1
|
Alshahrani MM. Antifungal potential of marine bacterial compounds in inhibiting Candida albicans Yck2 to overcome echinocandin resistance: a molecular dynamics study. Front Pharmacol 2024; 15:1459964. [PMID: 39484169 PMCID: PMC11525067 DOI: 10.3389/fphar.2024.1459964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 09/17/2024] [Indexed: 11/03/2024] Open
Abstract
Candida albicans (C. albicans), a common fungal pathogen, poses a significant threat to immunocompromised individuals, particularly due to the emergence of resistance against echinocandins, a primary class of antifungal agents. Yck2 protein, a key regulator of cell wall integrity and signaling pathways in C. albicans, was targeted to overcome this resistance. A virtual screening was used to identify Yck2 inhibitors from marine bacterial compounds. Further re-docking, molecular dynamics simulations, and various analyses such as root mean square deviation (RMSD), root mean square fluctuation (RMSF), hydrogen bonding, free binding energy calculations, and RG-RMSD-based free energy landscape were conducted to evaluate the efficacy and stability of the identified compounds. Among the compounds screened, CMNPD27166 and CMNPD27283 emerged as the most promising candidates, demonstrating superior binding affinities, enhanced stability, and favorable interaction dynamics with Yck2, surpassing both the control and other compounds in efficacy. In contrast, CMNPD19660 and CMNPD24402, while effective, showed lesser potential. These findings highlight the utility of computational drug discovery techniques in identifying and optimizing potential therapeutic agents and suggest that marine-derived molecules could significantly impact the development of novel antifungal therapies. Further experimental validation of the leading candidates, CMNPD27166 and CMNPD27283, is recommended to confirm their potential as effective antifungal agents against echinocandin-resistant C. albicans infections.
Collapse
|
2
|
Kausar MA, Parveen S, Anwar S, Sadaf, Massey S, El-Horany HES, Khan FH, Shahein M, Husain SA. Cytotoxic potential and metabolomic profiling of alkaloid rich fraction of Tylophora indica leaves. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159505. [PMID: 38729236 DOI: 10.1016/j.bbalip.2024.159505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/28/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
Tylophora indica (Burm f.) Merrill, belong to family Asclepiadaceae, is considered to be a natural remedy with high medicinal benefits. The objective of this work is to assess the metabolomic profile of T. indica leaves enriched in alkaloids, as well as to evaluate the in vitro cytotoxicity of these leaves using the MTT assay on human breast MCF-7 and liver HepG2 cancer cell lines. Dried leaves of T. indica were extracted by sonication, using methanol containing 2 % (v/v) of acetic acid and obtained fraction was characterized by HPTLC and UPLC-MS. The UPLC-MS study yielded a preliminary identification of 32 metabolites, with tylophorine, tylophorine B, tylophorinine, and tylophorinidine being the predominant metabolites. The cytotoxicity of the extract of T. indica was evaluated on HepG2 and MCF-7 cell lines, yielding inhibitory concentration (IC50) values of 75.71 μg/mL and 69.60 μg/mL, respectively. Data suggested that the phytochemical screening clearly showed presence of numerous secondary metabolites with moderate cytotoxic efficacy. In conclusion, the future prospects of T. indica appear promising for the advancement of phytopharmaceutical-based anticancer medications, as well as for the design of contemporary pharmaceuticals in the field of cancer chemotherapy.
Collapse
Affiliation(s)
- Mohd Adnan Kausar
- Department of Biochemistry, College of Medicine, University of Ha'il, Hail 81411, Saudi Arabia; Medical and Diagnostic Research Centre, University of Ha'il, Hail 55473, Saudi Arabia.
| | - Shabana Parveen
- Department of Biosciences, Jamia Millia Islamia, Okhla, New Delhi 110025, India.
| | - Sadaf Anwar
- Department of Biochemistry, College of Medicine, University of Ha'il, Hail 81411, Saudi Arabia; Medical and Diagnostic Research Centre, University of Ha'il, Hail 55473, Saudi Arabia.
| | - Sadaf
- Department of Biotechnology, Jamia Millia Islamia, Okhla, New Delhi 110025, India
| | - Sheersh Massey
- Department of Biosciences, Jamia Millia Islamia, Okhla, New Delhi 110025, India.
| | - Hemat El-Sayed El-Horany
- Department of Biochemistry, College of Medicine, University of Ha'il, Hail 81411, Saudi Arabia; Medical and Diagnostic Research Centre, University of Ha'il, Hail 55473, Saudi Arabia; Medical Biochemistry Department, Faculty of Medicine, Tanta University, Egypt.
| | - Farida Habib Khan
- Medical and Diagnostic Research Centre, University of Ha'il, Hail 55473, Saudi Arabia; Department of Community and Family Medicine, College of Medicine, University of Ha'il, Hail 81411, Saudi Arabia.
| | - Mona Shahein
- Department of Pediatrics, College of Medicine, University of Ha'il, Hail 81411, Saudi Arabia
| | - Syed Akhtar Husain
- Department of Biosciences, Jamia Millia Islamia, Okhla, New Delhi 110025, India.
| |
Collapse
|
3
|
Prusty JS, Kumar A. LC-MS/MS profiling and analysis of Bacillus licheniformis extracellular proteins for antifungal potential against Candida albicans. J Proteomics 2024; 303:105228. [PMID: 38878881 DOI: 10.1016/j.jprot.2024.105228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/18/2024]
Abstract
Candida albicans, a significant human pathogenic fungus, employs hydrolytic proteases for host invasion. Conventional antifungal agents are reported with resistance issues from around the world. This study investigates the role of Bacillus licheniformis extracellular proteins (ECP) as effective antifungal peptides (AFPs). The aim was to identify and characterize the ECP of B. licheniformis through LC-MS/MS and bioinformatics analysis. LC-MS/MS analysis identified 326 proteins with 69 putative ECP, further analyzed in silico. Of these, 21 peptides exhibited antifungal properties revealed by classAMP tool and are predominantly anionic. Peptide-protein docking revealed interactions between AFPs like Peptide chain release factor 1 (Q65DV1_Seq1: SASEQLSDAK) and Putative carboxy peptidase (Q65IF0_Seq7: SDSSLEDQDFILESK) with C. albicans virulent SAP5 proteins (PDB ID 2QZX), forming hydrogen bonds and significant Pi-Pi interactions. The identification of B. licheniformis ECP is the novelty of the study that sheds light on their antifungal potential. The identified AFPs, particularly those interacting with bonafide pharmaceutical targets SAP5 of C. albicans represent promising avenues for the development of antifungal treatments with AFPs that could be the pursuit of a novel therapeutic strategy against C. albicans. SIGNIFICANCE OF STUDY: The purpose of this work was to carry out proteomic profiling of the secretome of B. licheniformis. Previously, the efficacy of Bacillus licheniformis extracellular proteins against Candida albicans was investigated and documented in a recently communicated manuscript, showcasing the antifungal activity of these proteins. In order to achieve high-throughput identification of ES (Excretory-secretory) proteins, the utilization of liquid chromatography tandem mass spectrometry (LC-MS) was utilized. There was a lack of comprehensive research on AFPs in B. licheniformis, nevertheless. The proteins secreted by B. licheniformis in liquid medium were initially discovered using liquid chromatography-tandem mass spectrometry (LC-MS) analysis and identification in order to immediately characterize the unidentified active metabolites in fermentation broth.
Collapse
Affiliation(s)
- Jyoti Sankar Prusty
- Department of Biotechnology, National Institute of Technology, Raipur 492010, CG, India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur 492010, CG, India.
| |
Collapse
|
4
|
Ashraf N, Zafar S, Makitrynskyy R, Bechthold A, Spiteller D, Song L, Anwar MA, Luzhetskyy A, Khan AN, Akhtar K, Khaliq S. Revealing Genome-Based Biosynthetic Potential of Streptomyces sp. BR123 Isolated from Sunflower Rhizosphere with Broad Spectrum Antimicrobial Activity. Antibiotics (Basel) 2022; 11:antibiotics11081057. [PMID: 36009926 PMCID: PMC9405382 DOI: 10.3390/antibiotics11081057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/30/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022] Open
Abstract
Actinomycetes, most notably the genus Streptomyces, have great importance due to their role in the discovery of new natural products, especially for finding antimicrobial secondary metabolites that are useful in the medicinal science and biotechnology industries. In the current study, a genome-based evaluation of Streptomyces sp. isolate BR123 was analyzed to determine its biosynthetic potential, based on its in vitro antimicrobial activity against a broad range of microbial pathogens, including gram-positive and gram-negative bacteria and fungi. A draft genome sequence of 8.15 Mb of Streptomyces sp. isolate BR123 was attained, containing a GC content of 72.63% and 8103 protein coding genes. Many antimicrobial, antiparasitic, and anticancerous compounds were detected by the presence of multiple biosynthetic gene clusters, which was predicted by in silico analysis. A novel metabolite with a molecular mass of 1271.7773 in positive ion mode was detected through a high-performance liquid chromatography linked with mass spectrometry (HPLC-MS) analysis. In addition, another compound, meridamycin, was also identified through a HPLC-MS analysis. The current study reveals the biosynthetic potential of Streptomyces sp. isolate BR123, with respect to the synthesis of bioactive secondary metabolites through genomic and spectrometric analysis. Moreover, the comparative genome study compared the isolate BR123 with other Streptomyces strains, which may expand the knowledge concerning the mechanism involved in novel antimicrobial metabolite synthesis.
Collapse
Affiliation(s)
- Neelma Ashraf
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Jhang Road, PO Box 577, Faisalabad 38000, Pakistan
- Department of Chemical Ecology/Biological Chemistry, University of Konstanz, 78457 Konstanz, Germany
- Correspondence: (N.A.); (S.K.); Tel.: +92-41-9201316 (S.K.); Fax: +92-41-92014722 (S.K.)
| | - Sana Zafar
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Jhang Road, PO Box 577, Faisalabad 38000, Pakistan
| | - Roman Makitrynskyy
- Department of Pharmaceutical Biology and Biotechnology, Institute of Pharmaceutical Sciences, University of Freiburg, 79104 Freiburg im Breisgau, Germany
| | - Andreas Bechthold
- Department of Pharmaceutical Biology and Biotechnology, Institute of Pharmaceutical Sciences, University of Freiburg, 79104 Freiburg im Breisgau, Germany
| | - Dieter Spiteller
- Department of Chemical Ecology/Biological Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Lijiang Song
- Department of Chemistry, University of Warwick Coventry, Coventry CV4 7AL, UK
| | - Munir Ahmad Anwar
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Jhang Road, PO Box 577, Faisalabad 38000, Pakistan
| | - Andriy Luzhetskyy
- Pharmaceutical Biotechnology Campus, Saarland University, Building C2.3, 66123 Saarbrucken, Germany
| | - Ali Nisar Khan
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Jhang Road, PO Box 577, Faisalabad 38000, Pakistan
| | - Kalsoom Akhtar
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Jhang Road, PO Box 577, Faisalabad 38000, Pakistan
| | - Shazia Khaliq
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Jhang Road, PO Box 577, Faisalabad 38000, Pakistan
- Correspondence: (N.A.); (S.K.); Tel.: +92-41-9201316 (S.K.); Fax: +92-41-92014722 (S.K.)
| |
Collapse
|
5
|
Li J, Zhang D, Yin L, Li Z, Yu C, Du H, Jiang X, Yang C, Liu Y. Integration analysis of metabolome and transcriptome profiles revealed the age-dependent dynamic change in chicken meat. Food Res Int 2022; 156:111171. [DOI: 10.1016/j.foodres.2022.111171] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 01/31/2023]
|
6
|
Ngashangva N, Mukherjee P, Sharma KC, Kalita MC, Indira S. Analysis of Antimicrobial Peptide Metabolome of Bacterial Endophyte Isolated From Traditionally Used Medicinal Plant Millettia pachycarpa Benth. Front Microbiol 2021; 12:656896. [PMID: 34149644 PMCID: PMC8208310 DOI: 10.3389/fmicb.2021.656896] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/21/2021] [Indexed: 12/13/2022] Open
Abstract
Increasing prevalence of antimicrobial resistance (AMR) has posed a major health concern worldwide, and the addition of new antimicrobial agents is diminishing due to overexploitation of plants and microbial resources. Inevitably, alternative sources and new strategies are needed to find novel biomolecules to counter AMR and pandemic circumstances. The association of plants with microorganisms is one basic natural interaction that involves the exchange of biomolecules. Such a symbiotic relationship might affect the respective bio-chemical properties and production of secondary metabolites in the host and microbes. Furthermore, the discovery of taxol and taxane from an endophytic fungus, Taxomyces andreanae from Taxus wallachiana, has stimulated much research on endophytes from medicinal plants. A gram-positive endophytic bacterium, Paenibacillus peoriae IBSD35, was isolated from the stem of Millettia pachycarpa Benth. It is a rod-shaped, motile, gram-positive, and endospore-forming bacteria. It is neutralophilic as per Joint Genome Institute’s (JGI) IMG system analysis. The plant was selected based on its ethnobotany history of traditional uses and highly insecticidal properties. Bioactive molecules were purified from P. peoriae IBSD35 culture broth using 70% ammonium sulfate and column chromatography techniques. The biomolecule was enriched to 151.72-fold and the yield percentage was 0.05. Peoriaerin II, a highly potent and broad-spectrum antimicrobial peptide against Staphylococcus aureus ATCC 25923, Escherichia coli ATCC 25922, and Candida albicans ATCC 10231 was isolated. LC-MS sequencing revealed that its N-terminal is methionine. It has four negatively charged residues (Asp + Glu) and a total number of two positively charged residues (Arg + Lys). Its molecular weight is 4,685.13 Da. It is linked to an LC-MS/MS inferred biosynthetic gene cluster with accession number A0A2S6P0H9, and blastp has shown it is 82.4% similar to fusaricidin synthetase of Paenibacillus polymyxa SC2. The 3D structure conformation of the BGC and AMP were predicted using SWISS MODEL homology modeling. Therefore, combining both genomic and proteomic results obtained from P. peoriae IBSD35, associated with M. pachycarpa Benth., will substantially increase the understanding of antimicrobial peptides and assist to uncover novel biological agents.
Collapse
Affiliation(s)
- Ng Ngashangva
- A National Institute of Department of Biotechnology, Institute of Bioresources and Sustainable Development (IBSD), Govt. of India, Imphal, India
| | - Pulok Mukherjee
- A National Institute of Department of Biotechnology, Institute of Bioresources and Sustainable Development (IBSD), Govt. of India, Imphal, India
| | - K Chandradev Sharma
- A National Institute of Department of Biotechnology, Institute of Bioresources and Sustainable Development (IBSD), Govt. of India, Imphal, India
| | - M C Kalita
- Department of Biotechnology, Gauhati University, Guwahati, India
| | - Sarangthem Indira
- A National Institute of Department of Biotechnology, Institute of Bioresources and Sustainable Development (IBSD), Govt. of India, Imphal, India
| |
Collapse
|
7
|
Shaligram S, Narwade NP, Kumbhare SV, Bordoloi M, Tamuli KJ, Nath S, Parimelazhagan T, Patil VS, Kapley A, Pawar SP, Dhotre DP, Muddeshwar MG, Purohit HJ, Shouche YS. Integrated Genomic and Functional Characterization of the Anti-diabetic Potential of Arthrobacter sp. SW1. Curr Microbiol 2021; 78:2577-2588. [PMID: 33983483 DOI: 10.1007/s00284-021-02523-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 04/28/2021] [Indexed: 11/29/2022]
Abstract
For decades, bacterial natural products have served as valuable resources for developing novel drugs to treat several human diseases. Recent advancements in the integrative approach of using genomic and functional tools have proved beneficial in obtaining a comprehensive understanding of these biomolecules. This study presents an in-depth characterization of the anti-diabetic activity exhibited by a bacterial isolate SW1, isolated from an effluent treatment plant. As a primary screening, we assessed the isolate for its potential to inhibit alpha-amylase and alpha-glucosidase enzymes. Upon confirmation, we further utilized LC-MS, ESI-MS/MS, and NMR spectroscopy to identify and characterize the biomolecule. These efforts were coupled with the genomic assessment of the biosynthetic gene cluster involved in the anti-diabetic compound production. Our investigation discovered that the isolate SW1 inhibited both α-amylase and α-glucosidase activity. The chemical analysis suggested the production of acarbose, an anti-diabetic biomolecule, which was further confirmed by the presence of biosynthetic gene cluster "acb" in the genome. Our in-depth chemical characterization and genome mining approach revealed the potential of bacteria from an unconventional niche, an effluent treatment plant. To the best of our knowledge, it is one of the first few reports of acarbose production from the genus Arthrobacter.
Collapse
Affiliation(s)
- Shraddha Shaligram
- National Centre for Microbial Resource (NCMR), National Centre for Cell Science (NCCS), Central Tower, Sai Trinity Complex, Pashan, Pune, 411021, India.
| | - Nitin P Narwade
- National Centre for Microbial Resource (NCMR), National Centre for Cell Science (NCCS), Central Tower, Sai Trinity Complex, Pashan, Pune, 411021, India
| | - Shreyas V Kumbhare
- National Centre for Microbial Resource (NCMR), National Centre for Cell Science (NCCS), Central Tower, Sai Trinity Complex, Pashan, Pune, 411021, India
| | - Manobjyoti Bordoloi
- Chemical Sciences and Technology Division, CSIR North East Institute of Science & Technology, Jorhat, Assam, 785006, India.
| | - Kashyap J Tamuli
- Chemical Sciences and Technology Division, CSIR North East Institute of Science & Technology, Jorhat, Assam, 785006, India
| | - Shyamalendu Nath
- Chemical Sciences and Technology Division, CSIR North East Institute of Science & Technology, Jorhat, Assam, 785006, India
| | - T Parimelazhagan
- Department of Botany, Bioprospecting Laboratory, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Vikas S Patil
- National Centre for Microbial Resource (NCMR), National Centre for Cell Science (NCCS), Central Tower, Sai Trinity Complex, Pashan, Pune, 411021, India
| | - Atya Kapley
- Environmental Biotechnology and Genomics Division, National Environmental Engineering Research Institute, CSIR-NEERI, Nehru Marg, Nagpur, 440020, India
| | - Shrikant P Pawar
- National Centre for Microbial Resource (NCMR), National Centre for Cell Science (NCCS), Central Tower, Sai Trinity Complex, Pashan, Pune, 411021, India
| | - Dhiraj P Dhotre
- National Centre for Microbial Resource (NCMR), National Centre for Cell Science (NCCS), Central Tower, Sai Trinity Complex, Pashan, Pune, 411021, India
| | - M G Muddeshwar
- Department of Biochemistry, Government Medical College, Nagpur, Maharashtra, 440009, India
| | - Hemant J Purohit
- Environmental Biotechnology and Genomics Division, National Environmental Engineering Research Institute, CSIR-NEERI, Nehru Marg, Nagpur, 440020, India
| | - Yogesh S Shouche
- National Centre for Microbial Resource (NCMR), National Centre for Cell Science (NCCS), Central Tower, Sai Trinity Complex, Pashan, Pune, 411021, India
| |
Collapse
|
8
|
Zhu B, Li Z, Qian PY, Herrup K. Marine bacterial extracts as a new rich source of drugs against Alzheimer's disease. J Neurochem 2019; 152:493-508. [PMID: 31381155 DOI: 10.1111/jnc.14847] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 05/09/2019] [Accepted: 07/31/2019] [Indexed: 01/24/2023]
Abstract
Alzheimer's disease (AD) is a prevalent, progressive and irreversible, neurodegenerative disease with no disease modifying treatment yet available. The projected burden of AD on our healthcare system is immense and thus there is an immediate need for new drugs that prevent or attenuate AD symptoms. While most efforts in the field are directed at treatments that reduce amyloid or tau burden in the brain, we have taken an alternate approach - a model based on reducing AD-associated neuronal cell cycle events. Using this model, we have screened a largely unexplored source of compounds with therapeutic potential - the natural products created by diverse strains of marine bacteria. Two hundred and twenty-five bacterial extracts from different strains were tested for both toxicity and neuroprotective properties by crystal violet and In-cell Western - first in HT22 cells and then in mouse primary neuronal cultures. Based on these screens, we have identified several promising leads, and here we focus on the most promising of these. We found that we could directly assay even a crude bacterial extract in our E16 mouse cortical neuronal cultures and screen for activities that prevent cell cycle reentry and preserve synaptic structure. Preliminary tests in 1-month-old animals from a mouse model of Ataxia telangiectasia, showed that blockage of cell cycle-related neuronal death could also be successful in vivo. This adds an important extension to our in vitro studies. These findings showcase a new effective and efficient assay system and validate the use of marine natural compounds as a novel source for new drugs to fight Alzheimer's disease. Cover Image for this issue: doi: 10.1111/jnc.14733.
Collapse
Affiliation(s)
- Beika Zhu
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Zhongrui Li
- Department of Ocean Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.,Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California, USA
| | - Pei-Yuan Qian
- Department of Ocean Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Karl Herrup
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
9
|
Jardine JL, Stoychev S, Mavumengwana V, Ubomba-Jaswa E. Screening of potential bioremediation enzymes from hot spring bacteria using conventional plate assays and liquid chromatography - Tandem mass spectrometry (Lc-Ms/Ms). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 223:787-796. [PMID: 29986326 DOI: 10.1016/j.jenvman.2018.06.089] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 06/15/2018] [Accepted: 06/28/2018] [Indexed: 06/08/2023]
Abstract
The search for an eco-friendly, non-toxic, economical and efficient means of cleaning water through bioremediation is not only more favourable but critical to maintaining water quality globally especially in water-scarce countries. Thermophilic bacteria including Bacillus species are an important source of novel enzymes for biotechnology applications. In this study, 56 bacterial isolates which were cultured from five hot springs in South Africa were identified predominantly as Bacillus sp. or Bacillus-related spp by 16S rDNA gene sequencing. These isolates were screened for potentially useful enzymes for water bioremediation. Using conventional agar plate assays, 56% (n = 43), 68% (n = 38) and 16% (n = 31) were positive for amylase, protease and bromothymol blue decolorisation respectively. In liquid starch culture, three amylase-positive isolates differentially degraded starch by 34% (isolate 20S) to 98% (isolate 9T). Phenol degradation revealed that five out of thirty reduced phenol up to 42% by colorimetric assay. A thermophilic strain of Anoxybacillus rupiensis 19S (optimal growth temperature of 50 °C), which degraded starch, protein and phenol, was selected for further analysis by tandem LC-MS/MS. This newer technique identified potential enzymes for water bioremediation relating to pollutants from the food industry (amylase, proteases), polyaromatic hydrocarbons and dye pollutants (catalase peroxidase, superoxide dismutase, azoreductase, quinone oxidoreductase), antibiotic residues (ribonucleases), solubilisation of phosphates (inorganic pyrophosphatase) and reduction of chromate and lead. In addition, potential enzymes for biomonitoring of environmental pollutants were also identified. Specifically, dehydrogenases were found to decrease as the level of inorganic heavy metals and petroleum increased in soil samples. This study concludes that bacteria found in South African hot springs are a potential source of novel enzymes with tandem LC-MS/MS revealing substantially more information compared with conventional assays, which can be used for various applications of water bioremediation.
Collapse
Affiliation(s)
- J L Jardine
- Department of Biotechnology, University of Johannesburg, 37 Nind Street, Doornfontein, Gauteng, South Africa
| | - S Stoychev
- Council for Scientific and Industrial Research, Biosciences, Box 395, Pretoria 0001, South Africa
| | - V Mavumengwana
- Department of Biotechnology, University of Johannesburg, 37 Nind Street, Doornfontein, Gauteng, South Africa
| | - E Ubomba-Jaswa
- Department of Biotechnology, University of Johannesburg, 37 Nind Street, Doornfontein, Gauteng, South Africa; Water Research Commission, Lynnwood Bridge Office Park, Bloukrans Building, 4 Daventry Street, Lynnwood Manor, Pretoria, South Africa.
| |
Collapse
|
10
|
Liu X, Fan X, Matsumoto H, Nie Y, Sha Z, Yi K, Pan J, Qian Y, Cao M, Wang Y, Zhu G, Wang M. Biotoxin Tropolone Contamination Associated with Nationwide Occurrence of Pathogen Burkholderia plantarii in Agricultural Environments in China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:5105-5114. [PMID: 29589436 DOI: 10.1021/acs.est.7b05915] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Tropolone, a biotoxin produced by the agricultural pathogen Burkholderia plantarii, exerts cytotoxicity toward a wide array of biota. However, due to the lack of quantitative and qualitative approach, both B. plantarii occurrence and tropolone contamination in agricultural environments remain poorly understood. Here, we presented a sensitive and reliable method for detection of B. plantarii in artificial, plant, and environmental matrices by tropolone-targeted gas chromatography-triple-quadrupole tandem mass spectrometry analysis. Limits of detection for B. plantarii and tropolone were 10 colony-forming units (CFU)/mL and 0.017 μg/kg, respectively. In a series of simulation trials, we found that B. plantarii from 10 to 108 CFU/mL produced tropolone between 0.006 and 107.8 mg/kg in a cell-population-dependent manner, regardless of habitat. Correlation analysis clarified a reliable reflection of B. plantarii density by tropolone level with R2 values from 0.9201 to 0.9756 ( p < 0.01). Through a nationwide pilot study conducted in China, tropolone contamination was observed at 0.014-0.157 mg/kg in paddy soil and rice grains, and subsequent redundancy analysis revealed soil organic matter to be a dominant environmental factor, having a positive correlation with tropolone contamination. In this context, our results imply that potential ecological and dietary risks posed by long-term exposure to trace levels of tropolone contamination are of concern.
Collapse
Affiliation(s)
- Xiaoyu Liu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology , Zhejiang University , Hangzhou 310058 , China
| | - Xiaoyan Fan
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology , Zhejiang University , Hangzhou 310058 , China
| | - Haruna Matsumoto
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology , Zhejiang University , Hangzhou 310058 , China
| | - Yanxia Nie
- Ecology and Environmental Sciences Center, South China Botanical Garden , Chinese Academy of Sciences , Guangzhou 510650 , China
| | - Zhimin Sha
- School of Agriculture and Biology , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Kunpeng Yi
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
| | - Jiuyue Pan
- College of Plant Protection , Hunan Agricultural University , Changsha 410128 , China
| | - Yuan Qian
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology , Zhejiang University , Hangzhou 310058 , China
| | - Mengchao Cao
- Patent Examination Cooperation Jiangsu Center of the Patent Office, State Intellectual Property Office of the PRC , Suzhou 215163 , China
| | - Yihu Wang
- Solution Department , Jiangsu Rotam Chemistry Co., Ltd. , Suzhou 215301 , China
| | - Guonian Zhu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology , Zhejiang University , Hangzhou 310058 , China
| | - Mengcen Wang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology , Zhejiang University , Hangzhou 310058 , China
| |
Collapse
|
11
|
Maciá-Vicente JG, Shi YN, Cheikh-Ali Z, Grün P, Glynou K, Kia SH, Piepenbring M, Bode HB. Metabolomics-based chemotaxonomy of root endophytic fungi for natural products discovery. Environ Microbiol 2018; 20:1253-1270. [DOI: 10.1111/1462-2920.14072] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 02/09/2018] [Indexed: 12/01/2022]
Affiliation(s)
- Jose G. Maciá-Vicente
- Institute of Ecology, Evolution and Diversity, Goethe Universität Frankfurt, Max-von-Laue-Str. 13; Frankfurt am Main 60438 Germany
- Integrative Fungal Research Cluster (IPF); Frankfurt am Main Germany
| | - Yan-Ni Shi
- Merck Stiftungsprofessur für Molekulare Biotechnologie, Fachbereich Biowissenschaften; Goethe Universität Frankfurt; Frankfurt am Main 60438 Germany
| | - Zakaria Cheikh-Ali
- Integrative Fungal Research Cluster (IPF); Frankfurt am Main Germany
- Merck Stiftungsprofessur für Molekulare Biotechnologie, Fachbereich Biowissenschaften; Goethe Universität Frankfurt; Frankfurt am Main 60438 Germany
| | - Peter Grün
- Merck Stiftungsprofessur für Molekulare Biotechnologie, Fachbereich Biowissenschaften; Goethe Universität Frankfurt; Frankfurt am Main 60438 Germany
| | - Kyriaki Glynou
- Institute of Ecology, Evolution and Diversity, Goethe Universität Frankfurt, Max-von-Laue-Str. 13; Frankfurt am Main 60438 Germany
- Integrative Fungal Research Cluster (IPF); Frankfurt am Main Germany
| | - Sevda Haghi Kia
- Institute of Ecology, Evolution and Diversity, Goethe Universität Frankfurt, Max-von-Laue-Str. 13; Frankfurt am Main 60438 Germany
- Integrative Fungal Research Cluster (IPF); Frankfurt am Main Germany
| | - Meike Piepenbring
- Institute of Ecology, Evolution and Diversity, Goethe Universität Frankfurt, Max-von-Laue-Str. 13; Frankfurt am Main 60438 Germany
- Integrative Fungal Research Cluster (IPF); Frankfurt am Main Germany
| | - Helge B. Bode
- Integrative Fungal Research Cluster (IPF); Frankfurt am Main Germany
- Merck Stiftungsprofessur für Molekulare Biotechnologie, Fachbereich Biowissenschaften; Goethe Universität Frankfurt; Frankfurt am Main 60438 Germany
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe Universität Frankfurt; Frankfurt am Main 60438 Germany
| |
Collapse
|
12
|
Božičević A, Dobrzyński M, De Bie H, Gafner F, Garo E, Hamburger M. Automated Comparative Metabolite Profiling of Large LC-ESIMS Data Sets in an ACD/MS Workbook Suite Add-in, and Data Clustering on a New Open-Source Web Platform FreeClust. Anal Chem 2017; 89:12682-12689. [PMID: 29087694 DOI: 10.1021/acs.analchem.7b02221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The technological development of LC-MS instrumentation has led to significant improvements of performance and sensitivity, enabling high-throughput analysis of complex samples, such as plant extracts. Most software suites allow preprocessing of LC-MS chromatograms to obtain comprehensive information on single constituents. However, more advanced processing needs, such as the systematic and unbiased comparative metabolite profiling of large numbers of complex LC-MS chromatograms remains a challenge. Currently, users have to rely on different tools to perform such data analyses. We developed a two-step protocol comprising a comparative metabolite profiling tool integrated in ACD/MS Workbook Suite, and a web platform developed in R language designed for clustering and visualization of chromatographic data. Initially, all relevant chromatographic and spectroscopic data (retention time, molecular ions with the respective ion abundance, and sample names) are automatically extracted and assembled in an Excel spreadsheet. The file is then loaded into an online web application that includes various statistical algorithms and provides the user with tools to compare and visualize the results in intuitive 2D heatmaps. We applied this workflow to LC-ESIMS profiles obtained from 69 honey samples. Within few hours of calculation with a standard PC, honey samples were preprocessed and organized in clusters based on their metabolite profile similarities, thereby highlighting the common metabolite patterns and distributions among samples. Implementation in the ACD/Laboratories software package enables ulterior integration of other analytical data, and in silico prediction tools for modern drug discovery.
Collapse
Affiliation(s)
- Alen Božičević
- Division of Pharmaceutical Biology, University of Basel , Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Maciej Dobrzyński
- Institute of Cell Biology, University of Bern , Baltzerstrasse 4, 3012 Bern, Switzerland
| | - Hans De Bie
- Advanced Chemistry Development, Inc. , 8 King Street East Suite 107, Toronto, Ontario M5C, Canada
| | - Frank Gafner
- Mibelle Biochemistry, Mibelle AG , Bolimattstrasse 1, 5033 Buchs, Switzerland
| | - Eliane Garo
- Division of Pharmaceutical Biology, University of Basel , Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Matthias Hamburger
- Division of Pharmaceutical Biology, University of Basel , Klingelbergstrasse 50, 4056 Basel, Switzerland
| |
Collapse
|
13
|
Favre L, Ortalo-Magné A, Greff S, Pérez T, Thomas OP, Martin JC, Culioli G. Discrimination of Four Marine Biofilm-Forming Bacteria by LC-MS Metabolomics and Influence of Culture Parameters. J Proteome Res 2017; 16:1962-1975. [PMID: 28362105 DOI: 10.1021/acs.jproteome.6b01027] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Most marine bacteria can form biofilms, and they are the main components of biofilms observed on marine surfaces. Biofilms constitute a widespread life strategy, as growing in such structures offers many important biological benefits. The molecular compounds expressed in biofilms and, more generally, the metabolomes of marine bacteria remain poorly studied. In this context, a nontargeted LC-MS metabolomics approach of marine biofilm-forming bacterial strains was developed. Four marine bacteria, Persicivirga (Nonlabens) mediterranea TC4 and TC7, Pseudoalteromonas lipolytica TC8, and Shewanella sp. TC11, were used as model organisms. The main objective was to search for some strain-specific bacterial metabolites and to determine how culture parameters (culture medium, growth phase, and mode of culture) may affect the cellular metabolism of each strain and thus the global interstrain metabolic discrimination. LC-MS profiling and statistical partial least-squares discriminant analyses showed that the four strains could be differentiated at the species level whatever the medium, the growth phase, or the mode of culture (planktonic vs biofilm). A MS/MS molecular network was subsequently built and allowed the identification of putative bacterial biomarkers. TC8 was discriminated by a series of ornithine lipids, while the P. mediterranea strains produced hydroxylated ornithine and glycine lipids. Among the P. mediterranea strains, TC7 extracts were distinguished by the occurrence of diamine derivatives, such as putrescine amides.
Collapse
Affiliation(s)
- Laurie Favre
- Université de Toulon , MAPIEM, EA 4323, La Garde Cedex 83130, France
| | | | - Stéphane Greff
- CNRS, Aix Marseille Univ , IRD, Avignon Univ. Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale, Station marine d'Endoume, Marseille 13007, France
| | - Thierry Pérez
- CNRS, Aix Marseille Univ , IRD, Avignon Univ. Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale, Station marine d'Endoume, Marseille 13007, France
| | - Olivier P Thomas
- CNRS, Aix Marseille Univ , IRD, Avignon Univ. Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale, Station marine d'Endoume, Marseille 13007, France.,National University of Ireland Galway , School of Chemistry, Marine Biodiscovery, Galway, Ireland
| | | | - Gérald Culioli
- Université de Toulon , MAPIEM, EA 4323, La Garde Cedex 83130, France
| |
Collapse
|
14
|
Genomic and functional features of the biosurfactant producing Bacillus sp. AM13. Funct Integr Genomics 2016; 16:557-66. [DOI: 10.1007/s10142-016-0506-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 07/12/2016] [Accepted: 07/18/2016] [Indexed: 10/21/2022]
|
15
|
Qian PY, Li Z, Xu Y, Li Y, Fusetani N. Mini-review: marine natural products and their synthetic analogs as antifouling compounds: 2009-2014. BIOFOULING 2015; 31:101-22. [PMID: 25622074 DOI: 10.1080/08927014.2014.997226] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
This review covers 214 marine natural compounds and 23 of their synthetic analogs, which were discovered and/or synthesized from mid-2009 to August 2014. The antifouling (AF) compounds reported have medium to high bioactivity (with a threshold of EC(50) < 15.0 mg ml(-1)). Among these compounds, 82 natural compounds were identified as new structures. All the compounds are marine-derived, demonstrating that marine organisms are prolific and promising sources of natural products that may be developed as environmentally friendly antifoulants. However, this mini-review excludes more than 200 compounds that were also reported as AF compounds but with rather weak bioactivity during the same period. Also excluded are terrestrial-derived AF compounds reported during the last five years. A brief discussion on current challenges in AF compound research is also provided to reflect the authors' own views in terms of future research directions.
Collapse
Affiliation(s)
- Pei-Yuan Qian
- a Division of Life Science , Hong Kong University of Science and Technology , HKSAR , PR China
| | | | | | | | | |
Collapse
|