1
|
Nelson HV, Silver L, Kovacs TGL, McLennan EA, Georges A, DeGabriel JL, Hogg CJ, Belov K. Genome-wide diversity and MHC characterisation in a critically endangered freshwater turtle susceptible to disease. Immunogenetics 2025; 77:21. [PMID: 40327086 PMCID: PMC12055648 DOI: 10.1007/s00251-025-01378-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 04/23/2025] [Indexed: 05/07/2025]
Abstract
Small, isolated populations are often vulnerable to increased inbreeding and genetic drift, both of which elevate the risk of extinction. The Bellinger River turtle (Myuchelys georgesi) is a critically endangered species endemic to a single river catchment in New South Wales, Australia. The only extant wild population, along with the breeding program, face significant threats from viral outbreaks, most notably a nidovirus outbreak in 2015 that led to a 90% population decline. To enhance our understanding of genomic characteristics in the species, including genome-wide and functional gene diversity, we re-sequenced, assembled, and analysed 31 re-sequenced genomes for pure M. georgesi (N = 31). We manually annotated the major histocompatibility complex (MHC), identifying five MHC class I and ten MHC class II genes and investigated genetic diversity across both classes in M. georgesi. Our results showed that genome-wide diversity is critically low in pure M. georgesi, contexualised through comparison with opportunistically sampled backcross animals-offspring of F1 hybrids (M. georgesi × Emydura macquarii) backcrossed to pure M. georgesi (N = 4). However, the variation observed within the core MHC region of pure M. georgesi, extending across scaffold 10, exceeded that of all other macrochromosomes. Additionally, no significant short-term changes in either genome-wide or immunogenetic diversity were detected following the 2015 nidovirus outbreak (before; N = 19, after; N = 12). Demographic history reconstructions indicated a sustained, long-term decline in effective population size since the last interglacial period, accompanied by more recent steep declines. These patterns suggested that prolonged isolation and reduced population size have significantly influenced the dynamics of genome-wide diversity. It is likely that contemporary stressors, including the recent nidovirus outbreak, are acting on an already genetically depleted population. This study offers new insights into genome-wide and immune gene diversity, including immune gene annotation data with broader implications for testudines. These findings provide crucial information to support future management strategies for the species.
Collapse
Affiliation(s)
- Holly V Nelson
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Luke Silver
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science Science, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Toby G L Kovacs
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Elspeth A McLennan
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Arthur Georges
- Institute for Applied Ecology, University of Canberra, Bruce, ACT, 2617, Australia
| | - Jane L DeGabriel
- NSW Department of Climate Change, the Environment,, Energy and Water, Parramatta, NSW, 2150, Australia
| | - Carolyn J Hogg
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia.
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science Science, The University of Sydney, Sydney, NSW, 2006, Australia.
| | - Katherine Belov
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science Science, The University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
2
|
Hirao AJ, Aoyama M, Sugita S. During the breeding season, lymphocytes assemble into ellipse-shaped clusters in the uropygial gland of the jungle crow Corvus macrorhynchos. Morphologie 2025; 109:100924. [PMID: 39644715 DOI: 10.1016/j.morpho.2024.100924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/08/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND Recent studies indicate that the uropygial gland produces intraspecific chemosensory cues. The jungle crow Corvus macrorhynchos, which is a type of passerine, exhibits extreme morphological variation in the gonadal gland during the breeding season. Because the uropygial gland of the jungle crow sometimes exhibits morphological changes during the breeding season, we attempted to clarify the morphological changes in the uropygial gland of the jungle crow according to development and season. METHODS Captured birds were divided into three age groups according to the color of their upper palate: <1 year, 1-2 years, and >2 years old. Paraffin sections of the uropygial gland were stained with hematoxylin and eosin, Elastica van Gieson, Giemsa, and a proliferating cell nuclear antigen antibody. RESULTS Sexual dimorphism was not seen in the morphology of the uropygial gland in the jungle crow. However, changes due to growth and season were identified. During the breeding season in birds>2 years old, lymphocytes formed ellipse-shaped clusters around the glandular cavity. These clusters were invaded by collagen fibers from spherical cells. CONCLUSIONS Collagen fibers, which develop from spherical cells, seem to be related to lymphoid cluster migration. Ellipse-shaped lymphoid clusters may play a crucial role in reproductive behavior during the breeding season.
Collapse
Affiliation(s)
- A J Hirao
- Basic Science Related to Nursing, School of Nursing, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan.
| | - M Aoyama
- Department of Animal Science, Faculty of Agriculture, Utsunomiya University, 350 Minemachi, Utsunomiya, Tochigi 321-8505, Japan
| | - S Sugita
- Department of Animal Science, Faculty of Agriculture, Utsunomiya University, 350 Minemachi, Utsunomiya, Tochigi 321-8505, Japan
| |
Collapse
|
3
|
Brebner JS, Loconsole M, Hanley D, Vasas V. Through an animal's eye: the implications of diverse sensory systems in scientific experimentation. Proc Biol Sci 2024; 291:20240022. [PMID: 39016597 PMCID: PMC11253838 DOI: 10.1098/rspb.2024.0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 03/01/2024] [Accepted: 06/19/2024] [Indexed: 07/18/2024] Open
Abstract
'Accounting for the sensory abilities of animals is critical in experimental design.' No researcher would disagree with this statement, yet it is often the case that we inadvertently fall for anthropocentric biases and use ourselves as the reference point. This paper discusses the risks of adopting an anthropocentric view when working with non-human animals, and the unintended consequences this has on our experimental designs and results. To this aim, we provide general examples of anthropocentric bias from different fields of animal research, with a particular focus on animal cognition and behaviour, and lay out the potential consequences of adopting a human-based perspective. Knowledge of the sensory abilities, both in terms of similarities to humans and peculiarities of the investigated species, is crucial to ensure solid conclusions. A more careful consideration of the diverse sensory systems of animals would improve many scientific fields and enhance animal welfare in the laboratory.
Collapse
Affiliation(s)
- Joanna S. Brebner
- Research Centre on Animal Cognition (CRCA), Centre for Integrative Biology (CBI); CNRS, University Paul Sabatier – Toulouse III, Toulouse, France
| | - Maria Loconsole
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
- Department of General Psychology, University of Padova, Padova, Italy
| | - Daniel Hanley
- Department of Biology, George Mason University, Fairfax, VA, USA
| | - Vera Vasas
- School of Life Sciences, University of Sussex, BrightonBN1 9RH, UK
| |
Collapse
|
4
|
Alves Soares T, Caspers BA, Loos HM. Volatile organic compounds in preen oil and feathers - a review. Biol Rev Camb Philos Soc 2024; 99:1085-1099. [PMID: 38303487 DOI: 10.1111/brv.13059] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/03/2024]
Abstract
For a long time birds were assumed to be anosmic or at best microsmatic, with olfaction a poorly understood and seldom investigated part of avian physiology. The full viability of avian olfaction was first discovered through its functions in navigation and foraging. Subsequently, researchers have investigated the role of olfaction in different social and non-social contexts, including reproduction, kin recognition, predator avoidance, navigation and foraging. In parallel to the recognition of the importance of olfaction for avian social behaviour, there have been advances in the techniques and methods available for the sampling and analysis of trace volatiles and odourants, leading to insights into the chemistry underlying chemical communication in birds. This review provides (i) an overview of the current state of knowledge regarding the volatile chemical composition of preen oil and feathers, its phylogenetic coverage, chemical signatures and their potential functions, and (ii) a discussion of current methods used for the isolation and detection of volatiles. Finally, lines for future research are proposed.
Collapse
Affiliation(s)
- Tatjana Alves Soares
- Chair of Aroma and Smell Research, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Henkestraße 9, Erlangen, 91054, Germany
| | - Barbara A Caspers
- Department of Behavioural Ecology, Bielefeld University, Konsequenz 45, Bielefeld, 33615, Germany
- Joint Institute for Individualisation in a Changing Environment (JICE), University of Münster and Bielefeld University, Bielefeld, Germany
| | - Helene M Loos
- Chair of Aroma and Smell Research, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Henkestraße 9, Erlangen, 91054, Germany
- Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser Straße 35, Freising, 85354, Germany
| |
Collapse
|
5
|
Gilles M, Kosztolányi A, Rocha AD, Cuthill IC, Székely T, Caspers BA. No sex difference in preen oil chemical composition during incubation in Kentish plovers. PeerJ 2024; 12:e17243. [PMID: 38737740 PMCID: PMC11088368 DOI: 10.7717/peerj.17243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/25/2024] [Indexed: 05/14/2024] Open
Abstract
Preen oil, the secretion from the uropygial gland of birds, may have a specific function in incubation. Consistent with this, during incubation, the chemical composition of preen oil is more likely to differ between sexes in species where only one sex incubates than in species where both sexes incubate. In this study, we tested the generality of this apparent difference, by investigating sex differences in the preen oil composition of a shorebird species, the Kentish plover (Anarhynchus, formerly Charadrius, alexandrinus). As both sexes incubate in this species, we predicted the absence of sex differences in preen oil composition during incubation. In the field, we sampled preen oil from nine females and 11 males during incubation, which we analysed with gas chromatography-mass spectrometry (GC-MS). Consistent with predictions, we found no sex difference in preen oil composition, neither in beta diversity (Bray-Curtis dissimilarities) nor in alpha diversity (Shannon index and number of substances). Based on these results, we cannot conclude whether preen oil has a function during incubation in Kentish plovers. Still, we discuss hypothetical roles, such as olfactory crypsis, protection against ectoparasites or olfactory intraspecific communication, which remain to be tested.
Collapse
Affiliation(s)
- Marc Gilles
- Department of Behavioural Ecology, Bielefeld University, Bielefeld, Germany
| | - András Kosztolányi
- Department of Zoology, University of Veterinary Medicine Budapest, Budapest, Hungary
| | - Afonso D. Rocha
- Ecology in the Anthropocene, Department of Anatomy, Cell Biology and Zoology, Faculty of Sciences, University of Extremadura, Badajoz, Spain
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Innes C. Cuthill
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Tamás Székely
- Milner Centre for Evolution, University of Bath, Bath, United Kingdom
- Debrecen Biodiversity Centre, University of Debrecen, Debrecen, Hungary
| | - Barbara A. Caspers
- Department of Behavioural Ecology, Bielefeld University, Bielefeld, Germany
- JICE, Joint Institute for Individualisation in a Changing Environment, University of Münster and Bielefeld University, Bielefeld, Germany
| |
Collapse
|
6
|
Tebbe J, Havenstein K, Forcada J, Tiedemann R, Caspers B, Hoffman JI. No evidence for a role of MHC class II genotype in the chemical encoding of heterozygosity and relatedness in Antarctic fur seals. Proc Biol Sci 2024; 291:20232519. [PMID: 38503331 PMCID: PMC10950461 DOI: 10.1098/rspb.2023.2519] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/22/2024] [Indexed: 03/21/2024] Open
Abstract
Despite decades of research, surprisingly little is known about the mechanism(s) by which an individual's genotype is encoded in odour. Many studies have focused on the role of the major histocompatibility complex (MHC) owing to its importance for survival and mate choice. However, the salience of MHC-mediated odours compared to chemicals influenced by the rest of the genome remains unclear, especially in wild populations where it is challenging to quantify and control for the effects of the genomic background. We addressed this issue in Antarctic fur seals by analysing skin swabs together with full-length MHC DQB II exon 2 sequences and data from 41 genome-wide distributed microsatellites. We did not find any effects of MHC relatedness on chemical similarity and there was also no relationship between MHC heterozygosity and chemical diversity. However, multilocus heterozygosity showed a significant positive association with chemical diversity, even after controlling for MHC heterozygosity. Our results appear to rule out a dominant role of the MHC in the chemical encoding of genetic information in a wild vertebrate population and highlight the need for genome-wide approaches to elucidate the mechanism(s) and specific genes underlying genotype-odour associations.
Collapse
Affiliation(s)
- Jonas Tebbe
- Department of Evolutionary Population Genetics, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
- Department of Behavioural Ecology, Bielefeld University, 33501 Bielefeld, Germany
- Department of Animal Behaviour, Bielefeld University, 33501 Bielefeld, Germany
| | - Katja Havenstein
- Unit of Evolutionary Biology / Systematic Zoology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam-Golm, Germany
| | - Jaume Forcada
- British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 OET, UK
| | - Ralph Tiedemann
- Unit of Evolutionary Biology / Systematic Zoology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam-Golm, Germany
| | - Barbara Caspers
- Department of Behavioural Ecology, Bielefeld University, 33501 Bielefeld, Germany
- Joint Institute for Individualisation in a Changing Environment (JICE), Bielefeld University and University of Münster, Bielefeld, Germany
| | - Joseph I. Hoffman
- Department of Evolutionary Population Genetics, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
- Department of Animal Behaviour, Bielefeld University, 33501 Bielefeld, Germany
- British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 OET, UK
- Joint Institute for Individualisation in a Changing Environment (JICE), Bielefeld University and University of Münster, Bielefeld, Germany
- Center for Biotechnology (CeBiTec), Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| |
Collapse
|
7
|
Minias P, Podlaszczuk P, Indykiewicz P, Ledwoń M, Nowakowski J, Chyb A, Janiszewski T. Genetic variation at innate and adaptive immune genes - contrasting patterns of differentiation and local adaptation in a wild gull. Heredity (Edinb) 2023; 131:282-291. [PMID: 37553491 PMCID: PMC10539538 DOI: 10.1038/s41437-023-00645-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/15/2023] [Accepted: 07/30/2023] [Indexed: 08/10/2023] Open
Abstract
Immunogenetic variation in natural vertebrate populations is expected to respond to spatial and temporal fluctuations in pathogen assemblages. While spatial heterogeneity in pathogen-driven selection enhances local immunogenetic adaptations and population divergence, different immune genes may yield contrasting responses to the environment. Here, we investigated population differentiation at the key pathogen recognition genes of the innate and adaptive immune system in a colonial bird species, the black-headed gull Chroicocephalus ridibundus. We assessed genetic variation at three toll-like receptor (TLR) genes (innate immunity) and the major histocompatibility complex (MHC) class I and II genes (adaptive immunity) in gulls from seven colonies scattered across Poland. As expected, we found much greater polymorphism at the MHC than TLRs. Population differentiation at the MHC class II, but not MHC-I, was significantly stronger than at neutral microsatellite loci, suggesting local adaptation. This could reflect spatial variation in the composition of extracellular parasite communities (e.g., helminths), possibly driven by sharp differences in habitat structure between colonies. Despite contrasting patterns of population differentiation, both MHC classes showed similar regimes of diversifying selection. Some significant population differentiation was also observed at TLRs, suggesting that innate immune receptors may respond to fine-scale spatial variation in pathogen pressure, although this pattern could have been enhanced by drift. Our results suggested that local adaptation at the pathogen recognition immune genes can be maintained at relatively small or moderate spatial scales in species with high dispersal potential and they highlighted the complexity of immunogenetic responses of animals to heterogeneous environments.
Collapse
Affiliation(s)
- Piotr Minias
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 1/3, 90-237, Łódź, Poland.
| | - Patrycja Podlaszczuk
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 1/3, 90-237, Łódź, Poland
| | - Piotr Indykiewicz
- Department of Biology and Animal Environment, Faculty of Animal Breeding and Biology, Bydgoszcz University of Science and Technology, Mazowiecka 28, 85-084, Bydgoszcz, Poland
| | - Mateusz Ledwoń
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Sławkowska 17, 31-016, Kraków, Poland
| | - Jacek Nowakowski
- Department of Ecology and Environmental Protection, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727, Olsztyn, Poland
| | - Amelia Chyb
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 1/3, 90-237, Łódź, Poland
| | - Tomasz Janiszewski
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 1/3, 90-237, Łódź, Poland
| |
Collapse
|
8
|
Rekdal SL, Anmarkrud JA, Lifjeld JT, Johnsen A. Do female bluethroats without extra-pair offspring have more MHC-compatible social mates? Behav Ecol Sociobiol 2023. [DOI: 10.1007/s00265-023-03311-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Abstract
Genes of the major histocompatibility complex (MHC) are crucial for adaptive immunity in jawed vertebrates, and theory predicts that there should be mate choice for optimizing MHC constitution in the offspring. In a previous study, we demonstrated a non-random female choice of extra-pair males in the bluethroat (Luscinia svecica), yielding offspring that was closer to an intermediate MHC class II (MHCII) allele count than their within-pair halfsiblings. The present study tests whether social pairs with only within-pair young (WPY) in their brood, in the same study population, had a combined MHC-constitution closer to a presumed intermediate optimum, than social pairs with extra-pair young (EPY), with a corresponding pattern in their offspring. As expected, we found that WPY from pure WPY-broods were more MHC-optimal than WPY from mixed broods, but only in broods of young (second year) males. Correspondingly, there was a tendency for social pairs with only WPY in their brood to be more MHC-compatible than social pairs with EPY in their brood, when the male was young. Older bluethroat males have considerably larger testes than young males, and their higher sperm competitiveness could help them secure paternity in their own brood, also when they are not MHC-compatible. In other words, in the sexual conflict over paternity, females may be more likely to realise their preference for a MHC-compatible mate when paired to a young male. As a possible fitness indicator, immune responsiveness to an injected antigen (PHA) was elevated for offspring closer to “the golden mean” in MHCII allele count.
Significance statement
This study contributes to our understanding of MHC-based mate choice in extra-pair mating systems, by showing that female bluethroats (Luscinia svecica) with an MHCII-compatible social mate tend to have no extra-pair young in their brood, but only when the social male is young. This elucidates a possible sexual conflict, in which older social males are able to override female preferences and prevent other males from gaining paternity in their brood through higher sperm production. Studying systems in which extra-pair paternity occurs offers an insight into the genetic benefits of mate choice, as extra-pair males, in contrast to social males, generally contribute only sperm. Further, the strict and thorough genotyping scheme applied in this study enabled us to demonstrate a preference for “the golden mean” in MHC-diversity in a species with one of the highest MHC class II-diversity known to date.
Collapse
|
9
|
Gvoždíková Javůrková V, Doležal P, Fraňková A, Horák M, Chodová D, Langrová I, Tůmová E. Effects of genotype, sex, and feed restriction on the biochemical composition of chicken preen gland secretions and their implications for commercial poultry production. J Anim Sci 2022; 101:6956961. [PMID: 36547363 PMCID: PMC9923712 DOI: 10.1093/jas/skac411] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Preen gland secretions spread on the feathers contain various chemical compounds dominated by fatty acids (FAs) and volatile organic compounds (VOCs). These chemicals may significantly affect plumage condition, microbial and ectoparasitic load on feathers, and chemical communication of birds. However, how chemical composition of preen secretions varies in commercially produced chickens with respect to their genotype, sex, and feeding regime remain largely unknown, as well as the welfare implications for farmed poultry. We found that while polyunsaturated fatty acids in chicken preen secretions differed significantly with genotype (P << 0.001), saturated fatty acids and monounsaturated fatty acids varied with genotype-dependent preen gland volume (P < 0.01). Chickens of meat-type fast-growing Ross 308 genotype had reduced preen gland volume and lower proportions of all FA categories in their preen secretions compared with dual-purpose slow-growing ISA Dual chickens. A total of 34 FAs and 77 VOCs with tens of unique FAs were detected in preen secretions of both genotypes. While differences in the relative proportion of 6 of the 10 most dominant VOCs in chicken preen gland secretions were related to genotype (P < 0.001), only 1 of the 10 most dominant VOCs showed a sex effect (P < 0.01), and only 2 of the 10 most dominant VOCs showed a genotype-dependent effect of feed restriction (P < 0.05). Feed restriction had no effect on the relative proportion of any of the FAs in chicken preen gland secretions. Moreover, we found that meat-type Ross 308 preen secretions were dominated by VOCs, which are proven attractants for poultry red mite and may also increase infestation with other ectoparasites and negatively influence overall odor-mediated intraspecific communication and welfare. This study shows that no feeding management, but long-term genetic selection in commercial breeding may be the main cause of the differences in the biochemistry and function of chicken preen secretions. This might have negative consequences for chemosignaling, antiparasitic, and antimicrobial potential of preen secretions and can lead to increased susceptibility to ectoparasites, plumage care disorders, and can affect the overall condition, welfare, and productivity of commercially bred chickens. Selection-induced preen gland impairments must therefore be considered and compensated by proper management of the chicken farm and increased care about animal well-being.
Collapse
Affiliation(s)
| | - Petr Doležal
- Department of Animal Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague 6 - Suchdol, Czech Republic,Department of Agroenvironmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague 6 - Suchdol, Czech Republic
| | - Adéla Fraňková
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague 6 - Suchdol, Czech Republic
| | - Monika Horák
- Department of Animal Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague 6 - Suchdol, Czech Republic
| | - Darina Chodová
- Department of Animal Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague 6 - Suchdol, Czech Republic
| | - Iva Langrová
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague 6 - Suchdol, Czech Republic
| | - Eva Tůmová
- Department of Animal Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague 6 - Suchdol, Czech Republic
| |
Collapse
|
10
|
Amo L, Amo de Paz G, Kabbert J, Machordom A. House sparrows do not exhibit a preference for the scent of potential partners with different MHC-I diversity and genetic distances. PLoS One 2022; 17:e0278892. [PMID: 36542616 PMCID: PMC9770374 DOI: 10.1371/journal.pone.0278892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022] Open
Abstract
MHC genes play a fundamental role in immune recognition of pathogens and parasites. Therefore, females may increase offspring heterozygosity and genetic diversity by selecting males with genetically compatible or heterozygous MHC. In birds, several studies suggest that MHC genes play a role in mate choice, and recent evidence suggests that olfaction may play a role in the MHC-II discrimination. However, whether olfaction is involved in MHC-I discrimination in birds remains unknown. Previous studies indicate that house sparrow females with low allelic diversity prefer males with higher diversity in MHC-I alleles. Here, we directly explored whether female and male house sparrows (Passer domesticus) could estimate by scent MHC-I diversity and/or dissimilarity of potential partners. Our results show that neither females nor males exhibit a preference related to MHC-I diversity or dissimilarity of potential partners, suggesting that MHC-I is not detected through olfaction. Further studies are needed to understand the mechanisms responsible for mate discrimination based on MHC-I in birds.
Collapse
Affiliation(s)
- Luisa Amo
- Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain
- Area of Biodiversity and Conservation, Universidad Rey Juan Carlos, Móstoles, Spain
- * E-mail:
| | - Guillermo Amo de Paz
- Departamento de Farmacología, Farmacognosia y Botánica, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Johanna Kabbert
- Department of Animal Behaviour, Bielefeld University, Bielefeld, Germany
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Annie Machordom
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain
| |
Collapse
|
11
|
Jennings SL, Hoover BA, Wa Sin SY, Ebeler SE. Feather chemicals contain information about the major histocompatibility complex in a highly scented seabird. Proc Biol Sci 2022; 289:20220567. [PMID: 35611538 PMCID: PMC9130785 DOI: 10.1098/rspb.2022.0567] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Mate choice informed by the immune genes of the major histocompatibility complex (MHC) may provide fitness benefits including offspring with increased immunocompetence. Olfactory cues are considered the primary mechanism organisms use to evaluate the MHC of potential mates, yet this idea has received limited attention in birds. Motivated by a finding of MHC-dependent mate choice in the Leach's storm-petrel (Oceanodroma leucorhoa), we examined whether the chemical profiles of this highly scented seabird contain information about MHC genes. Whereas previous studies in birds examined non-volatile compounds, we used gas chromatography-mass spectrometry to measure the volatile compounds emitted from feathers that potentially serve as olfactory infochemicals about MHC and coupled this with locus-specific genotyping of MHC IIB genes. We found that feather chemicals reflected individual MHC diversity through interactions with sex and breeding status. Furthermore, similarity in MHC genotype was correlated with similarity in chemical profiles within female-female and male-female dyads. We provide the first evidence that volatile chemicals from bird feathers can encode information about the MHC. Our findings suggest that olfaction likely aids MHC-based mate choice in this species and highlight a role for chemicals in mediating genetic mate choice in birds where this mode of communication has been largely overlooked.
Collapse
Affiliation(s)
- Sarah L. Jennings
- Graduate Group in Ecology, University of California Davis, Davis CA 95616, USA
| | - Brian A. Hoover
- Graduate Group in Ecology, University of California Davis, Davis CA 95616, USA,Schmid College of Science and Technology, Chapman University, Orange, CA 92886, USA
| | - Simon Yung Wa Sin
- School of Biological Sciences, The University of Hong Kong, Pok Fu Lam Road, Hong Kong SAR
| | - Susan E. Ebeler
- Graduate Group in Ecology, University of California Davis, Davis CA 95616, USA,Department of Viticulture and Enology, University of California Davis, Davis CA 95616, USA
| |
Collapse
|
12
|
Mancilla-Morales MD, Velarde E, Contreras-Rodríguez A, Gómez-Lunar Z, Rosas-Rodríguez JA, Heras J, Soñanez-Organis JG, Ruiz EA. Characterization, Selection, and Trans-Species Polymorphism in the MHC Class II of Heermann’s Gull (Charadriiformes). Genes (Basel) 2022; 13:genes13050917. [PMID: 35627302 PMCID: PMC9140796 DOI: 10.3390/genes13050917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 11/16/2022] Open
Abstract
The major histocompatibility complex (MHC) enables vertebrates to cope with pathogens and maintain healthy populations, thus making it a unique set of loci for addressing ecology and evolutionary biology questions. The aim of our study was to examine the variability of Heermann’s Gull MHC class II (MHCIIB) and compare these loci with other Charadriiformes. Fifty-nine MHCIIB haplotypes were recovered from sixty-eight Heermann’s Gulls by cloning, of them, twelve were identified as putative true alleles, forty-five as unique alleles, and two as pseudogenes. Intra and interspecific relationships indicated at least two loci in Heermann’s Gull MHCIIB and trans-species polymorphism among Charadriiformes (coinciding with the documented evidence of two ancient avian MHCIIB lineages, except in the Charadriidae family). Additionally, sites under diversifying selection revealed a better match with peptide-binding sites inferred in birds than those described in humans. Despite the negative anthropogenic activity reported on Isla Rasa, Heermann’s Gull showed MHCIIB variability consistent with population expansion, possibly due to a sudden growth following conservation efforts. Duplication must play an essential role in shaping Charadriiformes MHCIIB variability, buffering selective pressures through balancing selection. These findings suggest that MHC copy number and protected islands can contribute to seabird conservation.
Collapse
Affiliation(s)
- Misael Daniel Mancilla-Morales
- Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Col. Santo Tomás, Ciudad de Mexico CP 11340, Mexico
- Correspondence: (M.D.M.-M.); (J.G.S.-O.); (E.A.R.)
| | - Enriqueta Velarde
- Instituto de Ciencias Marinas y Pesquerías, Universidad Veracruzana, Hidalgo 617, Colonia Río Jamapa, Boca del Rio, Veracruz CP 94290, Mexico;
| | - Araceli Contreras-Rodríguez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Col. Santo Tomás, Ciudad de Mexico CP 11340, Mexico; (A.C.-R.); (Z.G.-L.)
| | - Zulema Gómez-Lunar
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Col. Santo Tomás, Ciudad de Mexico CP 11340, Mexico; (A.C.-R.); (Z.G.-L.)
| | - Jesús A. Rosas-Rodríguez
- Departamento de Ciencias Químico-Biológicas y Agropecuarias, Universidad de Sonora, Lázaro Cárdenas del Río No. 100, Francisco Villa, Navojoa CP 85880, Mexico;
| | - Joseph Heras
- Departament of Biology, California State University, San Bernardino, 5500 University Parkway, San Bernardino, CA 92407, USA;
| | - José G. Soñanez-Organis
- Departamento de Ciencias Químico-Biológicas y Agropecuarias, Universidad de Sonora, Lázaro Cárdenas del Río No. 100, Francisco Villa, Navojoa CP 85880, Mexico;
- Correspondence: (M.D.M.-M.); (J.G.S.-O.); (E.A.R.)
| | - Enrico A. Ruiz
- Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Col. Santo Tomás, Ciudad de Mexico CP 11340, Mexico
- Correspondence: (M.D.M.-M.); (J.G.S.-O.); (E.A.R.)
| |
Collapse
|
13
|
Pineaux M, Merkling T, Danchin E, Hatch SA, Leclaire S, Blanchard P. MHC-II distance between parents predicts sex allocation decisions in a genetically monogamous bird. Behav Ecol 2021. [DOI: 10.1093/beheco/arab130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Theory predicts that parental heritable characteristics should shape sex allocation decisions when their effects on reproduction or survival are offspring sex-dependent. Numerous studies have questioned to what extent characteristics displayed by one of the parents matched theoretical expectations. This contrasts with the handful of studies that investigated whether compatibility between parents could also trigger selective pressures for sex allocation adjustments. We studied the genetically monogamous black-legged kittiwake (Rissa tridactyla), where previous data revealed that female chicks suffered higher fitness costs from low diversity at genes of the major histocompatibility complex (MHC) than male chicks. We predicted, and found in our dataset, that MHC-similar parents, producing low MHC-diverse offspring, should avoid the production of females. The relation between MHC-distance between parents (i.e. the functional distinctness of their MHC alleles) and offspring sex was not linear, such that MHC-dissimilar parents also overproduced sons. Overall, our results suggest that the genetically monogamous black-legged kittiwake parents flexibly adapt their reproduction and circumvent the costs of suboptimal pairing by manipulating offspring sex.
Collapse
Affiliation(s)
- Maxime Pineaux
- Laboratoire Évolution & Diversité Biologique (EDB UMR 5174), Université Fédérale de Toulouse Midi-Pyrénées, CNRS, IRD, UPS. 118 route de Narbonne, Bât. 4R1, 31062 Toulouse cedex 9, France
| | - Thomas Merkling
- Laboratoire Évolution & Diversité Biologique (EDB UMR 5174), Université Fédérale de Toulouse Midi-Pyrénées, CNRS, IRD, UPS. 118 route de Narbonne, Bât. 4R1, 31062 Toulouse cedex 9, France
| | - Etienne Danchin
- Laboratoire Évolution & Diversité Biologique (EDB UMR 5174), Université Fédérale de Toulouse Midi-Pyrénées, CNRS, IRD, UPS. 118 route de Narbonne, Bât. 4R1, 31062 Toulouse cedex 9, France
| | - Scott A Hatch
- Institute for Seabird Research and Conservation, 12850 Mountain Place, Anchorage, AK 99516, USA
| | - Sarah Leclaire
- Laboratoire Évolution & Diversité Biologique (EDB UMR 5174), Université Fédérale de Toulouse Midi-Pyrénées, CNRS, IRD, UPS. 118 route de Narbonne, Bât. 4R1, 31062 Toulouse cedex 9, France
| | - Pierrick Blanchard
- Laboratoire Évolution & Diversité Biologique (EDB UMR 5174), Université Fédérale de Toulouse Midi-Pyrénées, CNRS, IRD, UPS. 118 route de Narbonne, Bât. 4R1, 31062 Toulouse cedex 9, France
| |
Collapse
|
14
|
Grieves LA, Gloor GB, Bernards MA, MacDougall-Shackleton EA. Preen gland microbiota covary with major histocompatibility complex genotype in a songbird. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210936. [PMID: 34754501 PMCID: PMC8493191 DOI: 10.1098/rsos.210936] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/13/2021] [Indexed: 05/30/2023]
Abstract
Pathogen-mediated selection at the major histocompatibility complex (MHC) is thought to promote MHC-based mate choice in vertebrates. Mounting evidence implicates odour in conveying MHC genotype, but the underlying mechanisms remain uncertain. MHC effects on odour may be mediated by odour-producing symbiotic microbes whose community structure is shaped by MHC genotype. In birds, preen oil is a primary source of body odour and similarity at MHC predicts similarity in preen oil composition. Hypothesizing that this relationship is mediated by symbiotic microbes, we characterized MHC genotype, preen gland microbial communities and preen oil chemistry of song sparrows (Melospiza melodia). Consistent with the microbial mediation hypothesis, pairwise similarity at MHC predicted similarity in preen gland microbiota. Counter to this hypothesis, overall microbial similarity did not predict chemical similarity of preen oil. However, permutation testing identified a maximally predictive set of microbial taxa that best reflect MHC genotype, and another set of taxa that best predict preen oil chemical composition. The relative strengths of relationships between MHC and microbes, microbes and preen oil, and MHC and preen oil suggest that MHC may affect host odour both directly and indirectly. Thus, birds may assess MHC genotypes based on both host-associated and microbially mediated odours.
Collapse
Affiliation(s)
- L. A. Grieves
- Department of Biology, University of Western Ontario, London, ON, Canada N6A 5B7
| | - G. B. Gloor
- Department of Biochemistry, University of Western Ontario, London, ON, Canada N6A 5C1
| | - M. A. Bernards
- Department of Biology, University of Western Ontario, London, ON, Canada N6A 5B7
| | | |
Collapse
|
15
|
Minias P, Drzewińska-Chańko J, Włodarczyk R. Evolution of innate and adaptive immune genes in a non-model waterbird, the common tern. INFECTION GENETICS AND EVOLUTION 2021; 95:105069. [PMID: 34487864 DOI: 10.1016/j.meegid.2021.105069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 08/28/2021] [Accepted: 09/01/2021] [Indexed: 11/25/2022]
Abstract
Toll-like receptors (TLRs) and the Major Histocompatibility Complex (MHC) are the key pathogen-recognition genes of vertebrate immune system and they have a crucial role in the initiation of innate and adaptive immune response, respectively. Recent advancements in sequencing technology sparked research on highly duplicated MHC genes in non-model species, but TLR variation in natural vertebrate populations has remained little studied and comparisons of polymorphism across both TLRs and MHC are scarce. Here, we aimed to compare variation across innate (four TLR loci) and adaptive (MHC class I and class II) immune genes in a non-model avian species, the common tern Sterna hirundo. We detected relatively high allelic richness at TLR genes (9-48 alleles per locus), which was similar to or even higher than the estimated per locus allelic richness at the MHC (24-30 alleles at class I and 13-16 alleles at class II under uniform sample sizes). Despite this, the total number of MHC alleles across all duplicated loci (four class I and three class II) was much higher and MHC alleles showed greater sequence divergence than TLRs. Positive selection targeted relatively more sites at the MHC than TLRs, but the strength of selection (dN/dS ratios) at TLRs was higher when compared to MHC class I. There were also differences in the signature of positive selection and recombination (gene conversion) between MHC class I and II (stronger signature at class II), suggesting that mechanisms maintaining variation at the MHC may vary between both classes. Our study indicates that allelic richness of both innate and adaptive immune receptors may be maintained at relatively high levels in viable avian populations and we recommend a transition from the traditional gene-specific to multi-gene approach in studying molecular evolution of vertebrate immune system.
Collapse
Affiliation(s)
- Piotr Minias
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 1/3, 90-237 Łódź, Poland.
| | - Joanna Drzewińska-Chańko
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 1/3, 90-237 Łódź, Poland
| | - Radosław Włodarczyk
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 1/3, 90-237 Łódź, Poland
| |
Collapse
|
16
|
Maraci Ö, Caspers BA. Considering birds to understand the interplay of MHC, microbiota, and odor: a comment on Schubert et al. Behav Ecol 2021. [DOI: 10.1093/beheco/arab024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Öncü Maraci
- Department of Behavioural Ecology, Bielefeld University, Konsequenz, Bielefeld, Germany
| | - Barbara A Caspers
- Department of Behavioural Ecology, Bielefeld University, Konsequenz, Bielefeld, Germany
| |
Collapse
|
17
|
Drzewińska-Chańko J, Włodarczyk R, Gajewski A, Rudnicka K, Dunn PO, Minias P. Immunocompetent birds choose larger breeding colonies. J Anim Ecol 2021; 90:2325-2335. [PMID: 34028816 DOI: 10.1111/1365-2656.13540] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/17/2021] [Indexed: 11/27/2022]
Abstract
Optimal size of social groups may vary between individuals, depending on their phenotypic traits, such as dominance status, age or personality. Larger social groups often enhance transmission rates of pathogens and should be avoided by individuals with poor immune defences. In contrast, more immunocompetent individuals are expected to take advantage of larger group sizes (e.g. better protection, information transfer) with smaller extra costs from pathogen or parasite pressure. Here, we hypothesized that immunocompetence may be a key determinant of group size choice and tested this hypothesis in a colonial waterbird, the common tern Sterna hirundo. We used a unique experimental framework, where formation of breeding colonies of different sizes was induced under uniform environmental conditions. For this purpose, different-size patches of attractive nesting substrate (artificial floating rafts) were provided at a single site with limited availability of natural nesting habitat. Colony size was identified as the only significant predictor of both innate (natural antibody-mediated complement activation) and adaptive (immunoglobulin concentrations) immunological traits in the common terns, as more immunocompetent birds settled in larger experimental colonies. In contrast, we found no significant associations between colony size and genetic diversity of key pathogen-recognition receptors, toll-like receptors (TLRs) and the Major Histocompatibility Complex (MHC) or genome-wide heterozygosity. We conclude that settlement decisions may be flexible within individuals and, thus, are likely to be primarily determined by the current immunological status, rather than fixed immunogenetic traits. Our study sheds new light on the complex interface between immunity and sociality in animals.
Collapse
Affiliation(s)
- Joanna Drzewińska-Chańko
- Faculty of Biology and Environmental Protection, Department of Biodiversity Studies and Bioeducation, University of Łódź, Łódź, Poland
| | - Radosław Włodarczyk
- Faculty of Biology and Environmental Protection, Department of Biodiversity Studies and Bioeducation, University of Łódź, Łódź, Poland
| | - Adrian Gajewski
- Department of Immunology and Allergy, Medical University of Łódź, Łódź, Poland
| | - Karolina Rudnicka
- Faculty of Biology and Environmental Protection, Department of Immunology and Infectious Biology, University of Łódź, Łódź, Poland
| | - Peter O Dunn
- Behavioral and Molecular Ecology Group, Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Piotr Minias
- Faculty of Biology and Environmental Protection, Department of Biodiversity Studies and Bioeducation, University of Łódź, Łódź, Poland
| |
Collapse
|
18
|
Schubert N, Nichols HJ, Winternitz JC. How can the MHC mediate social odor via the microbiota community? A deep dive into mechanisms. Behav Ecol 2021. [DOI: 10.1093/beheco/arab004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Abstract
Genes of the major histocompatibility complex (MHC) have long been linked to odor signaling and recently researchers’ attention has focused on MHC structuring of microbial communities and how this may in turn impact odor. However, understanding of the mechanisms through which the MHC could affect the microbiota to produce a chemical signal that is both reliable and strong enough to ensure unambiguous transmission of behaviorally important information remains poor. This is largely because empirical studies are rare, predictions are unclear, and the underlying immunological mechanisms governing MHC–microbiota interactions are often neglected. Here, we review the immunological processes involving MHC class II (MHC-II) that could affect the commensal community. Focusing on immunological and medical research, we provide background knowledge for nonimmunologists by describing key players within the vertebrate immune system relating to MHC-II molecules (which present extracellular-derived peptides, and thus interact with extracellular commensal microbes). We then systematically review the literature investigating MHC–odor–microbiota interactions in animals and identify areas for future research. These insights will help to design studies that are able to explore the role of MHC-II and the microbiota in the behavior of wild populations in their natural environment and consequently propel this research area forward.
Collapse
Affiliation(s)
- Nadine Schubert
- Department of Animal Behavior, Bielefeld University, Konsequenz, Bielefeld, Germany
| | - Hazel J Nichols
- Department of Animal Behavior, Bielefeld University, Konsequenz, Bielefeld, Germany
- Department of Biosciences, Swansea University, Singleton Park, Swansea, UK
| | - Jamie C Winternitz
- Department of Animal Behavior, Bielefeld University, Konsequenz, Bielefeld, Germany
| |
Collapse
|
19
|
Liu HY, He K, Ge YF, Wan QH, Fang SG. Cape Feather Coloration Signals Different Genotypes of the Most Polymorphic MHC Locus in Male Golden Pheasants ( Chrysolophus pictus). Animals (Basel) 2021; 11:ani11020276. [PMID: 33499157 PMCID: PMC7912351 DOI: 10.3390/ani11020276] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/13/2021] [Accepted: 01/19/2021] [Indexed: 11/16/2022] Open
Abstract
Ornamental feather coloration is usually a reflection of male quality and plays an important role during courtship, whereas the essence of male quality at the genetic level is not well understood. Major histocompatibility complex (MHC)-based mate choice has been observed in various vertebrates. Here, we investigated the relationship between the coloration of cape feathers and the MHC genotypes in golden pheasants (Chrysolophus pictus). We found that feather coloration differed sharply among different individuals (brightness: 1827.20 ± 759.43, chroma: 1241.90 ± 468.21, hue: 0.46 ± 0.06). Heterozygous individuals at the most polymorphic MHC locus (IA2) had brighter feathers than homozygous individuals (Z = -2.853, p = 0.004) and were more saturated in color (Z = -2.853, p = 0.004). However, feather coloration was not related to other MHC loci or to overall genetic heterozygosity (p > 0.050). Our study suggested that coloration of cape feathers might signal IA2 genotypes in golden pheasants.
Collapse
Affiliation(s)
- Hong-Yi Liu
- MOE Key Laboratory of Biosystems Homeostasis & Protection, State Conservation Centre for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (H.-Y.L.); (K.H.); (Y.-F.G.); (Q.-H.W.)
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Ke He
- MOE Key Laboratory of Biosystems Homeostasis & Protection, State Conservation Centre for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (H.-Y.L.); (K.H.); (Y.-F.G.); (Q.-H.W.)
| | - Yun-Fa Ge
- MOE Key Laboratory of Biosystems Homeostasis & Protection, State Conservation Centre for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (H.-Y.L.); (K.H.); (Y.-F.G.); (Q.-H.W.)
| | - Qiu-Hong Wan
- MOE Key Laboratory of Biosystems Homeostasis & Protection, State Conservation Centre for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (H.-Y.L.); (K.H.); (Y.-F.G.); (Q.-H.W.)
| | - Sheng-Guo Fang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, State Conservation Centre for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (H.-Y.L.); (K.H.); (Y.-F.G.); (Q.-H.W.)
- Correspondence:
| |
Collapse
|
20
|
Srinivasan M, Adnane M, Archunan G. Significance of cervico-vaginal microbes in bovine reproduction and pheromone production - A hypothetical review. Res Vet Sci 2021; 135:66-71. [PMID: 33450498 DOI: 10.1016/j.rvsc.2021.01.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/10/2020] [Accepted: 01/03/2021] [Indexed: 01/08/2023]
Abstract
The vaginal microbiota has been studied in animal reproduction and fertility, in particular little information of vaginal microbes in reference to bovine reproduction and pheromone production is known. The vaginal mucosa in healthy cow is colonized by an equilibrated and dynamic composition of aerobic, facultative anaerobic and obligate anaerobic microbes. Cervico-vaginal mucus (CVM) composition, viscosity and volume vary with the cyclicity and health status of the reproductive tract. In addition, CVM contains pheromones, volatile compounds, and proteins that attract males for coitus. Commensal microbiota plays a key role in protection of the genital tract from pathogenic microbes by competition effect. In the bovine species, the microbial composition, its abundance and diversity in the female gut, vagina, urine, saliva, and feces, and the associated chemical communication remains poorly documented. The impact of microbes in the reproductive tract of cow, buffalo and certain mammals are discussed in this review. Since the microbial population diversity of CVM is modified during estrus phase it presumes that it may have a role for pheromone production in conspecific. Herein, we would like to critically discuss the current state of knowledge on microbially produced signals in animals and the role of genital and CVM microbiota in estrous cycle and pregnancy.
Collapse
Affiliation(s)
- M Srinivasan
- Department of Animal Science, Bharathidasan University, Tiruchirappalli, India
| | - M Adnane
- Institute of Veterinary Sciences, University of Tiaret, Algeria.
| | - G Archunan
- Department of Animal Science, Bharathidasan University, Tiruchirappalli, India.
| |
Collapse
|
21
|
Whittaker DJ, Hagelin JC. Female-Based Patterns and Social Function in Avian Chemical Communication. J Chem Ecol 2020; 47:43-62. [PMID: 33103230 DOI: 10.1007/s10886-020-01230-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/18/2020] [Accepted: 10/20/2020] [Indexed: 11/25/2022]
Abstract
Much of the growing interest in avian chemical signals has focused on the role of kin recognition or mate attraction, often with an emphasis on males, with uropygial gland secretions perhaps providing information about an individual's identity and quality. Yet, data collected to date suggest sexual dimorphism in uropygial glands and secretions are often emphasized in female, rather than in male birds. That is, when a sexual difference occurs (often during the breeding season only), it is the female that typically exhibits one of three patterns: (1) a larger uropygial gland, (2) a greater abundance of volatile or semi-volatile preen oil compounds and/or (3) greater diversity of preen oil compounds or associated microbes. These patterns fit a majority of birds studied to date (23 of 30 chemically dimorphic species exhibit a female emphasis). Multiple species that do not fit are confounded by a lack of data for seasonal effects or proper quantitative measures of chemical compounds. We propose several social functions for these secretions in female-based patterns, similar to those reported in mammals, but which are largely unstudied in birds. These include: (1) intersexual advertisement of female receptivity or quality, including priming effects on male physiology, (2) intrasexual competition, including scent marking and reproductive suppression or (3) parental behaviors, such as parent-offspring recognition and chemical protection of eggs and nestlings. Revisiting the gaps of chemical studies to quantify the existence of female social chemosignals and any fitness benefit(s) during breeding are potentially fruitful but overlooked areas of future research.
Collapse
Affiliation(s)
- Danielle J Whittaker
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, 48824, USA.
| | - Julie C Hagelin
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, 99775, USA
| |
Collapse
|
22
|
Individual Chemical Profiles in the Leach's Storm-Petrel. J Chem Ecol 2020; 46:845-864. [PMID: 32856136 DOI: 10.1007/s10886-020-01207-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 07/06/2020] [Accepted: 07/30/2020] [Indexed: 12/26/2022]
Abstract
Avian chemical communication, once largely overlooked, is a growing field that has revealed the important role that olfaction plays in the social lives of some birds. Leach's storm-petrels (Oceanodroma leucorhoa) have a remarkable sense of smell and a strong, musky scent. This long-lived, monogamous seabird relies on olfaction for nest relocation and foraging, but whether they use scent for communication is less well studied. They are nocturnally active at the breeding colony and yet successfully reunite with their mate despite poor night-vision, indicating an important role for non-visual communication. We investigated the chemical profiles of Leach's storm-petrels to determine whether there is socially relevant information encoded in their plumage odor. To capture the compounds comprising their strong scent, we developed a method to study the compounds present in the air surrounding their feathers using headspace stir bar sorptive extraction coupled with gas chromatography-mass spectrometry. We collected feathers from Leach's storm-petrels breeding on Bon Portage Island in Nova Scotia, Canada in both 2015 and 2016. Our method detected 142 commonly occurring compounds. We found interannual differences in chemical profiles between the two sampling years. Males and females had similar chemical profiles, while individuals had distinct chemical signatures across the two years. These findings suggest that the scent of the Leach's storm-petrel provides sociochemical information that could facilitate olfactory recognition of individuals and may inform mate choice decisions.
Collapse
|
23
|
Leedale AE, Li J, Hatchwell BJ. Kith or Kin? Familiarity as a Cue to Kinship in Social Birds. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00077] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
24
|
Grieves LA, Bottini CLJ, Branfireun BA, Bernards MA, MacDougall-Shackleton SA, MacDougall-Shackleton EA. Food stress, but not experimental exposure to mercury, affects songbird preen oil composition. ECOTOXICOLOGY (LONDON, ENGLAND) 2020; 29:275-285. [PMID: 32036507 DOI: 10.1007/s10646-020-02171-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/28/2020] [Indexed: 06/10/2023]
Abstract
Mercury is a global pollutant and potent neurotoxic metal. Its most toxic and bioavailable form, methylmercury, can have both lethal and sublethal effects on wildlife. In birds, methylmercury exposure can disrupt behavior, hormones, the neuroendocrine system, and feather integrity. Lipid-rich tissues and secretions may be particularly susceptible to disruption by lipophilic contaminants such as methylmercury. One such substance is feather preen oil, a waxy secretion of the uropygial gland that serves multiple functions including feather maintenance, anti-parasitic defense, and chemical signaling. If methylmercury exposure alters preen oil composition, it could have cascading effects on feather quality, susceptibility to ectoparasites, and mate choice and other social behaviors. We investigated whether exposure to methylmercury, either alone or in association with other stressors, affects preen oil chemical composition. We used a two-factor design to expose adult song sparrows (Melospiza melodia) to an environmentally relevant dietary dose of methylmercury and/or to another stressor (unpredictable food supply) for eight weeks. The wax ester composition of preen oil changed significantly over the 8-week experimental period. This change was more pronounced in the unpredictable food treatment, regardless of dietary methylmercury. Contrary to our prediction, we found no main effect of methylmercury exposure on preen oil composition, nor did methylmercury interact with unpredictable food supply in predicting the magnitude of chemical shifts in preen oil. While it remains critical to study sublethal effects of methylmercury on wildlife, our findings suggest that the wax ester composition of preen oil is robust to environmentally relevant doses of this contaminant.
Collapse
Affiliation(s)
- L A Grieves
- Department of Biology, The University of Western Ontario, 1151 Richmond St., London, ON, N6A 5B7, Canada.
| | - C L J Bottini
- Department of Biology, The University of Western Ontario, 1151 Richmond St., London, ON, N6A 5B7, Canada
| | - B A Branfireun
- Department of Biology, The University of Western Ontario, 1151 Richmond St., London, ON, N6A 5B7, Canada
| | - M A Bernards
- Department of Biology, The University of Western Ontario, 1151 Richmond St., London, ON, N6A 5B7, Canada
| | - S A MacDougall-Shackleton
- Department of Psychology, The University of Western Ontario, 1151 Richmond St., London, ON, N6A 5C2, Canada
| | - E A MacDougall-Shackleton
- Department of Biology, The University of Western Ontario, 1151 Richmond St., London, ON, N6A 5B7, Canada
| |
Collapse
|
25
|
Vlček J, Štefka J. Association between louse abundance and MHC II supertypes in Galápagos mockingbirds. Parasitol Res 2020; 119:1597-1605. [PMID: 32006226 DOI: 10.1007/s00436-020-06617-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 01/22/2020] [Indexed: 01/30/2023]
Abstract
Major histocompatibility complex class II (MHC II) is an essential molecule triggering the adaptive immune response by the presentation of pathogens to helper T cells. The association between individual MHC II variants and various parasites has become a frequent finding in studies of vertebrate populations. However, although bird ectoparasites have a significant effect on their host's fitness, and the host's immune system can regulate ectoparasitic infections, no study has yet investigated the association between MHC II polymorphism and ectoparasite infection in the populations of free-living birds. Here, we test whether an association exists between the abundance of a chewing louse (Myrsidea nesomimi) and MHC II polymorphism of its hosts, the Galápagos mockingbirds (Mimus). We have found that the presence of two MHC II supertypes (functionally differentiated clusters) was significantly associated with louse abundance. This pattern supports the theory that a co-evolutionary interaction stands behind the maintenance of MHC polymorphism. Moreover, we have found a positive correlation between louse abundance and heterophil/lymphocyte ratio (an indicator of immunological stress) that serves as an additional piece of evidence that ectoparasite burden is affected by immunological state of Galápagos mockingbirds.
Collapse
Affiliation(s)
- Jakub Vlček
- Institute of Parasitology, Biology Centre CAS, Branišovská 1160/31, 37005, České Budějovice, Czech Republic. .,Faculty of Science, University of South Bohemia, Branišovská, 1760, České Budějovice, Czech Republic.
| | - Jan Štefka
- Institute of Parasitology, Biology Centre CAS, Branišovská 1160/31, 37005, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, Branišovská, 1760, České Budějovice, Czech Republic
| |
Collapse
|
26
|
Rekdal SL, Anmarkrud JA, Lifjeld JT, Johnsen A. Extra‐pair mating in a passerine bird with highly duplicated major histocompatibility complex class II: Preference for the golden mean. Mol Ecol 2019; 28:5133-5144. [DOI: 10.1111/mec.15273] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/30/2019] [Accepted: 10/14/2019] [Indexed: 12/26/2022]
Affiliation(s)
| | | | | | - Arild Johnsen
- Natural History Museum University of Oslo Oslo Norway
| |
Collapse
|
27
|
Whittaker DJ, Slowinski SP, Greenberg JM, Alian O, Winters AD, Ahmad MM, Burrell MJE, Soini HA, Novotny MV, Ketterson ED, Theis KR. Experimental evidence that symbiotic bacteria produce chemical cues in a songbird. ACTA ACUST UNITED AC 2019; 222:jeb.202978. [PMID: 31537652 DOI: 10.1242/jeb.202978] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 09/16/2019] [Indexed: 12/18/2022]
Abstract
Symbiotic microbes that inhabit animal scent glands can produce volatile compounds used as chemical signals by the host animal. Though several studies have demonstrated correlations between scent gland bacterial community structure and host animal odour profiles, none have systematically demonstrated a causal relationship. In birds, volatile compounds in preen oil secreted by the uropygial gland serve as chemical cues and signals. Here, we tested whether manipulating the uropygial gland microbial community affects chemical profiles in the dark-eyed junco (Junco hyemalis). We found an effect of antibiotic treatment targeting the uropygial gland on both bacterial and volatile profiles. In a second experiment, we cultured bacteria from junco preen oil, and found that all of the cultivars produced at least one volatile compound common in junco preen oil, and that most cultivars produced multiple preen oil volatiles. In both experiments, we identified experimentally generated patterns in specific volatile compounds previously shown to predict junco reproductive success. Together, our data provide experimental support for the hypothesis that symbiotic bacteria produce behaviourally relevant volatile compounds within avian chemical cues and signals.
Collapse
Affiliation(s)
- Danielle J Whittaker
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI 48824, USA
| | - Samuel P Slowinski
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA
| | - Jonathan M Greenberg
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Osama Alian
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI 48824, USA.,Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI 48824-4320, USA
| | - Andrew D Winters
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Madison M Ahmad
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Mikayla J E Burrell
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA.,Institute for Pheromone Research, Indiana University, Bloomington, IN 47405-7102, USA
| | - Helena A Soini
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA.,Institute for Pheromone Research, Indiana University, Bloomington, IN 47405-7102, USA
| | - Milos V Novotny
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA.,Institute for Pheromone Research, Indiana University, Bloomington, IN 47405-7102, USA
| | - Ellen D Ketterson
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Kevin R Theis
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI 48824, USA.,Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
28
|
Grogan KE, Harris RL, Boulet M, Drea CM. Genetic variation at MHC class II loci influences both olfactory signals and scent discrimination in ring-tailed lemurs. BMC Evol Biol 2019; 19:171. [PMID: 31438845 PMCID: PMC6704550 DOI: 10.1186/s12862-019-1486-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 07/21/2019] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Diversity at the Major Histocompatibility Complex (MHC) is critical to health and fitness, such that MHC genotype may predict an individual's quality or compatibility as a competitor, ally, or mate. Moreover, because MHC products can influence the components of bodily secretions, an individual's body odors may signal its MHC composition and influence partner identification or mate choice. Here, we investigated MHC-based signaling and recipient sensitivity by testing for odor-gene covariance and behavioral discrimination of MHC diversity and pairwise dissimilarity in a strepsirrhine primate, the ring-tailed lemur (Lemur catta). METHODS First, we coupled genotyping of the MHC class II gene, DRB, with gas chromatography-mass spectrometry of genital gland secretions to investigate if functional genetic diversity is signaled by the chemical diversity of lemur scent secretions. We also assessed if the chemical similarity between individuals correlated with their MHC-DRB similarity. Next, we assessed if lemurs discriminated this chemically encoded, genetic information in opposite-sex conspecifics. RESULTS We found that both sexes signaled overall MHC-DRB diversity and pairwise MHC-DRB similarity via genital secretions, but in a sex- and season-dependent manner. Additionally, the sexes discriminated absolute and relative MHC-DRB diversity in the genital odors of opposite-sex conspecifics, suggesting that lemur genital odors function to advertise genetic quality. CONCLUSIONS In summary, genital odors of ring-tailed lemurs provide honest information about an individual's absolute and relative MHC quality. Complementing evidence in humans and Old World monkeys, we suggest that reliance on scent signals to communicate MHC quality may be important across the primate lineage.
Collapse
Affiliation(s)
- Kathleen E Grogan
- University Program in Ecology, Duke University, Durham, NC, USA.
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA.
- Department of Psychology, Emory University, Atlanta, GA, USA.
- Pennsylvania State University, 516 Carpenter Building, University Park, PA, 16802, USA.
| | - Rachel L Harris
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
| | - Marylène Boulet
- Department of Biological Sciences, Bishop's University, Sherbrooke, Canada
| | - Christine M Drea
- University Program in Ecology, Duke University, Durham, NC, USA
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
- Department of Biology, Duke University, Durham, USA
| |
Collapse
|
29
|
Collins SM, Hatch SA, Elliott KH, Jacobs SR. Boldness, mate choice and reproductive success in Rissa tridactyla. Anim Behav 2019. [DOI: 10.1016/j.anbehav.2019.06.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
30
|
Braun MS, Sporer F, Zimmermann S, Wink M. Birds, feather-degrading bacteria and preen glands: the antimicrobial activity of preen gland secretions from turkeys (Meleagris gallopavo) is amplified by keratinase. FEMS Microbiol Ecol 2019; 94:5036518. [PMID: 29901706 DOI: 10.1093/femsec/fiy117] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 06/11/2018] [Indexed: 01/27/2023] Open
Abstract
The function of uropygial glands (preen glands) has been subject to controversial debates. In this study, we evaluated the antimicrobial potential of preen gland secretions of turkeys (Meleagris gallopavo) against 18 microbial strains by means of diffusion tests, broth microdilutions, checkerboard assays and time-kill curves. Furthermore, we tested the hypothesis that lipids exert direct antimicrobial effects on pathogens. Moreover, we checked for mutualistic relationships between the preen gland bacterium Corynebacterium uropygiale with its hosts. We found that preen gland secretions significantly inhibited the growth of a broad spectrum of bacteria and fungi, particularly when combined with keratinase. Combinations effectively killed multidrug resistant microorganisms in a strongly synergistic manner. Since feather-degrading microorganisms (FDM) express keratinase and thereby disrupt the integrity of the plumage, our data suggests that preen gland secretions of turkeys are specifically activated in the presence of FDM, and specifically eliminate FDM from feathers. However, antimicrobial effects did not originate from lipids, but were mediated by highly polar compounds which might be antimicrobial peptides (AMPs). Finally, C. uropygiale is apparently not involved in the antimicrobial activity of preen gland secretions of turkeys. In conclusion, our results suggest that turkeys can antagonize FDM by amplifying the antimicrobial properties of their preen gland secretions.
Collapse
Affiliation(s)
- Markus Santhosh Braun
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, INF 364, 69120 Heidelberg, Germany
| | - Frank Sporer
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, INF 364, 69120 Heidelberg, Germany
| | - Stefan Zimmermann
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University, INF 324, 69120 Heidelberg, Germany
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, INF 364, 69120 Heidelberg, Germany
| |
Collapse
|
31
|
Whittaker DJ, Kuzel M, Burrell MJ, Soini HA, Novotny MV, DuVal EH. Chemical profiles reflect heterozygosity and seasonality in a tropical lekking passerine bird. Anim Behav 2019. [DOI: 10.1016/j.anbehav.2019.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
32
|
Leclaire S, Strandh M, Dell'Ariccia G, Gabirot M, Westerdahl H, Bonadonna F. Plumage microbiota covaries with the major histocompatibility complex in blue petrels. Mol Ecol 2019; 28:833-846. [PMID: 30582649 DOI: 10.1111/mec.14993] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 12/05/2018] [Accepted: 12/17/2018] [Indexed: 01/04/2023]
Abstract
To increase fitness, a wide range of vertebrates preferentially mate with partners that are dissimilar at the major histocompatibility complex (MHC) or that have high MHC diversity. Although MHC often can be assessed through olfactory cues, the mechanism by which MHC genes influence odour remains largely unclear. MHC class IIB molecules, which enable recognition and elimination of extracellular bacteria, have been suggested to influence odour indirectly by shaping odour-producing microbiota, i.e. bacterial communities. However, there is little evidence of the predicted covariation between an animal's MHC genotype and its bacterial communities in scent-producing body surfaces. Here, using high-throughput sequencing, we tested the covariation between MHC class IIB genotypes and feather microbiota in the blue petrel (Halobaena caerulea), a seabird with highly developed olfaction that has been suggested to rely on oduor cues during an MHC-based mate choice. First, we show that individuals with similar MHC class IIB profiles also have similar bacterial assemblages in their feathers. Then, we show that individuals with high MHC diversity have less diverse feather microbiota and also a reduced abundance of a bacterium of the genus Arsenophonus, a genus in which some species are symbionts of avian ectoparasites. Our results, showing that feather microbiota covary with MHC, are consistent with the hypothesis that individual MHC genotype may shape the semiochemical-producing microbiota in birds.
Collapse
Affiliation(s)
- Sarah Leclaire
- Laboratoire Evolution & Diversité Biologique, UMR 5174 (CNRS, Université Paul Sabatier, ENFA), Toulouse, France.,Centre d'Ecologie Fonctionnelle et Evolutive, CNRS-CEFE, Montpellier, France
| | - Maria Strandh
- Molecular Ecology and Evolution Lab, Lund University, Lund, Sweden
| | - Gaia Dell'Ariccia
- Centre d'Ecologie Fonctionnelle et Evolutive, CNRS-CEFE, Montpellier, France
| | - Marianne Gabirot
- Centre d'Ecologie Fonctionnelle et Evolutive, CNRS-CEFE, Montpellier, France
| | | | - Francesco Bonadonna
- Centre d'Ecologie Fonctionnelle et Evolutive, CNRS-CEFE, Montpellier, France
| |
Collapse
|
33
|
Leclaire S, Chatelain M, Pessato A, Buatois B, Frantz A, Gasparini J. Pigeon odor varies with experimental exposure to trace metal pollution. ECOTOXICOLOGY (LONDON, ENGLAND) 2019; 28:76-85. [PMID: 30506322 DOI: 10.1007/s10646-018-2001-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/16/2018] [Indexed: 06/09/2023]
Abstract
Trace metals are chemical pollutants that have well-known noxious effects on wildlife and that are current major environmental issues in urban habitats. Previous studies have demonstrated their negative (e.g. lead) or positive (e.g. zinc) effects on body condition, immunity and reproductive success. Because of their effects on condition, trace metals are likely to influence the production of condition-dependent ornaments. The last decade has revealed that bird odors, like mammal odors, can convey information on individual quality and might be used as secondary sexual ornaments. Here, we used solid-phase microextraction headspace sampling with gas chromatography-mass spectrometry to investigate whether plumage scent varied with experimental supplementation in lead and/or zinc in feral pigeons. Zinc supplementation (alone or in combination with lead) changed the proportion of several volatiles, including an increase in the proportion of hydroxy-esters. The production of these esters, that most likely originate from preen gland secretions, may be costly and might thus be reduced by stress induced by zinc deficiency. Although lead is known to negatively impact pigeon condition, it did not statistically affect feather scent, despite most of the volatiles that increased with zinc exposure tended to be decreased in lead-supplemented pigeons. Further studies should evaluate the functions of plumage volatiles to predict how trace metals can impact bird fitness.
Collapse
Affiliation(s)
- Sarah Leclaire
- Laboratoire Evolution & Diversité Biologique, UMR 5174 (CNRS, Université Paul Sabatier, ENFA), 118 route de Narbonne, Toulouse, 31062, France.
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), UMR 5175, CNRS - Université de Montpellier - Université Paul Valéry Montpellier - EPHE, 1919 route de Mende, Montpellier, 34293, France.
- Sorbonne Université, UPEC, Paris 7, CNRS, INRA, IRD, Institut d'Ecologie et des Sciences de l'Environnement de Paris, 75005, Paris, France.
| | - Marion Chatelain
- Sorbonne Université, UPEC, Paris 7, CNRS, INRA, IRD, Institut d'Ecologie et des Sciences de l'Environnement de Paris, 75005, Paris, France
- Wild Urban Evolution and Ecology Lab, Center of New Technologies, University of Warsaw, Banacha 2C, Warsaw, 02-097, Poland
| | - Anaïs Pessato
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), UMR 5175, CNRS - Université de Montpellier - Université Paul Valéry Montpellier - EPHE, 1919 route de Mende, Montpellier, 34293, France
- Centre for Integrative Ecology, Deakin University, Geelong Waurn Ponds Campus, Victoria, 3217, Australia
| | - Bruno Buatois
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), UMR 5175, CNRS - Université de Montpellier - Université Paul Valéry Montpellier - EPHE, 1919 route de Mende, Montpellier, 34293, France
| | - Adrien Frantz
- Sorbonne Université, UPEC, Paris 7, CNRS, INRA, IRD, Institut d'Ecologie et des Sciences de l'Environnement de Paris, 75005, Paris, France
| | - Julien Gasparini
- Sorbonne Université, UPEC, Paris 7, CNRS, INRA, IRD, Institut d'Ecologie et des Sciences de l'Environnement de Paris, 75005, Paris, France
| |
Collapse
|
34
|
Hoover B, Alcaide M, Jennings S, Sin SYW, Edwards SV, Nevitt GA. Ecology can inform genetics: Disassortative mating contributes to MHC polymorphism in Leach's storm-petrels (Oceanodroma leucorhoa). Mol Ecol 2018; 27:3371-3385. [PMID: 30010226 DOI: 10.1111/mec.14801] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/31/2018] [Accepted: 06/20/2018] [Indexed: 01/03/2023]
Abstract
Studies of MHC-based mate choice in wild populations often test hypotheses on species exhibiting female choice and male-male competition, which reflects the general prevalence of females as the choosy sex in natural systems. Here, we examined mutual mate-choice patterns in a small burrow-nesting seabird, the Leach's storm-petrel (Oceanodroma leucorhoa), using the major histocompatibility complex (MHC). The life history and ecology of this species are extreme: both partners work together to fledge a single chick during the breeding season, a task that requires regularly travelling hundreds of kilometres to and from foraging grounds over a 6- to 8-week provisioning period. Using a 5-year data set unprecedented for this species (n = 1078 adults and 925 chicks), we found a positive relationship between variation in the likelihood of female reproductive success and heterozygosity at Ocle-DAB2, a MHC class IIB locus. Contrary to previous reports rejecting disassortative mating as a mechanism for maintaining genetic polymorphism in this species, here we show that males make significant disassortative mate-choice decisions. Variability in female reproductive success suggests that the most common homozygous females (Ocle-DAB2*01/Ocle-DAB2*01) may be physiologically disadvantaged and, therefore, less preferred as lifelong partners for choosy males. The results from this study support the role of mate choice in maintaining high levels of MHC variability in a wild seabird species and highlight the need to incorporate a broader ecological framework and sufficient sample sizes into studies of MHC-based mating patterns in wild populations in general.
Collapse
Affiliation(s)
- Brian Hoover
- Graduate Group in Ecology, University of California, Davis, California
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, California
| | - Miguel Alcaide
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Sarah Jennings
- Graduate Group in Ecology, University of California, Davis, California
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, California
| | - Simon Yung Wa Sin
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Scott V Edwards
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts
| | - Gabrielle A Nevitt
- Graduate Group in Ecology, University of California, Davis, California
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, California
| |
Collapse
|
35
|
Garamszegi LZ, Zagalska-Neubauer M, Canal D, Blázi G, Laczi M, Nagy G, Szöllősi E, Vaskuti É, Török J, Zsebők S. MHC-mediated sexual selection on birdsong: Generic polymorphism, particular alleles and acoustic signals. Mol Ecol 2018; 27:2620-2633. [PMID: 29693314 DOI: 10.1111/mec.14703] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 04/03/2018] [Accepted: 04/11/2018] [Indexed: 01/06/2023]
Abstract
Several hypotheses predict that the major histocompatibility complex (MHC) drives mating preference in females. Olfactory, colour or morphological traits are often found as reliable signals of the MHC profile, but the role of avian song mediating MHC-based female choice remains largely unexplored. We investigated the relationship between several MHC and acoustic features in the collared flycatcher (Ficedula albicollis), a European passerine with complex songs. We screened a fragment of the class IIB second exon of the MHC molecule, of which individuals harbour 4-15 alleles, while considerable sequence diversity is maintained at the population level. To make statistical inferences from a large number of comparisons, we adopted both null-hypothesis testing and effect size framework in combination with randomization procedures. After controlling for potential confounding factors, neither MHC allelic diversity nor the presence of particular alleles was associated remarkably with the investigated qualitative and quantitative song traits. Furthermore, genetic similarity among males based on MHC sequences was not reflected by the similarity in their song based on syllable content. Overall, these results suggest that the relationship between features of song and the allelic composition and diversity of MHC is not strong in the studied species. However, a biologically motivated analysis revealed that individuals that harbour an MHC allele that impairs survival perform songs with broader frequency range. This finding suggests that certain aspects of the song may bear reliable information concerning the MHC profile of the individuals, which can be used by females to optimize mate choice.
Collapse
Affiliation(s)
- László Zsolt Garamszegi
- Department of Evolutionary Ecology, Estación Biológica de Doñana-CSIC, Seville, Spain.,Department of Plant Systematics, Ecology and Theoretical Biology, MTA-ELTE, Theoretical Biology and Evolutionary Ecology Research Group, Eötvös Loránd University, Budapest, Hungary
| | | | - David Canal
- Department of Evolutionary Ecology, Estación Biológica de Doñana-CSIC, Seville, Spain.,Centro para el Estudio y Conservación de las Aves Rapaces en Argentina (CECARA-UNLPam) & Instituto de las Ciencias de la Tierra y Ambientales de La Pampa (INCITAP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Rosa, Argentina
| | - György Blázi
- Department of Systematic Zoology and Ecology, Behavioural Ecology Group, Eötvös Loránd University, Budapest, Hungary
| | - Miklós Laczi
- Department of Systematic Zoology and Ecology, Behavioural Ecology Group, Eötvös Loránd University, Budapest, Hungary
| | - Gergely Nagy
- Department of Systematic Zoology and Ecology, Behavioural Ecology Group, Eötvös Loránd University, Budapest, Hungary
| | - Eszter Szöllősi
- Department of Systematic Zoology and Ecology, Behavioural Ecology Group, Eötvös Loránd University, Budapest, Hungary
| | - Éva Vaskuti
- Department of Systematic Zoology and Ecology, Behavioural Ecology Group, Eötvös Loránd University, Budapest, Hungary
| | - János Török
- Department of Systematic Zoology and Ecology, Behavioural Ecology Group, Eötvös Loránd University, Budapest, Hungary.,Ecology Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Sándor Zsebők
- Department of Systematic Zoology and Ecology, Behavioural Ecology Group, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
36
|
Krause ET, Bischof HJ, Engel K, Golüke S, Maraci Ö, Mayer U, Sauer J, Caspers BA. Olfaction in the Zebra Finch ( Taeniopygia guttata ): What Is Known and Further Perspectives. ADVANCES IN THE STUDY OF BEHAVIOR 2018. [DOI: 10.1016/bs.asb.2017.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
37
|
Slade JWG, Watson MJ, Kelly TR, Gloor GB, Bernards MA, MacDougall-Shackleton EA. Chemical composition of preen wax reflects major histocompatibility complex similarity in songbirds. Proc Biol Sci 2017; 283:rspb.2016.1966. [PMID: 27807264 DOI: 10.1098/rspb.2016.1966] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 10/07/2016] [Indexed: 12/14/2022] Open
Abstract
In jawed vertebrates, genes of the major histocompatibility complex (MHC) play a key role in immunity by encoding cell-surface proteins that recognize and bind non-self antigens. High variability at MHC suggests that these loci may also function in social signalling such as mate choice and kin recognition. This requires that MHC genotype covaries with some perceptible phenotypic trait. In mammals and fish, MHC is signalled chemically through volatile and non-volatile peptide odour cues, facilitating MHC-dependent mate choice and other behaviours. In birds, despite evidence for MHC-dependent mating, candidate mechanisms for MHC signalling remain largely unexplored. However, feather preen wax has recently been implicated as a potential source of odour cues. We examined whether the chemical composition of preen wax correlates with MHC class IIβ genotypes of wild song sparrows (Melospiza melodia). Pairwise chemical distance reflected amino acid distance at MHC for male-female dyads, although not for same-sex dyads. Chemical diversity did not reflect MHC diversity. We used gas chromatography-mass spectrometry (GC-MS) to characterize preen wax compounds, and identified four wax esters that best reflect MHC similarity. Provided songbirds can detect variation in preen wax composition, this cue may allow individuals to assess MHC compatibility of potential mates.
Collapse
Affiliation(s)
- J W G Slade
- Biology, University of Western Ontario London, Ontario, Canada N6A 5B7
| | - M J Watson
- Biology, University of Western Ontario London, Ontario, Canada N6A 5B7
| | - T R Kelly
- Biology, University of Western Ontario London, Ontario, Canada N6A 5B7
| | - G B Gloor
- Biochemistry, University of Western Ontario London, Ontario, Canada N6A 5B7
| | - M A Bernards
- Biology, University of Western Ontario London, Ontario, Canada N6A 5B7
| | | |
Collapse
|
38
|
Pearce DS, Hoover BA, Jennings S, Nevitt GA, Docherty KM. Morphological and genetic factors shape the microbiome of a seabird species (Oceanodroma leucorhoa) more than environmental and social factors. MICROBIOME 2017; 5:146. [PMID: 29084611 PMCID: PMC5663041 DOI: 10.1186/s40168-017-0365-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 10/26/2017] [Indexed: 05/10/2023]
Abstract
BACKGROUND The microbiome provides multiple benefits to animal hosts that can profoundly impact health and behavior. Microbiomes are well-characterized in humans and other animals in controlled settings, yet assessments of wild bird microbial communities remain vastly understudied. This is particularly true for pelagic seabirds with unique life histories that differ from terrestrial bird species. This study was designed to examine how morphological, genetic, environmental, and social factors affect the microbiome of a burrow-nesting seabird species, Leach's storm petrel (Oceanodroma leucorhoa). These seabirds are highly olfactory and may rely on microbiome-mediated odor cues during mate selection. Composition and structure of bacterial communities associated with the uropygial gland and brood patch were assessed using 16S rRNA amplicon-based Illumina Mi-Seq analysis and compared to burrow-associated bacterial communities. This is the first study to examine microbial diversity associated with multiple body sites on a seabird species. RESULTS Results indicate that sex and skin site contribute most to bacterial community variation in Leach's storm petrels and that major histocompatibility complex (MHC) genotype may impact the composition of bacterial assemblages in males. In contrast to terrestrial birds and other animals, environmental and social interactions do not significantly influence storm petrel-associated bacterial assemblages. Thus, individual morphological and genetic influences outweighed environmental and social factors on microbiome composition. CONCLUSIONS Contrary to observations of terrestrial birds, microbiomes of Leach's storm petrels vary most by the sex of the bird and by the body site sampled, rather than environmental surroundings or social behavior.
Collapse
Affiliation(s)
- Douglas S. Pearce
- Department of Biological Sciences, Western Michigan University, 1903 W Michigan Ave, Kalamazoo, MI 49008 USA
| | - Brian A. Hoover
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, One Shields Avenue, University of California, Davis, CA 95616 USA
| | - Sarah Jennings
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, One Shields Avenue, University of California, Davis, CA 95616 USA
| | - Gabrielle A. Nevitt
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, One Shields Avenue, University of California, Davis, CA 95616 USA
| | - Kathryn M. Docherty
- Department of Biological Sciences, Western Michigan University, 1903 W Michigan Ave, Kalamazoo, MI 49008 USA
| |
Collapse
|
39
|
|
40
|
Rossi M, Marfull R, Golüke S, Komdeur J, Korsten P, Caspers BA. Begging blue tit nestlings discriminate between the odour of familiar and unfamiliar conspecifics. Funct Ecol 2017. [DOI: 10.1111/1365-2435.12886] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Marta Rossi
- Department of Animal Behaviour Bielefeld University Bielefeld Germany
- School of Life Sciences University of Sussex Falmer Brighton UK
| | - Reinaldo Marfull
- Behavioural Physiology and Ecology Groningen Institute for Evolutionary Life Sciences University of Groningen Groningen The Netherlands
| | - Sarah Golüke
- Department of Animal Behaviour Bielefeld University Bielefeld Germany
| | - Jan Komdeur
- Behavioural Physiology and Ecology Groningen Institute for Evolutionary Life Sciences University of Groningen Groningen The Netherlands
| | - Peter Korsten
- Department of Animal Behaviour Bielefeld University Bielefeld Germany
| | | |
Collapse
|
41
|
Moreno-Rueda G. Preen oil and bird fitness: a critical review of the evidence. Biol Rev Camb Philos Soc 2017; 92:2131-2143. [PMID: 28231637 DOI: 10.1111/brv.12324] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 01/23/2017] [Accepted: 01/27/2017] [Indexed: 11/28/2022]
Abstract
The uropygial gland is a holocrine complex exclusive to birds that produces an oleaginous secretion (preen oil) whose function is still debated. Herein, I examine critically the evidence for the many hypotheses of potential functions of this gland. The main conclusion is that our understanding of this gland is still in its infancy. Even for functions that are considered valid by most researchers, real evidence is scarce. Although it seems clear that preen oil contributes to plumage maintenance, we do not know whether this is due to a role in reducing mechanical abrasion or in reducing feather degradation by keratinophilic organisms. Evidence for a function against pathogenic bacteria is mixed, as preen oil has been demonstrated to act against bacteria in vitro, but not in vivo. Nor is it clear whether preen oil can combat pathogenic bacteria on eggshells to improve hatching success. Studies on the effect of preen oil against dermatophytes are very scarce and there is no evidence of a function against chewing lice. It seems clear, however, that preen oil improves waterproofing, but it is unclear whether this acts by creating a hydrophobic layer or simply by improving plumage structure. Several hypotheses proposed for the function of preen oil have been poorly studied, such as reduction of drag in flight. Similarly, we do not know whether preen oil functions as repellent against predators or parasites, makes birds unpalatable, or functions to camouflage birds with ambient odours. On the other hand, a growing body of work shows the important implications of volatiles in preen oil with regard to social communication in birds. Moreover, preen oil clearly alters plumage colouration. Finally, studies examining the impact of preen oil on fitness are lacking, and the costs or limitations of preen-oil production also remain poorly known. The uropygial gland appears to have several non-mutually exclusive functions in birds, and thus is likely to be subject to several selective pressures. Therefore, future studies should consider how the inevitable trade-offs among different functions drive the evolution of uropygial gland secretions.
Collapse
Affiliation(s)
- Gregorio Moreno-Rueda
- Departamento de Zoología, Facultad de Ciencias, Universidad de Granada, E-18071, Granada, Spain
| |
Collapse
|
42
|
Rymešová D, Králová T, Promerová M, Bryja J, Tomášek O, Svobodová J, Šmilauer P, Šálek M, Albrecht T. Mate choice for major histocompatibility complex complementarity in a strictly monogamous bird, the grey partridge ( Perdix perdix). Front Zool 2017; 14:9. [PMID: 28239400 PMCID: PMC5312559 DOI: 10.1186/s12983-017-0194-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 02/01/2017] [Indexed: 11/17/2022] Open
Abstract
Background Sexual selection has been hypothesised as favouring mate choice resulting in production of viable offspring with genotypes providing high pathogen resistance. Specific pathogen recognition is mediated by genes of the major histocompatibility complex (MHC) encoding proteins fundamental for adaptive immune response in jawed vertebrates. MHC genes may also play a role in odour-based individual recognition and mate choice, aimed at avoiding inbreeding. MHC genes are known to be involved in mate choice in a number of species, with ‘good genes’ (absolute criteria) and ‘complementary genes’ (self-referential criteria) being used to explain MHC-based mating. Here, we focus on the effect of morphological traits and variation and genetic similarity between individuals in MHC class IIB (MHCIIB) exon 2 on mating in a free-living population of a monogamous bird, the grey partridge. Results We found no evidence for absolute mate choice criteria as regards grey partridge MHCIIB genotypes, i.e., number and occurrence of amino acid variants, though red chroma of the spot behind eyes was positively associated with male pairing success. On the other hand, mate choice at MHCIIB was based on relative criteria as females preferentially paired with more dissimilar males having a lower number of shared amino acid variants. This observation supports the ‘inbreeding avoidance’ and ‘complementary genes’ hypotheses. Conclusions Our study provides one of the first pieces of evidence for MHC-based mate choice for genetic complementarity in a strictly monogamous bird. The statistical approach employed can be recommended for testing mating preferences in cases where availability of potential mates (recorded with an appropriate method such as radio-tracking) shows considerable temporal variation. Additional genetic analyses using neutral markers may detect whether MHC-based mate choice for complementarity emerges as a by-product of general inbreeding avoidance in grey partridges. Electronic supplementary material The online version of this article (doi:10.1186/s12983-017-0194-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dana Rymešová
- Department of Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences, Kamýcká 1176, 165 21 Prague 6, Czech Republic.,Department of Botany and Zoology, Faculty of Science, Masaryk University, Czech Republic, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Tereza Králová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Czech Republic, Kotlářská 2, 611 37 Brno, Czech Republic.,Institute of Vertebrate Biology, The Czech Academy of Sciences, Květná 8, 603 65 Brno, Czech Republic
| | - Marta Promerová
- Institute of Vertebrate Biology, The Czech Academy of Sciences, Květná 8, 603 65 Brno, Czech Republic.,Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-75236 Uppsala, Sweden
| | - Josef Bryja
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Czech Republic, Kotlářská 2, 611 37 Brno, Czech Republic.,Institute of Vertebrate Biology, The Czech Academy of Sciences, Květná 8, 603 65 Brno, Czech Republic
| | - Oldřich Tomášek
- Institute of Vertebrate Biology, The Czech Academy of Sciences, Květná 8, 603 65 Brno, Czech Republic.,Department of Zoology, Faculty of Science, Charles University in Prague, Viničná 7, 128 44 Prague 2, Czech Republic
| | - Jana Svobodová
- Department of Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences, Kamýcká 1176, 165 21 Prague 6, Czech Republic
| | - Petr Šmilauer
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic
| | - Miroslav Šálek
- Department of Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences, Kamýcká 1176, 165 21 Prague 6, Czech Republic
| | - Tomáš Albrecht
- Institute of Vertebrate Biology, The Czech Academy of Sciences, Květná 8, 603 65 Brno, Czech Republic.,Department of Zoology, Faculty of Science, Charles University in Prague, Viničná 7, 128 44 Prague 2, Czech Republic
| |
Collapse
|
43
|
Leclaire S, Strandh M, Mardon J, Westerdahl H, Bonadonna F. Odour-based discrimination of similarity at the major histocompatibility complex in birds. Proc Biol Sci 2017; 284:20162466. [PMID: 28077776 PMCID: PMC5247505 DOI: 10.1098/rspb.2016.2466] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 12/06/2016] [Indexed: 11/12/2022] Open
Abstract
Many animals are known to preferentially mate with partners that are dissimilar at the major histocompatibility complex (MHC) in order to maximize the antigen binding repertoire (or disease resistance) in their offspring. Although several mammals, fish or lizards use odour cues to assess MHC similarity with potential partners, the ability of birds to assess MHC similarity using olfactory cues has not yet been explored. Here we used a behavioural binary choice test and high-throughput-sequencing of MHC class IIB to determine whether blue petrels can discriminate MHC similarity based on odour cues alone. Blue petrels are seabirds with particularly good sense of smell, they have a reciprocal mate choice and are known to preferentially mate with MHC-dissimilar partners. Incubating males preferentially approached the odour of the more MHC-dissimilar female, whereas incubating females showed opposite preferences. Given their mating pattern, females were, however, expected to show preference for the odour of the more MHC-dissimilar male. Further studies are needed to determine whether, as in women and female mice, the preference varies with the reproductive cycle in blue petrel females. Our results provide the first evidence that birds can use odour cues only to assess MHC dissimilarity.
Collapse
Affiliation(s)
- Sarah Leclaire
- Centre d'Ecologie Fonctionnelle et Evolutive, CNRS-CEFE, 1919 route de Mende, 34293 Montpellier, France
| | - Maria Strandh
- Molecular Ecology and Evolution Lab, Lund University, Ecology building, 22362 Lund, Sweden
| | - Jérôme Mardon
- Centre d'Ecologie Fonctionnelle et Evolutive, CNRS-CEFE, 1919 route de Mende, 34293 Montpellier, France
| | - Helena Westerdahl
- Molecular Ecology and Evolution Lab, Lund University, Ecology building, 22362 Lund, Sweden
| | - Francesco Bonadonna
- Centre d'Ecologie Fonctionnelle et Evolutive, CNRS-CEFE, 1919 route de Mende, 34293 Montpellier, France
| |
Collapse
|
44
|
Leclaire S, Bourret V, Bonadonna F. Blue petrels recognize the odor of their egg. J Exp Biol 2017; 220:3022-3025. [DOI: 10.1242/jeb.163899] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 06/26/2017] [Indexed: 11/20/2022]
Abstract
Most studies on avian olfactory communication have focused on mate choice, and the importance of olfaction in subsequent nesting stages has been poorly explored. In particular, the role of olfactory cues in egg recognition has received little attention, despite eggs potentially being spread with parental odorous secretions known to elicit individual discrimination. Here we used behavioral choice tests to determine whether female blue petrels (Halobaena caerulea) can discriminate the odor of their own egg from the odor of a conspecific egg. Females preferentially approached the odor of their own egg, suggesting that blue petrels can recognize their own egg using odor cues. This finding raises the question of the adaptive value of this mechanism, and may inspire further research on odor-based egg discrimination in species suffering brood parasitism.
Collapse
Affiliation(s)
- Sarah Leclaire
- Centre d'Ecologie Fonctionnelle et Evolutive, CNRS, UMR 5175, 1919 rte de Mende, Montpellier, France
- Laboratoire Evolution & Diversité Biologique, CNRS UMR 5174, 118 rte de Narbonne, 31062 Toulouse, France
| | - Vincent Bourret
- Centre d'Ecologie Fonctionnelle et Evolutive, CNRS, UMR 5175, 1919 rte de Mende, Montpellier, France
| | - Francesco Bonadonna
- Centre d'Ecologie Fonctionnelle et Evolutive, CNRS, UMR 5175, 1919 rte de Mende, Montpellier, France
| |
Collapse
|
45
|
Krause ET, Schrader L, Caspers BA. Olfaction in Chicken (Gallus gallus): A Neglected Mode of Social Communication? Front Ecol Evol 2016. [DOI: 10.3389/fevo.2016.00094] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
46
|
|
47
|
Sanderson JL, Wang J, Vitikainen EIK, Cant MA, Nichols HJ. Banded mongooses avoid inbreeding when mating with members of the same natal group. Mol Ecol 2015; 24:3738-51. [PMID: 26095171 PMCID: PMC5008155 DOI: 10.1111/mec.13253] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 05/21/2015] [Accepted: 05/26/2015] [Indexed: 11/29/2022]
Abstract
Inbreeding and inbreeding avoidance are key factors in the evolution of animal societies, influencing dispersal and reproductive strategies which can affect relatedness structure and helping behaviours. In cooperative breeding systems, individuals typically avoid inbreeding through reproductive restraint and/or dispersing to breed outside their natal group. However, where groups contain multiple potential mates of varying relatedness, strategies of kin recognition and mate choice may be favoured. Here, we investigate male mate choice and female control of paternity in the banded mongoose (Mungos mungo), a cooperatively breeding mammal where both sexes are often philopatric and mating between relatives is known to occur. We find evidence suggestive of inbreeding depression in banded mongooses, indicating a benefit to avoiding breeding with relatives. Successfully breeding pairs were less related than expected under random mating, which appeared to be driven by both male choice and female control of paternity. Male banded mongooses actively guard females to gain access to mating opportunities, and this guarding behaviour is preferentially directed towards less closely related females. Guard–female relatedness did not affect the guard's probability of gaining reproductive success. However, where mate‐guards are unsuccessful, they lose paternity to males that are less related to the females than themselves. Together, our results suggest that both sexes of banded mongoose use kin discrimination to avoid inbreeding. Although this strategy appears to be rare among cooperative breeders, it may be more prominent in species where relatedness to potential mates is variable, and/or where opportunities for dispersal and mating outside of the group are limited.
Collapse
Affiliation(s)
- Jennifer L Sanderson
- College of Life and Environmental Sciences, University of Exeter, Penryn Campus, Penryn, Cornwall, TR10 9FE, UK
| | - Jinliang Wang
- Institute of Zoology, Zoological Society of London, Regent's Park, London, NW1 4RY, UK
| | - Emma I K Vitikainen
- College of Life and Environmental Sciences, University of Exeter, Penryn Campus, Penryn, Cornwall, TR10 9FE, UK
| | - Michael A Cant
- College of Life and Environmental Sciences, University of Exeter, Penryn Campus, Penryn, Cornwall, TR10 9FE, UK
| | - Hazel J Nichols
- School of Natural Science and Psychology, Liverpool John Moores University, Liverpool, L3 3AF, UK
| |
Collapse
|