1
|
Kvach AY, Kutyumov VA, Starunov VV, Ostrovsky AN. Transcriptomic Landscape of Polypide Development in the Freshwater Bryozoan Cristatella mucedo: From Budding to Degeneration. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2025; 344:119-135. [PMID: 39831659 DOI: 10.1002/jez.b.23285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 11/26/2024] [Accepted: 01/03/2025] [Indexed: 01/22/2025]
Abstract
Colonial invertebrates consist of iterative semi-autonomous modules (usually termed zooids) whose lifespan is significantly shorter than that of the entire colony. Typically, module development begins with budding and ends with degeneration. Most studies on the developmental biology of colonial invertebrates have focused on blastogenesis, whereas the changes occurring throughout the entire zooidal life were examined only for a few tunicates. Here we provide the first description of transcriptomic changes during polypide development in the freshwater bryozoan Cristatella mucedo. For the first time for Bryozoa, we performed bulk RNA sequencing of six polypide stages in C. mucedo (buds, juvenile polypides, three mature stages, and degeneration stage) and generated a high-quality de novo reference transcriptome. Based on these data, we analyzed clusters of differentially expressed genes for enriched pathways and biological processes that may be involved in polypide budding, growth, active functioning, and degradation. Although stem cells have never been described in Bryozoa, our analysis revealed the expression of conservative "stemness" markers in developing buds and juvenile polypides. Our data also indicate that polypide degeneration is a complex regulated process involving autophagy and other types of programmed cell death. We hypothesize that the mTOR signaling pathway plays an important role in regulating the polypide lifespan.
Collapse
Affiliation(s)
- A Yu Kvach
- Department of Invertebrate Zoology, Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russia
| | - V A Kutyumov
- Department of Invertebrate Zoology, Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russia
| | - V V Starunov
- Department of Invertebrate Zoology, Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russia
- Laboratory of Evolutionary Morphology, Zoological Institute, Russian Academy of Sciences, Saint Petersburg, Russia
| | - A N Ostrovsky
- Department of Invertebrate Zoology, Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russia
- Department of Palaeontology, Faculty of Earth Sciences, Geography and Astronomy, University of Vienna, Vienna, Austria
| |
Collapse
|
2
|
Liang Y, Carrillo-Baltodano AM, Martín-Durán JM. Emerging trends in the study of spiralian larvae. Evol Dev 2024; 26:e12459. [PMID: 37787615 DOI: 10.1111/ede.12459] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 10/04/2023]
Abstract
Many animals undergo indirect development, where their embryogenesis produces an intermediate life stage, or larva, that is often free-living and later metamorphoses into an adult. As their adult counterparts, larvae can have unique and diverse morphologies and occupy various ecological niches. Given their broad phylogenetic distribution, larvae have been central to hypotheses about animal evolution. However, the evolution of these intermediate forms and the developmental mechanisms diversifying animal life cycles are still debated. This review focuses on Spiralia, a large and diverse clade of bilaterally symmetrical animals with a fascinating array of larval forms, most notably the archetypical trochophore larva. We explore how classic research and modern advances have improved our understanding of spiralian larvae, their development, and evolution. Specifically, we examine three morphological features of spiralian larvae: the anterior neural system, the ciliary bands, and the posterior hyposphere. The combination of molecular and developmental evidence with modern high-throughput techniques, such as comparative genomics, single-cell transcriptomics, and epigenomics, is a promising strategy that will lead to new testable hypotheses about the mechanisms behind the evolution of larvae and life cycles in Spiralia and animals in general. We predict that the increasing number of available genomes for Spiralia and the optimization of genome-wide and single-cell approaches will unlock the study of many emerging spiralian taxa, transforming our views of the evolution of this animal group and their larvae.
Collapse
Affiliation(s)
- Yan Liang
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | | | - José M Martín-Durán
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| |
Collapse
|
3
|
Wang YQ, Liu Q, Zhou Y, Chen L, Yang YM, Shi X, Power DM, Li YF. Stage-Specific Transcriptomes of the Mussel Mytilus coruscus Reveals the Developmental Program for the Planktonic to Benthic Transition. Genes (Basel) 2023; 14:genes14020287. [PMID: 36833215 PMCID: PMC9957406 DOI: 10.3390/genes14020287] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Many marine invertebrate larvae undergo complex morphological and physiological changes during the planktonic-benthic transition (a.k.a. metamorphosis). In this study, transcriptome analysis of different developmental stages was used to uncover the molecular mechanisms underpinning larval settlement and metamorphosis of the mussel, Mytilus coruscus. Analysis of highly upregulated differentially expressed genes (DEGs) at the pediveliger stage revealed enrichment of immune-related genes. The results may indicate that larvae co-opt molecules of the immune system to sense and respond to external chemical cues and neuroendocrine signaling pathways forecast and trigger the response. The upregulation of adhesive protein genes linked to byssal thread secretion indicates the anchoring capacity required for larval settlement arises prior to metamorphosis. The results of gene expression support a role for the immune and neuroendocrine systems in mussel metamorphosis and provide the basis for future studies to disentangle gene networks and the biology of this important lifecycle transformation.
Collapse
Affiliation(s)
- Yu-Qing Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Qi Liu
- Aquatic Technology Promotion Station, Sanmen Rural Bureau, Taizhou 317199, China
| | - Yan Zhou
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Lizhi Chen
- Aquatic Technology Promotion Station, Sanmen Rural Bureau, Taizhou 317199, China
| | - Yue-Ming Yang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Xue Shi
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Deborah M. Power
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
- Comparative Endocrinology and Integrative Biology, Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Correspondence: (D.M.P.); (Y.-F.L.)
| | - Yi-Feng Li
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
- Correspondence: (D.M.P.); (Y.-F.L.)
| |
Collapse
|
4
|
Orús-Alcalde A, Lu TM, Børve A, Hejnol A. The evolution of the metazoan Toll receptor family and its expression during protostome development. BMC Ecol Evol 2021; 21:208. [PMID: 34809567 PMCID: PMC8609888 DOI: 10.1186/s12862-021-01927-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 10/21/2021] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Toll-like receptors (TLRs) play a crucial role in immunity and development. They contain leucine-rich repeat domains, one transmembrane domain, and one Toll/IL-1 receptor domain. TLRs have been classified into V-type/scc and P-type/mcc TLRs, based on differences in the leucine-rich repeat domain region. Although TLRs are widespread in animals, detailed phylogenetic studies of this gene family are lacking. Here we aim to uncover TLR evolution by conducting a survey and a phylogenetic analysis in species across Bilateria. To discriminate between their role in development and immunity we furthermore analyzed stage-specific transcriptomes of the ecdysozoans Priapulus caudatus and Hypsibius exemplaris, and the spiralians Crassostrea gigas and Terebratalia transversa. RESULTS We detected a low number of TLRs in ecdysozoan species, and multiple independent radiations within the Spiralia. V-type/scc and P-type/mcc type-receptors are present in cnidarians, protostomes and deuterostomes, and therefore they emerged early in TLR evolution, followed by a loss in xenacoelomorphs. Our phylogenetic analysis shows that TLRs cluster into three major clades: clade α is present in cnidarians, ecdysozoans, and spiralians; clade β in deuterostomes, ecdysozoans, and spiralians; and clade γ is only found in spiralians. Our stage-specific transcriptome and in situ hybridization analyses show that TLRs are expressed during development in all species analyzed, which indicates a broad role of TLRs during animal development. CONCLUSIONS Our findings suggest that a clade α TLR gene (TLR-Ca) and a clade β/γ TLR gene (TLR-Cβ/γ) were already present in the cnidarian-bilaterian common ancestor. However, although TLR-Ca was conserved in cnidarians, TLR-Cβ/γ was lost during the early evolution of these taxa. Moreover, TLR-Cβ/γ duplicated to generate TLR-Cβ and TLR-Cγ in the lineage to the last common protostome-deuterostome ancestor. TLR-Ca, TLR-Cβ and TLR-Cγ further expanded generating the three major TLR clades. While all three clades radiated in several spiralian lineages, specific TLRs clades have been presumably lost in other lineages. Furthermore, the expression of the majority of these genes during protostome ontogeny suggests a likely role in development.
Collapse
Affiliation(s)
- Andrea Orús-Alcalde
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5006, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Tsai-Ming Lu
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5006, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Bergen, Norway
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Aina Børve
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5006, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Andreas Hejnol
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5006, Bergen, Norway.
- Department of Biological Sciences, University of Bergen, Bergen, Norway.
| |
Collapse
|
5
|
Draft genome of Bugula neritina, a colonial animal packing powerful symbionts and potential medicines. Sci Data 2020; 7:356. [PMID: 33082320 PMCID: PMC7576161 DOI: 10.1038/s41597-020-00684-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 09/09/2020] [Indexed: 11/11/2022] Open
Abstract
Many animal phyla have no representatives within the catalog of whole metazoan genome sequences. This dataset fills in one gap in the genome knowledge of animal phyla with a draft genome of Bugula neritina (phylum Bryozoa). Interest in this species spans ecology and biomedical sciences because B. neritina is the natural source of bioactive compounds called bryostatins. Here we present a draft assembly of the B. neritina genome obtained from PacBio and Illumina HiSeq data, as well as genes and proteins predicted de novo and verified using transcriptome data, along with the functional annotation. These sequences will permit a better understanding of host-symbiont interactions at the genomic level, and also contribute additional phylogenomic markers to evaluate Lophophorate or Lophotrochozoa phylogenetic relationships. The effort also fits well with plans to ultimately sequence all orders of the Metazoa. Measurement(s) | DNA • genome • sequence_assembly • sequence feature annotation | Technology Type(s) | DNA sequencing • sequence assembly process • sequence annotation | Sample Characteristic - Organism | Bugula neritina |
Machine-accessible metadata file describing the reported data: 10.6084/m9.figshare.12988355
Collapse
|
6
|
Treibergs KA, Giribet G. Differential Gene Expression Between Polymorphic Zooids of the Marine Bryozoan Bugulina stolonifera. G3 (BETHESDA, MD.) 2020; 10:3843-3857. [PMID: 32859685 PMCID: PMC7534450 DOI: 10.1534/g3.120.401348] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 08/18/2020] [Indexed: 01/31/2023]
Abstract
Bryozoans are a diverse phylum of marine and freshwater colonial invertebrates containing approximately 6,300 described living species. Bryozoans grow by budding new physiologically connected colony members (zooids) from a founding individual that forms from a metamorphosed larva. In some species these zooids come in different shapes and sizes and are specialized to serve different tasks within the colony. A complex interaction of genotype, environment, and developmental pathway shapes zooid fate, however, the specific mechanisms underlying the establishment of this division of labor remain unknown. Here, the first characterization of differential gene expression between polymorphic zooids of a bryozoan colony is presented. The development of different zooid types of lab-cultured Bugulina stolonifera colonies including feeding autozooids, avicularia (derived non-feeding zooids that are homologous to feeding autozooids but shaped like a bird's beak), and rhizoids (a branching network of non-feeding anchoring zooids) was explored using RNA sequencing, de novo transcriptome assembly, and differential gene expression analyses. High throughput sequencing of cDNA libraries yielded an average of 14.9 ± 1.3 (SE) million high-quality paired-end reads per sample. Data for the first de novo transcriptome assemblies of B. stolonifera and the first characterization of genes involved in the formation and maintenance of zooid types within a bryozoan colony are presented. In a comparison between autozooid and avicularium tissues, 1,097 significant differentially expressed genes were uncovered. This work provides a much-needed foundation for understanding the mechanisms involved in the development of polymorphic zooids and the establishment of division of labor in bryozoans.
Collapse
Affiliation(s)
- Kira A Treibergs
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138
| | - Gonzalo Giribet
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138
| |
Collapse
|
7
|
Kumar G, Ertl R, Bartholomew JL, El-Matbouli M. First transcriptome analysis of bryozoan Fredericella sultana, the primary host of myxozoan parasite Tetracapsuloides bryosalmonae. PeerJ 2020; 8:e9027. [PMID: 32377451 PMCID: PMC7194087 DOI: 10.7717/peerj.9027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/31/2020] [Indexed: 12/04/2022] Open
Abstract
Bryozoans are aquatic invertebrate moss animals that are found worldwide. Fredericella sultana is a freshwater bryozoan and is the most common primary host of myxozoan parasite, Tetracapsuloides bryosalmonae. However, limited genomic resources are available for this bryozoan, which hampers investigations into the molecular mechanisms of host-parasite interactions. To better understand these interactions, there is a need to build a transcriptome dataset of F. sultana, for functional genomics analysis by large-scale RNA sequencing. Total RNA was extracted from zooids of F. sultana cultivated under controlled laboratory conditions. cDNA libraries were prepared and were analyzed by the Illumina paired-ends sequencing. The sequencing data were used for de novo transcriptome assembly and functional annotation. Approximately 118 million clean reads were obtained, and assembled into 85,544 contigs with an average length of 852 bp, an N50 of 1,085 bp, and an average GC content 51.4%. A total of 23,978 (28%) contigs were annotated using BLASTX analysis. Of these transcripts, 4,400 contigs had highest similarity to brachiopod species Lingula anatina. Based on Gene ontology (GO) annotation, the most highly scored categories of biological process were categorized into cellular process (27%), metabolic process (24%), and biological regulation (8%) in the transcriptome of F. sultana. This study gives first insights into the transcriptome of F. sultana and provides comprehensive genetic resources for the species. We believe that the transcriptome of F. sultana will serve as a useful genomic dataset to accelerate research of functional genomics and will help facilitate whole genome sequencing and annotation. Candidate genes potentially involved in growth, proteolysis, and stress/immunity-response were identified, and are worthy of further investigation.
Collapse
Affiliation(s)
- Gokhlesh Kumar
- Clinical Division of Fish Medicine, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Reinhard Ertl
- VetCore Facility, University of Veterinary Medicine, Vienna, Vienna, Austria
| | - Jerri L. Bartholomew
- Department of Microbiology, Oregon State University, Corvallis, OR, United States of America
| | - Mansour El-Matbouli
- Clinical Division of Fish Medicine, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
8
|
Xu Y, Zhang L, Wang KL, Zhang Y, Wong YH. Transcriptomic analysis of the mode of action of the candidate anti-fouling compound di(1H-indol-3-yl)methane (DIM) on a marine biofouling species, the bryozoan Bugula neritina. MARINE POLLUTION BULLETIN 2020; 152:110904. [PMID: 32479283 DOI: 10.1016/j.marpolbul.2020.110904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 01/08/2020] [Accepted: 01/08/2020] [Indexed: 06/11/2023]
Abstract
Di(1H-indol-3-yl)methane (DIM) was previously suggested to be an environmentally friendly antifouling compound, but it was also reported that the compound was highly stable in natural seawater. The present study reported that 3 h DIM treatments at 4 μg mL-1 or higher concentration and 12 h DIM treatments at 2 μg mL-1 or higher concentration induced significant larval mortality and metamorphic abnormality in the bryozoan Bugula neritina. The bioassay results correlated with the dose-dependent up-regulation of HSP family proteins, pro-apoptotic proteins, ubiquitination protein, and the dose-dependent down-regulation of anti-apoptotic genes and developmental genes. Unexpectedly, genes involved in fatty acid biosynthesis and protein synthesis were up-regulated in response to DIM treatment, but, in general, the effects of DIM on B. neritina larvae were comparable to that reported in human cancer cell lines. DIM also induced changes in steroid hormone biosynthesis genes in B. neritina larvae, leading to the concern that DIM might have long-term effects on marine lives. Overall, the present study suggested that application of DIM to the bryozoan larvae would trigger a major transcriptomic response, which might be linked to the observed larval mortality and abnormality. We suggest that application of DIM as an antifouling ingredient should be proceeded with great cautions.
Collapse
Affiliation(s)
- Ying Xu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, PR China
| | - Lu Zhang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, PR China
| | - Kai-Ling Wang
- Institute of Materia Medica, School of Pharmacy and Chemistry, Dali University, Dali 671000, PR China
| | - Yu Zhang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, PR China
| | - Yue Him Wong
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, PR China.
| |
Collapse
|
9
|
Li H, Mishra M, Ding S, Miyamoto MM. Diversity and Dynamics of "Candidatus Endobugula" and Other Symbiotic Bacteria in Chinese Populations of the Bryozoan, Bugula neritina. MICROBIAL ECOLOGY 2019; 77:243-256. [PMID: 30141128 DOI: 10.1007/s00248-018-1233-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/13/2018] [Indexed: 06/08/2023]
Abstract
Bugula neritina is a common invasive cosmopolitan bryozoan that harbors (like many sessile marine invertebrates) a symbiotic bacterial (SB) community. Among the SB of B. neritina, "Candidatus Endobugula sertula" continues to receive the greatest attention, because it is the source of bryostatins. The bryostatins are potent bioactive polyketides, which have been investigated for their therapeutic potential to treat various cancers, Alzheimer's disease, and AIDS. In this study, we compare the metagenomics sequences for the 16S ribosomal RNA gene of the SB communities from different geographic and life cycle samples of Chinese B. neritina. Using a variety of approaches for estimating alpha/beta diversity and taxonomic abundance, we find that the SB communities vary geographically with invertebrate and fish mariculture and with latitude and environmental temperature. During the B. neritina life cycle, we find that the diversity and taxonomic abundances of the SB communities change with the onset of host metamorphosis, filter feeding, colony formation, reproduction, and increased bryostatin production. "Ca. Endobugula sertula" is confirmed as the symbiont of the Chinese "Ca. Endobugula"/B. neritina symbiosis. Our study extends our knowledge about B. neritina symbiosis from the New to the Old World and offers new insights into the environmental and life cycle factors that can influence its SB communities, "Ca. Endobugula," and bryostatins more globally.
Collapse
Affiliation(s)
- Hai Li
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, China
- Third Institute of Oceanography, State Oceanic Administration, Xiamen, 361005, China
| | - Mrinal Mishra
- Department of Biology, University of Florida, Box 118525, Gainesville, FL, 32611-8525, USA
| | - Shaoxiong Ding
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, China.
| | - Michael M Miyamoto
- Department of Biology, University of Florida, Box 118525, Gainesville, FL, 32611-8525, USA
| |
Collapse
|
10
|
Yang XX, Wong YH, Zhang Y, Zhang G, Qian PY. Exploring the regulatory role of nitric oxide (NO) and the NO-p38MAPK/cGMP pathway in larval settlement of the bryozoan Bugula neritina. BIOFOULING 2018; 34:545-556. [PMID: 29842799 DOI: 10.1080/08927014.2018.1470240] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/19/2018] [Indexed: 06/08/2023]
Abstract
The bryozoan Bugula neritina is a cosmopolitan marine fouling species that causes major fouling problems in sub-tropical waters. Settlement of B. neritina larvae can be triggered without an obvious external cue. Here, the negative regulatory role of nitric oxide (NO) during larval settlement of B. neritina was demonstrated to be mediated by cyclic guanosine monophosphate (cGMP). Although the regulatory role of the NO-p38 MAPK signaling axis in larval settlement was not evident, inhibition of nitric oxide synthase (NOS) led to the deactivation of p38 MAPK. Exclusive localization of NO and NO signaling components in sensory-related organs of the larvae is consistent with its signal transduction function in metamorphosis. Overall, this study provides new insights into the regulatory roles of the NO-p38MAPK/cGMP pathway in B. neritina settlement.
Collapse
Affiliation(s)
- Xiao-Xue Yang
- a Division of Life Science , The Hong Kong University of Science and Technology , Hong Kong SAR , PR China
| | - Yue Him Wong
- a Division of Life Science , The Hong Kong University of Science and Technology , Hong Kong SAR , PR China
| | - Yu Zhang
- b Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Sciences and Oceanography , Shenzhen University , Shenzhen , PR China
| | - Gen Zhang
- a Division of Life Science , The Hong Kong University of Science and Technology , Hong Kong SAR , PR China
| | - Pei-Yuan Qian
- a Division of Life Science , The Hong Kong University of Science and Technology , Hong Kong SAR , PR China
| |
Collapse
|
11
|
Luo YJ, Kanda M, Koyanagi R, Hisata K, Akiyama T, Sakamoto H, Sakamoto T, Satoh N. Nemertean and phoronid genomes reveal lophotrochozoan evolution and the origin of bilaterian heads. Nat Ecol Evol 2017; 2:141-151. [PMID: 29203924 DOI: 10.1038/s41559-017-0389-y] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 10/20/2017] [Indexed: 01/29/2023]
Abstract
Nemerteans (ribbon worms) and phoronids (horseshoe worms) are closely related lophotrochozoans-a group of animals including leeches, snails and other invertebrates. Lophotrochozoans represent a superphylum that is crucial to our understanding of bilaterian evolution. However, given the inconsistency of molecular and morphological data for these groups, their origins have been unclear. Here, we present draft genomes of the nemertean Notospermus geniculatus and the phoronid Phoronis australis, together with transcriptomes along the adult bodies. Our genome-based phylogenetic analyses place Nemertea sister to the group containing Phoronida and Brachiopoda. We show that lophotrochozoans share many gene families with deuterostomes, suggesting that these two groups retain a core bilaterian gene repertoire that ecdysozoans (for example, flies and nematodes) and platyzoans (for example, flatworms and rotifers) do not. Comparative transcriptomics demonstrates that lophophores of phoronids and brachiopods are similar not only morphologically, but also at the molecular level. Despite dissimilar head structures, lophophores express vertebrate head and neuronal marker genes. This finding suggests a common origin of bilaterian head patterning, although different heads evolved independently in each lineage. Furthermore, we observe lineage-specific expansions of innate immunity and toxin-related genes. Together, our study reveals a dual nature of lophotrochozoans, where conserved and lineage-specific features shape their evolution.
Collapse
Affiliation(s)
- Yi-Jyun Luo
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Japan. .,Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.
| | - Miyuki Kanda
- DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Onna, Japan
| | - Ryo Koyanagi
- DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Onna, Japan
| | - Kanako Hisata
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Japan
| | - Tadashi Akiyama
- Ushimado Marine Institute, Graduate School of Natural Science and Technology, Okayama University, Setouchi, Japan
| | - Hirotaka Sakamoto
- Ushimado Marine Institute, Graduate School of Natural Science and Technology, Okayama University, Setouchi, Japan
| | - Tatsuya Sakamoto
- Ushimado Marine Institute, Graduate School of Natural Science and Technology, Okayama University, Setouchi, Japan
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Japan.
| |
Collapse
|
12
|
Wong YH, Yu L, Zhang G, He LS, Qian PY. In Silico Prediction of Neuropeptides/Peptide Hormone Transcripts in the Cheilostome Bryozoan Bugula neritina. PLoS One 2016; 11:e0160271. [PMID: 27537380 PMCID: PMC4990251 DOI: 10.1371/journal.pone.0160271] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 07/15/2016] [Indexed: 11/18/2022] Open
Abstract
The bryozoan Bugula neritina has a biphasic life cycle that consists of a planktonic larval stage and a sessile juvenile/adult stage. The transition between these two stages is crucial for the development and recruitment of B. neritina. Metamorphosis in B. neritina is mediated by both the nervous system and the release of developmental signals. However, no research has been conducted to investigate the expression of neuropeptides (NP)/peptide hormones in B. neritina larvae. Here, we report a comprehensive study of the NP/peptide hormones in the marine bryozoan B. neritina based on in silico identification methods. We recovered 22 transcripts encompassing 11 NP/peptide hormone precursor transcript sequences. The transcript sequences of the 11 isolated NP precursors were validated by cDNA cloning using gene-specific primers. We also examined the expression of three peptide hormone precursor transcripts (BnFDSIG, BnILP1, BnGPB) in the coronate larvae of B. neritina, demonstrating their distinct expression patterns in the larvae. Overall, our findings serve as an important foundation for subsequent investigations of the peptidergic control of bryozoan larval behavior and settlement.
Collapse
Affiliation(s)
- Yue Him Wong
- Division of Life Science, the Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Li Yu
- Division of Life Science, the Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Gen Zhang
- Division of Life Science, the Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Li-Sheng He
- Division of Life Science, the Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Sanya Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, San Ya, Hai Nan, China
| | - Pei-Yuan Qian
- Division of Life Science, the Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Sanya Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, San Ya, Hai Nan, China
- * E-mail:
| |
Collapse
|
13
|
Transcriptomic Analysis of the Endangered Neritid Species Clithon retropictus: De Novo Assembly, Functional Annotation, and Marker Discovery. Genes (Basel) 2016; 7:genes7070035. [PMID: 27455329 PMCID: PMC4962005 DOI: 10.3390/genes7070035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 07/05/2016] [Accepted: 07/06/2016] [Indexed: 11/25/2022] Open
Abstract
An aquatic gastropod belonging to the family Neritidae, Clithon retropictus is listed as an endangered class II species in South Korea. The lack of information on its genomic background limits the ability to obtain functional data resources and inhibits informed conservation planning for this species. In the present study, the transcriptomic sequencing and de novo assembly of C. retropictus generated a total of 241,696,750 high-quality reads. These assembled to 282,838 unigenes with mean and N50 lengths of 736.9 and 1201 base pairs, respectively. Of these, 125,616 unigenes were subjected to annotation analysis with known proteins in Protostome DB, COG, GO, and KEGG protein databases (BLASTX; E ≤ 0.00001) and with known nucleotides in the Unigene database (BLASTN; E ≤ 0.00001). The GO analysis indicated that cellular process, cell, and catalytic activity are the predominant GO terms in the biological process, cellular component, and molecular function categories, respectively. In addition, 2093 unigenes were distributed in 107 different KEGG pathways. Furthermore, 49,280 simple sequence repeats were identified in the unigenes (>1 kilobase sequences). This is the first report on the identification of transcriptomic and microsatellite resources for C. retropictus, which opens up the possibility of exploring traits related to the adaptation and acclimatization of this species.
Collapse
|