1
|
Hoffmann E, Masthoff M, Kunz WG, Seidensticker M, Bobe S, Gerwing M, Berdel WE, Schliemann C, Faber C, Wildgruber M. Multiparametric MRI for characterization of the tumour microenvironment. Nat Rev Clin Oncol 2024; 21:428-448. [PMID: 38641651 DOI: 10.1038/s41571-024-00891-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2024] [Indexed: 04/21/2024]
Abstract
Our understanding of tumour biology has evolved over the past decades and cancer is now viewed as a complex ecosystem with interactions between various cellular and non-cellular components within the tumour microenvironment (TME) at multiple scales. However, morphological imaging remains the mainstay of tumour staging and assessment of response to therapy, and the characterization of the TME with non-invasive imaging has not yet entered routine clinical practice. By combining multiple MRI sequences, each providing different but complementary information about the TME, multiparametric MRI (mpMRI) enables non-invasive assessment of molecular and cellular features within the TME, including their spatial and temporal heterogeneity. With an increasing number of advanced MRI techniques bridging the gap between preclinical and clinical applications, mpMRI could ultimately guide the selection of treatment approaches, precisely tailored to each individual patient, tumour and therapeutic modality. In this Review, we describe the evolving role of mpMRI in the non-invasive characterization of the TME, outline its applications for cancer detection, staging and assessment of response to therapy, and discuss considerations and challenges for its use in future medical applications, including personalized integrated diagnostics.
Collapse
Affiliation(s)
- Emily Hoffmann
- Clinic of Radiology, University of Münster, Münster, Germany
| | - Max Masthoff
- Clinic of Radiology, University of Münster, Münster, Germany
| | - Wolfgang G Kunz
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Max Seidensticker
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Stefanie Bobe
- Gerhard Domagk Institute of Pathology, University Hospital Münster, Münster, Germany
| | - Mirjam Gerwing
- Clinic of Radiology, University of Münster, Münster, Germany
| | | | | | - Cornelius Faber
- Clinic of Radiology, University of Münster, Münster, Germany
| | - Moritz Wildgruber
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany.
| |
Collapse
|
2
|
Wilken E, Havlas A, Masthoff M, Moussavi A, Boretius S, Faber C. Radial compressed sensing imaging improves the velocity detection limit of single cell tracking time-lapse MRI. Magn Reson Med 2024; 91:1449-1463. [PMID: 38044790 DOI: 10.1002/mrm.29946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/24/2023] [Accepted: 11/10/2023] [Indexed: 12/05/2023]
Abstract
PURPOSE Time-lapse MRI enables tracking of single iron-labeled cells. Yet, due to temporal blurring, only slowly moving cells can be resolved. To study faster cells for example during inflammatory processes, accelerated acquisition is needed. METHODS A rotating phantom system was developed to quantitatively measure the current maximum detectable speed of cells in time-lapse MRI. For accelerated cell tracking, an interleaved radial acquisition scheme was applied to phantom and murine brain in vivo time-lapse MRI experiments at 9.4 T. Detection of iron-labeled cells was evaluated in fully sampled and undersampled reconstructions with and without compressed sensing. RESULTS The rotating phantom system enabled ultra-slow rotation of phantoms and a velocity detection limit of full-brain Cartesian time-lapse MRI of up to 172 μm/min was determined. Both phantom and in vivo measurements showed that single cells can be followed dynamically using radial time-lapse MRI. Higher temporal resolution of undersampled reconstructions reduced geometric distortion, the velocity detection limit was increased to 1.1 mm/min in vitro, and previously hidden fast-moving cells were recovered. In the mouse brain after in vivo labeling, a total of 42 ± 4 cells were counted in fully sampled, but only 7 ± 1 in undersampled images due to streaking artifacts. Using compressed sensing 33 ± 4 cells were detected. CONCLUSION Interleaved radial time-lapse MRI permits retrospective reconstruction of both fully sampled and accelerated images, enables single cell tracking at higher temporal resolution and recovers cells hidden before due to blurring. The velocity detection limit as determined with the rotating phantom system increased two- to three-fold compared to previous results.
Collapse
Affiliation(s)
- Enrica Wilken
- Clinic of Radiology, University of Münster, Münster, Germany
| | - Asli Havlas
- Clinic of Radiology, University of Münster, Münster, Germany
| | - Max Masthoff
- Clinic of Radiology, University of Münster, Münster, Germany
| | - Amir Moussavi
- Functional Imaging Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Susann Boretius
- Functional Imaging Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Cornelius Faber
- Clinic of Radiology, University of Münster, Münster, Germany
| |
Collapse
|
3
|
Armstrong M, Wilken E, Freppon F, Masthoff M, Faber C, Xiao D. Dynamic cell tracking using time-lapse MRI with variable temporal resolution Cartesian sampling. Magn Reson Med 2023; 90:2443-2453. [PMID: 37466029 DOI: 10.1002/mrm.29796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 06/03/2023] [Accepted: 06/25/2023] [Indexed: 07/20/2023]
Abstract
PURPOSE Temporal resolution of time-lapse MRI to track individual iron-labeled cells is limited by the required data-acquisition time to fill k-space and to reach sufficient SNR. Although motion of slowly patrolling monocytes can be resolved, detection of fast-moving immune cells requires improved acquisition and reconstruction strategies. THEORY AND METHODS For accelerated MRI cell tracking, a Cartesian sampling scheme was designed, in which the fully sampled and undersampled k-space data for different acceleration factors were acquired simultaneously, and multiple undersampling ratios could be chosen retrospectively. Compressed-sensing reconstruction was applied using dictionary learning and low-rank constraints. Detection of iron-labeled monocytes was evaluated with simulations, rotating phantom experiments and in vivo mouse brain measurements at 9.4 T. RESULTS Fully sampled and 2.4-times and 4.8-times accelerated images were reconstructed and had sufficient contrast-to-noise ratio (CNR) for single cells to be resolved and followed dynamically. The phantom experiments showed an improvement in CNR of 6.1% per μm/s in the 4.8-times undersampled images. Geometric distortion of cells caused by motion was visibly reduced in the accelerated images, which enabled detection of moving cells with velocities of up to 7.0 μm/s. In vivo, additional cells were resolved in the accelerated images due to the improved temporal resolution. CONCLUSION The easy-to-implement flexible Cartesian sampling scheme with compressed-sensing reconstruction permits simultaneous acquisition of both fully sampled and high temporal resolution images. The CNR of moving cells is effectively improved, enabling the recovery of high velocity cells with sufficient contrast at virtually no cost.
Collapse
Affiliation(s)
- Mark Armstrong
- Physics Department, University of Windsor, Windsor, Canada
| | - Enrica Wilken
- Clinic for Radiology, University of Münster, Münster, Germany
| | - Felix Freppon
- Clinic for Radiology, University of Münster, Münster, Germany
| | - Max Masthoff
- Clinic for Radiology, University of Münster, Münster, Germany
| | - Cornelius Faber
- Clinic for Radiology, University of Münster, Münster, Germany
| | - Dan Xiao
- Physics Department, University of Windsor, Windsor, Canada
| |
Collapse
|
4
|
Liu L, Dodd S, Hunt RD, Pothayee N, Atanasijevic T, Bouraoud N, Maric D, Moseman EA, Gossa S, McGavern DB, Koretsky AP. Early detection of cerebrovascular pathology and protective antiviral immunity by MRI. eLife 2022; 11:e74462. [PMID: 35510986 PMCID: PMC9106335 DOI: 10.7554/elife.74462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
Central nervous system (CNS) infections are a major cause of human morbidity and mortality worldwide. Even patients that survive, CNS infections can have lasting neurological dysfunction resulting from immune and pathogen induced pathology. Developing approaches to noninvasively track pathology and immunity in the infected CNS is crucial for patient management and development of new therapeutics. Here, we develop novel MRI-based approaches to monitor virus-specific CD8+ T cells and their relationship to cerebrovascular pathology in the living brain. We studied a relevant murine model in which a neurotropic virus (vesicular stomatitis virus) was introduced intranasally and then entered the brain via olfactory sensory neurons - a route exploited by many pathogens in humans. Using T2*-weighted high-resolution MRI, we identified small cerebral microbleeds as an early form of pathology associated with viral entry into the brain. Mechanistically, these microbleeds occurred in the absence of peripheral immune cells and were associated with infection of vascular endothelial cells. We monitored the adaptive response to this infection by developing methods to iron label and track individual virus specific CD8+ T cells by MRI. Transferred antiviral T cells were detected in the brain within a day of infection and were able to reduce cerebral microbleeds. These data demonstrate the utility of MRI in detecting the earliest pathological events in the virally infected CNS as well as the therapeutic potential of antiviral T cells in mitigating this pathology.
Collapse
Affiliation(s)
- Li Liu
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaUnited States
| | - Steve Dodd
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaUnited States
| | - Ryan D Hunt
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaUnited States
| | - Nikorn Pothayee
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaUnited States
| | - Tatjana Atanasijevic
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaUnited States
| | - Nadia Bouraoud
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaUnited States
| | - Dragan Maric
- Flow and Imaging Cytometry Core Facility, National Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaUnited States
| | - E Ashley Moseman
- Department of Immunology, Duke University School of MedicineDurhamUnited States
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaUnited States
| | - Selamawit Gossa
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaUnited States
| | - Dorian B McGavern
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaUnited States
| | - Alan P Koretsky
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaUnited States
| |
Collapse
|
5
|
Cytokines in the Brain and Neuroinflammation: We Didn’t Starve the Fire! Pharmaceuticals (Basel) 2022; 15:ph15020140. [PMID: 35215252 PMCID: PMC8878213 DOI: 10.3390/ph15020140] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 12/19/2022] Open
Abstract
In spite of the brain-protecting tissues of the skull, meninges, and blood-brain barrier, some forms of injury to or infection of the CNS can give rise to cerebral cytokine production and action and result in drastic changes in brain function and behavior. Interestingly, peripheral infection-induced systemic inflammation can also be accompanied by increased cerebral cytokine production. Furthermore, it has been recently proposed that some forms of psychological stress may have similar CNS effects. Different conditions of cerebral cytokine production and action will be reviewed here against the background of neuroinflammation. Within this context, it is important to both deepen our understanding along already taken paths as well as to explore new ways in which neural functioning can be modified by cytokines. This, in turn, should enable us to put forward different modes of cerebral cytokine production and action in relation to distinct forms of neuroinflammation.
Collapse
|
6
|
Masthoff M, Freppon FN, Zondler L, Wilken E, Wachsmuth L, Niemann S, Schwarz C, Fredrich I, Havlas A, Block H, Gerwing M, Helfen A, Heindel W, Zarbock A, Wildgruber M, Faber C. Resolving immune cells with patrolling behaviour by magnetic resonance time-lapse single cell tracking. EBioMedicine 2021; 73:103670. [PMID: 34742131 PMCID: PMC8581510 DOI: 10.1016/j.ebiom.2021.103670] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/10/2021] [Accepted: 10/19/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Immune cells show distinct motion patterns that change upon inflammatory stimuli. Monocytes patrol the vasculature to screen for pathogens, thereby exerting an early task of innate immunity. Here, we aimed to non-invasively analyse single patrolling monocyte behaviour upon inflammatory stimuli. METHODS We used time-lapse Magnetic Resonance Imaging (MRI) of the murine brain to dynamically track single patrolling monocytes within the circulation distant to the actual site of inflammation in different inflammatory conditions, ranging from a subcutaneous pellet model to severe peritonitis and bacteraemia. FINDINGS Single patrolling immune cells with a velocity of <1 µm/s could be detected and followed dynamically using time-lapse MRI. We show, that due to local and systemic stimuli the slowly patrolling behaviour of monocytes is altered systemically and differs with type, duration and strength of the underlying stimulus. INTERPRETATION Using time-lapse MRI, it is now possible to investigate the behaviour of single circulating monocytes over the course of the systemic immune response. Monocyte patrolling behaviour is altered systemically even before the onset of clinical symptoms distant to and depending on the underlying inflammatory stimulus. FUNDING This study was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - CRC 1009 - 194468054 to AZ, CF and - CRC 1450 - 431460824 to MM, SN, HB, AZ, CF, the Joachim Herz Foundation (Add-on Fellowship for Interdisciplinary Life Sciences to MM), the Interdisciplinary Centre for Clinical Research (IZKF, core unit PIX) and the Medical Faculty of the University of Muenster (MEDK fellowship to FF and IF).
Collapse
Affiliation(s)
- Max Masthoff
- Clinic for Radiology, Translational Research Imaging Centre, University Hospital Muenster, Muenster, Germany.
| | - Felix Noah Freppon
- Clinic for Radiology, Translational Research Imaging Centre, University Hospital Muenster, Muenster, Germany
| | - Lisa Zondler
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Muenster, Germany
| | - Enrica Wilken
- Clinic for Radiology, Translational Research Imaging Centre, University Hospital Muenster, Muenster, Germany
| | - Lydia Wachsmuth
- Clinic for Radiology, Translational Research Imaging Centre, University Hospital Muenster, Muenster, Germany
| | - Silke Niemann
- Institute of Medical Microbiology, University Hospital of Muenster, Muenster, Germany
| | - Christian Schwarz
- Clinic for Radiology, Translational Research Imaging Centre, University Hospital Muenster, Muenster, Germany
| | - Ina Fredrich
- Clinic for Radiology, Translational Research Imaging Centre, University Hospital Muenster, Muenster, Germany
| | - Asli Havlas
- Clinic for Radiology, Translational Research Imaging Centre, University Hospital Muenster, Muenster, Germany
| | - Helena Block
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Muenster, Germany
| | - Mirjam Gerwing
- Clinic for Radiology, Translational Research Imaging Centre, University Hospital Muenster, Muenster, Germany
| | - Anne Helfen
- Clinic for Radiology, Translational Research Imaging Centre, University Hospital Muenster, Muenster, Germany
| | - Walter Heindel
- Clinic for Radiology, Translational Research Imaging Centre, University Hospital Muenster, Muenster, Germany
| | - Alexander Zarbock
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Muenster, Germany
| | - Moritz Wildgruber
- Clinic for Radiology, Translational Research Imaging Centre, University Hospital Muenster, Muenster, Germany; Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Cornelius Faber
- Clinic for Radiology, Translational Research Imaging Centre, University Hospital Muenster, Muenster, Germany
| |
Collapse
|
7
|
Matsuura H, Ohnishi M, Yoshioka Y, Togami Y, Hosomi S, Umemura Y, Ebihara T, Shimizu K, Ogura H, Shimazu T. Original experimental rat model of blast-induced mild traumatic brain injury: a pilot study. Brain Inj 2021; 35:368-381. [PMID: 33455463 DOI: 10.1080/02699052.2020.1861653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
OBJECTIVE Diagnosing blast-induced mild traumatic brain injury (mTBI) is difficult due to minimal imaging findings. This study aimed to establish a rat model of behavioral abnormality caused by blast-induced mTBI and detect new findings for therapeutic intervention. METHODS We used a bench-top blast wave generator with the blast wave exiting through a 20-mm I.D. nozzle aimed at the focused target. The blast wave was directed at the head of male Wistar rats under general anesthesia positioned prone 2.5 cm below the nozzle. Peak shock wave pressure was 646.2 ± 70.3 kPa. RESULTS After blast injury, mTBI rats did not show the findings of brain hemorrhage or contusion macroscopically and on hematoxylin-eosin-stained frozen sections but did show anorexia and weight loss in the early post-injury phase. Behavioral experiments revealed short-term memory impairment at 2 weeks and depression-like behavior at 2 and 6 weeks. Diffusion-weighted ex vivo MRI showed high-intensity areas in layers of the bilateral hippocampus. Immunohistochemical analysis revealed accumulation of reactive microglia and GFAP-positive astrocytes in the same region and loss of NeuN-positive neurons in the hippocampal pyramidal cell layer. CONCLUSIONS This model can reflect the pathophysiology of blast-induced mTBI and could potentially be used to develop therapeutic interventions in the future.
Collapse
Affiliation(s)
- Hiroshi Matsuura
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Mitsuo Ohnishi
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshichika Yoshioka
- Center for Information and Neural Networks (Cinet), National Institute of Information and Communications Technology (NICT), and Osaka University, Osaka, Japan
| | - Yuki Togami
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Sanae Hosomi
- Division of Trauma and Surgical Critical Care, Osaka General Medical Center, Osaka, Japan
| | - Yutaka Umemura
- Division of Trauma and Surgical Critical Care, Osaka General Medical Center, Osaka, Japan
| | - Takeshi Ebihara
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kentaro Shimizu
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hiroshi Ogura
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takeshi Shimazu
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
8
|
Hosomi S, Ohnishi M, Ogura H, Shimazu T. Traumatic brain injury-related inflammatory projection: beyond local inflammatory responses. Acute Med Surg 2020; 7:e520. [PMID: 32514363 PMCID: PMC7272327 DOI: 10.1002/ams2.520] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/24/2020] [Accepted: 04/30/2020] [Indexed: 12/27/2022] Open
Abstract
Acute neuroinflammation induced by microglial activation is key for repair and recovery after traumatic brain injury (TBI) and could be necessary for the clearance of harmful substances, such as cell debris. However, recent clinical and preclinical data have shown that TBI causes chronic neuroinflammation, lasting many years in some cases, and leading to chronic neurodegeneration, dementia, and encephalopathy. To evaluate neuroinflammation in vivo, positron‐emission tomography has been used to target translocator protein, which is upregulated in activated glial cells. Such studies have suggested that remote neuroinflammation induced by regional microglia persists even after reduced inflammatory responses at the injury site. Furthermore, unregulated inflammatory responses are associated with neurodegeneration. Therefore, elucidation of the role of neuroinflammation in TBI pathology is essential for developing new therapeutic targets for TBI. Treatment of associated progressive disorders requires a deeper understanding of how inflammatory responses to injury are triggered, sustained, and resolved and how they impact neuronal function. In this review, we provide a general overview of the dynamics of immune responses to TBI, from acute to chronic neuroinflammation. We discuss the clinical significance of remote ongoing neuroinflammation, termed “brain injury‐related inflammatory projection”. We also highlight positron‐emission tomography imaging as a promising approach needing further development to facilitate an understanding of post‐TBI inflammatory and neurodegenerative processes and to monitor the clinical effects of corresponding new therapeutic strategies.
Collapse
Affiliation(s)
- Sanae Hosomi
- Department of Traumatology and Acute Critical Medicine Osaka University Graduate School of Medicine Osaka Japan
| | - Mitsuo Ohnishi
- Department of Acute Medicine and Critical Care Medical Center Osaka National Hospital National Hospital Organization Osaka Japan
| | - Hiroshi Ogura
- Department of Traumatology and Acute Critical Medicine Osaka University Graduate School of Medicine Osaka Japan
| | - Takeshi Shimazu
- Department of Traumatology and Acute Critical Medicine Osaka University Graduate School of Medicine Osaka Japan
| |
Collapse
|
9
|
Masthoff M, Buchholz R, Beuker A, Wachsmuth L, Kraupner A, Albers F, Freppon F, Helfen A, Gerwing M, Höltke C, Hansen U, Rehkämper J, Vielhaber T, Heindel W, Eisenblätter M, Karst U, Wildgruber M, Faber C. Introducing Specificity to Iron Oxide Nanoparticle Imaging by Combining 57Fe-Based MRI and Mass Spectrometry. NANO LETTERS 2019; 19:7908-7917. [PMID: 31556617 DOI: 10.1021/acs.nanolett.9b03016] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Iron oxide nanoparticles (ION) are highly sensitive probes for magnetic resonance imaging (MRI) that have previously been used for in vivo cell tracking and have enabled implementation of several diagnostic tools to detect and monitor disease. However, the in vivo MRI signal of ION can overlap with the signal from endogenous iron, resulting in a lack of detection specificity. Therefore, the long-term fate of administered ION remains largely unknown, and possible tissue deposition of iron cannot be assessed with established methods. Herein, we combine nonradioactive 57Fe-ION MRI with ex vivo laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) imaging, enabling unambiguous differentiation between endogenous iron (56Fe) and iron originating from applied ION in mice. We establish 57Fe-ION as an in vivo MRI sensor for cell tracking in a mouse model of subcutaneous inflammation and for assessing the long-term fate of 57Fe-ION. Our approach resolves the lack of detection specificity in ION imaging by unambiguously recording a 57Fe signature.
Collapse
Affiliation(s)
- Max Masthoff
- Translational Research Imaging Center, Institute of Clinical Radiology , University Hospital Muenster , 48149 Muenster , Germany
| | - Rebecca Buchholz
- Institute for Inorganic and Analytical Chemistry, University of Muenster , 48149 Muenster , Germany
| | - Andre Beuker
- Translational Research Imaging Center, Institute of Clinical Radiology , University Hospital Muenster , 48149 Muenster , Germany
| | - Lydia Wachsmuth
- Translational Research Imaging Center, Institute of Clinical Radiology , University Hospital Muenster , 48149 Muenster , Germany
| | | | - Franziska Albers
- Translational Research Imaging Center, Institute of Clinical Radiology , University Hospital Muenster , 48149 Muenster , Germany
| | - Felix Freppon
- Translational Research Imaging Center, Institute of Clinical Radiology , University Hospital Muenster , 48149 Muenster , Germany
| | - Anne Helfen
- Translational Research Imaging Center, Institute of Clinical Radiology , University Hospital Muenster , 48149 Muenster , Germany
| | - Mirjam Gerwing
- Translational Research Imaging Center, Institute of Clinical Radiology , University Hospital Muenster , 48149 Muenster , Germany
| | - Carsten Höltke
- Translational Research Imaging Center, Institute of Clinical Radiology , University Hospital Muenster , 48149 Muenster , Germany
| | - Uwe Hansen
- Institute for Musculoskeletal Medicine , University Hospital Muenster , 48149 Muenster , Germany
| | - Jan Rehkämper
- Institute of Pathology , University Hospital Muenster , 48149 Muenster , Germany
| | - Torsten Vielhaber
- Institute for Inorganic and Analytical Chemistry, University of Muenster , 48149 Muenster , Germany
| | - Walter Heindel
- Translational Research Imaging Center, Institute of Clinical Radiology , University Hospital Muenster , 48149 Muenster , Germany
| | - Michel Eisenblätter
- Translational Research Imaging Center, Institute of Clinical Radiology , University Hospital Muenster , 48149 Muenster , Germany
| | - Uwe Karst
- Institute for Inorganic and Analytical Chemistry, University of Muenster , 48149 Muenster , Germany
- DFG Cluster of Excellence EXC 1003 "Cells in Motion" , University of Muenster , 48149 Muenster , Germany
| | - Moritz Wildgruber
- Translational Research Imaging Center, Institute of Clinical Radiology , University Hospital Muenster , 48149 Muenster , Germany
- DFG Cluster of Excellence EXC 1003 "Cells in Motion" , University of Muenster , 48149 Muenster , Germany
| | - Cornelius Faber
- Translational Research Imaging Center, Institute of Clinical Radiology , University Hospital Muenster , 48149 Muenster , Germany
- DFG Cluster of Excellence EXC 1003 "Cells in Motion" , University of Muenster , 48149 Muenster , Germany
| |
Collapse
|
10
|
Mori Y. [17. Live Cellular Imaging and Tracking by High Field MRI]. Nihon Hoshasen Gijutsu Gakkai Zasshi 2019; 75:676-682. [PMID: 31327779 DOI: 10.6009/jjrt.2019_jsrt_75.7.676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yuki Mori
- Center for Translational Neuromedicine,University of Copenhagen
| |
Collapse
|
11
|
Guan W, Ma J, Peng X, Chen K. Tailoring magnetic resonance imaging relaxivities in macroporous Prussian blue cubes. Dalton Trans 2019; 48:11882-11888. [PMID: 31309218 DOI: 10.1039/c9dt02414j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In order to unravel the relationship between zeta potential values and r2/r1 ratios for contrast agents in MRI application, a series of macroporous Prussian blue cubes were successfully synthesized by HCl etching and used as model samples for relaxivity investigation. It was found that their r2/r1 ratios firstly decreased and then increased with the increasing HCl concentration, while the variation trend for zeta potential is quite the opposite. By employing Gauss fitting and eliminating the HCl concentration in the resultant equations, a relationship between zeta potential values and r2/r1 ratios, i.e. ζ = 229 × (563 -r2/r1)0.012- 267, was finally obtained. This result showed that magnetic resonance imaging relaxivities (viz. r2/r1) could be tailored through altering zeta potential values (surface charges) of the contrast agent.
Collapse
Affiliation(s)
- Wenlan Guan
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Ji Ma
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Xi Peng
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Kezheng Chen
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| |
Collapse
|
12
|
MRI coupled with clinically-applicable iron oxide nanoparticles reveals choroid plexus involvement in a murine model of neuroinflammation. Sci Rep 2019; 9:10046. [PMID: 31296913 PMCID: PMC6624288 DOI: 10.1038/s41598-019-46566-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 06/25/2019] [Indexed: 02/06/2023] Open
Abstract
Choroid plexus (ChPs) are involved in the early inflammatory response that occurs in many brain disorders. However, the activation of immune cells within the ChPs in response to neuroinflammation is still largely unexplored in-vivo. There is therefore a crucial need for developing imaging tool that would allow the non-invasive monitoring of ChP involvement in these diseases. Magnetic resonance imaging (MRI) coupled with superparamagnetic particles of iron oxide (SPIO) is a minimally invasive technique allowing to track phagocytic cells in inflammatory diseases. Our aim was to investigate the potential of ultrasmall SPIO (USPIO)-enhanced MRI to monitor ChP involvement in-vivo in a mouse model of neuroinflammation obtained by intraperitoneal administration of lipopolysaccharide. Using high resolution MRI, we identified marked USPIO-related signal drops in the ChPs of animals with neuroinflammation compared to controls. We confirmed these results quantitatively using a 4-points grading system. Ex-vivo analysis confirmed USPIO accumulation within the ChP stroma and their uptake by immune cells. We validated the translational potential of our approach using the clinically-applicable USPIO Ferumoxytol. MR imaging of USPIO accumulation within the ChPs may serve as an imaging biomarker to study ChP involvement in neuroinflammatory disorders that could be applied in a straightforward way in clinical practice.
Collapse
|
13
|
Mallett CL, Shuboni-Mulligan DD, Shapiro EM. Tracking Neural Progenitor Cell Migration in the Rodent Brain Using Magnetic Resonance Imaging. Front Neurosci 2019; 12:995. [PMID: 30686969 PMCID: PMC6337062 DOI: 10.3389/fnins.2018.00995] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 12/11/2018] [Indexed: 12/19/2022] Open
Abstract
The study of neurogenesis and neural progenitor cells (NPCs) is important across the biomedical spectrum, from learning about normal brain development and studying disease to engineering new strategies in regenerative medicine. In adult mammals, NPCs proliferate in two main areas of the brain, the subventricular zone (SVZ) and the subgranular zone, and continue to migrate even after neurogenesis has ceased within the rest of the brain. In healthy animals, NPCs migrate along the rostral migratory stream (RMS) from the SVZ to the olfactory bulb, and in diseased animals, NPCs migrate toward lesions such as stroke and tumors. Here we review how MRI-based cell tracking using iron oxide particles can be used to monitor and quantify NPC migration in the intact rodent brain, in a serial and relatively non-invasive fashion. NPCs can either be labeled directly in situ by injecting particles into the lateral ventricle or RMS, where NPCs can take up particles, or cells can be harvested and labeled in vitro, then injected into the brain. For in situ labeling experiments, the particle type, injection site, and image analysis methods have been optimized and cell migration toward stroke and multiple sclerosis lesions has been investigated. Delivery of labeled exogenous NPCs has allowed imaging of cell migration toward more sites of neuropathology, which may enable new diagnostic and therapeutic opportunities for as-of-yet untreatable neurological diseases.
Collapse
Affiliation(s)
- Christiane L. Mallett
- Molecular and Cellular Imaging Laboratory, Department of Radiology, Michigan State University, East Lansing, MI, United States
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
| | - Dorela D. Shuboni-Mulligan
- Molecular and Cellular Imaging Laboratory, Department of Radiology, Michigan State University, East Lansing, MI, United States
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
| | - Erik M. Shapiro
- Molecular and Cellular Imaging Laboratory, Department of Radiology, Michigan State University, East Lansing, MI, United States
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
14
|
Local cyclical compression modulates macrophage function in situ and alleviates immobilization-induced muscle atrophy. Clin Sci (Lond) 2018; 132:2147-2161. [PMID: 30209036 DOI: 10.1042/cs20180432] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 09/10/2018] [Accepted: 09/11/2018] [Indexed: 01/10/2023]
Abstract
Physical inactivity gives rise to numerous diseases and organismal dysfunctions, particularly those related to aging. Musculoskeletal disorders including muscle atrophy, which can result from a sedentary lifestyle, aggravate locomotive malfunction and evoke a vicious circle leading to severe functional disruptions of vital organs such as the brain and cardiovascular system. Although the significance of physical activity is evident, molecular mechanisms behind its beneficial effects are poorly understood. Here, we show that massage-like mechanical interventions modulate immobilization-induced pro-inflammatory responses of macrophages in situ and alleviate muscle atrophy. Local cyclical compression (LCC) on mouse calves, which generates intramuscular pressure waves with amplitude of 50 mmHg, partially restores the myofiber thickness and contracting forces of calf muscles that are decreased by hindlimb immobilization. LCC tempers the increase in the number of cells expressing pro-inflammatory proteins, tumor necrosis factor-α and monocyte chemoattractant protein-1 (MCP-1), including macrophages in situ The reversing effect of LCC on immobilization-induced thinning of myofibers is almost completely nullified when macrophages recruited from circulating blood are depleted by administration of clodronate liposomes. Furthermore, application of pulsatile fluid shear stress, but not hydrostatic pressure, reduces the expression of MCP-1 in macrophages in vitro Together with the LCC-induced movement of intramuscular interstitial fluid detected by µCT analysis, these results suggest that mechanical modulation of macrophage function is involved in physical inactivity-induced muscle atrophy and inflammation. Our findings uncover the implication of mechanosensory function of macrophages in disuse muscle atrophy, thereby opening a new path to develop a novel therapeutic strategy utilizing mechanical interventions.
Collapse
|
15
|
Hosomi S, Watabe T, Mori Y, Koyama Y, Adachi S, Hoshi N, Ohnishi M, Ogura H, Yoshioka Y, Hatazawa J, Yamashita T, Shimazu T. Inflammatory projections after focal brain injury trigger neuronal network disruption: An 18F-DPA714 PET study in mice. NEUROIMAGE-CLINICAL 2018; 20:946-954. [PMID: 30312938 PMCID: PMC6178196 DOI: 10.1016/j.nicl.2018.09.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/05/2018] [Accepted: 09/28/2018] [Indexed: 11/12/2022]
Abstract
Due to the heterogeneous pathology of traumatic brain injury (TBI), the exact mechanism of how initial brain damage leads to chronic inflammation and its effects on the whole brain remain unclear. Here, we report on long-term neuroinflammation, remote from the initial injury site, even after subsiding of the original inflammatory response, in a focal TBI mouse model. The use of translocator protein-positron emission tomography in conjunction with specialised magnetic resonance imaging modalities enabled us to visualize “previously undetected areas” of spreading inflammation after focal cortical injury. These clinically available modalities further revealed the pathophysiology of thalamic neuronal degeneration occurring as resident microglia sense damage to corticothalamic neuronal tracts and become activated. The resulting microglial activation plays a major role in prolonged inflammatory processes, which are deleterious to the thalamic network. In light of the association of this mechanism with neuronal tracts, we propose it can be termed “brain injury related inflammatory projection”. Our findings on multiple spatial and temporal scales provide insight into the chronic inflammation present in neurodegenerative diseases after TBI. TSPO-PET tomography enables the assessment of longitudinal neuronal inflammation Inflammatory responses at the cortical injury site diminish after about 1 week The ipsilateral thalamus exhibits remote neuroinflammation for up to 14 weeks Microglial activation is associated with remote chronic degeneration Inflammation expands to remote sites via damaged cortico-thalamic projections
Collapse
Affiliation(s)
- Sanae Hosomi
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, 2-15 Yamada-oka, Suita-shi, Osaka 565-0871, Japan.
| | - Tadashi Watabe
- Department of Nuclear Medicine and Tracer Kinetics, Osaka University Graduate School of Medicine, 2-15 Yamada-oka, Suita-shi, Osaka 565-0871, Japan; Medical Imaging Centre for Translational Research, Osaka University Graduate School of Medicine, 2-15 Yamada-oka, Suita-shi, Osaka 565-0871, Japan
| | - Yuki Mori
- Centre for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT) and Osaka University, 1-4 Yamada-oka, Suita-shi, Osaka 565-0871, Japan
| | - Yoshihisa Koyama
- Department of Molecular Neuroscience, Osaka University Graduate School of Medicine, 2-15 Yamada-oka, Suita-shi, Osaka 565-0871, Japan
| | - Soichiro Adachi
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 5-2 Kusunoki-cho 7, Chuo-ku, Kobe-shi, Hyougo 650-0017, Japan
| | - Namiko Hoshi
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 5-2 Kusunoki-cho 7, Chuo-ku, Kobe-shi, Hyougo 650-0017, Japan
| | - Mitsuo Ohnishi
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, 2-15 Yamada-oka, Suita-shi, Osaka 565-0871, Japan
| | - Hiroshi Ogura
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, 2-15 Yamada-oka, Suita-shi, Osaka 565-0871, Japan
| | - Yoshichika Yoshioka
- Centre for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT) and Osaka University, 1-4 Yamada-oka, Suita-shi, Osaka 565-0871, Japan
| | - Jun Hatazawa
- Department of Nuclear Medicine and Tracer Kinetics, Osaka University Graduate School of Medicine, 2-15 Yamada-oka, Suita-shi, Osaka 565-0871, Japan; Medical Imaging Centre for Translational Research, Osaka University Graduate School of Medicine, 2-15 Yamada-oka, Suita-shi, Osaka 565-0871, Japan
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Osaka University Graduate School of Medicine, 2-15 Yamada-oka, Suita-shi, Osaka 565-0871, Japan
| | - Takeshi Shimazu
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, 2-15 Yamada-oka, Suita-shi, Osaka 565-0871, Japan
| |
Collapse
|
16
|
Masthoff M, Gran S, Zhang X, Wachsmuth L, Bietenbeck M, Helfen A, Heindel W, Sorokin L, Roth J, Eisenblätter M, Wildgruber M, Faber C. Temporal window for detection of inflammatory disease using dynamic cell tracking with time-lapse MRI. Sci Rep 2018; 8:9563. [PMID: 29934611 PMCID: PMC6015069 DOI: 10.1038/s41598-018-27879-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 06/12/2018] [Indexed: 12/20/2022] Open
Abstract
Time-lapse MRI was implemented for dynamic non-invasive cell tracking of individual slowly moving intravascular immune cells. Repetitive MRI acquisition enabled dynamic observation of iron oxide nanoparticle (ION) labelled cells. Simulations of MRI contrast indicated that only cells moving slower than 1 µm/s were detectable. Time-lapse MRI of the brain was performed after either IONs or ION-labelled monocytes were injected intravenously into naïve and experimental autoimmune encephalomyelitis (EAE) bearing mice at a presymptomatic or symptomatic stage. EAE mice showed a reduced number of slow moving, i.e. patrolling cells before and after onset of symptoms as compared to naïve controls. This observation is consistent with the notion of altered cell dynamics, i.e. higher velocities of immune cells rolling along the endothelium in the inflamed condition. Thus, time-lapse MRI enables for assessing immune cell dynamics non-invasively in deep tissue and may serve as a tool for detection or monitoring of an inflammatory response.
Collapse
Affiliation(s)
- Max Masthoff
- Translational Research Imaging Center, Department of Clinical Radiology, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149, Muenster, Germany
| | - Sandra Gran
- Institute for Immunology, University of Muenster, Roentgenstraße 21, 48149, Muenster, Germany
| | - Xueli Zhang
- Institute for Physiological Chemistry and Pathobiochemistry, University of Muenster, Waldeyerstraße 15, 48149, Muenster, Germany.,Cells-in-Motion Cluster of Excellence, University of Muenster, Waldeyerstraße 15, 48149, Muenster, Germany
| | - Lydia Wachsmuth
- Translational Research Imaging Center, Department of Clinical Radiology, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149, Muenster, Germany
| | - Michael Bietenbeck
- Translational Research Imaging Center, Department of Clinical Radiology, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149, Muenster, Germany
| | - Anne Helfen
- Translational Research Imaging Center, Department of Clinical Radiology, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149, Muenster, Germany
| | - Walter Heindel
- Translational Research Imaging Center, Department of Clinical Radiology, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149, Muenster, Germany
| | - Lydia Sorokin
- Institute for Physiological Chemistry and Pathobiochemistry, University of Muenster, Waldeyerstraße 15, 48149, Muenster, Germany.,Cells-in-Motion Cluster of Excellence, University of Muenster, Waldeyerstraße 15, 48149, Muenster, Germany
| | - Johannes Roth
- Institute for Immunology, University of Muenster, Roentgenstraße 21, 48149, Muenster, Germany.,Cells-in-Motion Cluster of Excellence, University of Muenster, Waldeyerstraße 15, 48149, Muenster, Germany
| | - Michel Eisenblätter
- Translational Research Imaging Center, Department of Clinical Radiology, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149, Muenster, Germany.,Division of Imaging Sciences & Biomedical Engineering, King's College London, London, UK
| | - Moritz Wildgruber
- Translational Research Imaging Center, Department of Clinical Radiology, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149, Muenster, Germany.,Cells-in-Motion Cluster of Excellence, University of Muenster, Waldeyerstraße 15, 48149, Muenster, Germany
| | - Cornelius Faber
- Translational Research Imaging Center, Department of Clinical Radiology, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149, Muenster, Germany. .,Cells-in-Motion Cluster of Excellence, University of Muenster, Waldeyerstraße 15, 48149, Muenster, Germany.
| |
Collapse
|
17
|
Namestnikova D, Gubskiy I, Kholodenko I, Melnikov P, Sukhinich K, Gabashvili A, Vishnevskiy D, Soloveva A, Abakumov M, Vakhrushev I, Lupatov A, Chekhonin V, Gubsky L, Yarygin K. Methodological aspects of MRI of transplanted superparamagnetic iron oxide-labeled mesenchymal stem cells in live rat brain. PLoS One 2017; 12:e0186717. [PMID: 29049361 PMCID: PMC5648235 DOI: 10.1371/journal.pone.0186717] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 10/08/2017] [Indexed: 12/22/2022] Open
Abstract
In vivo tracking of transplanted mesenchymal stem cells (MSCs) migration and homing is vital for understanding the mechanisms of beneficial effects of MSCs transplantation in animal models of diseases and in clinical trials. Transplanted cells can be labeled with superparamagnetic iron oxide (SPIO) particles and visualized in vivo using a number of iron sensitive MRI techniques. However, the applicability of those techniques for SPIO-labeled MSCs tracking in live brain has not been sufficiently investigated. The goal of this study was to estimate the efficiency of various MRI techniques of SPIO-labeled cell tracing in the brain. To achieve that goal, the precision and specificity of T2WI, T2*WI and SWI (Susceptibility-Weighted Imaging) techniques of SPIO-labeled MSCs tracing in vitro and in live rat brain were for the first time compared in the same experiment. We have shown that SWI presents the most sensitive pulse sequence for SPIO-labeled MSCs MR visualization. After intracerebral administration due to limitations caused by local micro-hemorrhages the visualization threshold was 102 cells, while after intra-arterial transplantation SWI permitted detection of several cells or even single cells. There is just one publication claiming detection of individual SPIO-labeled MSCs in live brain, while the other state much lower sensitivity, describe detection of different cell types or high resolution tracing of MSCs in other tissues. This study confirms the possibility of single cell tracing in live brain and outlines the necessary conditions. SWI is a method convenient for the detection of single SPIO labeled MSCs and small groups of SPIO labeled MSCs in brain tissue and can be appropriate for monitoring migration and homing of transplanted cells in basic and translational neuroscience.
Collapse
Affiliation(s)
| | - Ilya Gubskiy
- Pirogov Russian National Research Medical University, Moscow, Russia
| | | | - Pavel Melnikov
- Pirogov Russian National Research Medical University, Moscow, Russia.,Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Moscow, Russia
| | | | | | | | | | - Maxim Abakumov
- Pirogov Russian National Research Medical University, Moscow, Russia.,National University of Science and Technology, Moscow, Russia
| | | | | | - Vladimir Chekhonin
- Pirogov Russian National Research Medical University, Moscow, Russia.,Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Moscow, Russia
| | - Leonid Gubsky
- Pirogov Russian National Research Medical University, Moscow, Russia
| | | |
Collapse
|
18
|
Yang R, Sarkar S, Korchinski DJ, Wu Y, Yong VW, Dunn JF. MRI monitoring of monocytes to detect immune stimulating treatment response in brain tumor. Neuro Oncol 2017; 19:364-371. [PMID: 27571884 DOI: 10.1093/neuonc/now180] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 07/14/2016] [Indexed: 12/22/2022] Open
Abstract
Background Glioblastoma (GBM) is an aggressive brain cancer with a poor prognosis. The use of immune therapies to treat GBM has become a promising avenue of research. It was shown that amphotericin B (Amp B) can stimulate the innate immune system and suppress the growth of brain tumor initiating cells (BTICs). However, it is not feasible to use histopathology to determine immune activation in patients. We developed an MRI technique that can rapidly detect a therapeutic response in animals treated with drugs that stimulate innate immunity. Ultra-small iron oxide nanoparticles (USPIOs) are MRI contrast agents that have been widely used for cell tracking. We hypothesized that the increased monocyte infiltration into brain tumors due to Amp B can be detected using USPIO-MRI, providing an indicator of early drug response. Methods We implanted human BTICs into severe combined immunodeficient mice and allowed the tumor to establish before treating the animals with either Amp B or vehicle and then imaged them using MRI with USPIO (ferumoxytol) contrast. Results After 7 days of treatment, there was a significantly decreased T2* in the tumor of Amp B but not vehicle animals, suggesting that USPIO is carried into the tumor by monocytes. We validated our MRI results with histopathology and confirmed that Amp B-treated animals had significantly higher levels of macrophage/microglia that were colocalized with iron staining in their brain tumor compared with vehicle mice. Conclusion USPIO-MRI is a promising method of rapidly assessing the efficacy of anticancer drugs that stimulate innate immunity.
Collapse
Affiliation(s)
- Runze Yang
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Susobhan Sarkar
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Daniel J Korchinski
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Ying Wu
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - V Wee Yong
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.,Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jeff F Dunn
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
19
|
Chen T, Mori Y, Inui-Yamamoto C, Komai Y, Tago Y, Yoshida S, Takabatake Y, Isaka Y, Ohno K, Yoshioka Y. Polymer-brush-afforded SPIO Nanoparticles Show a Unique Biodistribution and MR Imaging Contrast in Mouse Organs. Magn Reson Med Sci 2017; 16:275-283. [PMID: 28132997 PMCID: PMC5743518 DOI: 10.2463/mrms.mp.2016-0067] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Introduction: To investigate the biodistribution and retention properties of the new super paramagnetic iron oxide (new SPIO: mean hydrodynamic diameter, 100 nm) nanoparticles, which have concentrated polymer brushes in the outer shell and are difficult for phagocytes to absorb, and to compare the new SPIO with clinically approved SPIO (Resovist: mean hydrodynamic diameter, 57 nm). Materials and Methods: 16 male C57BL/6N mice were divided in two groups according to the administered SPIO (n = 8 for each group; intravenous injection does, 0.1 ml). In vivo magnetic resonance imaging (MRI) was performed before and one hour, one day, one week and four weeks after SPIO administration by two dimensional-the fast low angle shot (2D-FLASH) sequence at 11.7T. Ex vivo high-resolution images of fixed organs were also obtained by (2D-FLASH). After the ex vivo MRI, organs were sectioned and evaluated histologically to confirm the biodistribution of each particle precisely. Results: The new SPIO was taken up in small amounts by liver Kupffer cells and showed a unique in vivo MRI contrast pattern in the kidneys, where the signal intensity decreased substantially in the boundaries between cortex and outer medulla and between outer and inner medulla. We found many round dark spots in the cortex by ex vivo MRI in both groups. Resovist could be detected almost in the cortex. The shapes of the dark spots were similar to those observed in the new SPIO group. Transmission electron microscopy revealed that Resovist and the new SPIO accumulated in different cells of glomeruli, that is, endothelial and mesangial cells, respectively. Conclusion: The new SPIO was taken up in small amounts by liver tissue and showed a unique MRI contrast pattern in the kidney. The SPIO were found in the mesangial cells of renal corpuscles. Our results indicate that the new SPIO may be potentially be used as a new contrast agent for evaluation of kidney function as well as immunune function.
Collapse
Affiliation(s)
- Ting Chen
- Biofunctional Imaging Laboratory, WPI Immunology Frontier Research Center (WPI IFReC), Osaka University.,Functional Imaging Technology, Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT) and Osaka University
| | - Yuki Mori
- Biofunctional Imaging Laboratory, WPI Immunology Frontier Research Center (WPI IFReC), Osaka University.,Functional Imaging Technology, Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT) and Osaka University
| | - Chizuko Inui-Yamamoto
- Biofunctional Imaging Laboratory, WPI Immunology Frontier Research Center (WPI IFReC), Osaka University.,Functional Imaging Technology, Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT) and Osaka University
| | - Yutaka Komai
- Biofunctional Imaging Laboratory, WPI Immunology Frontier Research Center (WPI IFReC), Osaka University
| | - Yoshiyuki Tago
- Biotechnology Development Laboratories, Kaneka Corporation
| | | | | | - Yoshitaka Isaka
- Department of Nephrology, Osaka University Graduate School of Medicine
| | - Kohji Ohno
- Institute for Chemical Research, Kyoto University
| | - Yoshichika Yoshioka
- Biofunctional Imaging Laboratory, WPI Immunology Frontier Research Center (WPI IFReC), Osaka University.,Functional Imaging Technology, Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT) and Osaka University
| |
Collapse
|
20
|
Afridi MJ, Ross A, Liu X, Bennewitz MF, Shuboni DD, Shapiro EM. Intelligent and automatic in vivo detection and quantification of transplanted cells in MRI. Magn Reson Med 2016; 78:1991-2002. [PMID: 28019017 DOI: 10.1002/mrm.26571] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 10/19/2016] [Accepted: 11/16/2016] [Indexed: 12/30/2022]
Abstract
PURPOSE Magnetic resonance imaging (MRI)-based cell tracking has emerged as a useful tool for identifying the location of transplanted cells, and even their migration. Magnetically labeled cells appear as dark contrast in T2*-weighted MRI, with sensitivities of individual cells. One key hurdle to the widespread use of MRI-based cell tracking is the inability to determine the number of transplanted cells based on this contrast feature. In the case of single cell detection, manual enumeration of spots in three-dimensional (3D) MRI in principle is possible; however, it is a tedious and time-consuming task that is prone to subjectivity and inaccuracy on a large scale. This research presents the first comprehensive study on how a computer-based intelligent, automatic, and accurate cell quantification approach can be designed for spot detection in MRI scans. METHODS Magnetically labeled mesenchymal stem cells (MSCs) were transplanted into rats using an intracardiac injection, accomplishing single cell seeding in the brain. T2*-weighted MRI of these rat brains were performed where labeled MSCs appeared as spots. Using machine learning and computer vision paradigms, approaches were designed to systematically explore the possibility of automatic detection of these spots in MRI. Experiments were validated against known in vitro scenarios. RESULTS Using the proposed deep convolutional neural network (CNN) architecture, an in vivo accuracy up to 97.3% and in vitro accuracy of up to 99.8% was achieved for automated spot detection in MRI data. CONCLUSION The proposed approach for automatic quantification of MRI-based cell tracking will facilitate the use of MRI in large-scale cell therapy studies. Magn Reson Med 78:1991-2002, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Muhammad Jamal Afridi
- Department of Computer Science and Engineering, Michigan State University, East Lansing, Michigan, USA
| | - Arun Ross
- Department of Computer Science and Engineering, Michigan State University, East Lansing, Michigan, USA
| | - Xiaoming Liu
- Department of Computer Science and Engineering, Michigan State University, East Lansing, Michigan, USA
| | - Margaret F Bennewitz
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Dorela D Shuboni
- Department of Radiology, Michigan State University, East Lansing, Michigan, USA
| | - Erik M Shapiro
- Department of Radiology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
21
|
Di Cataldo V, Géloën A, Langlois JB, Chauveau F, Thézé B, Hubert V, Wiart M, Chirico EN, Rieusset J, Vidal H, Pialoux V, Canet-Soulas E. Exercise Does Not Protect against Peripheral and Central Effects of a High Cholesterol Diet Given Ad libitum in Old ApoE -/- Mice. Front Physiol 2016; 7:453. [PMID: 27766082 PMCID: PMC5052582 DOI: 10.3389/fphys.2016.00453] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 09/21/2016] [Indexed: 12/15/2022] Open
Abstract
Aim: Advanced atherosclerosis increases inflammation and stroke risk in the cerebral vasculature. Exercise is known to improve cardio-metabolic profiles when associated with a caloric restriction, but it remains debated whether it is still beneficial without the dietary control. The aim of this study was to determine both the peripheral and central effects of exercise training combined with a cholesterol-rich diet given ad libitum in old ApoE−/− mice. Methods: Forty-five-weeks old obese ApoE−/− mice fed with a high cholesterol diet ad libitum were divided into Exercise-trained (EX; running wheel free access) and Sedentary (SED) groups. Insulin tolerance and brain imaging were performed before and after the twelve-weeks training. Tissue insulin resistance, oxidative stress, and inflammation markers in plasma, aorta, and brain were then assessed. Results: In EX ApoE−/− mice, no beneficial effect of exercise was observed on weight, abdominal fat, metabolic parameters, oxidative stress, or inflammation compared to SED. Despite the regular exercise training in ApoE−/− EX mice (mean of 12.5 km/week during 12 weeks), brain inflammation imaging score was significantly associated with increased blood brain barrier (BBB) leakage evaluated by imaging follow-up (r2 = 0.87; p = 0.049) with a faster evolution compared to SED ApoE−/−mice. Conclusion: We conclude that in a context of high cardio-metabolic risk, exercise does not provide any protective effect in old ApoE−/− animals under high cholesterol diet given ad libitum. Peripheral (insulin sensitivity and oxidative/inflammatory status) but also central features (BBB preservation and protection against inflammation) did not show any benefits of exercise. Indeed, there was a fast induction of irreversible brain damage that was more pronounced in exercise-trained ApoE−/− mice.
Collapse
Affiliation(s)
- Vanessa Di Cataldo
- Univ Lyon, CarMeN Laboratory, Institut National de la Santé et de la Recherche Médicale U1060, INRA U1397, Université Lyon 1, INSA Lyon, F-69600 Oullins, France
| | - Alain Géloën
- Univ Lyon, CarMeN Laboratory, Institut National de la Santé et de la Recherche Médicale U1060, INRA U1397, Université Lyon 1, INSA Lyon, F-69600 Oullins, France
| | | | - Fabien Chauveau
- Lyon Neuroscience Research Center, Centre National de la Recherche Scientifique UMR5292, Institut National de la Santé et de la Recherche Médicale, University Lyon 1 Lyon, France
| | - Benoît Thézé
- Laboratoire Imagerie Moléculaire In vivo, UMR 1023 Institut National de la Santé et de la Recherche Médicale /CEA/Université Paris Sud - ERL 9218 Centre National de la Recherche Scientifique, CEA/I2BM/SHFJ Orsay, France
| | - Violaine Hubert
- Centre National de la Recherche Scientifique UMR 5220, Institut National de la Santé et de la Recherche Médicale U.1060 (CREATIS), University Claude Bernard Lyon1 INSA de Lyon, France
| | - Marlène Wiart
- Centre National de la Recherche Scientifique UMR 5220, Institut National de la Santé et de la Recherche Médicale U.1060 (CREATIS), University Claude Bernard Lyon1 INSA de Lyon, France
| | - Erica N Chirico
- University of Lyon, University Lyon 1, Laboratoire Inter-Universitaire de Biologie de la Motricité (EA647) Villeurbanne, France
| | - Jennifer Rieusset
- Univ Lyon, CarMeN Laboratory, Institut National de la Santé et de la Recherche Médicale U1060, INRA U1397, Université Lyon 1, INSA Lyon, F-69600 Oullins, France
| | - Hubert Vidal
- Univ Lyon, CarMeN Laboratory, Institut National de la Santé et de la Recherche Médicale U1060, INRA U1397, Université Lyon 1, INSA Lyon, F-69600 Oullins, France
| | - Vincent Pialoux
- University of Lyon, University Lyon 1, Laboratoire Inter-Universitaire de Biologie de la Motricité (EA647) Villeurbanne, France
| | - Emmanuelle Canet-Soulas
- Univ Lyon, CarMeN Laboratory, Institut National de la Santé et de la Recherche Médicale U1060, INRA U1397, Université Lyon 1, INSA Lyon, F-69600 Oullins, France
| |
Collapse
|
22
|
Jin WN, Yang X, Li Z, Li M, Shi SXY, Wood K, Liu Q, Fu Y, Han W, Xu Y, Shi FD, Liu Q. Non-invasive tracking of CD4+ T cells with a paramagnetic and fluorescent nanoparticle in brain ischemia. J Cereb Blood Flow Metab 2016; 36:1464-76. [PMID: 26661207 PMCID: PMC4971610 DOI: 10.1177/0271678x15611137] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 07/06/2015] [Indexed: 12/31/2022]
Abstract
Recent studies have demonstrated that lymphocytes play a key role in ischemic brain injury. However, there is still a lack of viable approaches to non-invasively track infiltrating lymphocytes and reveal their key spatiotemporal events in the inflamed central nervous system (CNS). Here we describe an in vivo imaging approach for sequential monitoring of brain-infiltrating CD4(+) T cells in experimental ischemic stroke. We show that magnetic resonance imaging (MRI) or Xenogen imaging combined with labeling of SPIO-Molday ION Rhodamine-B (MIRB) can be used to monitor the dynamics of CD4(+) T cells in a passive transfer model. MIRB-labeled CD4(+) T cells can be longitudinally visualized in the mouse brain and peripheral organs such as the spleen and liver after cerebral ischemia. Immunostaining of tissue sections showed similar kinetics of MIRB-labeled CD4(+) T cells when compared with in vivo observations. Our results demonstrated the use of MIRB coupled with in vivo imaging as a valid method to track CD4(+) T cells in ischemic brain injury. This approach will facilitate future investigations to identify the dynamics and key spatiotemporal events for brain-infiltrating lymphocytes in CNS inflammatory diseases.
Collapse
Affiliation(s)
- Wei-Na Jin
- Departments of Neurology, Immunology, Radiology, Key Laboratory of Neurorepair and Regeneration, Tianjin and Ministry of Education, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Xiaoxia Yang
- Departments of Neurology, Immunology, Radiology, Key Laboratory of Neurorepair and Regeneration, Tianjin and Ministry of Education, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhiguo Li
- Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Minshu Li
- Departments of Neurology, Immunology, Radiology, Key Laboratory of Neurorepair and Regeneration, Tianjin and Ministry of Education, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Samuel Xiang-Yu Shi
- Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Kristofer Wood
- Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Qingwei Liu
- Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Ying Fu
- Departments of Neurology, Immunology, Radiology, Key Laboratory of Neurorepair and Regeneration, Tianjin and Ministry of Education, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Wei Han
- Departments of Neurology, Immunology, Radiology, Key Laboratory of Neurorepair and Regeneration, Tianjin and Ministry of Education, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yun Xu
- Department of Neurology, Affiliated Drum Tower Hospital, Nanjing University Medical School; Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing, China
| | - Fu-Dong Shi
- Departments of Neurology, Immunology, Radiology, Key Laboratory of Neurorepair and Regeneration, Tianjin and Ministry of Education, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Qiang Liu
- Departments of Neurology, Immunology, Radiology, Key Laboratory of Neurorepair and Regeneration, Tianjin and Ministry of Education, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| |
Collapse
|
23
|
Yerbury JJ, Ooi L, Dillin A, Saunders DN, Hatters DM, Beart PM, Cashman NR, Wilson MR, Ecroyd H. Walking the tightrope: proteostasis and neurodegenerative disease. J Neurochem 2016; 137:489-505. [DOI: 10.1111/jnc.13575] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 02/03/2016] [Accepted: 02/04/2016] [Indexed: 02/06/2023]
Affiliation(s)
- Justin J. Yerbury
- Proteostasis and Disease Research Centre; School of Biological Sciences; Faculty of Science, Medicine and Health; University of Wollongong; Wollongong New South Wales Australia
- Illawarra Health and Medical Research Institute; Wollongong; New South Wales Australia
| | - Lezanne Ooi
- Proteostasis and Disease Research Centre; School of Biological Sciences; Faculty of Science, Medicine and Health; University of Wollongong; Wollongong New South Wales Australia
- Illawarra Health and Medical Research Institute; Wollongong; New South Wales Australia
| | - Andrew Dillin
- Department of Molecular and Cell Biology; Li Ka Shing Center for Biomedical and Health Sciences; The University of California; California USA
- Howard Hughes Medical Institute; The University of California; Berkeley California USA
| | - Darren N. Saunders
- School of Medical Sciences; Faculty of Medicine; University of New South Wales; Randwick New South Wales Australia
- The Kinghorn Cancer Centre; Garvan Institute of Medical Research; Darlinghurst New South Wales Australia
| | - Danny M. Hatters
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute; University of Melbourne; Parkville Victoria Australia
| | - Philip M. Beart
- Florey Institute of Neuroscience and Mental Health; University of Melbourne; Parkville Victoria Australia
| | - Neil R. Cashman
- Department of Medicine (Neurology); University of British Columbia and Vancouver Coastal Health Research Institute; Brain Research Centre; University of British Columbia; Vancouver British Columbia Canada
| | - Mark R. Wilson
- Proteostasis and Disease Research Centre; School of Biological Sciences; Faculty of Science, Medicine and Health; University of Wollongong; Wollongong New South Wales Australia
- Illawarra Health and Medical Research Institute; Wollongong; New South Wales Australia
| | - Heath Ecroyd
- Proteostasis and Disease Research Centre; School of Biological Sciences; Faculty of Science, Medicine and Health; University of Wollongong; Wollongong New South Wales Australia
- Illawarra Health and Medical Research Institute; Wollongong; New South Wales Australia
| |
Collapse
|
24
|
Choi Y, Huh J, Woo DC, Kim KW. Use of gadoxetate disodium for functional MRI based on its unique molecular mechanism. Br J Radiol 2015; 89:20150666. [PMID: 26693795 DOI: 10.1259/bjr.20150666] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Gadolinium ethoxybenzyl dimeglumine (gadoxetate) is a recently developed hepatocyte-specific MRI contrast medium. Gadoxetate demonstrates unique pharmacokinetic and pharmacodynamic properties, because its uptake in hepatocytes occurs via the organic anion transporting polypeptide (OATP) transporter expressed at the sinusoidal membrane, and its biliary excretion via the multidrug resistance-associated proteins (MRPs) at the canalicular membrane. Based on these characteristics, gadoxetate-enhanced MRI can provide functional information on hepatobiliary diseases, including liver function estimation, biliary drainage evaluation and characterization of hepatocarcinogenesis. In addition, understanding its mode of action can provide an opportunity to use gadoxetate for cellular and molecular imaging. Radiologists and imaging scientists should be familiar with the basic mechanism of gadoxetate and OATP/MRP transporters.
Collapse
Affiliation(s)
- YoonSeok Choi
- 1 Bioimaging Center, Asan Life Science Institution, Asan Medical Centre, Seoul, Republic of Korea
| | - Jimi Huh
- 1 Bioimaging Center, Asan Life Science Institution, Asan Medical Centre, Seoul, Republic of Korea.,2 Department of Radiology, Asan Medical Centre, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Dong-Cheol Woo
- 1 Bioimaging Center, Asan Life Science Institution, Asan Medical Centre, Seoul, Republic of Korea.,2 Department of Radiology, Asan Medical Centre, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Kyung Won Kim
- 1 Bioimaging Center, Asan Life Science Institution, Asan Medical Centre, Seoul, Republic of Korea.,2 Department of Radiology, Asan Medical Centre, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
25
|
Korchinski DJ, Taha M, Yang R, Nathoo N, Dunn JF. Iron Oxide as an MRI Contrast Agent for Cell Tracking. MAGNETIC RESONANCE INSIGHTS 2015; 8:15-29. [PMID: 26483609 PMCID: PMC4597836 DOI: 10.4137/mri.s23557] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 08/17/2015] [Accepted: 08/19/2015] [Indexed: 01/07/2023]
Abstract
Iron oxide contrast agents have been combined with magnetic resonance imaging for cell tracking. In this review, we discuss coating properties and provide an overview of ex vivo and in vivo labeling of different cell types, including stem cells, red blood cells, and monocytes/macrophages. Furthermore, we provide examples of applications of cell tracking with iron contrast agents in stroke, multiple sclerosis, cancer, arteriovenous malformations, and aortic and cerebral aneurysms. Attempts at quantifying iron oxide concentrations and other vascular properties are examined. We advise on designing studies using iron contrast agents including methods for validation.
Collapse
Affiliation(s)
- Daniel J. Korchinski
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - May Taha
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Runze Yang
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Nabeela Nathoo
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jeff F. Dunn
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Experimental Imaging Centre, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,CORRESPONDENCE:
| |
Collapse
|