1
|
Schmidt M, Schoenemann B, Hou X, Melzer RR, Liu Y. Pygmaclypeatus daziensis, a unique lower Cambrian arthropod with two different compound eye systems. Commun Biol 2025; 8:317. [PMID: 40011683 PMCID: PMC11865447 DOI: 10.1038/s42003-025-07664-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 02/04/2025] [Indexed: 02/28/2025] Open
Abstract
More than half a billion years ago, a high diversity of organisms appeared in the fossil record. All major clades we know today already existed, and arthropods dominated the marine faunas. Many were already equipped with a pair of elaborated compound eyes on top of movable eye stalks. Some of them also possessed 3-4 small single-aperture eyes, so-called median eyes. Just trilobites possessed sessile dorsal eyes. One pair of compound eyes/lateral eyes is considered plesiomorphic and is a common trait for euarthropods. Here, we describe an arthropod that possessed two independent compound eye systems-a pair of stalked and a pair of tiny sessile dorsal trilobite-like compound eyes, unique in the arthropod kingdom so far. A competition between prey and predators for the capacity of vision triggered the evolution of visual systems, and we discuss this newly described system(s) in its evolutionary context and ecological significance. Regarding its eye system phylogenetically, P. daziensis reinforces the position of a now non-missing link between the non-trilobite artiopodans and trilobites.
Collapse
Affiliation(s)
- Michel Schmidt
- Yunnan Key Laboratory for Palaeobiology, Yunnan University, Yunnan University, Kunming, People's Republic of China
- MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Yunnan University, Kunming, People's Republic of China
- Bavarian State Collection of Zoology, Bavarian Natural History Collections, München, Germany
- Ludwig-Maximilians-Universität München, Faculty of Biology Biocentre, Planegg-Martinsried, Germany
| | - Brigitte Schoenemann
- Department of Biology, Institute of Zoology (Neurobiology, Animal Physiology), University of Cologne, Biocentre, Cologne, Germany.
| | - Xianguang Hou
- Yunnan Key Laboratory for Palaeobiology, Yunnan University, Yunnan University, Kunming, People's Republic of China
- MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Yunnan University, Kunming, People's Republic of China
| | - Roland R Melzer
- MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Yunnan University, Kunming, People's Republic of China
- Bavarian State Collection of Zoology, Bavarian Natural History Collections, München, Germany
- Ludwig-Maximilians-Universität München, Faculty of Biology Biocentre, Planegg-Martinsried, Germany
- GeoBio-Center, Ludwig-Maximilians-Universität München, München, Germany
| | - Yu Liu
- Yunnan Key Laboratory for Palaeobiology, Yunnan University, Yunnan University, Kunming, People's Republic of China.
- MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Yunnan University, Kunming, People's Republic of China.
- Southwest United Graduate School, Kunming, People's Republic of China.
| |
Collapse
|
2
|
Wang Z, Valnohova J, Kolesnichenko K, Baba A, Sun H, Mao X, Kryuchkov M, Katanaev VL. Chemically Hydrophobic and Structurally Antireflective Nanocoatings in Papilio Butterflies. ACS APPLIED BIO MATERIALS 2025; 8:784-791. [PMID: 39780020 DOI: 10.1021/acsabm.4c01620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Moth-eye nanostructures, known for their biological antireflective properties, are formed by a self-assembly mechanism. Understanding and replicating this mechanism on artificial surfaces open avenues for the engineering of bioinspired multifunctional nanomaterials. Analysis of corneal nanocoatings from butterflies of the genus Papilio reveals a variety of nanostructures with uniformly strong antiwetting properties accompanied by varying antireflective functionalities. Interestingly, while the structural features of the nanocoatings determine the antireflective functionality, the antiwetting is controlled by their chemical composition, an unusual trait among insects. The availability of whole-genome sequences for several Papilio species allowed us to identify the corneal proteome, including the protein responsible for the nanocoating assembly, CPR67A. The high hydrophobicity of this protein, coupled with its capacity to mediate self-assembly, underlies the formation of unique multifunctional Papilio nanostructures and permits the development of bioinspired artificial nanocoatings. Our findings pave the way for biomimetic nanomaterials and guide the engineering of nanostructures with predefined functionalities.
Collapse
Affiliation(s)
- Zhehui Wang
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong 271016, China
| | - Jana Valnohova
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Rue Michel Servet 1, Geneva CH-1211, Switzerland
| | - Kirill Kolesnichenko
- Department of Entomology, Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Akira Baba
- Graduate School of Science and Technology and Faculty of Engineering, Niigata University, 8050 Ikarashi 2-Nocho, Nishi-ku, Niigata 950-2181, Japan
| | - Hong Sun
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong 271016, China
| | - Xin Mao
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong 271016, China
| | - Mikhail Kryuchkov
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong 271016, China
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Rue Michel Servet 1, Geneva CH-1211, Switzerland
| | - Vladimir L Katanaev
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Rue Michel Servet 1, Geneva CH-1211, Switzerland
| |
Collapse
|
3
|
Urca T, Lehmann FO, Gorb EV, Gorb SN. Nanoscale mesh acts as anti-adhesive surface against particulate contamination in eyes of whiteflies. Sci Rep 2024; 14:18267. [PMID: 39107360 PMCID: PMC11303819 DOI: 10.1038/s41598-024-69059-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024] Open
Abstract
In many insects the surface of the eye is nanostructured by arrays of protuberances termed ommatidial gratings which provide the cuticle with anti-reflective, anti-wetting and self-cleaning properties. The hypothesised anti-contamination role of the gratings against dust and pollen results from theoretical predictions on grating geometry and experiments on synthetic replicas of ommatidia surfaces but has not yet been proven in an animal. Whiteflies are biological test beds for anti-contamination surfaces because they deliberately distribute wax particles extruded from abdominal plates over their entire bodies. The numerous particles protect the animal against water evaporation and radiation, but may severely impair vision. Using scanning electron microscopy (SEM) and CryoSEM, we here show that the cornea of whiteflies exhibits ~ 220 nm wide mesh-like structures forming hexagonal gratings with thin ~ 40 nm connecting walls. Quantitative measurements of wax particles on the eye show that the nanostructures reduce particle contamination by more than ~ 96% compared to other areas of the cuticle. Altogether, our study is the first description of a predicted optimized grating geometry for anti-contamination in an arthropod. The findings serve as evidence of the high effectiveness of nanostructured surfaces for reducing contact area and thus adhesion forces between biological surfaces and contaminating particles.
Collapse
Affiliation(s)
- Tomer Urca
- Department of Animal Physiology, University of Rostock, Albert-Einstein Str. 3, 18059, Rostock, Germany.
| | - Fritz-Olaf Lehmann
- Department of Animal Physiology, University of Rostock, Albert-Einstein Str. 3, 18059, Rostock, Germany
| | - Elena V Gorb
- Department Functional Morphology and Biomechanics, Zoological Institute of the University of Kiel, Am Botanischen Garten 1-9, 24118, Kiel, Germany
| | - Stanislav N Gorb
- Department Functional Morphology and Biomechanics, Zoological Institute of the University of Kiel, Am Botanischen Garten 1-9, 24118, Kiel, Germany
| |
Collapse
|
4
|
Muinde J, Zhang TH, Liang ZL, Liu SP, Kioko E, Huang ZZ, Ge SQ. Functional Anatomy of Split Compound Eyes of the Whirligig Beetles Dineutus mellyi (Coleoptera: Gyrinidae). INSECTS 2024; 15:122. [PMID: 38392541 PMCID: PMC10889679 DOI: 10.3390/insects15020122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 02/24/2024]
Abstract
The functional anatomy of the split compound eyes of whirligig beetles Dineutus mellyi (Coleoptera: Gyrinidae) was examined by advanced microscopy and microcomputed tomography. We report the first 3D visualization and analysis of the split compound eyes. On average, the dorsal and ventral eyes contain 1913 ± 44.5 facets and 3099 ± 86.2 facets, respectively. The larger area of ventral eyes ensures a higher field of vision underwater. The ommatidium of the split compound eyes is made up of laminated cornea lenses that offer protection against mechanical injuries, bullet-shaped crystalline cones that guide light to the photoreceptive regions, and screening pigments that ensure directional light passage. The photoreceptive elements, made up of eight retinular cells, exhibit a tri-tiered rhabdom structure, including the upper distal rhabdom, a clear zone that ensures maximum light passage, and an enlarged lower distal rhabdom that ensures optimal photon capture.
Collapse
Affiliation(s)
- Jacob Muinde
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- National Museums of Kenya, Museum Hill, Nairobi P.O. Box 40658-00100, Kenya
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tian-Hao Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zu-Long Liang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Si-Pei Liu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Esther Kioko
- National Museums of Kenya, Museum Hill, Nairobi P.O. Box 40658-00100, Kenya
| | - Zheng-Zhong Huang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Si-Qin Ge
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
5
|
Bao L, Li L, Niu K, Wang N, Kroeck DM, Bao T. Retracted: A new aquatic beetle (Adephaga: Coptoclavidae) from the Middle Jurassic Daohugou Biota. Anat Rec (Hoboken) 2023. [PMID: 37038279 DOI: 10.1002/ar.25221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/18/2023] [Accepted: 03/30/2023] [Indexed: 04/12/2023]
Abstract
Tigrivia baii gen. et sp. nov. (Coleoptera: Adephaga: Coptoclavidae) is described and named based on a fossil specimen from the Middle Jurassic Daohugou Biota, Nincheng County, Inner Mongolia of China. The fossil is very similar in morphology with the adult Coptoclava longipoda Ping 1928 (Laiyang Formation of Nanligezhuang Village, Laiyang City, Shandong Province, China, Lower Cretaceous, 121 ~ 120 Ma), but differs from C. longipoda by the adjacencies of two procoxae and two mesocoxae. T. baii gen. et sp. nov. differs from Daohugounectes primitinus Wang et al. 2010 by the absence of striae on the elytra and the absence of ventral eyes under the head. The new beetle species shows developed aquatic adaptions, such as specialized raptorial forelegs, and swimming middle and hind legs. Furthermore, it is speculated to lead a similar lifestyle as extant Dytiscoidae, according to the two eyes on the side of head and the absence of spiracles on ventrites. This new fossil expanded our knowledge of the diversity of the Middle Jurassic Coptoclavid beetles in Daohugou Biota and improved our understanding of their paleoecological significance.
Collapse
Affiliation(s)
- Liang Bao
- School of Ecology/State Key Laboratory of Biocontrol, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Lan Li
- School of Ecology/State Key Laboratory of Biocontrol, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Kecheng Niu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
- Yingliang Stone Natural History Museum, Nan'an, China
| | - Niya Wang
- School of Ecology/State Key Laboratory of Biocontrol, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - David M Kroeck
- School of Ecology/State Key Laboratory of Biocontrol, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Tong Bao
- School of Ecology/State Key Laboratory of Biocontrol, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- State Key Laboratory of Biogeology and Environmental Geology, Wuhan, China
| |
Collapse
|
6
|
Xie X, Li Y, Wang G, Bai Z, Yu Y, Wang Y, Ding Y, Lu Z. Femtosecond Laser Processing Technology for Anti-Reflection Surfaces of Hard Materials. MICROMACHINES 2022; 13:mi13071084. [PMID: 35888901 PMCID: PMC9322106 DOI: 10.3390/mi13071084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 01/25/2023]
Abstract
The anti-reflection properties of hard material surfaces are of great significance in the fields of infrared imaging, optoelectronic devices, and aerospace. Femtosecond laser processing has drawn a lot of attentions in the field of optics as an innovative, efficient, and green micro-nano processing method. The anti-reflection surface prepared on hard materials by femtosecond laser processing technology has good anti-reflection properties under a broad spectrum with all angles, effectively suppresses reflection, and improves light transmittance/absorption. In this review, the recent advances on femtosecond laser processing of anti-reflection surfaces on hard materials are summarized. The principle of anti-reflection structure and the selection of anti-reflection materials in different applications are elaborated upon. Finally, the limitations and challenges of the current anti-reflection surface are discussed, and the future development trend of the anti-reflection surface are prospected.
Collapse
Affiliation(s)
- Xiaofan Xie
- Center for Advanced Laser Technology, Hebei University of Technology, Tianjin 300401, China; (X.X.); (Z.B.); (Y.Y.); (Y.W.); (Z.L.)
- Hebei Key Laboratory of Advanced Laser Technology and Equipment, Tianjin 300401, China
| | - Yunfei Li
- Center for Advanced Laser Technology, Hebei University of Technology, Tianjin 300401, China; (X.X.); (Z.B.); (Y.Y.); (Y.W.); (Z.L.)
- Hebei Key Laboratory of Advanced Laser Technology and Equipment, Tianjin 300401, China
- Tianjin Key Laboratory of Electronic Materials and Devices, Tianjin 300401, China
- National Demonstration Center for Experimental (Electronic and Communication Engineering) Education, Hebei University of Technology, Tianjin 300401, China
- Correspondence: (Y.L.); (G.W.); (Y.D.)
| | - Gong Wang
- Center for Advanced Laser Technology, Hebei University of Technology, Tianjin 300401, China; (X.X.); (Z.B.); (Y.Y.); (Y.W.); (Z.L.)
- Hebei Key Laboratory of Advanced Laser Technology and Equipment, Tianjin 300401, China
- Tianjin Key Laboratory of Electronic Materials and Devices, Tianjin 300401, China
- National Demonstration Center for Experimental (Electronic and Communication Engineering) Education, Hebei University of Technology, Tianjin 300401, China
- Correspondence: (Y.L.); (G.W.); (Y.D.)
| | - Zhenxu Bai
- Center for Advanced Laser Technology, Hebei University of Technology, Tianjin 300401, China; (X.X.); (Z.B.); (Y.Y.); (Y.W.); (Z.L.)
- Hebei Key Laboratory of Advanced Laser Technology and Equipment, Tianjin 300401, China
- Tianjin Key Laboratory of Electronic Materials and Devices, Tianjin 300401, China
- National Demonstration Center for Experimental (Electronic and Communication Engineering) Education, Hebei University of Technology, Tianjin 300401, China
| | - Yu Yu
- Center for Advanced Laser Technology, Hebei University of Technology, Tianjin 300401, China; (X.X.); (Z.B.); (Y.Y.); (Y.W.); (Z.L.)
- Hebei Key Laboratory of Advanced Laser Technology and Equipment, Tianjin 300401, China
- Tianjin Key Laboratory of Electronic Materials and Devices, Tianjin 300401, China
- National Demonstration Center for Experimental (Electronic and Communication Engineering) Education, Hebei University of Technology, Tianjin 300401, China
| | - Yulei Wang
- Center for Advanced Laser Technology, Hebei University of Technology, Tianjin 300401, China; (X.X.); (Z.B.); (Y.Y.); (Y.W.); (Z.L.)
- Hebei Key Laboratory of Advanced Laser Technology and Equipment, Tianjin 300401, China
- Tianjin Key Laboratory of Electronic Materials and Devices, Tianjin 300401, China
- National Demonstration Center for Experimental (Electronic and Communication Engineering) Education, Hebei University of Technology, Tianjin 300401, China
| | - Yu Ding
- Science and Technology on Electro-Optical Information Security Control Laboratory, Tianjin 300308, China
- Correspondence: (Y.L.); (G.W.); (Y.D.)
| | - Zhiwei Lu
- Center for Advanced Laser Technology, Hebei University of Technology, Tianjin 300401, China; (X.X.); (Z.B.); (Y.Y.); (Y.W.); (Z.L.)
- Hebei Key Laboratory of Advanced Laser Technology and Equipment, Tianjin 300401, China
- Tianjin Key Laboratory of Electronic Materials and Devices, Tianjin 300401, China
- National Demonstration Center for Experimental (Electronic and Communication Engineering) Education, Hebei University of Technology, Tianjin 300401, China
| |
Collapse
|
7
|
Kryuchkov M, Adamcik J, Katanaev VL. Bactericidal and Antiviral Bionic Metalized Nanocoatings. NANOMATERIALS 2022; 12:nano12111868. [PMID: 35683724 PMCID: PMC9182136 DOI: 10.3390/nano12111868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/26/2022] [Accepted: 05/28/2022] [Indexed: 02/04/2023]
Abstract
In diverse living organisms, bionanocoatings provide multiple functionalities, to the surfaces they cover. We have, previously, identified the molecular mechanisms of Turing-based self-assembly of insect corneal nanocoatings and developed forward-engineering approaches to construct multifunctional soft bionic nanocoatings, encompassing the Drosophila protein Retinin. Here, we expand the versatility of the bionic nanocoatings, by identifying and using diverse Retinin-like proteins and different methods of their metallization, using nickel, silver, and copper ions. Comparative assessment, of the resulting bactericidal, antiviral, and cytotoxic properties, identifies the best protocols, to construct safe and anti-infective metalized bionic nanocoatings. Upscaled application of these protocols, to various public surfaces, may represent a safe and economic approach to limit hazardous infections.
Collapse
Affiliation(s)
- Mikhail Kryuchkov
- Department of Cell Physiology and Metabolism, Translational Research Centre in Oncohaematology, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland;
| | - Jozef Adamcik
- National Center of Competence in Research Bio-Inspired Materials, Adolphe Merkle Institute, University of Fribourg, 1700 Fribourg, Switzerland;
| | - Vladimir L. Katanaev
- Department of Cell Physiology and Metabolism, Translational Research Centre in Oncohaematology, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland;
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia
- Correspondence: ; Tel.: +41-22-379-5353
| |
Collapse
|
8
|
Weasner BP, Kumar JP. The early history of the eye-antennal disc of Drosophila melanogaster. Genetics 2022; 221:6573236. [PMID: 35460415 PMCID: PMC9071535 DOI: 10.1093/genetics/iyac041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 03/04/2022] [Indexed: 12/15/2022] Open
Abstract
A pair of eye-antennal imaginal discs give rise to nearly all external structures of the adult Drosophila head including the compound eyes, ocelli, antennae, maxillary palps, head epidermis, and bristles. In the earliest days of Drosophila research, investigators would examine thousands of adult flies in search of viable mutants whose appearance deviated from the norm. The compound eyes are dispensable for viability and perturbations to their structure are easy to detect. As such, the adult compound eye and the developing eye-antennal disc emerged as focal points for studies of genetics and developmental biology. Since few tools were available at the time, early researchers put an enormous amount of thought into models that would explain their experimental observations-many of these hypotheses remain to be tested. However, these "ancient" studies have been lost to time and are no longer read or incorporated into today's literature despite the abundance of field-defining discoveries that are contained therein. In this FlyBook chapter, I will bring these forgotten classics together and draw connections between them and modern studies of tissue specification and patterning. In doing so, I hope to bring a larger appreciation of the contributions that the eye-antennal disc has made to our understanding of development as well as draw the readers' attention to the earliest studies of this important imaginal disc. Armed with the today's toolkit of sophisticated genetic and molecular methods and using the old papers as a guide, we can use the eye-antennal disc to unravel the mysteries of development.
Collapse
Affiliation(s)
- Brandon P Weasner
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Justin P Kumar
- Department of Biology, Indiana University, Bloomington, IN 47405, USA,Corresponding author: Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|
9
|
Tocco C, Dacke M, Byrne M. The finely defined shift work schedule of dung beetles and their eye morphology. Ecol Evol 2021; 11:15947-15960. [PMID: 34824802 PMCID: PMC8601928 DOI: 10.1002/ece3.8264] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/04/2021] [Accepted: 10/07/2021] [Indexed: 11/20/2022] Open
Abstract
In nature, nothing is wasted, not even waste. Dung, composed of metabolic trash and leftovers of food, is a high-quality resource and the object of fierce competition. Over 800 dung beetle species (Scarabaeinae) compete in the South African dung habitat and more than 100 species can colonize a single dung pat. To coexist in the same space, using the same food, beetles divide the day between them. However, detailed diel activity periods and associated morphological adaptations have been largely overlooked in these dung-loving insects. To address this, we used a high-frequency trapping design to establish the diel activity period of 44 dung beetle species in their South Africa communities. This allowed us to conclude that the dung beetles show a highly refined temporal partitioning strategy, with differences in peak of activity even within the diurnal, crepuscular, and nocturnal guilds, independent of nesting behavior and taxonomic classification. We further analyzed differences in eye and body size of our 44 model species and describe their variability in external eye morphology. In general, nocturnal species are bigger than crepuscular and diurnal species, and as expected, the absolute and relative eye size is greatest in nocturnal species, followed by crepuscular and then diurnal species. A more surprising finding was that corneal structure (smooth or facetted) is influenced by the activity period of the species, appearing flat in the nocturnal species and highly curved in the diurnal species. The role of the canthus-a cuticular structure that partially or completely divides the dung beetle eye into dorsal and ventral parts-remains a mystery, but the large number of species investigated in this study nevertheless allowed us to reject any correlation between its presence and the nesting behavior or time of activity of the beetles.
Collapse
Affiliation(s)
- Claudia Tocco
- Lund Vision GroupDepartment of BiologyLund UniversityLundSweden
- School of Animal, Plant and Environmental SciencesUniversity of the WitwatersrandWits, JohannesburgSouth Africa
| | - Marie Dacke
- Lund Vision GroupDepartment of BiologyLund UniversityLundSweden
- School of Animal, Plant and Environmental SciencesUniversity of the WitwatersrandWits, JohannesburgSouth Africa
| | - Marcus Byrne
- School of Animal, Plant and Environmental SciencesUniversity of the WitwatersrandWits, JohannesburgSouth Africa
| |
Collapse
|
10
|
Overcoming Drag at the Water-Air Interface Constrains Body Size in Whirligig Beetles. FLUIDS 2021. [DOI: 10.3390/fluids6070249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Whirligig beetles (Coleoptera: Gyrinidae) are among the best swimmers of all aquatic insects. They live mostly at the water’s surface and their capacity to swim fast is key to their survival. We present a minimal model for the viscous and wave drags they face at the water’s surface and compare them to their thrust capacity. The swimming speed accessible is thus derived according to size. An optimal size range for swimming at the water’s surface is observed. These results are in line with the evolutionary trajectories of gyrinids which evolved into lineages whose members are a few milimeter’s long to those with larger-sized genera being tens of millimeters in length. The size of these beetles appears strongly constrained by the fluid mechanical laws ruling locomotion and adaptation to the water-air interface.
Collapse
|
11
|
Kryuchkov M, Savitsky V, Wilts BD, Gray E, Katanaev VL. Light Polarization by Biological Nanocoatings. ACS APPLIED MATERIALS & INTERFACES 2021; 13:23481-23488. [PMID: 33974394 DOI: 10.1021/acsami.1c05049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Light plays paramount functions for living beings in nature. In addition to color, the polarization of light is used by many animals for navigation and communication. In this study, we describe the light polarizing role of special nanostructures coating cuticular surfaces of diverse arthropods. These structures are built as parallel nanoscale ridges covering the eyes of the sunlight-navigating spider Drassodes lapidosus and of the water pond-swarming black fly Simulium vittatum, as well as the light-emitting abdominal lantern of the firefly Aquatica lateralis. Exact topography and dimensions of the parallel nanoridges provide different light polarizing efficiencies and wavelength sensitivity. Optical modeling confirms that the nanoscale ridges are responsible for the spectral polarization dependency. Co-opting from our recent work on the self-assembly of Drosophila corneal nanostructures, we engineer arthropod-like parallel nanoridges on artificial surfaces, which recapitulate the light polarization effects. Our work highlights the fundamental importance of nanocoatings in arthropods for the light polarization management and provides a new biomimetic approach to produce ordered nanostructures under mild conditions.
Collapse
Affiliation(s)
- Mikhail Kryuchkov
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CMU, Rue Michel Servet 1, CH-1211 Geneva, Switzerland
| | - Vladimir Savitsky
- Zoological Museum of the Lomonosov Moscow State University, Bol'shaya Nikitskaya str. 2, Moscow 125009, Russian Federation
| | - Bodo D Wilts
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700 Fribourg, Switzerland
| | - Elmer Gray
- Department of Entomology, University of Georgia, Biological Sciences Building 413, Georgia 30602 Athens, United States
| | - Vladimir L Katanaev
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CMU, Rue Michel Servet 1, CH-1211 Geneva, Switzerland
- School of Biomedicine, Far Eastern Federal University, Sukhanova Street 8, Vladivostok 690922, Russian Federation
| |
Collapse
|
12
|
Meece M, Rathore S, Buschbeck EK. Stark trade-offs and elegant solutions in arthropod visual systems. J Exp Biol 2021; 224:224/4/jeb215541. [PMID: 33632851 DOI: 10.1242/jeb.215541] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Vision is one of the most important senses for humans and animals alike. Diverse elegant specializations have evolved among insects and other arthropods in response to specific visual challenges and ecological needs. These specializations are the subject of this Review, and they are best understood in light of the physical limitations of vision. For example, to achieve high spatial resolution, fine sampling in different directions is necessary, as demonstrated by the well-studied large eyes of dragonflies. However, it has recently been shown that a comparatively tiny robber fly (Holcocephala) has similarly high visual resolution in the frontal visual field, despite their eyes being a fraction of the size of those of dragonflies. Other visual specializations in arthropods include the ability to discern colors, which relies on parallel inputs that are tuned to spectral content. Color vision is important for detection of objects such as mates, flowers and oviposition sites, and is particularly well developed in butterflies, stomatopods and jumping spiders. Analogous to color vision, the visual systems of many arthropods are specialized for the detection of polarized light, which in addition to communication with conspecifics, can be used for orientation and navigation. For vision in low light, optical superposition compound eyes perform particularly well. Other modifications to maximize photon capture involve large lenses, stout photoreceptors and, as has been suggested for nocturnal bees, the neural pooling of information. Extreme adaptations even allow insects to see colors at very low light levels or to navigate using the Milky Way.
Collapse
Affiliation(s)
- Michael Meece
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Shubham Rathore
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Elke K Buschbeck
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| |
Collapse
|
13
|
Xu L, Shi TF, An LJ, Lu YY, Wang LN. Effect of Interfacial Adsorption on the Stability of Thin Polymer Films in a Solvent-induced Process. CHINESE JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1007/s10118-020-2493-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Büscher TH, Kryuchkov M, Katanaev VL, Gorb SN. Versatility of Turing patterns potentiates rapid evolution in tarsal attachment microstructures of stick and leaf insects (Phasmatodea). J R Soc Interface 2019; 15:rsif.2018.0281. [PMID: 29925583 DOI: 10.1098/rsif.2018.0281] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 05/30/2018] [Indexed: 11/12/2022] Open
Abstract
In its evolution, the diverse group of stick and leaf insects (Phasmatodea) has undergone a rapid radiation. These insects evolved specialized structures to adhere to different surfaces typical for their specific ecological environments. The cuticle of their tarsal attachment pads (euplantulae) is known to possess a high diversity of attachment microstructures (AMS) which are suggested to reflect ecological specializations of different groups within phasmids. However, the origin of these microstructures and their developmental background remain largely unknown. Here, based on the detailed scanning electron microscopy study of pad surfaces, we present a theoretical approach to mathematically model an outstanding diversity of phasmid AMS using the reaction-diffusion model by Alan Turing. In general, this model explains pattern formation in nature. For the first time, we were able to identify eight principal patterns and simulate the transitions among these. In addition, intermediate transitional patterns were predicted by the model. The ease of transformation suggests a high adaptability of the microstructures that might explain the rapid evolution of pad characters. We additionally discuss the functional morphology of the different microstructures and their assumed advantages in the context of the ecological background of species.
Collapse
Affiliation(s)
- Thies H Büscher
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Kiel, Germany
| | - Mikhail Kryuchkov
- Department of Pharmacology and Toxicology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Vladimir L Katanaev
- Department of Pharmacology and Toxicology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.,School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Stanislav N Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Kiel, Germany
| |
Collapse
|
15
|
Salamanca DA, Brown F. Sub-functionalization of dorsal and ventral eyes in a whirligig beetle (Coleoptera: Gyrinidae). NEOTROPICAL BIODIVERSITY 2018. [DOI: 10.1080/23766808.2018.1510567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
16
|
Tadepalli S, Slocik JM, Gupta MK, Naik RR, Singamaneni S. Bio-Optics and Bio-Inspired Optical Materials. Chem Rev 2017; 117:12705-12763. [PMID: 28937748 DOI: 10.1021/acs.chemrev.7b00153] [Citation(s) in RCA: 174] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Through the use of the limited materials palette, optimally designed micro- and nanostructures, and tightly regulated processes, nature demonstrates exquisite control of light-matter interactions at various length scales. In fact, control of light-matter interactions is an important element in the evolutionary arms race and has led to highly engineered optical materials and systems. In this review, we present a detailed summary of various optical effects found in nature with a particular emphasis on the materials and optical design aspects responsible for their optical functionality. Using several representative examples, we discuss various optical phenomena, including absorption and transparency, diffraction, interference, reflection and antireflection, scattering, light harvesting, wave guiding and lensing, camouflage, and bioluminescence, that are responsible for the unique optical properties of materials and structures found in nature and biology. Great strides in understanding the design principles adapted by nature have led to a tremendous progress in realizing biomimetic and bioinspired optical materials and photonic devices. We discuss the various micro- and nanofabrication techniques that have been employed for realizing advanced biomimetic optical structures.
Collapse
Affiliation(s)
- Sirimuvva Tadepalli
- Department of Mechanical Engineering and Materials Science and Institute of Materials Science and Engineering, Washington University in St. Louis , St. Louis, Missouri 63130, United States
| | | | | | | | - Srikanth Singamaneni
- Department of Mechanical Engineering and Materials Science and Institute of Materials Science and Engineering, Washington University in St. Louis , St. Louis, Missouri 63130, United States
| |
Collapse
|
17
|
Kryuchkov M, Lehmann J, Schaab J, Cherepanov V, Blagodatski A, Fiebig M, Katanaev VL. Alternative moth-eye nanostructures: antireflective properties and composition of dimpled corneal nanocoatings in silk-moth ancestors. J Nanobiotechnology 2017; 15:61. [PMID: 28877691 PMCID: PMC5588701 DOI: 10.1186/s12951-017-0297-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 08/29/2017] [Indexed: 12/29/2022] Open
Abstract
Moth-eye nanostructures are a well-known example of biological antireflective surfaces formed by pseudoregular arrays of nipples and are often used as a template for biomimetic materials. Here, we provide morphological characterization of corneal nanostructures of moths from the Bombycidae family, including strains of domesticated Bombyx mori silk-moth, its wild ancestor Bombyx mandarina, and a more distantly related Apatelodes torrefacta. We find high diversification of the nanostructures and strong antireflective properties they provide. Curiously, the nano-dimple pattern of B. mandarina is found to reduce reflectance as efficiently as the nanopillars of A. torrefacta. Access to genome sequence of Bombyx further permitted us to pinpoint corneal proteins, likely contributing to formation of the antireflective nanocoatings. These findings open the door to bioengineering of nanostructures with novel properties, as well as invite industry to expand traditional moth-eye nanocoatings with the alternative ones described here.
Collapse
Affiliation(s)
- Mikhail Kryuchkov
- Department of Pharmacology and Toxicology, University of Lausanne, Rue du Bugnon 27, 1011, Lausanne, Switzerland
| | - Jannis Lehmann
- Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093, Zurich, Switzerland
| | - Jakob Schaab
- Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093, Zurich, Switzerland
| | - Vsevolod Cherepanov
- School of Biomedicine, Far Eastern Federal University, Sukhanova Street 8, Vladivostok, 690922, Russian Federation
| | - Artem Blagodatski
- Department of Pharmacology and Toxicology, University of Lausanne, Rue du Bugnon 27, 1011, Lausanne, Switzerland.,School of Biomedicine, Far Eastern Federal University, Sukhanova Street 8, Vladivostok, 690922, Russian Federation
| | - Manfred Fiebig
- Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093, Zurich, Switzerland
| | - Vladimir L Katanaev
- Department of Pharmacology and Toxicology, University of Lausanne, Rue du Bugnon 27, 1011, Lausanne, Switzerland. .,School of Biomedicine, Far Eastern Federal University, Sukhanova Street 8, Vladivostok, 690922, Russian Federation.
| |
Collapse
|
18
|
Gustafson GT, Prokin AA, Bukontaite R, Bergsten J, Miller KB. Tip-dated phylogeny of whirligig beetles reveals ancient lineage surviving on Madagascar. Sci Rep 2017; 7:8619. [PMID: 28831048 PMCID: PMC5567340 DOI: 10.1038/s41598-017-08403-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 07/11/2017] [Indexed: 11/24/2022] Open
Abstract
The temporal origin of Madagascar's extraordinary endemic diversity is debated. A preference for Cenozoic dispersal origins has replaced the classical view of Mesozoic vicariance in the wake of molecular dating. However, evidence of ancient origins is mounting from arthropod groups. Using phylogenetic 'tip-dating' analysis with fossils, we show that a whirligig beetle species, Heterogyrus milloti, inhabiting forest streams in southeastern Madagascar is the last survivor of a once dominant and widespread Mesozoic group. With a Late Triassic to Early Jurassic origin (226-187 Ma) it is the hitherto oldest dated endemic lineage of animal or plant on Madagascar. Island biotas' sensitivity to extinction is well known, but islands can also provide refuge from continental extinction. Heterogyrus milloti is an irreplaceable link to the freshwater biota of the Mesozoic and serves as a reminder of what may be lost without critical conservation efforts on Madagascar.
Collapse
Affiliation(s)
- Grey T Gustafson
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, 66046, USA.
| | - Alexander A Prokin
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Nekouzsky District, Yaroslavl Oblast, 152742, Russia
| | - Rasa Bukontaite
- Department of Zoology, Swedish Museum of Natural History, Box 50007, SE-104 05, Stockholm, Sweden
| | - Johannes Bergsten
- Department of Zoology, Swedish Museum of Natural History, Box 50007, SE-104 05, Stockholm, Sweden
| | - Kelly B Miller
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| |
Collapse
|
19
|
Kryuchkov M, Lehmann J, Schaab J, Fiebig M, Katanaev VL. Antireflective nanocoatings for UV-sensation: the case of predatory owlfly insects. J Nanobiotechnology 2017; 15:52. [PMID: 28705169 PMCID: PMC5513249 DOI: 10.1186/s12951-017-0287-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 07/07/2017] [Indexed: 11/10/2022] Open
Abstract
Moth-eye nanostructures, discovered to coat corneae of certain nocturnal insects, have inspired numerous technological applications to reduce light reflectance from solar cells, light-emitting diodes, and optical detectors. Technological developments require such nanocoatings to possess broadband antireflective properties, transcending the visual light spectrum, in which animals typically operate. Here we describe the corneal nanostructures of the visual organ exclusive in UV sensation of the hunting insect Libelloides macaronius and report their supreme anti-light-reflectance capacity.
Collapse
Affiliation(s)
- Mikhail Kryuchkov
- Department of Pharmacology and Toxicology, University of Lausanne, Rue du Bugnon 27, 1011, Lausanne, Switzerland
| | - Jannis Lehmann
- Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland
| | - Jakob Schaab
- Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland
| | - Manfred Fiebig
- Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland
| | - Vladimir L Katanaev
- Department of Pharmacology and Toxicology, University of Lausanne, Rue du Bugnon 27, 1011, Lausanne, Switzerland. .,School of Biomedicine, Far Eastern Federal University, Sukhanova Street 8, Vladivostok, 690922, Russian Federation.
| |
Collapse
|
20
|
Watson GS, Watson JA, Cribb BW. Diversity of Cuticular Micro- and Nanostructures on Insects: Properties, Functions, and Potential Applications. ANNUAL REVIEW OF ENTOMOLOGY 2017; 62:185-205. [PMID: 28141960 DOI: 10.1146/annurev-ento-031616-035020] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Insects exhibit a fascinating and diverse range of micro- and nanoarchitectures on their cuticle. Beyond the spectacular beauty of such minute structures lie surfaces evolutionarily modified to act as multifunctional interfaces that must contend with a hostile, challenging environment, driving adaption so that these can then become favorable. Numerous cuticular structures have been discovered this century; and of equal importance are the properties, functions, and potential applications that have been a key focus in many recent studies. The vast range of insect structuring, from the most simplistic topographies to the most elegant and geometrically complex forms, affords us with an exhaustive library of natural templates and free technologies to borrow, replicate, and employ for a range of applications. Of particular importance are structures that imbue cuticle with antiwetting properties, self-cleaning abilities, antireflection, enhanced color, adhesion, and antimicrobial and specific cell-attachment properties.
Collapse
Affiliation(s)
- Gregory S Watson
- School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland 4556, Australia; ,
| | - Jolanta A Watson
- School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland 4556, Australia; ,
| | - Bronwen W Cribb
- Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, Queensland 4072, Australia;
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
21
|
Arthropod Corneal Nanocoatings: Diversity, Mechanisms, and Functions. BIOLOGICALLY-INSPIRED SYSTEMS 2017. [DOI: 10.1007/978-3-319-74144-4_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
22
|
Lee KC, Yu Q, Erb U. Mesostructure of Ordered Corneal Nano-nipple Arrays: The Role of 5-7 Coordination Defects. Sci Rep 2016; 6:28342. [PMID: 27329065 PMCID: PMC4916435 DOI: 10.1038/srep28342] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 06/01/2016] [Indexed: 11/09/2022] Open
Abstract
Corneal nano-nipple structures consisting of hexagonally arranged protrusions with diameters around 200 nm have long been known for their antireflection capability and have served as biological blueprint for solar cell, optical lens and other surface designs. However, little is known about the global arrangement of these nipples on the ommatidial surface and their growth during the eye development. This study provides new insights based on the analysis of nano-nipple arrangements on the mesoscale across entire ommatidia, which has never been done before. The most important feature in the nipple structures are topological 5- and 7-fold coordination defects, which align to form dislocations and interconnected networks of grain boundaries that divide the ommatidia into crystalline domains in different orientations. Furthermore, the domain size distribution might be log-normal, and the domains demonstrate no preference in crystal orientation. Both observations suggest that the nipple growth process may be similar to the nucleation and growth mechanisms during the formation of other crystal structures. Our results are also consistent with the most recently proposed Turing-type reaction-diffusion process. In fact, we were able to produce the key structural characteristics of the nipple arrangements using Turing analysis from the nucleation to the final structure development.
Collapse
Affiliation(s)
- Ken C Lee
- Department of Materials Science and Engineering, University of Toronto, 184 College St. Toronto, Ontario, M5S3E4, Canada
| | - Qi Yu
- Department of Materials Science and Engineering, University of Toronto, 184 College St. Toronto, Ontario, M5S3E4, Canada
| | - Uwe Erb
- Department of Materials Science and Engineering, University of Toronto, 184 College St. Toronto, Ontario, M5S3E4, Canada
| |
Collapse
|
23
|
Lee KC, Erb U. Remarkable crystal and defect structures in butterfly eye nano-nipple arrays. ARTHROPOD STRUCTURE & DEVELOPMENT 2015; 44:587-594. [PMID: 26342423 DOI: 10.1016/j.asd.2015.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 08/24/2015] [Accepted: 08/24/2015] [Indexed: 06/05/2023]
Abstract
The corneal nipple structures on the eyes of two nymphalid butterfly species (Nymphalis antiopa and Polygonia interrogationis) are analyzed in terms of nipple arrangements and associated defects. The nipple arrays in both species have close-packed hexagonal lattices with lattice parameters of about 200 nm. The most abundant defects observed are 5-7 coordination defects that generate dislocations, dislocation-type low angle and structural unit-like high angle grain boundaries, as well as closed-loop defects. These disordered structures are compared with imperfections found in other 2D and 3D crystal structures, and it is concluded that the defects in the nipple arrays are likely not due to random growth accidents. Instead, they could be the result of geometric constraints due to eye curvature or serve a yet undiscovered purpose in the optical properties of these eyes.
Collapse
Affiliation(s)
- Ken C Lee
- Department of Materials Science and Engineering, University of Toronto, 184 College St. Toronto, Ontario, Canada M5S3E4
| | - Uwe Erb
- Department of Materials Science and Engineering, University of Toronto, 184 College St. Toronto, Ontario, Canada M5S3E4.
| |
Collapse
|
24
|
Abstract
Nipple-like nanostructures covering the corneal surfaces of moths, butterflies, and Drosophila have been studied by electron and atomic force microscopy, and their antireflective properties have been described. In contrast, corneal nanostructures of the majority of other insect orders have either been unexamined or examined by methods that did not allow precise morphological characterization. Here we provide a comprehensive analysis of corneal surfaces in 23 insect orders, revealing a rich diversity of insect corneal nanocoatings. These nanocoatings are categorized into four major morphological patterns and various transitions between them, many, to our knowledge, never described before. Remarkably, this unexpectedly diverse range of the corneal nanostructures replicates the complete set of Turing patterns, thus likely being a result of processes similar to those modeled by Alan Turing in his famous reaction-diffusion system. These findings reveal a beautiful diversity of insect corneal nanostructures and shed light on their molecular origin and evolutionary diversification. They may also be the first-ever biological example of Turing nanopatterns.
Collapse
|
25
|
Abstract
Dragonflies are colorful and large-eyed animals strongly dependent on color vision. Here we report an extraordinary large number of opsin genes in dragonflies and their characteristic spatiotemporal expression patterns. Exhaustive transcriptomic and genomic surveys of three dragonflies of the family Libellulidae consistently identified 20 opsin genes, consisting of 4 nonvisual opsin genes and 16 visual opsin genes of 1 UV, 5 short-wavelength (SW), and 10 long-wavelength (LW) type. Comprehensive transcriptomic survey of the other dragonflies representing an additional 10 families also identified as many as 15-33 opsin genes. Molecular phylogenetic analysis revealed dynamic multiplications and losses of the opsin genes in the course of evolution. In contrast to many SW and LW genes expressed in adults, only one SW gene and several LW genes were expressed in larvae, reflecting less visual dependence and LW-skewed light conditions for their lifestyle under water. In this context, notably, the sand-burrowing or pit-dwelling species tended to lack SW gene expression in larvae. In adult visual organs: (i) many SW genes and a few LW genes were expressed in the dorsal region of compound eyes, presumably for processing SW-skewed light from the sky; (ii) a few SW genes and many LW genes were expressed in the ventral region of compound eyes, probably for perceiving terrestrial objects; and (iii) expression of a specific LW gene was associated with ocelli. Our findings suggest that the stage- and region-specific expressions of the diverse opsin genes underlie the behavior, ecology, and adaptation of dragonflies.
Collapse
|
26
|
Sergeev A, Timchenko AA, Kryuchkov M, Blagodatski A, Enin GA, Katanaev VL. Origin of order in bionanostructures. RSC Adv 2015. [DOI: 10.1039/c5ra10103d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Analysis of corneal nanocoatings across insect species provides clues to the origin of order in the bionanoworld.
Collapse
Affiliation(s)
- Anton Sergeev
- Institute of Mathematical Problems of Biology
- Russian Academy of Sciences
- Pushchino
- Russian Federation
| | | | - Mikhail Kryuchkov
- Department of Pharmacology and Toxicology
- University of Lausanne
- Lausanne
- Switzerland
| | - Artem Blagodatski
- Institute of Protein Research
- Russian Academy of Sciences
- Pushchino
- Russian Federation
| | - Gennadiy A. Enin
- Institute of Protein Research
- Russian Academy of Sciences
- Pushchino
- Russian Federation
| | - Vladimir L. Katanaev
- Department of Pharmacology and Toxicology
- University of Lausanne
- Lausanne
- Switzerland
- School of Biomedicine
| |
Collapse
|