSMA), Complesso Universitario di Monte Sant'Angelo, Via Cinthia 21, 80126, Napoli, Italy
| | - Marco Guida
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia 21, 80126, Napoli, Italy
| | - Giovanni Libralato
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia 21, 80126, Napoli, Italy
| |
Collapse
|
13
|
Villa S, Maggioni D, Hamza H, Di Nica V, Magni S, Morosetti B, Parenti CC, Finizio A, Binelli A, Della Torre C. Natural molecule coatings modify the fate of cerium dioxide nanoparticles in water and their ecotoxicity to Daphnia magna. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 257:113597. [PMID: 31744685 DOI: 10.1016/j.envpol.2019.113597] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 06/10/2023]
Abstract
The ongoing development of nanotechnology has raised concerns regarding the potential risk of nanoparticles (NPs) to the environment, particularly aquatic ecosystems. A relevant aspect that drives NP toxicity is represented by the abiotic and biotic processes occurring in natural matrices that modify NP properties, ultimately affecting their interactions with biological targets. Therefore, the objective of this study was to perform an ecotoxicological evaluation of CeO2NPs with different surface modifications representative of NP bio-interactions with molecules naturally occurring in the water environment, to identify the role of biomolecule coatings on nanoceria toxicity to aquatic organisms. Ad hoc synthesis of CeO2NPs with different coating agents, such as Alginate and Chitosan, was performed. The ecotoxicity of the coated CeO2NPs was assessed on the marine bacteria Aliivibrio fischeri, through the Microtox® assay, and with the freshwater crustacean Daphnia magna. Daphnids at the age of 8 days were exposed for 48 h, and several toxicity endpoints were evaluated, from the molecular level to the entire organism. Specifically, we applied a suite of biomarkers of oxidative stress and neurotoxicity and assessed the effects on behaviour through the evaluation of swimming performance. The different coatings affected the hydrodynamic behaviour and colloidal stability of the CeO2NPs in exposure media. In tap water, NPs coated with Chitosan derivative were more stable, while the coating with Alginate enhanced the aggregation and sedimentation rate. The coatings also significantly influenced the toxic effects of CeO2NPs. Specifically, in D. magna the CeO2NPs coated with Alginate triggered oxidative stress, while behavioural assays showed that CeO2NPs coated with Chitosan induced hyperactivity. Our findings emphasize the role of environmental modification in determining the NP effects on aquatic organisms.
Collapse
Affiliation(s)
- Sara Villa
- Department of Earth and Environmental Sciences, University of Milan Bicocca, Italy
| | | | - Hady Hamza
- Department of Chemistry, University of Milan, Italy
| | - Valeria Di Nica
- Department of Earth and Environmental Sciences, University of Milan Bicocca, Italy
| | - Stefano Magni
- Department of Biosciences, University of Milan, Italy
| | | | | | - Antonio Finizio
- Department of Earth and Environmental Sciences, University of Milan Bicocca, Italy
| | | | | |
Collapse
|
14
|
Slomberg DL, Catalano R, Ziarelli F, Viel S, Bartolomei V, Labille J, Masion A. Aqueous aging of a silica coated TiO2 UV filter used in sunscreens: investigations at the molecular scale with dynamic nuclear polarization NMR. RSC Adv 2020; 10:8266-8274. [PMID: 35497815 PMCID: PMC9049957 DOI: 10.1039/d0ra00595a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 02/12/2020] [Indexed: 12/23/2022] Open
Abstract
Short-term, aqueous aging of a commercial nanocomposite TiO2 UV filter with a protective SiO2 shell was examined in abiotic simulated fresh- and seawater. Under these conditions, the SiO2 layer was quantitatively removed (∼88–98%) within 96 hours, as determined using inductively coupled plasma-atomic emission spectroscopy (ICP-AES). While these bulk ICP-AES analyses suggested almost identical SiO2 shell degradation after aging in fresh- and seawater, surface sensitive 29Si dynamic nuclear polarization (DNP) solid-state nuclear magnetic resonance (SSNMR), with signal enhancements of 5–10× compared to standard SSNMR, was able to distinguish differences in the aged nanocomposites at the molecular level. DNP-SSNMR revealed that the attachment of the silica layer to the underlying TiO2 core rested on substantial Si–O–Ti bond formation, bonds which were preserved after freshwater aging, yet barely present after aging in seawater. The removal of the protective SiO2 layer is due to ionic strength accelerated dissolution, which could present significant consequences to aqueous environments when the photoactive TiO2 core becomes exposed. This work demonstrates the importance of characterizing aged nanocomposites not only on the bulk scale, but also on the molecular level by employing surface sensitive techniques, such as DNP-NMR. Molecular level details on surface transformation and elemental speciation will be crucial for improving the environmental safety of nanocomposites. Short-term, aqueous aging of a commercial nanocomposite TiO2 UV filter with a protective SiO2 shell was examined in abiotic simulated fresh- and seawater.![]()
Collapse
Affiliation(s)
| | | | - Fabio Ziarelli
- Aix-Marseille Univ
- CNRS
- Centrale Marseille
- FSCM
- 13397 Marseille
| | | | | | | | | |
Collapse
|
15
|
Wu F, Harper BJ, Crandon LE, Harper SL. Assessment of Cu and CuO nanoparticle ecological responses using laboratory small-scale microcosms. ENVIRONMENTAL SCIENCE. NANO 2020; 7:105-115. [PMID: 32391155 PMCID: PMC7211403 DOI: 10.1039/c9en01026b] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Copper based nanoparticles (NPs) are used extensively in industrial and commercial products as sensors, catalysts, surfactants, antimicrobials, and for other purposes. The high production volume and increasing use of copper-based NPs make their ecological risk a concern. Commonly used copper-based NPs are composed of metallic copper or copper oxide (Cu and CuO NPs); however, their environmental toxicity can vary dramatically depending on their physico-chemical properties, such as dissolution, aggregation behavior, and the generation of reactive oxygen species. Here, we investigated the NP dissolution, organismal uptake and aquatic toxicity of Cu and CuO NPs at 0, 0.1, 1, 5 or 10 mg Cu/L using a previously developed multi-species microcosm. This 5-day microcosm assay was comprised of C. reinhardtti, E. coli, D. magna, and D. rerio. We hypothesized that Cu and CuO NPs can elicit differential toxicity to the organisms due to alterations in particle dissolution and variations in organismal uptake. The actual concentrations of dissolved Cu released from the NPs were compared to ionic copper controls (CuCl2) at the same concentrations to determine the relative contribution of particulate and dissolved Cu on organism uptake and toxicity. We found that both NPs had higher uptake in D. magna and zebrafish than equivalent ionic exposures, suggesting that both Cu-based NPs are taken up by organisms. Cu NP exposures significantly inhibited algal growth rate, D. magna survival, and zebrafish hatching while exposure to equivalent concentrations of CuCl2 (dissolved Cu fraction) and CuO NPs did not. This indicates that Cu NPs themselves likely elicited a particle-specific mechanism of toxicity to the test organisms, or a combination effect from ionic Cu and the Cu NPs. Overall, this work was the first study to utilize a small-scale rapid assay designed to evaluate the fate and ecotoxicological impacts of Cu and CuO NPs in a mixed aquatic community.
Collapse
Affiliation(s)
- Fan Wu
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, China
- School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, OR, United States
| | - Bryan J. Harper
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, United States
| | - Lauren E. Crandon
- School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, OR, United States
| | - Stacey L. Harper
- School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, OR, United States
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, United States
- Oregon Nanoscience and Microtechnologies Institute, Eugene, Oregon, United States
- Corresponding author: Stacey L. Harper:
| |
Collapse
|
16
|
De Marchi L, Coppola F, Soares AMVM, Pretti C, Monserrat JM, Torre CD, Freitas R. Engineered nanomaterials: From their properties and applications, to their toxicity towards marine bivalves in a changing environment. ENVIRONMENTAL RESEARCH 2019; 178:108683. [PMID: 31539823 DOI: 10.1016/j.envres.2019.108683] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/18/2019] [Accepted: 08/20/2019] [Indexed: 05/05/2023]
Abstract
As a consequence of their unique characteristics, the use of Engineered Nanomaterials (ENMs) is rapidly increasing in industrial, agricultural products, as well as in environmental technology. However, this fast expansion and use make likely their release into the environment with particular concerns for the aquatic ecosystems, which tend to be the ultimate sink for this type of contaminants. Considering the settling behaviour of particulates, benthic organisms are more likely to be exposed to these compounds. In this way, the present review aims to summarise the most recent data available from the literature on ENMs behaviour and fate in aquatic ecosystems, focusing on their ecotoxicological impacts towards marine and estuarine bivalves. The selection of ENMs presented here was based on the OECD's Working Party on Manufactured Nanomaterials (WPMN), which involves the safety testing and risk assessment of ENMs. Physical-chemical characteristics and properties, applications, environmental relevant concentrations and behaviour in aquatic environment, as well as their toxic impacts towards marine bivalves are discussed. Moreover, it is also identified the impacts derived from the simultaneous exposure of marine organisms to ENMs and climate changes as an ecologically relevant scenario.
Collapse
Affiliation(s)
- Lucia De Marchi
- Department of Biology & Center for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193, Aveiro, Portugal; Department of Mechanical Engineering & Center for Mechanical Technology and Automation (TEMA), University of Aveiro, 3810-193, Aveiro, Portugal
| | - Francesca Coppola
- Department of Biology & Center for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193, Aveiro, Portugal
| | - Amadeu M V M Soares
- Department of Biology & Center for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193, Aveiro, Portugal
| | - Carlo Pretti
- Department of Veterinary Sciences, University of Pisa, San Piero a Grado, Pisa, 56122, Italy
| | - José M Monserrat
- Universidade Federal Do Rio Grande, FURG, Instituto de Ciências Biológicas (ICB), Av Itália km 8 s/n - Caixa Postal 474, 96200-970, Rio Grande, RS, Brazil
| | - Camilla Della Torre
- Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milano, Italy
| | - Rosa Freitas
- Department of Biology & Center for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
17
|
Masion A, Auffan M, Rose J. Monitoring the Environmental Aging of Nanomaterials: An Opportunity for Mesocosm Testing? MATERIALS 2019; 12:ma12152447. [PMID: 31370318 PMCID: PMC6696399 DOI: 10.3390/ma12152447] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/25/2019] [Accepted: 07/31/2019] [Indexed: 11/16/2022]
Abstract
Traditional aging protocols typically examine only the effects of a limited number of stresses, and relatively harsh conditions may trigger degradation mechanisms that are not observed in actual situations. Environmental aging is, in essence, the complex interaction of multiple mechanical, physicochemical and biological stresses. As yet, there is no (pre)standardized procedure that addresses this issue in a satisfactory manner. Mesocosm experiments can be designed to specifically cover the aging of nanomaterials while characterizing the associated exposure and hazard. The scenario of exposure and the life time of the nanomaterial appear as the predominant factors in the design of the experiment, and appropriate precautions need to be taken. This should the subject of guidance that may be divided into product/application categories.
Collapse
Affiliation(s)
- Armand Masion
- CNRS, Aix Marseille Université., IRD, INRA, Coll France, CEREGE, Europole Arbois, BP 80, 13545 Aix en Provence, France.
- Labex SERENADE, Europole Arbois, 13545 Aix en Provence, France.
| | - Mélanie Auffan
- CNRS, Aix Marseille Université., IRD, INRA, Coll France, CEREGE, Europole Arbois, BP 80, 13545 Aix en Provence, France
- Labex SERENADE, Europole Arbois, 13545 Aix en Provence, France
- Civil and Environmental Engineering, Duke university, Durham, NC 27708, USA
| | - Jérôme Rose
- CNRS, Aix Marseille Université., IRD, INRA, Coll France, CEREGE, Europole Arbois, BP 80, 13545 Aix en Provence, France
- Labex SERENADE, Europole Arbois, 13545 Aix en Provence, France
- Civil and Environmental Engineering, Duke university, Durham, NC 27708, USA
| |
Collapse
|
18
|
Fadeel B, Bussy C, Merino S, Vázquez E, Flahaut E, Mouchet F, Evariste L, Gauthier L, Koivisto AJ, Vogel U, Martín C, Delogu LG, Buerki-Thurnherr T, Wick P, Beloin-Saint-Pierre D, Hischier R, Pelin M, Candotto Carniel F, Tretiach M, Cesca F, Benfenati F, Scaini D, Ballerini L, Kostarelos K, Prato M, Bianco A. Safety Assessment of Graphene-Based Materials: Focus on Human Health and the Environment. ACS NANO 2018; 12:10582-10620. [PMID: 30387986 DOI: 10.1021/acsnano.8b04758] [Citation(s) in RCA: 332] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Graphene and its derivatives are heralded as "miracle" materials with manifold applications in different sectors of society from electronics to energy storage to medicine. The increasing exploitation of graphene-based materials (GBMs) necessitates a comprehensive evaluation of the potential impact of these materials on human health and the environment. Here, we discuss synthesis and characterization of GBMs as well as human and environmental hazard assessment of GBMs using in vitro and in vivo model systems with the aim to understand the properties that underlie the biological effects of these materials; not all GBMs are alike, and it is essential that we disentangle the structure-activity relationships for this class of materials.
Collapse
Affiliation(s)
- Bengt Fadeel
- Nanosafety & Nanomedicine Laboratory, Institute of Environmental Medicine , Karolinska Institutet , 17777 Stockholm , Sweden
| | - Cyrill Bussy
- Nanomedicine Laboratory, Faculty of Biology, Medicine & Health , University of Manchester , Manchester M13 9PL , United Kingdom
| | - Sonia Merino
- Faculty of Chemical Science and Technology , University of Castilla-La Mancha , 13071 Ciudad Real , Spain
| | - Ester Vázquez
- Faculty of Chemical Science and Technology , University of Castilla-La Mancha , 13071 Ciudad Real , Spain
| | | | | | | | - Laury Gauthier
- CNRS, Université Paul Sabatier , 31062 Toulouse , France
| | - Antti J Koivisto
- National Research Centre for the Working Environment , 2100 Copenhagen , Denmark
| | - Ulla Vogel
- National Research Centre for the Working Environment , 2100 Copenhagen , Denmark
| | - Cristina Martín
- University of Strasbourg, CNRS , Immunology, Immunopathology and Therapeutic Chemistry , 67000 Strasbourg , France
| | - Lucia G Delogu
- Department of Chemistry and Pharmacy University of Sassari , Sassari 7100 , Italy
- Istituto di Ricerca Pediatrica , Fondazione Città della Speranza , 35129 Padova , Italy
| | - Tina Buerki-Thurnherr
- Swiss Federal Laboratories for Materials Science and Technology (EMPA) , 9014 St. Gallen , Switzerland
| | - Peter Wick
- Swiss Federal Laboratories for Materials Science and Technology (EMPA) , 9014 St. Gallen , Switzerland
| | | | - Roland Hischier
- Swiss Federal Laboratories for Materials Science and Technology (EMPA) , 9014 St. Gallen , Switzerland
| | - Marco Pelin
- Department of Life Sciences , University of Trieste , 34127 Trieste , Italy
| | | | - Mauro Tretiach
- Department of Life Sciences , University of Trieste , 34127 Trieste , Italy
| | - Fabrizia Cesca
- Center for Synaptic Neuroscience and Technology , Istituto Italiano di Tecnologia , 16132 Genova , Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology , Istituto Italiano di Tecnologia , 16132 Genova , Italy
| | - Denis Scaini
- Scuola Internazionale Superiore di Studi Avanzati (SISSA) , 34136 Trieste , Italy
| | - Laura Ballerini
- Scuola Internazionale Superiore di Studi Avanzati (SISSA) , 34136 Trieste , Italy
| | - Kostas Kostarelos
- Nanomedicine Laboratory, Faculty of Biology, Medicine & Health , University of Manchester , Manchester M13 9PL , United Kingdom
| | - Maurizio Prato
- Department of Chemical and Pharmaceutical Sciences , University of Trieste , 34127 Trieste , Italy
- Carbon Nanobiotechnology Laboratory , CIC BiomaGUNE , 20009 San Sebastian , Spain
- Basque Foundation for Science, Ikerbasque , 48013 Bilbao , Spain
| | - Alberto Bianco
- University of Strasbourg, CNRS , Immunology, Immunopathology and Therapeutic Chemistry , 67000 Strasbourg , France
| |
Collapse
|
19
|
Avellan A, Simonin M, McGivney E, Bossa N, Spielman-Sun E, Rocca JD, Bernhardt ES, Geitner NK, Unrine JM, Wiesner MR, Lowry GV. Gold nanoparticle biodissolution by a freshwater macrophyte and its associated microbiome. NATURE NANOTECHNOLOGY 2018; 13:1072-1077. [PMID: 30104621 DOI: 10.1038/s41565-018-0231-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 07/13/2018] [Indexed: 06/08/2023]
Abstract
Predicting nanoparticle fate in aquatic environments requires mimicking of ecosystem complexity to observe the geochemical processes affecting their behaviour. Here, 12 nm Au nanoparticles were added weekly to large-scale freshwater wetland mesocosms. After six months, ~70% of Au was associated with the macrophyte Egeria densa, where, despite the thermodynamic stability of Au0 in water, the pristine Au0 nanoparticles were fully oxidized and complexed to cyanide, hydroxyls or thiol ligands. Extracted biofilms growing on E. densa leaves were shown to dissolve Au nanoparticles within days. The Au biodissolution rate was highest for the biofilm with the lowest prevalence of metal-resistant taxa but the highest ability to release cyanide, known to promote Au0 oxidation and complexation. Macrophytes and the associated microbiome thus form a biologically active system that can be a major sink for nanoparticle accumulation and transformations. Nanoparticle biotransformation in these compartments should not be ignored, even for nanoparticles commonly considered to be stable in the environment.
Collapse
Affiliation(s)
- Astrid Avellan
- Center for the Environmental Implications of NanoTechnology (CEINT), Durham, NC, USA
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Marie Simonin
- Center for the Environmental Implications of NanoTechnology (CEINT), Durham, NC, USA
- Department of Biology, Duke University, Durham, NC, USA
| | - Eric McGivney
- Center for the Environmental Implications of NanoTechnology (CEINT), Durham, NC, USA
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Nathan Bossa
- Center for the Environmental Implications of NanoTechnology (CEINT), Durham, NC, USA
- Civil & Environmental Engineering, Duke University, Durham, NC, USA
| | - Eleanor Spielman-Sun
- Center for the Environmental Implications of NanoTechnology (CEINT), Durham, NC, USA
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | | | - Emily S Bernhardt
- Center for the Environmental Implications of NanoTechnology (CEINT), Durham, NC, USA
- Department of Biology, Duke University, Durham, NC, USA
| | - Nicholas K Geitner
- Center for the Environmental Implications of NanoTechnology (CEINT), Durham, NC, USA
- Civil & Environmental Engineering, Duke University, Durham, NC, USA
| | - Jason M Unrine
- Center for the Environmental Implications of NanoTechnology (CEINT), Durham, NC, USA
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, USA
| | - Mark R Wiesner
- Center for the Environmental Implications of NanoTechnology (CEINT), Durham, NC, USA
- Civil & Environmental Engineering, Duke University, Durham, NC, USA
| | - Gregory V Lowry
- Center for the Environmental Implications of NanoTechnology (CEINT), Durham, NC, USA.
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
20
|
Toncelli C, Mylona K, Kalantzi I, Tsiola A, Pitta P, Tsapakis M, Pergantis SA. Silver nanoparticles in seawater: A dynamic mass balance at part per trillion silver concentrations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 601-602:15-21. [PMID: 28544887 DOI: 10.1016/j.scitotenv.2017.05.148] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 05/01/2017] [Accepted: 05/16/2017] [Indexed: 06/07/2023]
Abstract
This study investigates the dynamic processes affecting silver (Ag) nanoparticles that have been spiked into seawater at environmentally relevant concentrations (200 and 2000ngAgL-1). Seawater samples were taken at regular time intervals from multiple microcosm tanks and analysed rapidly, without any sample preparation, using a recently developed flow injection on-line dilution single particle inductively coupled plasma mass spectrometry method. Dissolution was found to be the predominant process of Ag nanoparticle transformation, with its rate being influenced by the type and thickness of the nanoparticle organic coating. More specifically the branched poly(ethyleneimine) coating provided additional stability to the 40 and 60nmAg nanoparticles that were tested, compared to the poly(vinylpyrrolidone) coated ones. At high Ag nanoparticle spiking levels and after 24h of exposure an extra Ag-containing nanoparticle peak appeared at the low range of the NP size distribution histogram. This peak corresponds to Ag-containing particles that contain Ag mass equivalent to 25-30nm Ag nanoparticles (assuming spherical shape). However, the composition and the "real" size of these particles remains unknown as the particles may have formed from the in-situ reduction of dissolved silver or they originate from other processes involving nanocrystal formation, as has been shown to occur in sewage sludge, or interaction with natural organic matter. Overall, this study provides additional insight into the physicochemical mechanisms behind Ag nanoparticle behavior in marine media.
Collapse
Affiliation(s)
- Claudio Toncelli
- Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, Voutes Campus, Heraklion 71003, Crete, Greece; Institute of Oceanography, Hellenic Centre for Marine Research (HCMR), PO Box 2214, Heraklion, 71003, Crete, Greece; Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Protection and Physiology, Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland
| | - Kyriaki Mylona
- Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, Voutes Campus, Heraklion 71003, Crete, Greece; Institute of Oceanography, Hellenic Centre for Marine Research (HCMR), PO Box 2214, Heraklion, 71003, Crete, Greece
| | - Ioanna Kalantzi
- Institute of Oceanography, Hellenic Centre for Marine Research (HCMR), PO Box 2214, Heraklion, 71003, Crete, Greece
| | - Anastasia Tsiola
- Institute of Oceanography, Hellenic Centre for Marine Research (HCMR), PO Box 2214, Heraklion, 71003, Crete, Greece; Marine Ecology Laboratory, Department of Biology, University of Crete, Voutes Campus, Heraklion 71003 Crete, Greece
| | - Paraskevi Pitta
- Institute of Oceanography, Hellenic Centre for Marine Research (HCMR), PO Box 2214, Heraklion, 71003, Crete, Greece
| | - Manolis Tsapakis
- Institute of Oceanography, Hellenic Centre for Marine Research (HCMR), PO Box 2214, Heraklion, 71003, Crete, Greece
| | - Spiros A Pergantis
- Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, Voutes Campus, Heraklion 71003, Crete, Greece.
| |
Collapse
|
21
|
Mottier A, Mouchet F, Pinelli É, Gauthier L, Flahaut E. Environmental impact of engineered carbon nanoparticles: from releases to effects on the aquatic biota. Curr Opin Biotechnol 2017; 46:1-6. [PMID: 28088098 DOI: 10.1016/j.copbio.2016.11.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 11/23/2016] [Indexed: 12/25/2022]
Abstract
Nano-ecotoxicology is an emerging science which aims to assess the environmental effect of nanotechnologies. The development of this particular aspect of ecotoxicology was made necessary in order to evaluate the potential impact of recently produced and used materials: nanoparticles (NPs). Among all the types of NPs, carbon nanoparticles (CNPs) especially draw attention giving the increasing number of applications and integration into consumer products. However the potential impacts of CNPs in the environment remain poorly known. This review aims to point out the critical issues and aspects that will govern the toxicity of CNPs in the environment.
Collapse
Affiliation(s)
- Antoine Mottier
- ECOLAB, Université de Toulouse, CNRS, INPT, UPS, France; ENSAT, Avenue de l'Agrobiopôle, F-31326 Castanet-Tolosan, France
| | - Florence Mouchet
- ECOLAB, Université de Toulouse, CNRS, INPT, UPS, France; ENSAT, Avenue de l'Agrobiopôle, F-31326 Castanet-Tolosan, France
| | - Éric Pinelli
- ECOLAB, Université de Toulouse, CNRS, INPT, UPS, France; ENSAT, Avenue de l'Agrobiopôle, F-31326 Castanet-Tolosan, France
| | - Laury Gauthier
- ECOLAB, Université de Toulouse, CNRS, INPT, UPS, France; ENSAT, Avenue de l'Agrobiopôle, F-31326 Castanet-Tolosan, France.
| | - Emmanuel Flahaut
- CIRIMAT, Université de Toulouse, CNRS, INPT, UPS, UMR CNRS-UPS-INP N°5085, Université Toulouse 3 Paul Sabatier, Bât. CIRIMAT, 118, route de Narbonne, 31062 Toulouse cedex 9, France; CNRS, Institut Carnot Chimie Balard CIRIMAT, F-31062 Toulouse, France.
| |
Collapse
|
22
|
Bai X, Liu Y, Yu L, Hua Z. Distribution behavior of superparamagnetic carbon nanotubes in an aqueous system. Sci Rep 2016; 6:32845. [PMID: 27599569 PMCID: PMC5013395 DOI: 10.1038/srep32845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 08/11/2016] [Indexed: 11/12/2022] Open
Abstract
This study investigates the distribution behavior of superparamagnetic multiwalled carbon nanotubes (SPM-MWCNTs) in an aqueous system containing Lake Tai sediment. Specifically, the effects of dissolved organic matter (DOM) and sediment on SPM-MWCNTs under various conditions and the interaction forms between them were evaluated through a modified mathematical model and characterization. The results showed that DOM can stabilize SPM-MWCNTs by providing sterically and electrostatically stable surfaces, even under high sodium concentrations. The fitting accuracy of the Freundlich adsorption isotherm is higher than that of the Langmuir adsorption isotherm. Therefore, the adsorption of SPM-MWCNT on the sediment should proceed through a multiple, complex and heterogeneous adsorption mechanism. Characterization analyses indicated that DOM may serve as a bridge for the inorganic adsorption between SPM-MWCNTs and sediment. This study is the first to investigate the distribution behavior of magnetite coated carbon nanotubes (CNTs), which simplified the separation and quantification considerably. The findings of this study will serve as a valuable reference for future studies of magnetic CNTs.
Collapse
Affiliation(s)
- Xue Bai
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.,School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Yuqi Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Lu Yu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Zulin Hua
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
23
|
Hamidat M, Barakat M, Ortet P, Chanéac C, Rose J, Bottero JY, Heulin T, Achouak W, Santaella C. Design Defines the Effects of Nanoceria at a Low Dose on Soil Microbiota and the Potentiation of Impacts by the Canola Plant. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:6892-6901. [PMID: 27243334 DOI: 10.1021/acs.est.6b01056] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Soils act as nanoceria sinks via agricultural spreading and surface waters. Canola plants were grown for one month in soil spiked with nanoceria (1 mg·kg(-1)). To define the role of nanomaterials design on environmental impacts, we studied nanoceria with different sizes (3.5 or 31 nm) and coating (citrate). We measured microbial activities involved in C, N, and P cycling in the rhizosphere and unplanted soil. Bacterial community structure was analyzed in unplanted soil, rhizosphere, and plant roots by 454-pyrosequencing of the 16S rRNA gene. This revealed an impact gradient dependent on nanomaterials design, ranging from decreased microbial enzymatic activities in planted soil to alterations in bacterial community structure in roots. Particle size/aggregation was a key parameter in modulating nanoceria effects on root communities. Citrate coating lowered the impact on microbial enzymatic activities but triggered variability in the bacterial community structure near the plant root. Some nanoceria favored taxa whose closest relatives are hydrocarbon-degrading bacteria and disadvantaged taxa frequently associated in consortia with disease-suppressive activity toward plant pathogens. This work provides a basis to determine outcomes of nanoceria in soil, at a dose close to predicted environmental concentrations, and to design them to minimize these impacts.
Collapse
Affiliation(s)
- Mohamed Hamidat
- Laboratory of Microbial Ecology of the Rhizosphere and Extreme Environments (LEMIRE), Aix-Marseille Université, CEA, CNRS, UMR 7265 Biosciences and Biotechnology Institute of Aix-Marseille (BIAM), ECCOREV FR 3098, CEA Cadarache, St-Paul-lez-Durance 13108, France
- GDRi iCEINT, International Consortium for the Environmental Implication of Nanotechnology, CNRS-Duke University , F-13545 Aix-en-Provence, France
| | - Mohamed Barakat
- Laboratory of Microbial Ecology of the Rhizosphere and Extreme Environments (LEMIRE), Aix-Marseille Université, CEA, CNRS, UMR 7265 Biosciences and Biotechnology Institute of Aix-Marseille (BIAM), ECCOREV FR 3098, CEA Cadarache, St-Paul-lez-Durance 13108, France
- GDRi iCEINT, International Consortium for the Environmental Implication of Nanotechnology, CNRS-Duke University , F-13545 Aix-en-Provence, France
| | - Philippe Ortet
- Laboratory of Microbial Ecology of the Rhizosphere and Extreme Environments (LEMIRE), Aix-Marseille Université, CEA, CNRS, UMR 7265 Biosciences and Biotechnology Institute of Aix-Marseille (BIAM), ECCOREV FR 3098, CEA Cadarache, St-Paul-lez-Durance 13108, France
- GDRi iCEINT, International Consortium for the Environmental Implication of Nanotechnology, CNRS-Duke University , F-13545 Aix-en-Provence, France
| | - Corinne Chanéac
- GDRi iCEINT, International Consortium for the Environmental Implication of Nanotechnology, CNRS-Duke University , F-13545 Aix-en-Provence, France
- Chimie de la Matière Condensée, UMR7574, Collège de France, Université de Jussieu , Paris F-75231, France
| | - Jérome Rose
- GDRi iCEINT, International Consortium for the Environmental Implication of Nanotechnology, CNRS-Duke University , F-13545 Aix-en-Provence, France
- CNRS, Aix-Marseille Université, IRD, CEREGE UM34, F-13545 Aix en Provence, France
| | - Jean-Yves Bottero
- GDRi iCEINT, International Consortium for the Environmental Implication of Nanotechnology, CNRS-Duke University , F-13545 Aix-en-Provence, France
- CNRS, Aix-Marseille Université, IRD, CEREGE UM34, F-13545 Aix en Provence, France
| | - Thierry Heulin
- Laboratory of Microbial Ecology of the Rhizosphere and Extreme Environments (LEMIRE), Aix-Marseille Université, CEA, CNRS, UMR 7265 Biosciences and Biotechnology Institute of Aix-Marseille (BIAM), ECCOREV FR 3098, CEA Cadarache, St-Paul-lez-Durance 13108, France
- GDRi iCEINT, International Consortium for the Environmental Implication of Nanotechnology, CNRS-Duke University , F-13545 Aix-en-Provence, France
| | - Wafa Achouak
- Laboratory of Microbial Ecology of the Rhizosphere and Extreme Environments (LEMIRE), Aix-Marseille Université, CEA, CNRS, UMR 7265 Biosciences and Biotechnology Institute of Aix-Marseille (BIAM), ECCOREV FR 3098, CEA Cadarache, St-Paul-lez-Durance 13108, France
- GDRi iCEINT, International Consortium for the Environmental Implication of Nanotechnology, CNRS-Duke University , F-13545 Aix-en-Provence, France
| | - Catherine Santaella
- Laboratory of Microbial Ecology of the Rhizosphere and Extreme Environments (LEMIRE), Aix-Marseille Université, CEA, CNRS, UMR 7265 Biosciences and Biotechnology Institute of Aix-Marseille (BIAM), ECCOREV FR 3098, CEA Cadarache, St-Paul-lez-Durance 13108, France
- GDRi iCEINT, International Consortium for the Environmental Implication of Nanotechnology, CNRS-Duke University , F-13545 Aix-en-Provence, France
| |
Collapse
|
24
|
Baker LF, King RS, Unrine JM, Castellon BT, Lowry GV, Matson CW. Press or pulse exposures determine the environmental fate of cerium nanoparticles in stream mesocosms. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2016; 35:1213-1223. [PMID: 26576038 DOI: 10.1002/etc.3261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 08/31/2015] [Accepted: 09/22/2015] [Indexed: 06/05/2023]
Abstract
Risk-assessment models indicate that stream ecosystems receiving municipal wastewater effluent may have the greatest potential for exposure to manufactured nanoparticles. The authors determined the fate of cerium oxide (CeO2 ) nanoparticles in outdoor stream mesocosms using 1) 1-time pulse addition of CeO2 nanoparticles, representative of accidental release, and 2) continuous, low-level press addition of CeO2 nanoparticles, representative of exposure via wastewater effluent. The pulse addition led to rapid nanoparticle floc formation, which appeared to preferentially deposit on periphyton in low-energy areas downstream from the location of the input, likely as a result of gravitational sedimentation. Floc formation limited the concentration of suspended nanoparticles in stream water to <5% of target and subsequent downstream movement. In contrast, press addition of nanoparticles led to higher suspended nanoparticle concentrations (77% of target) in stream water, possibly as a result of stabilization of suspended nanoparticles through interaction with dissolved organic carbon. Smaller nanoparticle aggregates appeared to preferentially adsorb to stream surfaces in turbulent sections, where Ce concentrations were highest in the press, likely a result of stochastic encounter with the surface. Streams receiving wastewater effluent containing nanoparticles may lead to exposure of aquatic organisms over a greater spatial extent than a similar amount of nanoparticles from an accidental release. Exposure models must take into account these mechanisms controlling transport and depositional processes.
Collapse
Affiliation(s)
- Leanne F Baker
- Center for the Environmental Implications of NanoTechnology, Duke University, Durham, North Carolina, USA
- Department of Environmental Science, Baylor University, Waco, Texas, USA
- Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, Texas, USA
| | - Ryan S King
- Center for the Environmental Implications of NanoTechnology, Duke University, Durham, North Carolina, USA
- Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, Texas, USA
- Department of Biology, Baylor University, Waco, Texas, USA
| | - Jason M Unrine
- Center for the Environmental Implications of NanoTechnology, Duke University, Durham, North Carolina, USA
- Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Benjamin T Castellon
- Center for the Environmental Implications of NanoTechnology, Duke University, Durham, North Carolina, USA
- Department of Environmental Science, Baylor University, Waco, Texas, USA
- Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, Texas, USA
| | - Gregory V Lowry
- Center for the Environmental Implications of NanoTechnology, Duke University, Durham, North Carolina, USA
- Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Cole W Matson
- Center for the Environmental Implications of NanoTechnology, Duke University, Durham, North Carolina, USA
- Department of Environmental Science, Baylor University, Waco, Texas, USA
- Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, Texas, USA
| |
Collapse
|
25
|
Garaud M, Auffan M, Devin S, Felten V, Pagnout C, Pain-Devin S, Proux O, Rodius F, Sohm B, Giamberini L. Integrated assessment of ceria nanoparticle impacts on the freshwater bivalve Dreissena polymorpha. Nanotoxicology 2016; 10:935-44. [DOI: 10.3109/17435390.2016.1146363] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Maël Garaud
- Laboratoire Interdisciplinaire Des Environnements Continentaux (LIEC), Université De Lorraine, CNRS UMR 7360, Metz France,
- International Consortium for the Environmental Implications of Nanotechnology (iCEINT), Aix En Provence, France,
| | - Mélanie Auffan
- International Consortium for the Environmental Implications of Nanotechnology (iCEINT), Aix En Provence, France,
- CNRS, Aix-Marseille Université, France, and
| | - Simon Devin
- Laboratoire Interdisciplinaire Des Environnements Continentaux (LIEC), Université De Lorraine, CNRS UMR 7360, Metz France,
| | - Vincent Felten
- Laboratoire Interdisciplinaire Des Environnements Continentaux (LIEC), Université De Lorraine, CNRS UMR 7360, Metz France,
| | - Christophe Pagnout
- Laboratoire Interdisciplinaire Des Environnements Continentaux (LIEC), Université De Lorraine, CNRS UMR 7360, Metz France,
- International Consortium for the Environmental Implications of Nanotechnology (iCEINT), Aix En Provence, France,
| | - Sandrine Pain-Devin
- Laboratoire Interdisciplinaire Des Environnements Continentaux (LIEC), Université De Lorraine, CNRS UMR 7360, Metz France,
| | - Olivier Proux
- International Consortium for the Environmental Implications of Nanotechnology (iCEINT), Aix En Provence, France,
- Observatoire Des Sciences De L’univers De Grenoble, UMS 832, CNRS, Université Joseph Fourier, Grenoble, France
| | - François Rodius
- Laboratoire Interdisciplinaire Des Environnements Continentaux (LIEC), Université De Lorraine, CNRS UMR 7360, Metz France,
| | - Bénédicte Sohm
- Laboratoire Interdisciplinaire Des Environnements Continentaux (LIEC), Université De Lorraine, CNRS UMR 7360, Metz France,
| | - Laure Giamberini
- Laboratoire Interdisciplinaire Des Environnements Continentaux (LIEC), Université De Lorraine, CNRS UMR 7360, Metz France,
- International Consortium for the Environmental Implications of Nanotechnology (iCEINT), Aix En Provence, France,
| |
Collapse
|
26
|
Liu L, Sun M, Zhang H, Yu Q, Li M, Qi Y, Zhang C, Gao G, Yuan Y, Zhai H, Chen W, Alvarez PJJ. Facet Energy and Reactivity versus Cytotoxicity: The Surprising Behavior of CdS Nanorods. NANO LETTERS 2016; 16:688-94. [PMID: 26673313 DOI: 10.1021/acs.nanolett.5b04487] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Responsible development of nanotechnology calls for improved understanding of how nanomaterial surface energy and reactivity affect potential toxicity. Here, we challenge the paradigm that cytotoxicity increases with nanoparticle reactivity. Higher-surface-energy {001}-faceted CdS nanorods (CdS-H) were less toxic to Saccharomyces cerevisiae than lower-energy ({101}-faceted) nanorods (CdS-L) of similar morphology, aggregate size, and charge. CdS-H adsorbed to the yeast's cell wall to a greater extent than CdS-L, which decreased endocytosis and cytotoxicity. Higher uptake of CdS-L decreased cell viability and increased endoplasmatic reticulum stress despite lower release of toxic Cd(2+) ions. Higher toxicity of CdS-L was confirmed with five different unicellular microorganisms. Overall, higher-energy nanocrystals may exhibit greater propensity to adsorb to or react with biological protective barriers and/or background constituents, which passivates their reactivity and reduces their bioavailability and cytotoxicity.
Collapse
Affiliation(s)
- Lu Liu
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University , Wei Jin Rd. 94, Tianjin 300071, China
| | - Meiqing Sun
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University , Wei Jin Rd. 94, Tianjin 300071, China
| | - Haijun Zhang
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University , Wei Jin Rd. 94, Tianjin 300071, China
| | - Qilin Yu
- Ministry of Education Key Laboratory of Molecular Microbiology and Technology, College of Life Science, Nankai University , Wei Jin Rd. 94, Tianjin 300071, China
| | - Mingchun Li
- Ministry of Education Key Laboratory of Molecular Microbiology and Technology, College of Life Science, Nankai University , Wei Jin Rd. 94, Tianjin 300071, China
| | - Yu Qi
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University , Wei Jin Rd. 94, Tianjin 300071, China
| | - Chengdong Zhang
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University , Wei Jin Rd. 94, Tianjin 300071, China
| | - Guandao Gao
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University , Wei Jin Rd. 94, Tianjin 300071, China
| | - Yingjin Yuan
- Ministry of Education Key Laboratory of Systems Bioengineering, Tianjin University , Wei Jin Rd. 92, Tianjin 300072, China
| | - Huanhuan Zhai
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences , Airport Economic Zone, Seven West Rd. 32, Tianjin 300308, China
| | - Wei Chen
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University , Wei Jin Rd. 94, Tianjin 300071, China
| | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering, Rice University , 6100 Main Street, Houston, Texas 77005, United States
| |
Collapse
|
27
|
Bour A, Mouchet F, Cadarsi S, Silvestre J, Verneuil L, Baqué D, Chauvet E, Bonzom JM, Pagnout C, Clivot H, Fourquaux I, Tella M, Auffan M, Gauthier L, Pinelli E. Toxicity of CeO₂ nanoparticles on a freshwater experimental trophic chain: A study in environmentally relevant conditions through the use of mesocosms. Nanotoxicology 2015; 10:245-55. [PMID: 26152687 DOI: 10.3109/17435390.2015.1053422] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The toxicity of CeO2 NPs on an experimental freshwater ecosystem was studied in mesocosm, with a focus being placed on the higher trophic level, i.e. the carnivorous amphibian species Pleurodeles waltl. The system comprised species at three trophic levels: (i) bacteria, fungi and diatoms, (ii) Chironomus riparius larvae as primary consumers and (iii) Pleurodeles larvae as secondary consumers. NP contamination consisted of repeated additions of CeO2 NPs over 4 weeks, to obtain a final concentration of 1 mg/L. NPs were found to settle and accumulate in the sediment. No effects were observed on litter decomposition or associated fungal biomass. Changes in bacterial communities were observed from the third week of NP contamination. Morphological changes in CeO2 NPs were observed at the end of the experiment. No toxicity was recorded in chironomids, despite substantial NP accumulation (265.8 ± 14.1 mg Ce/kg). Mortality (35.3 ± 6.8%) and a mean Ce concentration of 13.5 ± 3.9 mg/kg were reported for Pleurodeles. Parallel experiments were performed on Pleurodeles to determine toxicity pathways: no toxicity was observed by direct or dietary exposures, although Ce concentrations almost reached 100 mg/kg. In view of these results, various toxicity mechanisms are proposed and discussed. The toxicity observed on Pleurodeles in mesocosm may be indirect, due to microorganism's interaction with CeO2 NPs, or NP dissolution could have occurred in mesocosm due to the structural complexity of the biological environment, resulting in toxicity to Pleurodeles. This study strongly supports the importance of ecotoxicological assessment of NPs under environmentally relevant conditions, using complex biological systems.
Collapse
Affiliation(s)
- Agathe Bour
- a CNRS, Université de Toulouse, INP, UPS, EcoLab (Laboratoire d'écologie fonctionnelle et environnement) UMR 5245 , ENSAT, Avenue de l'Agrobiopole , Castanet Tolosan , France .,b International Consortium for the Environmental Implications of Nanotechnology (iCEINT) , Aix-en-Provence , France
| | - Florence Mouchet
- a CNRS, Université de Toulouse, INP, UPS, EcoLab (Laboratoire d'écologie fonctionnelle et environnement) UMR 5245 , ENSAT, Avenue de l'Agrobiopole , Castanet Tolosan , France .,b International Consortium for the Environmental Implications of Nanotechnology (iCEINT) , Aix-en-Provence , France
| | - Stéphanie Cadarsi
- a CNRS, Université de Toulouse, INP, UPS, EcoLab (Laboratoire d'écologie fonctionnelle et environnement) UMR 5245 , ENSAT, Avenue de l'Agrobiopole , Castanet Tolosan , France .,b International Consortium for the Environmental Implications of Nanotechnology (iCEINT) , Aix-en-Provence , France
| | - Jérôme Silvestre
- a CNRS, Université de Toulouse, INP, UPS, EcoLab (Laboratoire d'écologie fonctionnelle et environnement) UMR 5245 , ENSAT, Avenue de l'Agrobiopole , Castanet Tolosan , France .,b International Consortium for the Environmental Implications of Nanotechnology (iCEINT) , Aix-en-Provence , France
| | - Laurent Verneuil
- a CNRS, Université de Toulouse, INP, UPS, EcoLab (Laboratoire d'écologie fonctionnelle et environnement) UMR 5245 , ENSAT, Avenue de l'Agrobiopole , Castanet Tolosan , France .,b International Consortium for the Environmental Implications of Nanotechnology (iCEINT) , Aix-en-Provence , France
| | - David Baqué
- a CNRS, Université de Toulouse, INP, UPS, EcoLab (Laboratoire d'écologie fonctionnelle et environnement) UMR 5245 , ENSAT, Avenue de l'Agrobiopole , Castanet Tolosan , France
| | - Eric Chauvet
- c CNRS, Université de Toulouse, INP, UPS, EcoLab (Laboratoire d'écologie fonctionnelle et environnement) UMR 5245 , Toulouse , France
| | - Jean-Marc Bonzom
- b International Consortium for the Environmental Implications of Nanotechnology (iCEINT) , Aix-en-Provence , France .,d Laboratoire de Radioécologie et d'Ecotoxicologie , IRSN (Institut de Radioprotection et de Sûreté Nucléaire), DEI/SECRE , Cadarache , France
| | - Christophe Pagnout
- b International Consortium for the Environmental Implications of Nanotechnology (iCEINT) , Aix-en-Provence , France .,e CNRS, Université de Lorraine, LIEC (Laboratoire Interdisciplinaire des Environnements Continentaux) UMR 7360, Metz, France
| | - Hugues Clivot
- b International Consortium for the Environmental Implications of Nanotechnology (iCEINT) , Aix-en-Provence , France .,e CNRS, Université de Lorraine, LIEC (Laboratoire Interdisciplinaire des Environnements Continentaux) UMR 7360, Metz, France
| | - Isabelle Fourquaux
- f CMEAB (Centre de Microscopie Electronique Appliqué à la Biologie), Université Paul Sabatier, Faculté de Médecine Rangueil , Toulouse , France , and
| | - Marie Tella
- b International Consortium for the Environmental Implications of Nanotechnology (iCEINT) , Aix-en-Provence , France .,g CNRS, Université d'Aix-Marseille, CEREGE UMR 7330 , Aix-en-Provence , France
| | - Mélanie Auffan
- b International Consortium for the Environmental Implications of Nanotechnology (iCEINT) , Aix-en-Provence , France .,g CNRS, Université d'Aix-Marseille, CEREGE UMR 7330 , Aix-en-Provence , France
| | - Laury Gauthier
- a CNRS, Université de Toulouse, INP, UPS, EcoLab (Laboratoire d'écologie fonctionnelle et environnement) UMR 5245 , ENSAT, Avenue de l'Agrobiopole , Castanet Tolosan , France .,b International Consortium for the Environmental Implications of Nanotechnology (iCEINT) , Aix-en-Provence , France
| | - Eric Pinelli
- a CNRS, Université de Toulouse, INP, UPS, EcoLab (Laboratoire d'écologie fonctionnelle et environnement) UMR 5245 , ENSAT, Avenue de l'Agrobiopole , Castanet Tolosan , France .,b International Consortium for the Environmental Implications of Nanotechnology (iCEINT) , Aix-en-Provence , France
| |
Collapse
|
28
|
Chichiriccò G, Poma A. Penetration and Toxicity of Nanomaterials in Higher Plants. NANOMATERIALS (BASEL, SWITZERLAND) 2015; 5:851-873. [PMID: 28347040 PMCID: PMC5312920 DOI: 10.3390/nano5020851] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 05/20/2015] [Accepted: 05/21/2015] [Indexed: 12/14/2022]
Abstract
Nanomaterials (NMs) comprise either inorganic particles consisting of metals, oxides, and salts that exist in nature and may be also produced in the laboratory, or organic particles originating only from the laboratory, having at least one dimension between 1 and 100 nm in size. According to shape, size, surface area, and charge, NMs have different mechanical, chemical, electrical, and optical properties that make them suitable for technological and biomedical applications and thus they are being increasingly produced and modified. Despite their beneficial potential, their use may be hazardous to health owing to the capacity to enter the animal and plant body and interact with cells. Studies on NMs involve technologists, biologists, physicists, chemists, and ecologists, so there are numerous reports that are significantly raising the level of knowledge, especially in the field of nanotechnology; however, many aspects concerning nanobiology remain undiscovered, including the interactions with plant biomolecules. In this review we examine current knowledge on the ways in which NMs penetrate plant organs and interact with cells, with the aim of shedding light on the reactivity of NMs and toxicity to plants. These points are discussed critically to adjust the balance with regard to the risk to the health of the plants as well as providing some suggestions for new studies on this topic.
Collapse
Affiliation(s)
- Giuseppe Chichiriccò
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio, I-67010 Coppito, L'Aquila, Italy.
| | - Anna Poma
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio, I-67010 Coppito, L'Aquila, Italy.
| |
Collapse
|