1
|
Robinson MP, Jung J, Lopez-Barbosa N, Chang M, Li M, Jaroentomeechai T, Cox EC, Zheng X, Berkmen M, DeLisa MP. Isolation of full-length IgG antibodies from combinatorial libraries expressed in the cytoplasm of Escherichia coli. Nat Commun 2023; 14:3514. [PMID: 37316535 PMCID: PMC10267130 DOI: 10.1038/s41467-023-39178-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 06/01/2023] [Indexed: 06/16/2023] Open
Abstract
Here we describe a facile and robust genetic selection for isolating full-length IgG antibodies from combinatorial libraries expressed in the cytoplasm of redox-engineered Escherichia coli cells. The method is based on the transport of a bifunctional substrate comprised of an antigen fused to chloramphenicol acetyltransferase, which allows positive selection of bacterial cells co-expressing cytoplasmic IgGs called cyclonals that specifically capture the chimeric antigen and sequester the antibiotic resistance marker in the cytoplasm. The utility of this approach is first demonstrated by isolating affinity-matured cyclonal variants that specifically bind their cognate antigen, the leucine zipper domain of a yeast transcriptional activator, with subnanomolar affinities, which represent a ~20-fold improvement over the parental IgG. We then use the genetic assay to discover antigen-specific cyclonals from a naïve human antibody repertoire, leading to the identification of lead IgG candidates with affinity and specificity for an influenza hemagglutinin-derived peptide antigen.
Collapse
Affiliation(s)
- Michael-Paul Robinson
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Jinjoo Jung
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Natalia Lopez-Barbosa
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Matthew Chang
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Mingji Li
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Thapakorn Jaroentomeechai
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Emily C Cox
- Biomedical and Biological Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Xiaolu Zheng
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Mehmet Berkmen
- New England Biolabs, 240 County Road, Ipswich, MA, 01938, USA
| | - Matthew P DeLisa
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA.
- Biomedical and Biological Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.
- Cornell Institute of Biotechnology, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
2
|
Taw MN, Boock JT, Sotomayor B, Kim D, Rocco MA, Waraho-Zhmayev D, DeLisa MP. Twin-arginine translocase component TatB performs folding quality control via a chaperone-like activity. Sci Rep 2022; 12:14862. [PMID: 36050356 PMCID: PMC9436932 DOI: 10.1038/s41598-022-18958-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/23/2022] [Indexed: 12/03/2022] Open
Abstract
The twin-arginine translocation (Tat) pathway involves an inbuilt quality control (QC) system that synchronizes the proofreading of substrate protein folding with lipid bilayer transport. However, the molecular details of this QC mechanism remain poorly understood. Here, we hypothesized that the conformational state of Tat substrates is directly sensed by the TatB component of the bacterial Tat translocase. In support of this hypothesis, several TatB variants were observed to form functional translocases in vivo that had compromised QC activity as evidenced by the uncharacteristic export of several misfolded protein substrates. These variants each possessed cytoplasmic membrane-extrinsic domains that were either truncated or mutated in the vicinity of a conserved, highly flexible α-helical domain. In vitro folding experiments revealed that the TatB membrane-extrinsic domain behaved like a general molecular chaperone, transiently binding to highly structured, partially unfolded intermediates of a model protein, citrate synthase, in a manner that prevented its irreversible aggregation and stabilized the active species. Collectively, these results suggest that the Tat translocase may use chaperone-like client recognition to monitor the conformational status of its substrates.
Collapse
Affiliation(s)
- May N Taw
- Department of Microbiology, Cornell University, Ithaca, NY, 14853, USA
| | - Jason T Boock
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, Ithaca, NY, 14853, USA
| | - Belen Sotomayor
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, Ithaca, NY, 14853, USA
| | - Daniel Kim
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, Ithaca, NY, 14853, USA
| | - Mark A Rocco
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Dujduan Waraho-Zhmayev
- Biological Engineering Program, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Matthew P DeLisa
- Department of Microbiology, Cornell University, Ithaca, NY, 14853, USA. .,Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, Ithaca, NY, 14853, USA. .,Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
3
|
Taw MN, Li M, Kim D, Rocco MA, Waraho-Zhmayev D, DeLisa MP. Engineering a Supersecreting Strain of Escherichia coli by Directed Coevolution of the Multiprotein Tat Translocation Machinery. ACS Synth Biol 2021; 10:2947-2958. [PMID: 34757717 DOI: 10.1021/acssynbio.1c00183] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Escherichia coli remains one of the preferred hosts for biotechnological protein production due to its robust growth in culture and ease of genetic manipulation. It is often desirable to export recombinant proteins into the periplasmic space for reasons related to proper disulfide bond formation, prevention of aggregation and proteolytic degradation, and ease of purification. One such system for expressing heterologous secreted proteins is the twin-arginine translocation (Tat) pathway, which has the unique advantage of delivering correctly folded proteins into the periplasm. However, transit times for proteins through the Tat translocase, comprised of the TatABC proteins, are much longer than for passage through the SecYEG pore, the translocase associated with the more widely utilized Sec pathway. To date, a high protein flux through the Tat pathway has yet to be demonstrated. To address this shortcoming, we employed a directed coevolution strategy to isolate mutant Tat translocases for their ability to deliver higher quantities of heterologous proteins into the periplasm. Three supersecreting translocases were selected that each exported a panel of recombinant proteins at levels that were significantly greater than those observed for wild-type TatABC or SecYEG translocases. Interestingly, all three of the evolved Tat translocases exhibited quality control suppression, suggesting that increased translocation flux was gained by relaxation of substrate proofreading. Overall, our discovery of more efficient translocase variants paves the way for the use of the Tat system as a powerful complement to the Sec pathway for secreted production of both commodity and high value-added proteins.
Collapse
Affiliation(s)
- May N. Taw
- Department of Microbiology, Cornell University, Ithaca, New York 14853, United States
| | - Mingji Li
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, Ithaca, New York 14853, United States
| | - Daniel Kim
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, Ithaca, New York 14853, United States
| | - Mark A. Rocco
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, Ithaca, New York 14853, United States
| | - Dujduan Waraho-Zhmayev
- Biological Engineering, Faculty of Engineering, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand
| | - Matthew P. DeLisa
- Department of Microbiology, Cornell University, Ithaca, New York 14853, United States
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, Ithaca, New York 14853, United States
- Cornell Institute of Biotechnology, Cornell University, 130 Biotechnology Building, Ithaca, New York 14853, United States
| |
Collapse
|
4
|
A Complex of LaoA and LaoB Acts as a Tat-Dependent Dehydrogenase for Long-Chain Alcohols in Pseudomonas aeruginosa. Appl Environ Microbiol 2021; 87:e0076221. [PMID: 34085859 DOI: 10.1128/aem.00762-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa can utilize unusual carbon sources, like sodium dodecyl sulfate (SDS) and alkanes. Whereas the initiating enzymatic steps of the corresponding degradation pathways have been characterized in detail, the oxidation of the emerging long-chain alcohols has received little attention. Recently, the genes for the Lao (long-chain-alcohol/aldehyde oxidation) system were discovered to be involved in the oxidation of long-chain alcohols derived from SDS and alkane degradation. In the Lao system, LaoA is predicted to be an alcohol dehydrogenase/oxidase; however, according to genetic studies, efficient long-chain-alcohol oxidation additionally required the Tat-dependent protein LaoB. In the present study, the Lao system was further characterized. In vivo analysis revealed that the Lao system complements the substrate spectrum of the well-described Exa system, which is required for growth with ethanol and other short-chain alcohols. Mutational analysis revealed that the Tat site of LaoB was required for long-chain-alcohol oxidation activity, strongly suggesting a periplasmic localization of the complex. Purified LaoA was fully active only when copurified with LaoB. Interestingly, in vitro activity of the purified LaoAB complex also depended on the presence of the Tat site. The copurified LaoAB complex contained a flavin cofactor and preferentially oxidized a range of saturated, unbranched primary alcohols. Furthermore, the LaoAB complex could reduce cytochrome c550-type redox carriers like ExaB, a subunit of the Exa alcohol dehydrogenase system. LaoAB complex activity was stimulated by rhamnolipids in vitro. In summary, LaoAB constitutes an unprecedented protein complex with specific properties apparently required for oxidizing long-chain alcohols. IMPORTANCE Pseudomonas aeruginosa is a major threat to public health. Its ability to thrive in clinical settings, water distribution systems, or even jet fuel tanks is linked to detoxification and degradation of diverse hydrophobic substrates that are metabolized via alcohol intermediates. Our study illustrates a novel flavoprotein long-chain-alcohol dehydrogenase consisting of a facultative two-subunit complex, which is unique among related enzymes, while the homologs of the corresponding genes are found in numerous bacterial genomes. Understanding the catalytic and compartmentalization processes involved is of great interest for biotechnological and hygiene research, as it may be a potential starting point for rationally designing novel antibacterial substances with high specificity against this opportunistic pathogen.
Collapse
|
5
|
Meksiriporn B, Ludwicki MB, Stephens EA, Jiang A, Lee HC, Waraho-Zhmayev D, Kummer L, Brandl F, Plückthun A, DeLisa MP. A survival selection strategy for engineering synthetic binding proteins that specifically recognize post-translationally phosphorylated proteins. Nat Commun 2019; 10:1830. [PMID: 31015433 PMCID: PMC6478843 DOI: 10.1038/s41467-019-09854-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 03/28/2019] [Indexed: 02/06/2023] Open
Abstract
There is an urgent need for affinity reagents that target phospho-modified sites on individual proteins; however, generating such reagents remains a significant challenge. Here, we describe a genetic selection strategy for routine laboratory isolation of phospho-specific designed ankyrin repeat proteins (DARPins) by linking in vivo affinity capture of a phosphorylated target protein with antibiotic resistance of Escherichia coli cells. The assay is validated using an existing panel of DARPins that selectively bind the nonphosphorylated (inactive) form of extracellular signal-regulated kinase 2 (ERK2) or its doubly phosphorylated (active) form (pERK2). We then use the selection to affinity-mature a phospho-specific DARPin without compromising its selectivity for pERK2 over ERK2 and to reprogram the substrate specificity of the same DARPin towards non-cognate ERK2. Collectively, these results establish our genetic selection as a useful and potentially generalizable protein engineering tool for studying phospho-specific binding proteins and customizing their affinity and selectivity. Protein phosphorylation helps to control many important cellular activities. Here the authors describe a genetic selection strategy to isolate designed ankyrin repeat proteins that bind specifically to phosphomodified targets.
Collapse
Affiliation(s)
- Bunyarit Meksiriporn
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Morgan B Ludwicki
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Erin A Stephens
- Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Allen Jiang
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Hyeon-Cheol Lee
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Dujduan Waraho-Zhmayev
- Biological Engineering Program, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand
| | - Lutz Kummer
- Department of Biochemistry, University of Zürich, 8057, Zürich, Switzerland
| | - Fabian Brandl
- Department of Biochemistry, University of Zürich, 8057, Zürich, Switzerland
| | - Andreas Plückthun
- Department of Biochemistry, University of Zürich, 8057, Zürich, Switzerland
| | - Matthew P DeLisa
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA. .,Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA. .,Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
6
|
LaoABCR, a Novel System for Oxidation of Long-Chain Alcohols Derived from SDS and Alkane Degradation in Pseudomonas aeruginosa. Appl Environ Microbiol 2018; 84:AEM.00626-18. [PMID: 29678916 DOI: 10.1128/aem.00626-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 04/15/2018] [Indexed: 12/20/2022] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa strain PAO1 is able to use a variety of organic pollutants as growth substrates, including the anionic detergent sodium dodecyl sulfate (SDS) and long-chain alkanes. While the enzymes initiating SDS and alkane degradation are well known, the subsequent enzymatic steps for degradation of the derived primary long-chain alcohols have not yet been identified. By evaluating genes specifically induced during growth with SDS, a gene cluster encoding a putative alcohol dehydrogenase (PA0364/LaoA), a probable inner membrane protein (PA0365/LaoB), and a presumable aldehyde dehydrogenase (PA0366/LaoC) was identified and designated the Lao (long-chain-alcohol/aldehyde-oxidation) system. Growth experiments with deletion mutants with SDS, 1-dodecanol, and alkanes revealed that LaoA and LaoB are involved in the degradation of primary long-chain alcohols. Moreover, detection of 1-dodecanol oxidation in cell extracts by activity staining revealed an interdependency of LaoA and LaoB for efficient 1-dodecanol oxidation. An in silico analysis yielded no well-characterized homologue proteins for LaoA and LaoB. Furthermore, a gene adjacent to the lao gene cluster encodes a putative transcriptional regulator (PA0367/LaoR). A laoR deletion mutant exhibited constitutive expression of LaoA and LaoB, indicating that LaoR is a repressor for the expression of laoABC Taken together, these results showed that the proteins LaoA and LaoB constitute a novel oxidation system for long-chain alcohols derived from pollutants.IMPORTANCE The versatile and highly adaptive bacterium Pseudomonas aeruginosa is able to colonize a variety of habitats, including anthropogenic environments, where it is often challenged with toxic compounds. Its ability to degrade such compounds and to use them as growth substrates can significantly enhance spreading of this opportunistic pathogen in hygienic settings, such as clinics or water distribution systems. Thus, knowledge about the metabolism of P. aeruginosa can contribute to novel approaches for preventing its growth and reducing nosocomial infections. As the Lao system is important for the degradation of two different classes of pollutants, the identification of these novel enzymes can be a useful contribution for developing effective antibacterial strategies.
Collapse
|
7
|
Ren G, Ke N, Berkmen M. Use of the SHuffle Strains in Production of Proteins. ACTA ACUST UNITED AC 2016; 85:5.26.1-5.26.21. [PMID: 27479507 DOI: 10.1002/cpps.11] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Escherichia coli continues to be a popular expression host for the production of proteins, yet successful recombinant expression of active proteins to high yields remains a trial and error process. This is mainly due to decoupling of the folding factors of a protein from its native host, when expressed recombinantly in E. coli. Failure to fold could be due to many reasons but is often due to lack of post-translational modifications that are absent in E. coli. One such post-translational modification is the formation of disulfide bonds, a common feature of secreted proteins. The genetically engineered SHuffle cells offer an expression solution to proteins that require disulfide bonds for their folding and activity. The purpose of this protocol unit is to familiarize the researcher with the biology of SHuffle cells and guide the experimental design in order to optimize and increase the chances of successful expression of their desired protein of choice. Example of the expression and purification of a model disulfide-bonded protein DsbC is described in detail. © 2016 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
| | - Na Ke
- New England Biolabs, Ipswich, Massachusetts
| | | |
Collapse
|