1
|
Wang B, Liu W, Liang B, Jiang J, Wang A. Microbial fingerprints of methanation in a hybrid electric-biological anaerobic digestion. WATER RESEARCH 2022; 226:119270. [PMID: 36323204 DOI: 10.1016/j.watres.2022.119270] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 08/26/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
Biomethane as a sustainable, alternative, and carbon-neutral renewable energy source to fossil fuels is highly needed to alleviate the global energy crisis and climate change. The conventional anaerobic digestion (AD) process for biomethane production from waste(water) streams has been widely employed while struggling with a low production rate, low biogas qualities, and frequent instability. The electric-biologically hybrid microbial electrochemical anaerobic digestion system (MEC-AD) prospects more stable and robust biomethane generation, which facilitates complex organic substrates degradation and mediates functional microbial populations by giving a small input power (commonly voltages < 1.0 V), mainly enhancing the communication between electroactive microorganisms and (electro)methanogens. Despite numerous bioreactor tests and studies that have been conducted, based on the MEC-AD systems, the integrated microbial fingerprints, and cooperation, accelerating substrate degradation, and biomethane production, have not been fully summarized. Herein, we present a comprehensive review of this novel developing biotechnology, beginning with the principles of MEC-AD. First, we examine the fundamentals, configurations, classifications, and influential factors of the whole system's performances (reactor types, applied voltages, temperatures, conductive materials, etc.,). Second, extracellular electron transfer either between diverse microbes or between microbes and electrodes for enhanced biomethane production are analyzed. Third, we further conclude (electro)methanogenesis, and microbial interactions, and construct ecological networks of microbial consortia in MEC-AD. Finally, future development and perspectives on MEC-AD for biomethane production are proposed.
Collapse
Affiliation(s)
- Bo Wang
- State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, 518055 Shenzhen, China; Center for Electromicrobiology, Section for Microbiology, Department of Biology, Aarhus University, 8000 Aarhus C, Denmark; Department of Environmental and Resource Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Wenzong Liu
- State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, 518055 Shenzhen, China.
| | - Bin Liang
- State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, 518055 Shenzhen, China
| | - Jiandong Jiang
- Key Lab of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, China
| | - Aijie Wang
- State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, 518055 Shenzhen, China; CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China
| |
Collapse
|
2
|
Zhou H, Xing D, Ma J, Su Y, Zhang Y. Electrifying anaerobic granular sludge for enhanced waste anaerobic digestion and biogas production. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
3
|
Jadhav P, Khalid ZB, Zularisam AW, Krishnan S, Nasrullah M. The role of iron-based nanoparticles (Fe-NPs) on methanogenesis in anaerobic digestion (AD) performance. ENVIRONMENTAL RESEARCH 2022; 204:112043. [PMID: 34543635 DOI: 10.1016/j.envres.2021.112043] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
Several strategies have been proposed to improve the performance of the anaerobic digestion (AD) process. Among them, the use of various nanoparticles (NPs) (e.g. Fe, Ag, Cu, Mn, and metal oxides) is considered one of the most effective approaches to enhance the methanogenesis stage and biogas yield. Iron-based NPs (zero-valent iron with paramagnetic properties (Fe0) and iron oxides with ferromagnetic properties (Fe3O4/Fe2O3) enhance microbial activity and minimise the inhibition effect in methanogenesis. However, comprehensive and up-to-date knowledge on the function and impact of Fe-NPs on methanogens and methanogenesis stages in AD is frequently required. This review focuses on the applicative role of iron-based NPs (Fe-NPs) in the AD methanogenesis step to provide a comprehensive understanding application of Fe-NPs. In addition, insight into the interactions between methanogens and Fe-NPs (e.g. role of methanogens, microbe interaction and gene transfer with Fe-NPs) beneficial for CH4 production rate is provided. Microbial activity, inhibition effects and direct interspecies electron transfer through Fe-NPs have been extensively discussed. Finally, further studies towards detecting effective and optimised NPs based methods in the methanogenesis stage are reported.
Collapse
Affiliation(s)
- Pramod Jadhav
- Faculty of Civil Engineering Technology, Universiti Malaysia Pahang (UMP), Lebuhraya Tun Razak, Gambang, Kuantan, Pahang, 26300, Malaysia
| | - Zaied Bin Khalid
- Faculty of Civil Engineering Technology, Universiti Malaysia Pahang (UMP), Lebuhraya Tun Razak, Gambang, Kuantan, Pahang, 26300, Malaysia
| | - A W Zularisam
- Faculty of Civil Engineering Technology, Universiti Malaysia Pahang (UMP), Lebuhraya Tun Razak, Gambang, Kuantan, Pahang, 26300, Malaysia
| | - Santhana Krishnan
- Centre of Environmental Sustainability and Water Security (IPASA), Research Institute of Sustainable Environment (RISE), Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Johor Bahru, 81310, Malaysia; PSU Energy Systems Research Institute, Department of Civil Engineering, Faculty of Engineering, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Mohd Nasrullah
- Faculty of Civil Engineering Technology, Universiti Malaysia Pahang (UMP), Lebuhraya Tun Razak, Gambang, Kuantan, Pahang, 26300, Malaysia.
| |
Collapse
|
4
|
Litti YV, Russkova YI, Zhuravleva EA, Parshina SN, Kovalev AA, Kovalev DA, Nozhevnikova AN. Electromethanogenesis: a Promising Biotechnology for the Anaerobic Treatment of Organic Waste. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822010057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Cheng D, Ngo HH, Guo W, Chang SW, Nguyen DD, Zhang S, Deng S, An D, Hoang NB. Impact factors and novel strategies for improving biohydrogen production in microbial electrolysis cells. BIORESOURCE TECHNOLOGY 2022; 346:126588. [PMID: 34929329 DOI: 10.1016/j.biortech.2021.126588] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Microbial electrolysis cell (MEC) system is an environmentally friendly method for clean biohydrogen production from a wide range of biowastes owing to low greenhouse gas emissions. This approach has relatively higher yields and lower energy costs for biohydrogen production compared to conventional biological technologies and direct water electrolysis, respectively. However, biohydrogen production efficiency and operating costs of MEC still need further optimization to realize its large-scale application.This paper provides a unique review of impact factors influencing biohydrogen production in MECs, such as microorganisms and electrodes. Novel strategies, including inhibition of methanogens, development of novel cathode catalyst, advanced reactor design and integrated systems, to enhance low-cost biohydrogen production, are discussed based on recent publications in terms of their opportunities, bottlenecks and future directions. In addition, the current challenges, and effective future perspectives towards the practical application of MECs are described in this review.
Collapse
Affiliation(s)
- Dongle Cheng
- Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Huu Hao Ngo
- Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia; Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam.
| | - Wenshan Guo
- Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Soon Woong Chang
- Department of Environmental Energy Engineering, Kyonggi University, 442-760, Republic of Korea
| | - Dinh Duc Nguyen
- Department of Environmental Energy Engineering, Kyonggi University, 442-760, Republic of Korea
| | - Shicheng Zhang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Shihai Deng
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Ding An
- School of Environment, Harbin Institute of Technology, Harbin Institute of Technology, Nangang District, Harbin, 150090, China
| | - Ngoc Bich Hoang
- Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| |
Collapse
|
6
|
Thanarasu A, Periyasamy K, Subramanian S. An integrated anaerobic digestion and microbial electrolysis system for the enhancement of methane production from organic waste: Fundamentals, innovative design and scale-up deliberation. CHEMOSPHERE 2022; 287:131886. [PMID: 34523450 DOI: 10.1016/j.chemosphere.2021.131886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/19/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
In the foreseeable future, renewable energy generation from electromethanogenesis to be more cost-effective energy. Electromethanogenesis system is a recent and efficient CO2 to methane technology to upgrade biogas to 100% methane for power generation. And this can be attained through by integrating anaerobic digestion with microbial electrolysis system. Microbial electrolysis system can able to support carbon reduction on cathode and oxidation on anode by CO2 capture thereby provides more CH4 production from an integrated anaerobic digestion system. Scale-up the recent advance technique of microbial electrolysis system in the anaerobic digestion process for 100% methane production for power generation is need of the hour. The overall objective of this review is to facilitate the recent technology of microbial electrolysis system in the anaerobic digestion process. At first, the function of electromethanogenesis system and innovative integrated design method are outlined. Secondly, different external parameters such as applied voltage, operating temperature, pH etc are examined for the significance on process optimization. Eventually, electrode selections, electrode spacing, surface chemistry and surface area are critically reviewed for the scale-up considerations of integration process.
Collapse
Affiliation(s)
- Amudha Thanarasu
- Department of Applied Science & Technology, AC Tech Campus, Anna University, Chennai, India
| | - Karthik Periyasamy
- Department of Applied Science & Technology, AC Tech Campus, Anna University, Chennai, India
| | - Sivanesan Subramanian
- Department of Applied Science & Technology, AC Tech Campus, Anna University, Chennai, India.
| |
Collapse
|
7
|
Park JG, Jiang D, Lee B, Jun HB. Towards the practical application of bioelectrochemical anaerobic digestion (BEAD): Insights into electrode materials, reactor configurations, and process designs. WATER RESEARCH 2020; 184:116214. [PMID: 32726737 DOI: 10.1016/j.watres.2020.116214] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/10/2020] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
Anaerobic digestion (AD) is one of the most widely adopted bioenergy recovery technologies globally. Despite the wide adoption, AD has been challenged by the unstable performances caused by imbalanced substrate and/or electron availability among different reaction steps. Bioelectrochemical anaerobic digestion (BEAD) is a promising concept that has demonstrated potential for balancing the electron transfer rates and enhancing the methane yield in AD during shocks. While great progress has been made, a wide range of, and sometimes inconsistent engineering and technical strategies were attempted to improve BEAD. To consolidate past efforts and guide future development, a comprehensive review of the fundamental bioprocesses in BEAD is provided herein, followed by a critical evaluation of the engineering and technical optimizations attempted thus far. Further, a few novel directions and strategies that can enhance the performance and practicality of BEAD are proposed for future research to consider. This review and outlook aim to provide a fundamental understanding of BEAD and inspire new research ideas in AD and BEAD in a mechanism-informed fashion.
Collapse
Affiliation(s)
- Jun-Gyu Park
- Department of Environmental Engineering, Chungbuk National University, Cheongju 28644, Republic of Korea; Department of Environmental Engineering, Montana Technological University, Butte, MT 59701, USA
| | - Daqian Jiang
- Department of Environmental Engineering, Montana Technological University, Butte, MT 59701, USA
| | - Beom Lee
- Department of Environmental Engineering, Chungbuk National University, Cheongju 28644, Republic of Korea; Nature Engineering Co., LTD., 1 Chungdae-ro, Cheongju 28644, Republic of Korea
| | - Hang-Bae Jun
- Department of Environmental Engineering, Chungbuk National University, Cheongju 28644, Republic of Korea.
| |
Collapse
|
8
|
Wang AJ, Wang HC, Cheng HY, Liang B, Liu WZ, Han JL, Zhang B, Wang SS. Electrochemistry-stimulated environmental bioremediation: Development of applicable modular electrode and system scale-up. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2020; 3:100050. [PMID: 36159603 PMCID: PMC9488061 DOI: 10.1016/j.ese.2020.100050] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 05/03/2020] [Accepted: 05/08/2020] [Indexed: 05/03/2023]
Abstract
Bioelectrochemical systems (BESs) have been studied extensively during the past decades owing primarily to their versatility and potential in addressing the water-energy-resource nexus. In stark contrast to the significant advancements that have been made in developing innovative processes for pollution control and bioresource/bioenergy recovery, minimal progress has been achieved in demonstrating the feasibility of BESs in scaled-up applications. This lack of scaled-up demonstration could be ascribed to the absence of suitable electrode modules (EMs) engineered for large-scale application. In this study, we report a scalable composite-engineered EM (total volume of 1 m3), fabricated using graphite-coated stainless steel and carbon felt, that allows integrating BESs into mainstream wastewater treatment technologies. The cost-effectiveness and easy scalability of this EM provides a viable and clear path to facilitate the transition between the success of the lab studies and applications of BESs to solve multiple pressing environmental issues at full-scale.
Collapse
Affiliation(s)
- Ai-Jie Wang
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China
- Corresponding author. School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China..
| | - Hong-Cheng Wang
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China
| | - Hao-Yi Cheng
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China
| | - Bin Liang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China
| | - Wen-Zong Liu
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China
| | - Jing-Long Han
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China
| | - Bo Zhang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China
| | - Shu-Sen Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China
| |
Collapse
|
9
|
Abstract
Up-flow Anaerobic Sludge Blanket (UASB) reactors are popular tools in wastewater treatment systems due to the ability to work with high feed rates and wastes with high concentration of organic contaminants. While full-scale industrial applications of UASB reactors are developed and described in the available literature, laboratory-scale designs utilized for treatability testing are not well described. The majority of published studies do not describe the laboratory UASB construction details or do use reactors that already had developed a trophic network in microbial consortia under laboratory environment and therefore are more stable. The absence of defined guidelines for geometry design, selection of materials, construction, operation rules, and, especially, the start-up conditions, significantly hamper researchers who desire to conduct treatability testing using UASB reactors in laboratory scale. In this article, we compiled and analyzed the information available in the refereed literature concerning UASB reactors used in laboratory environment, where information on geometry and/or operational conditions were provided in detail. We utilized the information available in the literature and the experience gained in our laboratory (Sustainable Waste to Bioproducts Engineering Center) to suggest a unified operation flowchart and for design, construction, operation, and monitoring for a laboratory-scale UASB reactors.
Collapse
|
10
|
Yuan Y, Cheng H, Chen F, Zhang Y, Xu X, Huang C, Chen C, Liu W, Ding C, Li Z, Chen T, Wang A. Enhanced methane production by alleviating sulfide inhibition with a microbial electrolysis coupled anaerobic digestion reactor. ENVIRONMENT INTERNATIONAL 2020; 136:105503. [PMID: 32006760 DOI: 10.1016/j.envint.2020.105503] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 06/10/2023]
Abstract
Anaerobic digestion (AD) of organics is a challenging task under high-strength sulfate (SO42-) conditions. The generation of toxic sulfides by SO42--reducing bacteria (SRB) causes low methane (CH4) production. This study investigated the feasibility of alleviating sulfide inhibition and enhancing CH4 production by using an anaerobic reactor with built-in microbial electrolysis cell (MEC), namely ME-AD reactor. Compared to AD reactor, unionized H2S in the ME-AD reactor was sufficiently converted into ionized HS- due to the weak alkaline condition created via cathodic H2 production, which relieved the toxicity of unionized H2S to methanogenesis. Correspondingly, the CH4 production in the ME-AD system was 1.56 times higher than that in the AD reactor with alkaline-pH control and 3.03 times higher than that in the AD reactors (no external voltage and no electrodes) without alkaline-pH control. MEC increased the amount of substrates available for CH4-producing bacteria (MPB) to generate more CH4. Microbial community analysis indicated that hydrogentrophic MPB (e.g. Methanosphaera) and acetotrophic MPB (e.g. Methanosaeta) participated in the two major pathways of CH4 formation were successfully enriched in the cathode biofilm and suspended sludge of the ME-AD system. Economic revenue from increased CH4 production totally covered the cost of input electricity. Integration of MEC with AD could be an attractive technology to alleviate sulfide inhibition and enhance CH4 production from AD of organics under SO42--rich condition.
Collapse
Affiliation(s)
- Ye Yuan
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Haoyi Cheng
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Fan Chen
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yiqian Zhang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Xijun Xu
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Cong Huang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Chuan Chen
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wenzong Liu
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Cheng Ding
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Zhaoxia Li
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Tianming Chen
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Aijie Wang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
11
|
Ren G, Chen P, Yu J, Liu J, Ye J, Zhou S. Recyclable magnetite-enhanced electromethanogenesis for biomethane production from wastewater. WATER RESEARCH 2019; 166:115095. [PMID: 31542548 DOI: 10.1016/j.watres.2019.115095] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/20/2019] [Accepted: 09/14/2019] [Indexed: 06/10/2023]
Abstract
Improving the yield and methane content of biogas is of great concern for wastewater treatment by anaerobic digestion. Herein we developed a nanomagnetite-enhanced electromethanogenesis (EMnano) process for the first time, the sustainable utilization of which improved the biomethane production rate from dairy wastewater. The maximum CH4 production rate in the EMnano process is 2.3 ± 0.3-fold higher than it is in the conventional methanogenesis (CM) process, and it is accompanied by an almost delay-free start-up. The technical-economic evaluation revealed that an 82.1 ± 5.0% greater net benefit was obtained in the third generation of the EMnano process compared with the CM process. The improved methanogenesis was attributed to the formation of dense planktonic cell co-aggregates that are triggered by nanomagnetite, which facilitated the interspecies electron exchange during acetoclastic methanogenesis. Simultaneously, a cathode biofilm with high viability and catalytic activity was also formed in the EMnano process that decreased the biofilm resistance and facilitated the electron transfer during electromethanogenesis. This study is a worthwhile attempt to combine recyclable conductive materials with an electromethanogenesis process for wastewater treatment, and it effectively achieves energy recovery with high stability and cost-effectiveness.
Collapse
Affiliation(s)
- Guoping Ren
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Piao Chen
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jing Yu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jianbo Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
| | - Jie Ye
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
12
|
Liu C, Sun D, Zhao Z, Dang Y, Holmes DE. Methanothrix enhances biogas upgrading in microbial electrolysis cell via direct electron transfer. BIORESOURCE TECHNOLOGY 2019; 291:121877. [PMID: 31376672 DOI: 10.1016/j.biortech.2019.121877] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/20/2019] [Accepted: 07/22/2019] [Indexed: 06/10/2023]
Abstract
Bioelectrochemical conversion of CO2 to CH4 is a promising way to increase the calorific value of biogas produced during anaerobic digestion. There are two groups of methanogens enriched in these systems, hydrogenotrophs and acetoclastic methanogens that can also directly accept electrons from an electrode or another microorganism. In this study, a microbial electrolysis cell (MEC) poised at -500 mV (vs. SHE) was operated for biogas upgrading. Methane content in the biogas increased from 71% to >90%, and 8.2% of the CO2 was converted to methane. Methanothrix, an acetoclastic methanogen that can participate in direct electron transfer (DET), and Azonexus, an acetate-oxidizing electrogen, were enriched on the cathode. Transcriptomics revealed that Methanothrix on the cathode were using the CO2 reduction pathway, while Methanothrix in the bulk sludge were using the acetate decarboxylation pathway for production of methane. These results show that stimulation of DET in MEC enhances biogas-upgrading processes.
Collapse
Affiliation(s)
- Chuanqi Liu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Dezhi Sun
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Zhiqiang Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yan Dang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| | - Dawn E Holmes
- Department of Physical and Biological Sciences, Western New England University, 1215 Wilbraham Rd, Springfield, MA 01119, United States
| |
Collapse
|
13
|
Zakaria BS, Dhar BR. Progress towards catalyzing electro-methanogenesis in anaerobic digestion process: Fundamentals, process optimization, design and scale-up considerations. BIORESOURCE TECHNOLOGY 2019; 289:121738. [PMID: 31300305 DOI: 10.1016/j.biortech.2019.121738] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/26/2019] [Accepted: 06/30/2019] [Indexed: 06/10/2023]
Abstract
Electro-methanogenesis represents an emerging bio-methane production pathway that can be achieved through integrating microbial electrolysis cell (MEC) with conventional anaerobic digester (AD). Since 2009, a significant number of publications have reported superior methane productivity and kinetics from MEC-AD integrated systems. The overall objective of this review is to communicate the recent advances towards promoting electro-methanogenesis in the anaerobic digestion process. Firstly, the electro-methanogenesis pathways and functional roles of key microbial members are summarized. Secondly, various extrinsic process parameters, such as applied voltage/potential, pH, and temperature are discussed with emphasis on process optimization. Moreover, available methods for the inoculation and start-up of MEC-AD process are critically reviewed. Finally, system design and scale-up considerations, such as the selection of electrode materials, surface area and surface chemistry of electrode materials, and electrode spacing are summarized.
Collapse
Affiliation(s)
- Basem S Zakaria
- Department of Civil and Environmental Engineering, University of Alberta, 9211-116 Street NW, Edmonton, AB T6G 1H9, Canada
| | - Bipro Ranjan Dhar
- Department of Civil and Environmental Engineering, University of Alberta, 9211-116 Street NW, Edmonton, AB T6G 1H9, Canada.
| |
Collapse
|
14
|
Peng H, Zhao Z, Xiao H, Yang Y, Zhao H, Zhang Y. A strategy for enhancing anaerobic digestion of waste activated sludge: Driving anodic oxidation by adding nitrate into microbial electrolysis cell. J Environ Sci (China) 2019; 81:34-42. [PMID: 30975327 DOI: 10.1016/j.jes.2019.02.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/09/2019] [Accepted: 02/11/2019] [Indexed: 06/09/2023]
Abstract
Cathodic reduction of CO2 and anodic oxidation of organic matters are crucial to methane-producing microbial electrolysis cell (MEC) applied in anaerobic digestion of waste activated sludge. However, cathodic CO2 reduction is usually restrained by slow metabolism rates of H2-utilizing methanogens and low electron-capturing capacity of CO2, which consequently slows down the anodic oxidation that participates to sludge disintegration. Herein, a strategy with adding nitrate as electron acceptor to foster electronic transfer between the anode and cathode was proposed to improve anodic oxidation. Results showed that the average efficiency of anodic oxidation in the nitrate-added MEC increased by 55.9%. Accordingly, volatile suspended solid removal efficiency in the nitrate-added MEC was 21.9% higher than that of control MEC. Although the initial cumulative methane production in the nitrate-added MEC was lower than that of control MEC, the cumulative methane production in 24 days was 8.9% higher. Fourier transform infrared spectroscopy analysis indicated that anodic oxidation of MEC with nitrate accelerated the disintegration of sludge flocs and cell walls. Calculation on current signal further revealed that anodic oxidation driven by cathodic nitrate reduction was the main mechanism responsible for the improved sludge digestion.
Collapse
Affiliation(s)
- Hong Peng
- Key Laboratory of Industrial Ecology and Environmental Engineering, (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China; Department of Environmental Science, College of Environmental Sciences, Sichuan Agricultural University-Chengdu Campus, Chengdu, Sichuan 611130, China
| | - Zhiqiang Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering, (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Hong Xiao
- Department of Environmental Science, College of Environmental Sciences, Sichuan Agricultural University-Chengdu Campus, Chengdu, Sichuan 611130, China
| | - Yafei Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering, (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Huimin Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering, (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yaobin Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering, (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
15
|
Guo N, Ma X, Ren S, Wang S, Wang Y. Mechanisms of metabolic performance enhancement during electrically assisted anaerobic treatment of chloramphenicol wastewater. WATER RESEARCH 2019; 156:199-207. [PMID: 30917300 DOI: 10.1016/j.watres.2019.03.032] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/15/2019] [Accepted: 03/17/2019] [Indexed: 06/09/2023]
Abstract
The anaerobic process is a favorable alternative for the treatment of antibiotic pharmaceutical wastewater. The electrically assisted anaerobic process can be used to accelerate contaminant removal, especially for persistent organic pollutants such as antibiotics. In this study, an electrically assisted anaerobic system for chloramphenicol (CAP) wastewater treatment was developed. The system performance and the underlying metabolic mechanisms were evaluated under different applied voltages. With the increase of applied voltage from 0 to 2 V, the CAP removal efficiencies increased from 53.3% to 89.7%, while the methane production increased more than three times. The microbial community structure and correlation analysis showed that electrical stimulation selected the dominant functional bacteria and increased antibiotic resistance in dominant functional bacteria, both of which enhanced CAP removal and methane production. The improved CAP removal was a result of the presence of dechlorination-related bacteria (Acidovorax, Sedimentibacter, Thauera, and Flavobacterium) and potential electroactive bacteria (Shewanella and Comamonas), both of which carried ARGs and therefore could survive the biotoxicity of CAP. The enhanced methane production could be partly attributed to the surviving fermentative-related bacteria (Paludibacter, Proteiniclasticum, and Macellibacteroides) in the anaerobic bioreactor. The increased abundances of methanogenic genes (mcrA and ACAS genes) under high voltage further confirmed the enhanced methane production of this electrically assisted anaerobic system. The fundamental understanding of the mechanisms underlying metabolic performance enhancement is critical for the further development of anaerobic wastewater treatment.
Collapse
Affiliation(s)
- Ning Guo
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Xiaofang Ma
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Shaojie Ren
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Shuguang Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Yunkun Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
16
|
Bioelectrochemical CO2 Reduction to Methane: MES Integration in Biogas Production Processes. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9061056] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Anaerobic digestion (AD) is a widely used technique to treat organic waste and produce biogas. This article presents a practical approach to increase biogas yield of an AD system using a microbial electrosynthesis system (MES). The biocathode in MES reduces carbon dioxide with the supplied electrons and protons (H+) to form methane. We demonstrate that the MES is able to produce biogas with over 90% methane when fed with reject water obtained from a local wastewater treatment plant. The optimised cathode potential was observed in the range of −0.70 V to −0.60 V and optimised feed pH was around 7.0. With autoclaved feed, these conditions allowed methane yields of about 9.05 mmol/L(reactor)-day. A control experiment was then carried out to make a comparison between open circuit and MES methanogenesis. The highest methane yield of about 22.1 mmol/L(reactor)-day was obtained during MES operation that performed 10–15% better than the open circuit mode of operation. We suggest and describe an integrated AD-MES system, by installing MES in the reject water loop, as a novel approach to improve the efficiency and productivity of existing waste/wastewater treatment plants.
Collapse
|
17
|
Xu S, Zhang Y, Luo L, Liu H. Startup performance of microbial electrolysis cell assisted anaerobic digester (MEC-AD) with pre-acclimated activated carbon. ACTA ACUST UNITED AC 2019; 5:91-98. [PMID: 31193294 PMCID: PMC6524652 DOI: 10.1016/j.biteb.2018.12.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 12/02/2022]
Abstract
The feasibility of using pre-acclimated activated carbon to start up microbial electrolysis cell assisted anaerobic digester (MEC-AD) has been testified in this study. Two identical lab-scale digesters were separately packed with granular activated carbon (GAC) and powered activated carbon (PAC), which were initially acclimated as anaerobic digester and then transferred to MEC-AD. When a voltage of 0.5 V was applied, increased methane generation and substrate removal rates were observed. Hydrogenotrophic methanogens predominated in both digesters before and after transition, indicating that the pre-cultured microbial community on carbon materials could provide necessary microbiome favorable for starting up MECs. Although a low abundance of Geobacter was detected in inoculum, a rapid propagation could be realized when reactors were subjected to the electro-stimulation. The abundance of Methanosarcina closely attached to PAC was four times than that of GAC, which might be partially contributed to the improved resilience of anaerobic digester subjected to electro-stimulation. Pre-acclimated PAC/GAC are favorable for starting up MEC-AD. Methane yield was increased by ~30% when transferring AD to MEC-AD. Abundance of electroactive bacteria on pre-enriched PAC was higher than GAC. The rapid propagation of Geobacter was found in MEC-AD.
Collapse
Affiliation(s)
- Suyun Xu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yuchen Zhang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Liwen Luo
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Hongbo Liu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
18
|
Sarker NC, Rahman S, Borhan MS, Rajasekaran P, Santra S, Ozcan A. Nanoparticles in mitigating gaseous emissions from liquid dairy manure stored under anaerobic condition. J Environ Sci (China) 2019; 76:26-36. [PMID: 30528017 DOI: 10.1016/j.jes.2018.03.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 03/02/2018] [Accepted: 03/16/2018] [Indexed: 06/09/2023]
Abstract
A number of mitigation techniques exist to reduce the emissions of pollutant gases and greenhouse gases (GHGs) from anaerobic storage of livestock manure. Nanoparticle (NP) application is a promising mitigating treatment option for pollutant gases, but limited research is available on the mode of NP application and their effectiveness in gaseous emission reduction. In this study, zinc silica nanogel (ZnSNL), copper silica nanogel (CuSNL), and N-acetyl cysteine (NACL) coated zinc oxide quantum dot (Qdot) NPs were compared to a control lacking NPs. All three NPs tested significantly reduced gas production and concentrations compared to non-treated manure. Overall, cumulative gas volumes were reduced by 92.73%-95.83%, and concentrations reduced by 48.98%-99.75% for H2S, and 20.24%-99.82% for GHGs. Thus, application of NPs is a potential treatment option for mitigating pollutant and GHG emissions from anaerobically stored manure.
Collapse
Affiliation(s)
- Niloy Chandra Sarker
- Agricultural and Biosystems Engineering, North Dakota State University, Fargo, ND 58108, USA
| | - Shafiqur Rahman
- Agricultural and Biosystems Engineering, North Dakota State University, Fargo, ND 58108, USA.
| | - Md Saidul Borhan
- Agricultural and Biosystems Engineering, North Dakota State University, Fargo, ND 58108, USA
| | - Parthiban Rajasekaran
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA
| | - Swadeshmukul Santra
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA; Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32826, USA; Department of Chemistry, University of Central Florida, Orlando, FL 32826, USA; Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32826, USA
| | - Ali Ozcan
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA; Department of Chemistry, University of Central Florida, Orlando, FL 32826, USA
| |
Collapse
|
19
|
Prajapati KB, Singh R. Kinetic modelling of methane production during bio-electrolysis from anaerobic co-digestion of sewage sludge and food waste. BIORESOURCE TECHNOLOGY 2018; 263:491-498. [PMID: 29775905 DOI: 10.1016/j.biortech.2018.05.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 05/08/2018] [Accepted: 05/09/2018] [Indexed: 06/08/2023]
Abstract
In present study batch tests were performed to investigate the enhancement in methane production under bio-electrolysis anaerobic co-digestion of sewage sludge and food waste. The bio-electrolysis reactor system (B-EL) yield more methane 148.5 ml/g COD in comparison to reactor system without bio-electrolysis (B-CONT) 125.1 ml/g COD. Whereas bio-electrolysis reactor system (C-EL) Iron Scraps amended yield lesser methane (51.2 ml/g COD) in comparison to control bio-electrolysis reactor system without Iron scraps (C-CONT - 114.4 ml/g COD). Richard and Exponential model were best fitted for cumulative methane production and biogas production rates respectively as revealed modelling study. The best model fit for the different reactors was compared by Akaike's Information Criterion (AIC) and Bayesian Information Criterion (BIC). The bioelectrolysis process seems to be an emerging technology with lesser the loss in cellulase specific activity with increasing temperature from 50 to 80 °C.
Collapse
Affiliation(s)
- Kalp Bhusan Prajapati
- School of Environment and Sustainable Development, Central University of Gujarat, Gandhinagar 382030, Gujarat, India
| | - Rajesh Singh
- School of Environment and Sustainable Development, Central University of Gujarat, Gandhinagar 382030, Gujarat, India.
| |
Collapse
|
20
|
Feng Q, Song YC, Ahn Y. Electroactive microorganisms in bulk solution contribute significantly to methane production in bioelectrochemical anaerobic reactor. BIORESOURCE TECHNOLOGY 2018; 259:119-127. [PMID: 29549831 DOI: 10.1016/j.biortech.2018.03.039] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 03/05/2018] [Accepted: 03/06/2018] [Indexed: 06/08/2023]
Abstract
The role of anaerobic microorganisms suspended in the bulk solution on methane production was investigated in a bioelectrochemical anaerobic reactor with the electrode polarized at 0.5 V. The electron transfer from substrate to methane and hydrogen were 25% and 7.5%, respectively, in the absence of the anaerobic microorganisms in the bulk solution. As the anaerobic microorganisms increased to 4400 mg/L, the electrons transferred to methane increased to 83.3% but decreased to 0.3% in hydrogen. The electroactive microorganisms (EAM), including exoelectrogens and electrotrophs, enriched in the bulk solution that confirmed by the redox peaks in the cyclic voltammogram was proportional to the anaerobic microorganism. The methane yield based on COD removal was dependent on the anaerobic microorganisms in the bulk solution rather than on the bioelectrode surface. The EAM suspended in the bulk solution are enriched by the polarized electrode, and significantly improve methane production in bioelectrochemical anaerobic reactor.
Collapse
Affiliation(s)
- Qing Feng
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Young-Chae Song
- Department of Environmental Engineering, Korea Maritime and Ocean University, Busan 49112, Republic of Korea.
| | - Yongtae Ahn
- Department of Energy Engineering, Gyeongnam National University of Science and Technology, Jinju, Gyeongnam 52725, Republic of Korea
| |
Collapse
|
21
|
Park J, Lee B, Shin W, Jo S, Jun H. Application of a rotating impeller anode in a bioelectrochemical anaerobic digestion reactor for methane production from high-strength food waste. BIORESOURCE TECHNOLOGY 2018; 259:423-432. [PMID: 29602105 DOI: 10.1016/j.biortech.2018.02.091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/18/2018] [Accepted: 02/19/2018] [Indexed: 06/08/2023]
Abstract
In this study, a practical bioelectrochemical anaerobic digestion (BEAD) reactor equipped with a rotating STS304 impeller was tested to verify its methane production performance. Methane production in the BEAD reactor was possible without accumulation of volatile fatty acids (VFAs) and decreases in pH at high organic loading rates (OLRs) up to 6 kg-COD/m3·d (COD: chemical oxygen demand). Methane production in a BEAD-O (open circuit) reactor was inhibited at OLRs above 4 kg-COD/m3·d; however, the performance could be recovered bioelectrochemically by supplying voltage. The population density of hydrogenotrophic methanogens increased to 73.3% in the BEAD-C (closed circuit) reactor, even at high OLRs, through the removal of VFAs and conversion of hydrogen to methane. The energy efficiency in the BEAD-C reactor was 85.6%, indicating that the commercialization of BEAD reactors equipped with rotating STS304 impeller electrodes is possible.
Collapse
Affiliation(s)
- Jungyu Park
- Department of Environmental Engineering, Chungbuk National University, Cheongju 361-763, Republic of Korea
| | - Beom Lee
- Department of Environmental Engineering, Chungbuk National University, Cheongju 361-763, Republic of Korea
| | - Wonbeom Shin
- Department of Environmental Engineering, Chungbuk National University, Cheongju 361-763, Republic of Korea
| | - Sangyeol Jo
- Department of Environmental Engineering, Chungbuk National University, Cheongju 361-763, Republic of Korea
| | - Hangbae Jun
- Department of Environmental Engineering, Chungbuk National University, Cheongju 361-763, Republic of Korea.
| |
Collapse
|
22
|
Cai W, Liu W, Zhang Z, Feng K, Ren G, Pu C, Sun H, Li J, Deng Y, Wang A. mcrA sequencing reveals the role of basophilic methanogens in a cathodic methanogenic community. WATER RESEARCH 2018; 136:192-199. [PMID: 29510338 DOI: 10.1016/j.watres.2018.02.062] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 02/25/2018] [Accepted: 02/26/2018] [Indexed: 06/08/2023]
Abstract
Cathodic methanogenesis is a promising method for accelerating and stabilising bioenergy recovery in anaerobic processes. The change in composition of microbial (especially methanogenic) communities in response to an applied potential-and especially the associated pH gradient-is critical for achieving this goal, but is not well understood in cathodic biofilms. We found here that the pH-polarised region in the 2 mm surrounding the cathode ranged from 6.9 to 10.1, as determined using a pH microsensor; this substantially affected methane production rate as well as microbial community structure. Miseq sequencing data of a highly conserved region of the mcrA gene revealed a dramatic variation in alpha diversity of methanogens concentrated in electrode biofilms under the applied potential, and confirmed that the dominant microbes at the cathode were hydrogenotrophic methanogens (mostly basophilic Methanobacterium alcaliphilum). These results indicate that regional pH variation in the microenvironment surrounding the electrode is an ecological niche enriched with Methanobacterium.
Collapse
Affiliation(s)
- Weiwei Cai
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Wenzong Liu
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Zhaojing Zhang
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Kai Feng
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Ge Ren
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Chuanliang Pu
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Haishu Sun
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Jiaqi Li
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Ye Deng
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
23
|
Surpassing the current limitations of high purity H2 production in microbial electrolysis cell (MECs): Strategies for inhibiting growth of methanogens. Bioelectrochemistry 2018; 119:211-219. [DOI: 10.1016/j.bioelechem.2017.09.014] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 09/06/2017] [Accepted: 09/29/2017] [Indexed: 11/18/2022]
|
24
|
Park J, Lee B, Tian D, Jun H. Bioelectrochemical enhancement of methane production from highly concentrated food waste in a combined anaerobic digester and microbial electrolysis cell. BIORESOURCE TECHNOLOGY 2018; 247:226-233. [PMID: 28950130 DOI: 10.1016/j.biortech.2017.09.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/31/2017] [Accepted: 09/01/2017] [Indexed: 06/07/2023]
Abstract
A microbial electrolysis cell (MEC) is a promising technology for enhancing biogas production from an anaerobic digestion (AD) reactor. In this study, the effects of the MEC on the rate of methane production from food waste were examined by comparing an AD reactor with an AD reactor combined with a MEC (AD+MEC). The use of the MEC accelerated methane production and stabilization via rapid organic oxidation and rapid methanogenesis. Over the total experimental period, the methane production rate and stabilization time of the AD+MEC reactor were approximately 1.7 and 4.0 times faster than those of the AD reactor. Interestingly however, at the final steady state, the methane yields of both the reactors were similar to the theoretical maximum methane yield. Based on these results, the MEC did not increase the methane yield over the theoretical value, but accelerated methane production and stabilization by bioelectrochemical reactions.
Collapse
Affiliation(s)
- Jungyu Park
- Department of Environmental Engineering, Chungbuk National University, Cheongju 361-763, Republic of Korea
| | - Beom Lee
- Department of Environmental Engineering, Chungbuk National University, Cheongju 361-763, Republic of Korea
| | - Donjie Tian
- JEONGBONG CO., LTD., 69-4 Munhwa-dong, Cheongju, Republic of Korea
| | - Hangbae Jun
- Department of Environmental Engineering, Chungbuk National University, Cheongju 361-763, Republic of Korea.
| |
Collapse
|
25
|
Nelabhotla ABT, Dinamarca C. Optimisation of Electrochemical Treatment of Artificial Wastewater Using Cyclic Voltammetry. ACTA ACUST UNITED AC 2018. [DOI: 10.18178/ijesd.2018.9.8.1104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
26
|
Feng Q, Song YC, Yoo K, Kuppanan N, Subudhi S, Lal B. Bioelectrochemical enhancement of direct interspecies electron transfer in upflow anaerobic reactor with effluent recirculation for acidic distillery wastewater. BIORESOURCE TECHNOLOGY 2017; 241:171-180. [PMID: 28554103 DOI: 10.1016/j.biortech.2017.05.073] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/08/2017] [Accepted: 05/12/2017] [Indexed: 06/07/2023]
Abstract
Methane production in the upflow anaerobic bioelectrochemical reactor (UABE) treating acidic distillery wastewater was compared to the upflow anaerobic sludge blanket reactor (UASB), and the electron transfer pathways for methane production were also evaluated in the effluent recirculation. The methane productions from reactors were influenced by the low pH of influent wastewater. However, the methane production rate and yield of the UABE were 2.08L/L.d and 320mL/g CODr, which were higher than the UASB. The effluent recirculation containing alkalinity neutralized the acidic influent and increased the upflow velocity in both reactors, and improved the direct interspecies electron transfer more in the UABE. When the effluent recirculation ratio was 3.0 in the UABE, the methane production rate and yield were reached up to 3.88L/L.d and 501.0mL/g CODr, respectively. The UABE requires electrode installation and electrical energy for operation, but the benefits from increased methane production are much higher.
Collapse
Affiliation(s)
- Qing Feng
- Department of Environmental Engineering, Korea Maritime and Ocean University, Busan 49112, South Korea
| | - Young-Chae Song
- Department of Environmental Engineering, Korea Maritime and Ocean University, Busan 49112, South Korea.
| | - Kyuseon Yoo
- Department of Civil & Environmental Engineering, Jeonju University, Jeonju 55069, South Korea
| | - Nanthakumar Kuppanan
- Environmental and Industrial Biotechnology Division, The Energy and Resources Institute, New Delhi 110003, India
| | - Sanjukta Subudhi
- Environmental and Industrial Biotechnology Division, The Energy and Resources Institute, New Delhi 110003, India
| | - Banwari Lal
- Environmental and Industrial Biotechnology Division, The Energy and Resources Institute, New Delhi 110003, India
| |
Collapse
|
27
|
Zhen G, Lu X, Kobayashi T, Su L, Kumar G, Bakonyi P, He Y, Sivagurunathan P, Nemestóthy N, Xu K, Zhao Y. Continuous micro-current stimulation to upgrade methanolic wastewater biodegradation and biomethane recovery in an upflow anaerobic sludge blanket (UASB) reactor. CHEMOSPHERE 2017; 180:229-238. [PMID: 28410503 DOI: 10.1016/j.chemosphere.2017.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 03/31/2017] [Accepted: 04/02/2017] [Indexed: 06/07/2023]
Abstract
The dispersion of granules in upflow anaerobic sludge blanket (UASB) reactor represents a critical technical issue in methanolic wastewater treatment. In this study, the potentials of coupling a microbial electrolysis cell (MEC) into an UASB reactor for improving methanolic wastewater biodegradation, long-term process stability and biomethane recovery were evaluated. The results indicated that coupling a MEC system was capable of improving the overall performance of UASB reactor for methanolic wastewater treatment. The combined system maintained the comparatively higher methane yield and COD removal efficiency over the single UASB process through the entire process, with the methane production at the steady-state conditions approaching 1504.7 ± 92.2 mL-CH4 L-1-reactor d-1, around 10.1% higher than the control UASB (i.e. 1366.4 ± 71.0 mL-CH4 L-1-reactor d-1). The further characterizations verified that the input of external power source could stimulate the metabolic activity of microbes and reinforced the EPS secretion. The produced EPS interacted with Fe2+/3+ liberated during anodic corrosion of iron electrode to create a gel-like three-dimensional [-Fe-EPS-]n matrix, which promoted cell-cell cohesion and maintained the structural integrity of granules. Further observations via SEM and FISH analysis demonstrated that the use of bioelectrochemical stimulation promoted the growth and proliferation of microorganisms, which diversified the degradation routes of methanol, convert the wasted CO2 into methane and accordingly increased the process stability and methane productivity.
Collapse
Affiliation(s)
- Guangyin Zhen
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Dongchuan Rd. 500, Shanghai, 200241, PR China; Center for Material Cycles and Waste Management Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan.
| | - Xueqin Lu
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Sendai, Miyagi, 980-8579, Japan.
| | - Takuro Kobayashi
- Center for Material Cycles and Waste Management Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| | - Lianghu Su
- Nanjing Institute of Environmental Sciences of the Ministry of Environmental Protection, 210042, Nanjing, PR China
| | - Gopalakrishnan Kumar
- Department of Environmental Engineering, Daegu University, Jillyang, Gyeongsan, Gyeongbuk, Republic of Korea
| | - Péter Bakonyi
- Research Institute on Bioengineering, Membrane Technology and Energetics, University of Pannonia, Egyetem ut 10, 8200, Veszprém, Hungary
| | - Yan He
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Dongchuan Rd. 500, Shanghai, 200241, PR China
| | - Periyasamy Sivagurunathan
- Center for Material Cycles and Waste Management Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| | - Nándor Nemestóthy
- Research Institute on Bioengineering, Membrane Technology and Energetics, University of Pannonia, Egyetem ut 10, 8200, Veszprém, Hungary
| | - Kaiqin Xu
- Center for Material Cycles and Waste Management Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan.
| | - Youcai Zhao
- The State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, PR China
| |
Collapse
|
28
|
Hussain A, Lebrun FM, Tartakovsky B. Removal of organic carbon and nitrogen in a membraneless flow-through microbial electrolysis cell. Enzyme Microb Technol 2017; 102:41-48. [DOI: 10.1016/j.enzmictec.2017.03.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 03/29/2017] [Accepted: 03/30/2017] [Indexed: 11/12/2022]
|
29
|
Blasco-Gómez R, Batlle-Vilanova P, Villano M, Balaguer MD, Colprim J, Puig S. On the Edge of Research and Technological Application: A Critical Review of Electromethanogenesis. Int J Mol Sci 2017; 18:E874. [PMID: 28425974 PMCID: PMC5412455 DOI: 10.3390/ijms18040874] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 03/22/2017] [Accepted: 04/11/2017] [Indexed: 11/24/2022] Open
Abstract
The conversion of electrical current into methane (electromethanogenesis) by microbes represents one of the most promising applications of bioelectrochemical systems (BES). Electromethanogenesis provides a novel approach to waste treatment, carbon dioxide fixation and renewable energy storage into a chemically stable compound, such as methane. This has become an important area of research since it was first described, attracting different research groups worldwide. Basics of the process such as microorganisms involved and main reactions are now much better understood, and recent advances in BES configuration and electrode materials in lab-scale enhance the interest in this technology. However, there are still some gaps that need to be filled to move towards its application. Side reactions or scaling-up issues are clearly among the main challenges that need to be overcome to its further development. This review summarizes the recent advances made in the field of electromethanogenesis to address the main future challenges and opportunities of this novel process. In addition, the present fundamental knowledge is critically reviewed and some insights are provided to identify potential niche applications and help researchers to overcome current technological boundaries.
Collapse
Affiliation(s)
- Ramiro Blasco-Gómez
- Laboratory of Chemical and Environmental Engineering (LEQUIA), Institute of the Environment, University of Girona, Campus Montilivi, Carrer Maria Aurèlia Capmany, 69, E-17003 Girona, Spain.
| | - Pau Batlle-Vilanova
- Laboratory of Chemical and Environmental Engineering (LEQUIA), Institute of the Environment, University of Girona, Campus Montilivi, Carrer Maria Aurèlia Capmany, 69, E-17003 Girona, Spain.
- Department of Innovation and Technology, FCC Aqualia, Balmes Street, 36, 6th Floor, 08007 Barcelona, Spain.
| | - Marianna Villano
- Department of Chemistry, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy.
| | - Maria Dolors Balaguer
- Laboratory of Chemical and Environmental Engineering (LEQUIA), Institute of the Environment, University of Girona, Campus Montilivi, Carrer Maria Aurèlia Capmany, 69, E-17003 Girona, Spain.
| | - Jesús Colprim
- Laboratory of Chemical and Environmental Engineering (LEQUIA), Institute of the Environment, University of Girona, Campus Montilivi, Carrer Maria Aurèlia Capmany, 69, E-17003 Girona, Spain.
| | - Sebastià Puig
- Laboratory of Chemical and Environmental Engineering (LEQUIA), Institute of the Environment, University of Girona, Campus Montilivi, Carrer Maria Aurèlia Capmany, 69, E-17003 Girona, Spain.
| |
Collapse
|
30
|
Cui MH, Cui D, Gao L, Wang AJ, Cheng HY. Evaluation of anaerobic sludge volume for improving azo dye decolorization in a hybrid anaerobic reactor with built-in bioelectrochemical system. CHEMOSPHERE 2017; 169:18-22. [PMID: 27855327 DOI: 10.1016/j.chemosphere.2016.11.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/25/2016] [Accepted: 11/07/2016] [Indexed: 06/06/2023]
Abstract
A hybrid anaerobic reactor with built-in bioelectrochemical system (BES) has been verified for efficiently treating mixed azo dye wastewater, yet still facing many challenges, such as uncertain reactor construction and insufficient electron donors. In this study, an up-flow hybrid anaerobic reactor with built-in BES was developed for acid orange 7 (AO7) containing wastewater treatment. Cathode and real domestic wastewater both served as electron donor for driving azo dye decolorization. The decolorization efficiency (DE) of AO7 (200 mg/L) in the hybrid reactor was 80.34 ± 2.11% with volume ratio between anaerobic sludge and cathode (VRslu:cat) of 0.5:1 and hydraulic retention time (HRT) of 6 h, which was 15.79% higher than that in BES without sludge zone. DE was improved to 86.02 ± 1.49% with VRslu:cat increased to 1:1. Further increase in the VRslu:cat to 1.5:1 and 2:1, chemical oxygen demand (COD) removal efficiency was continuously improved to 28.78 ± 1.96 and 32.19 ± 0.62%, but there was no obvious DE elevation (slightly increased to 87.62 ± 2.50 and 90.13 ± 3.10%). BES presented efficient electron utilization, the electron usage ratios (EURs) in which fluctuated between 11.02 and 13.06 mol e-/mol AO7. It was less than half of that in sludge zone of 24.73-32.06 mol e-/mol AO7. The present work optimized the volume ratio between anaerobic sludge and cathode that would be meaningful for the practical application of this hybrid system.
Collapse
Affiliation(s)
- Min-Hua Cui
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Dan Cui
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China
| | - Lei Gao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Ai-Jie Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China.
| | - Hao-Yi Cheng
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China.
| |
Collapse
|
31
|
Bell CA, Franks AE. Plugging in microbial metabolism for industrial applications. MICROBIOLOGY AUSTRALIA 2017. [DOI: 10.1071/ma17037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The ability of electric microbes to electrically interact with electrodes is opening up a number of possibilities with industrial applications. Microbes are able to utilise the electrode as an electron source to reduce CO2 for the production of organic compounds directly or produce H2 as a reducing equivalent for partner microbes for the production of commodity chemicals. Electrodes can also allow redox unbalanced fermentation processes to occur through the addition or subtraction of reducing equivalents that remove bottle necks in these pathways. Electrodes are also providing a physical refuge for electric microbes to maintain anaerobic fermenter stability. It can be expected that the role for electric microbes will continued to be expanded as part of industrial applications in the future.
Collapse
|
32
|
Luo G, Li J, Li Y, Wang Z, Li WT, Li AM. Performance, kinetics behaviors and microbial community of internal circulation anaerobic reactor treating wastewater with high organic loading rate: Role of external hydraulic circulation. BIORESOURCE TECHNOLOGY 2016; 222:470-477. [PMID: 27764739 DOI: 10.1016/j.biortech.2016.10.023] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/05/2016] [Accepted: 10/06/2016] [Indexed: 06/06/2023]
Abstract
Performance of internal circulation anaerobic reactor (IC) treating wastewater at high organic loading rate (OLR) and role of external hydraulic circulation were evaluated. When the OLR was increased from 2.50 to 18.94kgCOD/m3/d, COD removal decreased to 85% slightly and methane production increased to 4.49L/L/d with the upflow velocity of 1.0m/h resulted from the additional hydraulic circulation. Withdrawal of external hydraulic circulation led to decrease of COD removal to lower than 60% drastically and methane production by 81%. Accumulation of volatile fatty acids caused decline of pH to below 6.0 and the shift of substrate metabolic pathway to the hybrid fermentation. In addition, both maximum methane production rate and maximum substrate degradation rate obtained from mathematical models decreased significantly. Hydrogenotrophic methanogens including Methanobacterium and Methanocorpusculum predominated in the anaerobic sludge and the shift of microbial community was also observed.
Collapse
Affiliation(s)
- Gan Luo
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Jun Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yan Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Zhu Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Wen-Tao Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Ai-Min Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
33
|
Li Y, Zhang Y, Liu Y, Zhao Z, Zhao Z, Liu S, Zhao H, Quan X. Enhancement of anaerobic methanogenesis at a short hydraulic retention time via bioelectrochemical enrichment of hydrogenotrophic methanogens. BIORESOURCE TECHNOLOGY 2016; 218:505-511. [PMID: 27394997 DOI: 10.1016/j.biortech.2016.06.112] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/24/2016] [Accepted: 06/28/2016] [Indexed: 06/06/2023]
Abstract
Anaerobic digestion (AD) is an important energy strategy for converting organic waste to CH4. A major factor limiting the practical applicability of AD is the relatively long hydraulic retention time (HRT) which declines the treatment efficiency of digesters. A coupling process of anaerobic digestion and 'electromethanogenesis' was proposed to enhance anaerobic digestion at a short HRT in this study. Microorganisms analysis indicated that the electric-biological reactor enriched hydrogenotrophic methanogens in both cathodic biofilm and suspended sludge, helping achieve the high organic removal (71.0% vs 42.3% [control reactor]) and CH4 production (248.5mL/h vs 51.3mL/h), while the additional electric input was only accounted for 25.6% of the energy income from the increased CH4 production. This study demonstrated that a bioelectrochemical enhanced anaerobic reactor could improve the CH4 production and organic removal at a short HRT, providing an economically feasible scheme to treat wastewater.
Collapse
Affiliation(s)
- Yang Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China
| | - Yaobin Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China.
| | - Yiwen Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Zhiqiang Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China
| | - Zisheng Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China
| | - Sitong Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China
| | - Huimin Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China
| | - Xie Quan
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China
| |
Collapse
|
34
|
Zhao Z, Zhang Y, Ma W, Sun J, Sun S, Quan X. Enriching functional microbes with electrode to accelerate the decomposition of complex substrates during anaerobic digestion of municipal sludge. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2016.03.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
35
|
Cai W, Han T, Guo Z, Varrone C, Wang A, Liu W. Methane production enhancement by an independent cathode in integrated anaerobic reactor with microbial electrolysis. BIORESOURCE TECHNOLOGY 2016; 208:13-18. [PMID: 26913643 DOI: 10.1016/j.biortech.2016.02.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 02/03/2016] [Accepted: 02/04/2016] [Indexed: 06/05/2023]
Abstract
Anaerobic digestion (AD) represents a potential way to achieve energy recovery from waste organics. In this study, a novel bioelectrochemically-assisted anaerobic reactor is assembled by two AD systems separated by anion exchange membrane, with the cathode placing in the inside cylinder (cathodic AD) and the anode on the outside cylinder (anodic AD). In cathodic AD, average methane production rate goes up to 0.070 mL CH4/mL reactor/day, which is 2.59 times higher than AD control reactor (0.027 m(3) CH4/m(3)/d). And COD removal is increased ∼15% over AD control. When changing to sludge fermentation liquid, methane production rate has been further increased to 0.247 mL CH4/mL reactor/day (increased by 51.53% comparing with AD control). Energy recovery efficiency presents profitable gains, and economic revenue from increased methane totally self-cover the cost of input electricity. The study indicates that cathodic AD could cost-effectively enhance methane production rate and degradation of glucose and fermentative liquid.
Collapse
Affiliation(s)
- Weiwei Cai
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, China
| | - Tingting Han
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, China
| | - Zechong Guo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, China
| | - Cristiano Varrone
- Technical University of Denmark, Department of Chemical and Biochemical Engineering, Lyngby, Denmark
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Wenzong Liu
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|