1
|
Dong X, Xiang Y, Li L, Zhang Y, Wu T. Genomic insights into the rapid rise of Pseudomonas aeruginosa ST463: A high-risk lineage's adaptive strategy in China. Virulence 2025; 16:2497901. [PMID: 40320374 PMCID: PMC12051580 DOI: 10.1080/21505594.2025.2497901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/19/2024] [Accepted: 04/17/2025] [Indexed: 05/08/2025] Open
Abstract
High-risk lineages of Pseudomonas aeruginosa pose a serious threat to public health, causing severe infections with high mortality rates and limited treatment options. The emergence and rapid spread of the high-risk lineage ST463 in China have further exacerbated this issue. However, the basis of its success in China remains unidentified. In this study, we analyzed a comprehensive dataset of ST463 strains from 2000 to 2023 using whole genome sequencing to unravel the epidemiological characteristics, evolutionary trajectory, and antibiotic resistance profiles. Our findings suggest that ST463 likely originated from a single introduction from North America in 2007, followed by widespread domestic dissemination. Since its introduction, the lineage has undergone significant genomic changes, including the acquisition of three unique regions that enhanced its metabolism and adaptability. Frequent recombination events, along with the burden of bacteriophages, antibiotic resistance genes, and the spread of c1-type (blaKPC-2) plasmid-carrying strains, have played crucial roles in its expansion in China. Mutation analysis reveals adaptive responses to antibiotics and selective pressures on key virulence factors, indicating that ST463 is evolving toward a more pathogenic lifestyle.
Collapse
Affiliation(s)
- Xu Dong
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanghui Xiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
| | - Tiantian Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
2
|
Choudhury ST, Piper KR, Montoya-Giraldo M, Ikhimiukor OO, Dettman JR, Kassen R, Andam CP. Heterogeneity in recombination rates and accessory gene co-occurrence distinguish Pseudomonas aeruginosa phylogroups. mSystems 2025; 10:e0030125. [PMID: 40304385 PMCID: PMC12090758 DOI: 10.1128/msystems.00301-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Accepted: 04/07/2025] [Indexed: 05/02/2025] Open
Abstract
Pseudomonas aeruginosa (class Gammaproteobacteria) is a ubiquitous, ecologically widespread, and metabolically versatile species. It is also an opportunistic pathogen that causes a variety of chronic and acute infections in humans. Its ability to thrive in diverse environments and exhibit a wide range of phenotypes lies in part on its large gene pool, but the processes that govern inter-strain genomic variation remain unclear. Here, we aim to characterize the recombination features and accessory genome structure of P. aeruginosa using 840 globally distributed genome sequences. The species can be subdivided into five phylogenetic sequence clusters (corresponding to known phylogroups), two of which are most prominent. Notable epidemic clones are found in the two phylogroups: ST17, ST111, ST146, ST274, and ST395 in phylogroup 1, and ST235 and ST253 in phylogroup 2. The two phylogroups differ in the frequency and characteristics of homologous recombination in their core genomes, including the specific genes that most frequently recombine and the impact of recombination on sequence diversity. Each phylogroup's accessory genome is characterized by a unique gene pool, co-occurrence networks of shared genes, and anti-phage defense systems. Different pools of antimicrobial resistance and virulence genes exist in the two phylogroups and display dissimilar patterns of co-occurrence. Altogether, our results indicate that each phylogroup displays distinct histories and patterns of acquiring exogenous DNA, which may contribute in part to their predominance in the global population. Our study has important implications for understanding the genome dynamics, within-species heterogeneity, and clinically relevant traits of P. aeruginosa. IMPORTANCE The consummate opportunist Pseudomonas aeruginosa inhabits many nosocomial and non-clinical environments, posing a major health burden worldwide. Our study reveals phylogroup-specific differences in recombination features and co-occurrence networks of accessory genes within the species. This genomic variation partly explains its remarkable ability to exhibit diverse ecological and phenotypic traits, and thus contribute to circumventing clinical and public health intervention strategies to contain it. Our results may help inform efforts to control and prevent P. aeruginosa diseases, including managing transmission, therapeutic efforts, and pathogen circulation in non-clinical environmental reservoirs.
Collapse
Affiliation(s)
- Samara T. Choudhury
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, USA
| | - Kathryn R. Piper
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, USA
| | - Manuela Montoya-Giraldo
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, USA
| | - Odion O. Ikhimiukor
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, USA
| | - Jeremy R. Dettman
- Ottawa Research and Development Centre, Agriculture & Agri-Food Canada, Ottawa, Ontario, Canada
| | - Rees Kassen
- Department of Biology, McGill University, Montreal, Québec, Canada
| | - Cheryl P. Andam
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, USA
| |
Collapse
|
3
|
Troshin K, Sykilinda N, Shuraleva S, Tokmakova A, Tkachenko N, Kurochkina L, Miroshnikov K, Suzina N, Brzhozovskaya E, Petrova K, Toshchakov S, Evseev P. Pseudomonas Phage Lydia and the Evolution of the Mesyanzhinovviridae Family. Viruses 2025; 17:369. [PMID: 40143297 PMCID: PMC11946847 DOI: 10.3390/v17030369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 02/28/2025] [Accepted: 03/02/2025] [Indexed: 03/28/2025] Open
Abstract
Phage Lydia, a newly isolated siphovirus infecting Pseudomonas aeruginosa, was characterized with respect to its basic kinetic properties and subjected to comparative bioinformatic analysis with related phages. The phage exhibited a restricted host range, with lytic activity observed against 7 of 30 tested isolates. The genome of phage Lydia consists of a 61,986 bp dsDNA molecule and contains 89 predicted genes. Bioinformatic analysis suggests the presence of a DNA modification system, but no apparent genes associated with lysogeny or antibiotic resistance were identified. Taxonomic classification places Lydia within the Mesyanzhinovviridae family, Rabinowitzvirinae subfamily, and Yuavirus genus, with the closest relation to Pseudomonas virus M6. Comprehensive bioinformatic studies, including structural modelling and analysis of phage proteins, as well as comparative taxonomic, phylogenomic, and pangenomic analyses of the Mesyanzhinovviridae family, revealed relationships between proteins of Mesyanzhinovviridae phages, proteins from other phage groups, encapsulins, and a gene transfer agent (GTA) particle from Rhodobacter capsulatus. These analyses uncovered patterns of evolutionary history within the family, characterized by genetic exchange events alongside the maintenance of a common genomic architecture, leading to the emergence of new groups within the family.
Collapse
Affiliation(s)
- Konstantin Troshin
- Laboratory of Molecular Microbiology, Pirogov Russian National Research Medical University, Ostrovityanova 1, 117997 Moscow, Russia; (K.T.); (S.S.); (N.T.); (E.B.)
| | - Nina Sykilinda
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, 117997 Moscow, Russia; (N.S.); (A.T.); (K.M.)
| | - Sofia Shuraleva
- Laboratory of Molecular Microbiology, Pirogov Russian National Research Medical University, Ostrovityanova 1, 117997 Moscow, Russia; (K.T.); (S.S.); (N.T.); (E.B.)
| | - Anna Tokmakova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, 117997 Moscow, Russia; (N.S.); (A.T.); (K.M.)
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592 Moscow, Russia
| | - Nikolay Tkachenko
- Laboratory of Molecular Microbiology, Pirogov Russian National Research Medical University, Ostrovityanova 1, 117997 Moscow, Russia; (K.T.); (S.S.); (N.T.); (E.B.)
| | - Lidia Kurochkina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1 Bld 40, 119991 Moscow, Russia;
| | - Konstantin Miroshnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, 117997 Moscow, Russia; (N.S.); (A.T.); (K.M.)
| | - Natalia Suzina
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Center for Biological Research of the Russian Academy of Sciences”, Prosp. Nauki 5, 142290 Pushchino, Russia;
| | - Ekaterina Brzhozovskaya
- Laboratory of Molecular Microbiology, Pirogov Russian National Research Medical University, Ostrovityanova 1, 117997 Moscow, Russia; (K.T.); (S.S.); (N.T.); (E.B.)
| | - Kristina Petrova
- Center for Genome Research, National Research Center “Kurchatov Institute”, Kurchatov Sq. 1, 123098 Moscow, Russia (S.T.)
| | - Stepan Toshchakov
- Center for Genome Research, National Research Center “Kurchatov Institute”, Kurchatov Sq. 1, 123098 Moscow, Russia (S.T.)
| | - Peter Evseev
- Laboratory of Molecular Microbiology, Pirogov Russian National Research Medical University, Ostrovityanova 1, 117997 Moscow, Russia; (K.T.); (S.S.); (N.T.); (E.B.)
| |
Collapse
|
4
|
Buchholtz K, Jønsson R, Marvig RL, Mojsoska B, Krogfelt KA. Chronic wounds and adaptive Pseudomonas aeruginosa: A phenotypic and genotypic characterization. CURRENT RESEARCH IN MICROBIAL SCIENCES 2025; 8:100348. [PMID: 40027448 PMCID: PMC11868952 DOI: 10.1016/j.crmicr.2025.100348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025] Open
Abstract
Phenotypic and genetic diversity is found in varying prevalence in clinical populations where beneficial adaptations enable the bacteria to avoid recognition and eradication by the host immune system. This study aimed to investigate the presence of Pseudomonas aeruginosa in chronic venous leg ulcers wounds over an 8-week time course. This was performed using genomic and phenotypic approaches to understand the survival and persistence of Pseudomonas strains. The findings of this study show that the two patients were colonized with a recurring P. aeruginosa genotype with only minor phenotypic differences and few SNP differences, suggesting that the Pseudomonas isolates present in the wound can survive and proliferate in the host's hostile environment. The results provided from this study will allow us to understand P. aeruginosa colonization during a 8 week time period.
Collapse
Affiliation(s)
| | - Rie Jønsson
- Department of Science and Environment, Roskilde University, Denmark
| | - Rasmus L. Marvig
- Department of Genomic Medicine, Rigshospitalet, Copenhagen, Denmark
| | - Biljana Mojsoska
- Department of Science and Environment, Roskilde University, Denmark
| | | |
Collapse
|
5
|
Marin J, Walewski V, Braun T, Dziri S, Magnan M, Denamur E, Carbonnelle E, Bridier-Nahmias A. Genomic evidence of Escherichia coli gut population diversity translocation in leukemia patients. mSphere 2024; 9:e0053024. [PMID: 39365076 PMCID: PMC11520291 DOI: 10.1128/msphere.00530-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/09/2024] [Indexed: 10/05/2024] Open
Abstract
Escherichia coli, a commensal species of the human gut, is an opportunistic pathogen that can reach extra-intestinal compartments, including the bloodstream and the bladder, among others. In non-immunosuppressed patients, purifying or neutral evolution of E. coli populations has been reported in the gut. Conversely, it has been suggested that when migrating to extra-intestinal compartments, E. coli genomes undergo diversifying selection as supported by strong evidence for adaptation. The level of genomic polymorphism and the size of the populations translocating from gut to extra-intestinal compartments is largely unknown. To gain insights into the pathophysiology of these translocations, we investigated the level of polymorphism and the evolutionary forces acting on the genomes of 77 E. coli isolated from various compartments in three immunosuppressed patients. Each patient had a unique strain, which was a mutator in one case. In all instances, we observed that translocation encompasses much of the genomic diversity present in the gut. The same signature of selection, whether purifying or diversifying, and as anticipated, neutral for mutator isolates, was observed in both the gut and bloodstream. Additionally, we found a limited number of non-specific mutations among compartments for non-mutator isolates. In all cases, urine isolates were dominated by neutral selection. These findings indicate that substantial proportions of populations are undergoing translocation and that they present a complex compartment-specific pattern of selection at the patient level.IMPORTANCEIt has been suggested that intra and extra-intestinal compartments differentially constrain the evolution of E. coli strains. Whether host particular conditions, such as immunosuppression, could affect the strain evolutionary trajectories remains understudied. We found that, in immunosuppressed patients, large fractions of E. coli gut populations are translocating with variable modifications of the signature of selection for commensal and pathogenic isolates according to the compartment and/or the patient. Such multiple site sampling should be performed in large cohorts of patients to gain a better understanding of E. coli extra-intestinal diseases.
Collapse
Affiliation(s)
- Julie Marin
- Université Sorbonne Paris Nord, INSERM, IAME, Bobigny, France
| | - Violaine Walewski
- APHP, HUPSSD, Hôpital Avicenne, Service de Microbiologie clinique, Bobigny, France
| | - Thorsten Braun
- Université Sorbonne Paris Nord, INSERM, IAME, Bobigny, France
- APHP, HUPSSD, Hôpital Avicenne, Service de Microbiologie clinique, Bobigny, France
| | - Samira Dziri
- APHP, HUPSSD, Hôpital Avicenne, Service de Microbiologie clinique, Bobigny, France
| | - Mélanie Magnan
- Université Paris Cité, INSERM, IAME, and APHP, Hôpital Bichat, Laboratoire de Génétique Moléculaire, Paris, France
| | - Erick Denamur
- Université Paris Cité, INSERM, IAME, and APHP, Hôpital Bichat, Laboratoire de Génétique Moléculaire, Paris, France
| | - Etienne Carbonnelle
- Université Sorbonne Paris Nord, INSERM, IAME, Bobigny, France
- APHP, HUPSSD, Hôpital Avicenne, Service de Microbiologie clinique, Bobigny, France
| | - Antoine Bridier-Nahmias
- Université Paris Cité, INSERM, IAME, and APHP, Hôpital Bichat, Laboratoire de Génétique Moléculaire, Paris, France
| |
Collapse
|
6
|
Ragupathi H, Pushparaj MM, Gopi SM, Govindarajan DK, Kandaswamy K. Biofilm matrix: a multifaceted layer of biomolecules and a defensive barrier against antimicrobials. Arch Microbiol 2024; 206:432. [PMID: 39402397 DOI: 10.1007/s00203-024-04157-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/24/2024] [Accepted: 10/03/2024] [Indexed: 11/10/2024]
Abstract
Bacterial cells often exist in the form of sessile aggregates known as biofilms, which are polymicrobial in nature and can produce slimy Extracellular Polymeric Substances (EPS). EPS is often referred to as a biofilm matrix and is a heterogeneous mixture of various biomolecules such as polysaccharides, proteins, and extracellular DNA/RNA (eDNA/RNA). In addition, bacteriophage (phage) was also found to be an integral component of the matrix and can serve as a protective barrier. In recent years, the roles of proteins, polysaccharides, and phages in the virulence of biofilms have been well studied. However, a mechanistic understanding of the release of such biomolecules and their interactions with antimicrobials requires a thorough review. Therefore, this article critically reviews the various mechanisms of release of matrix polymers. In addition, this article also provides a contemporary understanding of interactions between various biomolecules to protect biofilms against antimicrobials. In summary, this article will provide a thorough understanding of the functions of various biofilm matrix molecules.
Collapse
Affiliation(s)
- Harini Ragupathi
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, Tamil Nadu, 641049, India
| | - Mahamahima Muthuswamy Pushparaj
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, Tamil Nadu, 641049, India
| | - Sarves Mani Gopi
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, Tamil Nadu, 641049, India
| | - Deenadayalan Karaiyagowder Govindarajan
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore, Singapore
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Drive, 637371, Singapore, Singapore
| | - Kumaravel Kandaswamy
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, Tamil Nadu, 641049, India.
| |
Collapse
|
7
|
Suttenfield LC, Rapti Z, Chandrashekhar JH, Steinlein AC, Vera JC, Kim T, Whitaker RJ. Phage-mediated resolution of genetic conflict alters the evolutionary trajectory of Pseudomonas aeruginosa lysogens. mSystems 2024; 9:e0080124. [PMID: 39166874 PMCID: PMC11406979 DOI: 10.1128/msystems.00801-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 07/17/2024] [Indexed: 08/23/2024] Open
Abstract
The opportunistic human pathogen Pseudomonas aeruginosa is naturally infected by a large class of temperate, transposable, Mu-like phages. We examined the genotypic and phenotypic diversity of P. aeruginosa PA14 lysogen populations as they resolve clustered regularly interspaced short palindromic repeat (CRISPR) autoimmunity, mediated by an imperfect CRISPR match to the Mu-like DMS3 prophage. After 12 days of evolution, we measured a decrease in spontaneous induction in both exponential and stationary phase growth. Co-existing variation in spontaneous induction rates in the exponential phase depended on the way the coexisting strains resolved genetic conflict. Multiple mutational modes to resolve genetic conflict between host and phage resulted in coexistence in evolved populations of single lysogens that maintained CRISPR immunity to other phages and polylysogens that lost immunity completely. This work highlights a new dimension of the role of lysogenic phages in the evolution of their hosts.IMPORTANCEThe chronic opportunistic multi-drug-resistant pathogen Pseudomonas aeruginosa is persistently infected by temperate phages. We assess the contribution of temperate phage infection to the evolution of the clinically relevant strain UCBPP-PA14. We found that a low level of clustered regularly interspaced short palindromic repeat (CRISPR)-mediated self-targeting resulted in polylysogeny evolution and large genome rearrangements in lysogens; we also found extensive diversification in CRISPR spacers and cas genes. These genomic modifications resulted in decreased spontaneous induction in both exponential and stationary phase growth, increasing lysogen fitness. This work shows the importance of considering latent phage infection in characterizing the evolution of bacterial populations.
Collapse
Affiliation(s)
- Laura C Suttenfield
- Department of Microbiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Zoi Rapti
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Jayadevi H Chandrashekhar
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Amelia C Steinlein
- Department of Microbiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Juan Cristobal Vera
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Ted Kim
- Department of Microbiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Rachel J Whitaker
- Department of Microbiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
8
|
Greenwald MA, Meinig SL, Plott LM, Roca C, Higgs MG, Vitko NP, Markovetz MR, Rouillard KR, Carpenter J, Kesimer M, Hill DB, Schisler JC, Wolfgang MC. Mucus polymer concentration and in vivo adaptation converge to define the antibiotic response of Pseudomonas aeruginosa during chronic lung infection. mBio 2024; 15:e0345123. [PMID: 38651896 PMCID: PMC11237767 DOI: 10.1128/mbio.03451-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/26/2024] [Indexed: 04/25/2024] Open
Abstract
The airway milieu of individuals with muco-obstructive airway diseases (MADs) is defined by the accumulation of dehydrated mucus due to hyperabsorption of airway surface liquid and defective mucociliary clearance. Pathological mucus becomes progressively more viscous with age and disease severity due to the concentration and overproduction of mucin and accumulation of host-derived extracellular DNA (eDNA). Respiratory mucus of MADs provides a niche for recurrent and persistent colonization by respiratory pathogens, including Pseudomonas aeruginosa, which is responsible for the majority of morbidity and mortality in MADs. Despite high concentration inhaled antibiotic therapies and the absence of antibiotic resistance, antipseudomonal treatment failure in MADs remains a significant clinical challenge. Understanding the drivers of antibiotic tolerance is essential for developing more effective treatments that eradicate persistent infections. The complex and dynamic environment of diseased airways makes it difficult to model antibiotic efficacy in vitro. We aimed to understand how mucin and eDNA concentrations, the two dominant polymers in respiratory mucus, alter the antibiotic tolerance of P. aeruginosa. Our results demonstrate that polymer concentration and molecular weight affect P. aeruginosa survival post antibiotic challenge. Polymer-driven antibiotic tolerance was not explicitly associated with reduced antibiotic diffusion. Lastly, we established a robust and standardized in vitro model for recapitulating the ex vivo antibiotic tolerance of P. aeruginosa observed in expectorated sputum across age, underlying MAD etiology, and disease severity, which revealed the inherent variability in intrinsic antibiotic tolerance of host-evolved P. aeruginosa populations. IMPORTANCE Antibiotic treatment failure in Pseudomonas aeruginosa chronic lung infections is associated with increased morbidity and mortality, illustrating the clinical challenge of bacterial infection control. Understanding the underlying infection environment, as well as the host and bacterial factors driving antibiotic tolerance and the ability to accurately recapitulate these factors in vitro, is crucial for improving antibiotic treatment outcomes. Here, we demonstrate that increasing concentration and molecular weight of mucin and host eDNA drive increased antibiotic tolerance to tobramycin. Through systematic testing and modeling, we identified a biologically relevant in vitro condition that recapitulates antibiotic tolerance observed in ex vivo treated sputum. Ultimately, this study revealed a dominant effect of in vivo evolved bacterial populations in defining inter-subject ex vivo antibiotic tolerance and establishes a robust and translatable in vitro model for therapeutic development.
Collapse
Affiliation(s)
- Matthew A Greenwald
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Suzanne L Meinig
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Lucas M Plott
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Cristian Roca
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Matthew G Higgs
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Nicholas P Vitko
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Matthew R Markovetz
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Kaitlyn R Rouillard
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Jerome Carpenter
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Mehmet Kesimer
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, USA
| | - David B Hill
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, USA
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Jonathan C Schisler
- Department of Pharmacology, The University of North Carolina, Chapel Hill, North Carolina, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Matthew C Wolfgang
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
9
|
Islam MM, Kolling GL, Glass EM, Goldberg JB, Papin JA. Model-driven characterization of functional diversity of Pseudomonas aeruginosa clinical isolates with broadly representative phenotypes. Microb Genom 2024; 10:001259. [PMID: 38836744 PMCID: PMC11261902 DOI: 10.1099/mgen.0.001259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 05/20/2024] [Indexed: 06/06/2024] Open
Abstract
Pseudomonas aeruginosa is a leading cause of infections in immunocompromised individuals and in healthcare settings. This study aims to understand the relationships between phenotypic diversity and the functional metabolic landscape of P. aeruginosa clinical isolates. To better understand the metabolic repertoire of P. aeruginosa in infection, we deeply profiled a representative set from a library of 971 clinical P. aeruginosa isolates with corresponding patient metadata and bacterial phenotypes. The genotypic clustering based on whole-genome sequencing of the isolates, multilocus sequence types, and the phenotypic clustering generated from a multi-parametric analysis were compared to each other to assess the genotype-phenotype correlation. Genome-scale metabolic network reconstructions were developed for each isolate through amendments to an existing PA14 network reconstruction. These network reconstructions show diverse metabolic functionalities and enhance the collective P. aeruginosa pangenome metabolic repertoire. Characterizing this rich set of clinical P. aeruginosa isolates allows for a deeper understanding of the genotypic and metabolic diversity of the pathogen in a clinical setting and lays a foundation for further investigation of the metabolic landscape of this pathogen and host-associated metabolic differences during infection.
Collapse
Affiliation(s)
- Mohammad Mazharul Islam
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22903, USA
| | - Glynis L. Kolling
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22903, USA
| | - Emma M. Glass
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22903, USA
| | | | - Jason A. Papin
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22903, USA
| |
Collapse
|
10
|
Jiang B, Qiu H, Lu C, Lu M, Li Y, Dai W. Uncovering the GacS-mediated role in evolutionary progression through trajectory reconstruction in Pseudomonas aeruginosa. Nucleic Acids Res 2024; 52:3856-3869. [PMID: 38477346 DOI: 10.1093/nar/gkae187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/23/2024] [Accepted: 03/05/2024] [Indexed: 03/14/2024] Open
Abstract
The genetic diversities of subpopulations drive the evolution of pathogens and affect their ability to infect hosts and cause diseases. However, most studies to date have focused on the identification and characterization of adaptive mutations in single colonies, which do not accurately reflect the phenotypes of an entire population. Here, to identify the composition of variant subpopulations within a pathogen population, we developed a streamlined approach that combines high-throughput sequencing of the entire population cells with genotyping of single colonies. Using this method, we reconstructed a detailed quorum-sensing (QS) evolutionary trajectory in Pseudomonas aeruginosa. Our results revealed a new adaptive mutation in the gacS gene, which codes for a histidine kinase sensor of a two-component system (TCS), during QS evolution. This mutation reduced QS activity, allowing the variant to sweep throughout the whole population, while still being vulnerable to invasion by the emerging QS master regulator LasR-null mutants. By tracking the evolutionary trajectory, we found that mutations in gacS facilitated QS-rewiring in the LasR-null mutant. This rapid QS revertant caused by inactive GacS was found to be associated with the promotion of ribosome biogenesis and accompanied by a trade-off of reduced bacterial virulence on host cells. In conclusion, our findings highlight the crucial role of the global regulator GacS in modulating the progression of QS evolution and the virulence of the pathogen population.
Collapse
Affiliation(s)
- Bo Jiang
- Integrative Microbiology Research Center, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Huifang Qiu
- Integrative Microbiology Research Center, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Chenghui Lu
- Integrative Microbiology Research Center, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Mingqi Lu
- Integrative Microbiology Research Center, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Yuanhao Li
- Integrative Microbiology Research Center, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Weijun Dai
- Integrative Microbiology Research Center, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
11
|
Vanderwoude J, Azimi S, Read TD, Diggle SP. The role of hypermutation and collateral sensitivity in antimicrobial resistance diversity of Pseudomonas aeruginosa populations in cystic fibrosis lung infection. mBio 2024; 15:e0310923. [PMID: 38171021 PMCID: PMC10865868 DOI: 10.1128/mbio.03109-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen which causes chronic, drug-resistant lung infections in cystic fibrosis (CF) patients. In this study, we explore the role of genomic diversification and evolutionary trade-offs in antimicrobial resistance (AMR) diversity within P. aeruginosa populations sourced from CF lung infections. We analyzed 300 clinical isolates from four CF patients (75 per patient) and found that genomic diversity is not a consistent indicator of phenotypic AMR diversity. Remarkably, some genetically less diverse populations showed AMR diversity comparable to those with significantly more genetic variation. We also observed that hypermutator strains frequently exhibited increased sensitivity to antimicrobials, contradicting expectations from their treatment histories. Investigating potential evolutionary trade-offs, we found no substantial evidence of collateral sensitivity among aminoglycoside, beta-lactam, or fluoroquinolone antibiotics, nor did we observe trade-offs between AMR and growth in conditions mimicking CF sputum. Our findings suggest that (i) genomic diversity is not a prerequisite for phenotypic AMR diversity, (ii) hypermutator populations may develop increased antimicrobial sensitivity under selection pressure, (iii) collateral sensitivity is not a prominent feature in CF strains, and (iv) resistance to a single antibiotic does not necessarily lead to significant fitness costs. These insights challenge prevailing assumptions about AMR evolution in chronic infections, emphasizing the complexity of bacterial adaptation during infection.IMPORTANCEUpon infection in the cystic fibrosis (CF) lung, Pseudomonas aeruginosa rapidly acquires genetic mutations, especially in genes involved in antimicrobial resistance (AMR), often resulting in diverse, treatment-resistant populations. However, the role of bacterial population diversity within the context of chronic infection is still poorly understood. In this study, we found that hypermutator strains of P. aeruginosa in the CF lung undergoing treatment with tobramycin evolved increased sensitivity to tobramycin relative to non-hypermutators within the same population. This finding suggests that antimicrobial treatment may only exert weak selection pressure on P. aeruginosa populations in the CF lung. We further found no evidence for collateral sensitivity in these clinical populations, suggesting that collateral sensitivity may not be a robust, naturally occurring phenomenon for this microbe.
Collapse
Affiliation(s)
- Jelly Vanderwoude
- Center for Microbial Dynamics and Infection, School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Sheyda Azimi
- Center for Microbial Dynamics and Infection, School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- Department of Biology, College of Arts and Sciences, Georgia State University, Atlanta, Georgia, USA
| | - Timothy D. Read
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Stephen P. Diggle
- Center for Microbial Dynamics and Infection, School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
12
|
Greenwald MA, Meinig SL, Plott LM, Roca C, Higgs MG, Vitko NP, Markovetz MR, Rouillard KR, Carpenter J, Kesimer M, Hill DB, Schisler JC, Wolfgang MC. Mucus polymer concentration and in vivo adaptation converge to define the antibiotic response of Pseudomonas aeruginosa during chronic lung infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.20.572620. [PMID: 38187602 PMCID: PMC10769284 DOI: 10.1101/2023.12.20.572620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The airway milieu of individuals with muco-obstructive airway diseases (MADs) is defined by the accumulation of dehydrated mucus due to hyperabsorption of airway surface liquid and defective mucociliary clearance. Pathological mucus becomes progressively more viscous with age and disease severity due to the concentration and overproduction of mucin and accumulation of host-derived extracellular DNA (eDNA). Respiratory mucus of MADs provides a niche for recurrent and persistent colonization by respiratory pathogens, including Pseudomonas aeruginosa , which is responsible for the majority of morbidity and mortality in MADs. Despite high concentration inhaled antibiotic therapies and the absence of antibiotic resistance, antipseudomonal treatment failure in MADs remains a significant clinical challenge. Understanding the drivers of antibiotic recalcitrance is essential for developing more effective treatments that eradicate persistent infections. The complex and dynamic environment of diseased airways makes it difficult to model antibiotic efficacy in vitro . We aimed to understand how mucin and eDNA concentrations, the two dominant polymers in respiratory mucus, alter the antibiotic tolerance of P. aeruginosa . Our results demonstrate that polymer concentration and molecular weight affect P. aeruginosa survival post antibiotic challenge. Polymer-driven antibiotic tolerance was not explicitly associated with reduced antibiotic diffusion. Lastly, we established a robust and standardized in vitro model for recapitulating the ex vivo antibiotic tolerance of P. aeruginosa observed in expectorated sputum across age, underlying MAD etiology, and disease severity, which revealed the inherent variability in intrinsic antibiotic tolerance of host-evolved P. aeruginosa populations. Importance Antibiotic treatment failure in Pseudomonas aeruginosa chronic lung infections is associated with increased morbidity and mortality, illustrating the clinical challenge of bacterial infection control. Understanding the underlying infection environment, as well as the host and bacterial factors driving antibiotic tolerance and the ability to accurately recapitulate these factors in vitro , is crucial for improving antibiotic treatment outcomes. Here, we demonstrate that increasing concentration and molecular weight of mucin and host eDNA drive increased antibiotic tolerance to tobramycin. Through systematic testing and modeling, we identified a biologically relevant in vitro condition that recapitulates antibiotic tolerance observed in ex vivo treated sputum. Ultimately, this study revealed a dominant effect of in vivo evolved bacterial populations in defining inter-subject ex vivo antibiotic tolerance and establishes a robust and translatable in vitro model for therapeutic development.
Collapse
|
13
|
Mei M, Pheng P, Kurzeja-Edwards D, Diggle SP. High prevalence of lipopolysaccharide mutants and R2-pyocin susceptible variants in Pseudomonas aeruginosa populations sourced from cystic fibrosis lung infections. Microbiol Spectr 2023; 11:e0177323. [PMID: 37877708 PMCID: PMC10714928 DOI: 10.1128/spectrum.01773-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 09/15/2023] [Indexed: 10/26/2023] Open
Abstract
IMPORTANCE Cystic fibrosis (CF) patients often experience chronic, debilitating lung infections caused by antibiotic-resistant Pseudomonas aeruginosa, contributing to antimicrobial resistance (AMR). The genetic and phenotypic diversity of P. aeruginosa populations in CF lungs raises questions about their susceptibility to non-traditional antimicrobials, like bacteriocins. In this study, we focused on R-pyocins, a type of bacteriocin with high potency and a narrow killing spectrum. Our findings indicate that a large number of infectious CF variants are susceptible to R2-pyocins, even within diverse bacterial populations, supporting their potential use as therapeutic agents. The absence of a clear correlation between lipopolysaccharide (LPS) phenotypes and R-pyocin susceptibility suggests that LPS packing density may play a significant role in R-pyocin susceptibility among CF variants. Understanding the relationship between LPS phenotypes and R-pyocin susceptibility is crucial for developing effective treatments for these chronic infections.
Collapse
Affiliation(s)
- Madeline Mei
- School of Biological Sciences, Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
- Department of Pediatrics, Division of Pulmonary, Allergy and Immunology, Cystic Fibrosis, and Sleep, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory+Children’s Center for Cystic Fibrosis and Airway Disease Research, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Preston Pheng
- School of Biological Sciences, Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Detriana Kurzeja-Edwards
- School of Biological Sciences, Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Stephen P. Diggle
- School of Biological Sciences, Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
14
|
Van den Bossche S, Abatih E, Grassi L, De Broe E, Rigole P, Boelens J, Van Caenegem J, Verhasselt B, Janssens I, Van Braeckel E, Versmessen N, Cools P, Coenye T, Crabbé A. Pooling isolates to address the diversity in antimicrobial susceptibility of Pseudomonas aeruginosa in cystic fibrosis. Microbiol Spectr 2023; 11:e0044923. [PMID: 37982625 PMCID: PMC10714813 DOI: 10.1128/spectrum.00449-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/17/2023] [Indexed: 11/21/2023] Open
Abstract
IMPORTANCE People with cystic fibrosis (pwCF) often suffer from chronic lung infections with Pseudomonas aeruginosa. While antibiotics are still commonly used to treat P. aeruginosa infections, there is a high discordance between in vitro and in vivo antibiotic efficacy, which contributes to suboptimal antibiotic therapy. In the present study, we found that isolates from the same sputum sample had highly diverse antibiotic resistance profiles [based on the minimal inhibitory concentration (MIC)], which may explain the reported discrepancy between in vitro and in vivo antibiotic efficacy. Through systematic analysis, we report that pooling nine isolates per sputum sample significantly decreased intrasample diversity in MIC and influenced clinical interpretation of antibiotic susceptibility tests compared to single isolate testing. Hence, pooling of isolates may offer a solution to obtain a consistent MIC test result and could lead to optimizing antibiotic therapy in pwCF and other infectious diseases where diversity in antibiotic resistance is observed.
Collapse
Affiliation(s)
| | - Emmanuel Abatih
- Data Analysis and Statistical Science (DASS), Ghent University, Ghent, Belgium
| | - Lucia Grassi
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Emma De Broe
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Petra Rigole
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Jerina Boelens
- Laboratory of Medical Microbiology, Ghent University Hospital, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Joris Van Caenegem
- Laboratory of Medical Microbiology, Ghent University Hospital, Ghent, Belgium
| | - Bruno Verhasselt
- Laboratory of Medical Microbiology, Ghent University Hospital, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Iris Janssens
- Department of Respiratory Medicine, Cystic Fibrosis Reference Centre, Ghent University Hospital, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Center for Inflammation Research, Flemish Institute for Biotechnology, Ghent, Belgium
| | - Eva Van Braeckel
- Department of Respiratory Medicine, Cystic Fibrosis Reference Centre, Ghent University Hospital, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Nick Versmessen
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Piet Cools
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Aurélie Crabbé
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
15
|
Vanderwoude J, Azimi S, Read TD, Diggle SP. The Role of Hypermutation and Collateral Sensitivity in Antimicrobial Resistance Diversity of Pseudomonas aeruginosa Populations in Cystic Fibrosis Lung Infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.14.544983. [PMID: 37398156 PMCID: PMC10312765 DOI: 10.1101/2023.06.14.544983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen which causes chronic, drug-resistant lung infections in cystic fibrosis (CF) patients. In this study, we explore the role of genomic diversification and evolutionary trade-offs in antimicrobial resistance (AMR) diversity within P. aeruginosa populations sourced from CF lung infections. We analyzed 300 clinical isolates from four CF patients (75 per patient), and found that genomic diversity is not a consistent indicator of phenotypic AMR diversity. Remarkably, some genetically less diverse populations showed AMR diversity comparable to those with significantly more genetic variation. We also observed that hypermutator strains frequently exhibited increased sensitivity to antimicrobials, contradicting expectations from their treatment histories. Investigating potential evolutionary trade-offs, we found no substantial evidence of collateral sensitivity among aminoglycoside, beta-lactam, or fluoroquinolone antibiotics, nor did we observe trade-offs between AMR and growth in conditions mimicking CF sputum. Our findings suggest that (i) genomic diversity is not a prerequisite for phenotypic AMR diversity; (ii) hypermutator populations may develop increased antimicrobial sensitivity under selection pressure; (iii) collateral sensitivity is not a prominent feature in CF strains, and (iv) resistance to a single antibiotic does not necessarily lead to significant fitness costs. These insights challenge prevailing assumptions about AMR evolution in chronic infections, emphasizing the complexity of bacterial adaptation during infection.
Collapse
Affiliation(s)
- Jelly Vanderwoude
- Center for Microbial Dynamics and Infection, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Sheyda Azimi
- Center for Microbial Dynamics and Infection, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- School of Biology, Georgia State University, Atlanta, GA, USA
| | - Timothy D. Read
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Stephen P. Diggle
- Center for Microbial Dynamics and Infection, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
16
|
Islam MM, Kolling GL, Glass EM, Goldberg JB, Papin JA. Model-driven characterization of functional diversity of Pseudomonas aeruginosa clinical isolates with broadly representative phenotypes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.08.561426. [PMID: 37873245 PMCID: PMC10592701 DOI: 10.1101/2023.10.08.561426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Pseudomonas aeruginosa is a leading cause of infections in immunocompromised individuals and in healthcare settings. This study aims to understand the relationships between phenotypic diversity and the functional metabolic landscape of P. aeruginosa clinical isolates. To better understand the metabolic repertoire of P. aeruginosa in infection, we deeply profiled a representative set from a library of 971 clinical P. aeruginosa isolates with corresponding patient metadata and bacterial phenotypes. The genotypic clustering based on whole-genome sequencing of the isolates, multi-locus sequence types, and the phenotypic clustering generated from a multi-parametric analysis were compared to each other to assess the genotype-phenotype correlation. Genome-scale metabolic network reconstructions were developed for each isolate through amendments to an existing PA14 network reconstruction. These network reconstructions show diverse metabolic functionalities and enhance the collective P. aeruginosa pangenome metabolic repertoire. Characterizing this rich set of clinical P. aeruginosa isolates allows for a deeper understanding of the genotypic and metabolic diversity of the pathogen in a clinical setting and lays a foundation for further investigation of the metabolic landscape of this pathogen and host-associated metabolic differences during infection.
Collapse
Affiliation(s)
- Mohammad Mazharul Islam
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, 22903
| | - Glynis L. Kolling
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, 22903
| | - Emma M. Glass
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, 22903
| | | | - Jason A. Papin
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, 22903
| |
Collapse
|
17
|
Mei M, Pheng P, Kurzeja-Edwards D, Diggle SP. High prevalence of lipopolysaccharide mutants and R2-Pyocin susceptible variants in Pseudomonas aeruginosa populations sourced from cystic fibrosis lung infections. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.26.538445. [PMID: 37163048 PMCID: PMC10168318 DOI: 10.1101/2023.04.26.538445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Chronic, highly antibiotic-resistant infections in cystic fibrosis (CF) lungs contribute to increasing morbidity and mortality. Pseudomonas aeruginosa, a common CF pathogen, exhibits resistance to multiple antibiotics, contributing to antimicrobial resistance (AMR). These bacterial populations display genetic and phenotypic diversity, but it is unclear how this diversity affects susceptibility to bacteriocins. R-pyocins, i.e. bacteriocins produced by P. aeruginosa, are phage tail-like antimicrobials. R-pyocins have potential as antimicrobials, however recent research suggests the diversity of P. aeruginosa variants within CF lung infections leads to varying susceptibility to R-pyocins. This variation may be linked to changes in lipopolysaccharide (LPS), acting as the R-pyocin receptor. Currently, it is unknown how frequently R-pyocin-susceptible strains are in chronic CF lung infection, particularly when considering the heterogeneity within these strains. In this study, we tested R2-pyocin susceptibility of 139 P. aeruginosa variants from 17 sputum samples of seven CF patients and analyzed LPS phenotypes. We found that 83% of sputum samples did not have R2-pyocin-resistant variants, while nearly all samples contained susceptible variants. there was no correlation between LPS phenotype and R2-pyocin susceptibility, though we estimate that about 76% of sputum-derived variants lack an O-specific antigen, 40% lack a common antigen, and 24% have altered LPS cores. The absence of a correlation between LPS phenotype and R-pyocin susceptibility suggests LPS packing density may play a significant role in R-pyocin susceptibility among CF variants. Our research supports the potential of R-pyocins as therapeutic agents, as many infectious CF variants are susceptible to R2-pyocins, even within diverse bacterial populations.
Collapse
Affiliation(s)
- Madeline Mei
- Center for Microbial Dynamics and Infection, School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- Department of Pediatrics, Division of Pulmonary, Allergy and Immunology, Cystic Fibrosis, and Sleep, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory+Children’s Center for Cystic Fibrosis and Airway Disease Research, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Preston Pheng
- Center for Microbial Dynamics and Infection, School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Detriana Kurzeja-Edwards
- Center for Microbial Dynamics and Infection, School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Stephen P. Diggle
- Center for Microbial Dynamics and Infection, School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
18
|
Sun Z, Yang F, Ji J, Cao W, Liu C, Ding B, Xu X. Dissecting the genotypic features of a fluoroquinolone-resistant Pseudomonas aeruginosa ST316 sublineage causing ear infections in Shanghai, China. Microb Genom 2023; 9:mgen000989. [PMID: 37079456 PMCID: PMC10210959 DOI: 10.1099/mgen.0.000989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/20/2023] [Indexed: 04/21/2023] Open
Abstract
Limited information is available regarding the genomic characteristics of P. aeruginosa causing ear infections. Our aim is to characterize the genotypic features of an emerging ST316 sublineage causing aural infections in Shanghai. A total of 199 ear swab isolates were subjected to whole genome sequencing (WGS). Complete genomes for two isolates were resolved. We showed this recently emerged sublineage exhibited high-level resistance to fluoroquinolones (FQs) primarily by accumulation of known mutations in quinolone resistance determining regions (QRDRs). Loss-of-function mutations in mexR and mexCD were frequently detected. Mutations in fusA1 (P166S) and parE (S492F) were resident in this sublinage about 2 years after its emergence. Recombination events might be a key driver of genomic diversity in this sublineage. Convergent evolution events on Multidrug-resistant (MDR) determinants were also observed. We generated predictive machine models and identified biomarkers of resistance to gentamicin, fosfomycin, and cefoperazone-sulbactam in this sublineage. This sublineage tended to be less virulent by loss of a series virulence genes represented by ppkA, rhlI, and iron uptake- and antimicrobial activity-related genes. Specific mutations were detected in pilU and lpxB genes that related to surface structures. Moreover, this sublineage differed from non-ST316 isolates in several ways, including virulence genes related to cell surface structure. Our analysis suggested acquisition of a roughly 390 kbp MDR plasmid carrying qnrVC1 might play an important role in the success of this sublinage. Clonal expansion of this sublineage exhibiting enhanced adaptation to cause ear infections is concerning, which requires urgent control measures to be implemented.
Collapse
Affiliation(s)
- Zhewei Sun
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, PR China
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, PR China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, PR China
| | - Feifei Yang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, PR China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, PR China
| | - Jian Ji
- Department of Clinical Laboratory, Eye and ENT Hospital, Fudan University, Shanghai, PR China
| | - Wenjun Cao
- Department of Clinical Laboratory, Eye and ENT Hospital, Fudan University, Shanghai, PR China
| | - Chunhong Liu
- Department of Clinical Laboratory, Eye and ENT Hospital, Fudan University, Shanghai, PR China
| | - Baixing Ding
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, PR China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, PR China
| | - Xiaogang Xu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, PR China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, PR China
| |
Collapse
|
19
|
Maxwell DN, Kim J, Pybus CA, White L, Medford RJ, Filkins LM, Monogue ML, Rae MM, Desai D, Clark AE, Zhan X, Greenberg DE. Clinically undetected polyclonal heteroresistance among Pseudomonas aeruginosa isolated from cystic fibrosis respiratory specimens. J Antimicrob Chemother 2022; 77:3321-3330. [PMID: 36227655 DOI: 10.1093/jac/dkac320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 08/18/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Pseudomonas aeruginosa infection is the leading cause of death among patients with cystic fibrosis (CF) and a common cause of difficult-to-treat hospital-acquired infections. P. aeruginosa uses several mechanisms to resist different antibiotic classes and an individual CF patient can harbour multiple resistance phenotypes. OBJECTIVES To determine the rates and distribution of polyclonal heteroresistance (PHR) in P. aeruginosa by random, prospective evaluation of respiratory cultures from CF patients at a large referral centre over a 1 year period. METHODS We obtained 28 unique sputum samples from 19 CF patients and took multiple isolates from each, even when morphologically similar, yielding 280 unique isolates. We performed antimicrobial susceptibility testing (AST) on all isolates and calculated PHR on the basis of variability in AST in a given sample. We then performed whole-genome sequencing on 134 isolates and used a machine-learning association model to interrogate phenotypic PHR from genomic data. RESULTS PHR was identified in most sampled patients (n = 15/19; 79%). Importantly, resistant phenotypes were not detected by routine AST in 26% of patients (n = 5/19). The machine-learning model, using the extended sampling, identified at least one genetic variant associated with phenotypic resistance in 94.3% of isolates (n = 1392/1476). CONCLUSION PHR is common among P. aeruginosa in the CF lung. While traditional microbiological methods often fail to detect resistant subpopulations, extended sampling of isolates and conventional AST identified PHR in most patients. A machine-learning tool successfully identified at least one resistance variant in almost all resistant isolates by leveraging this extended sampling and conventional AST.
Collapse
Affiliation(s)
- Daniel N Maxwell
- Department of Internal Medicine, Infectious Diseases and Geographic Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jiwoong Kim
- Department of Population and Data Sciences, Quantitative Biomedical Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Christine A Pybus
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Leona White
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Richard J Medford
- Department of Internal Medicine, Infectious Diseases and Geographic Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Laura M Filkins
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Marguerite L Monogue
- Department of Internal Medicine, Infectious Diseases and Geographic Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Department of Pharmacy, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Meredith M Rae
- Department of Internal Medicine, University of Texas Southwestern Medical School, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Dhara Desai
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Andrew E Clark
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaowei Zhan
- Department of Population and Data Sciences, Quantitative Biomedical Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - David E Greenberg
- Department of Internal Medicine, Infectious Diseases and Geographic Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
20
|
Contreras-Gómez MJ, Martinez JRW, Rivas L, Riquelme-Neira R, Ugalde JA, Wozniak A, García P, Munita JM, Olivares-Pacheco J, Alcalde-Rico M. Role of the multi-drug efflux systems on the baseline susceptibility to ceftazidime/avibactam and ceftolozane/tazobactam in clinical isolates of non-carbapenemase-producing carbapenem-resistant Pseudomonas aeruginosa. Front Pharmacol 2022; 13:1007162. [PMID: 36263116 PMCID: PMC9574371 DOI: 10.3389/fphar.2022.1007162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/13/2022] [Indexed: 11/19/2022] Open
Abstract
Carbapenem-resistant Pseudomonas aeruginosa (CRPA) is one of the pathogens that urgently needs new drugs and new alternatives for its control. The primary strategy to combat this bacterium is combining treatments of beta-lactam with a beta-lactamase inhibitor. The most used combinations against P. aeruginosa are ceftazidime/avibactam (CZA) and ceftolozane/tazobactam (C/T). Although mechanisms leading to CZA and C/T resistance have already been described, among which are the resistance-nodulation-division (RND) efflux pumps, the role that these extrusion systems may play in CZA, and C/T baseline susceptibility of clinical isolates remains unknown. For this purpose, 161 isolates of non-carbapenemase-producing (Non-CP) CRPA were selected, and susceptibility tests to CZA and C/T were performed in the presence and absence of the RND efflux pumps inhibitor, Phenylalanine-arginine β-naphthylamide (PAβN). In the absence of PAβN, C/T showed markedly higher activity against Non-CP-CRPA isolates than observed for CZA. These results were even more evident in isolates classified as extremely-drug resistant (XDR) or with difficult-to-treat resistance (DTR), where CZA decreased its activity up to 55.2% and 20.0%, respectively, whereas C/T did it up to 82.8% (XDR), and 73.3% (DTR). The presence of PAβN showed an increase in both CZA (37.6%) and C/T (44.6%) activity, and 25.5% of Non-CP-CRPA isolates increased their susceptibility to these two combined antibiotics. However, statistical analysis showed that only the C/T susceptibility of Non-CP-CRPA isolates was significantly increased. Although the contribution of RND activity to CZA and C/T baseline susceptibility was generally low (two-fold decrease of minimal inhibitory concentrations [MIC]), a more evident contribution was observed in a non-minor proportion of the Non-CP-CRPA isolates affected by PAβN [CZA: 25.4% (15/59); C/T: 30% (21/70)]. These isolates presented significantly higher MIC values for C/T. Therefore, we conclude that RND efflux pumps are participating in the phenomenon of baseline susceptibility to CZA and, even more, to C/T. However, the genomic diversity of clinical isolates is so great that deeper analyzes are necessary to determine which elements are directly involved in this phenomenon.
Collapse
Affiliation(s)
- María José Contreras-Gómez
- Grupo de Resistencia Antimicrobiana en Bacterias Patógenas y Ambientales (GRABPA), Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
- Genomics and Resistant Microbes Group (GeRM), Instituto de Ciencias e Innovación en Medicina (ICIM), Facultad de Medicina, Clínica Alemana, Universidad Del Desarrollo, Santiago, Chile
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile
| | - José R. W. Martinez
- Genomics and Resistant Microbes Group (GeRM), Instituto de Ciencias e Innovación en Medicina (ICIM), Facultad de Medicina, Clínica Alemana, Universidad Del Desarrollo, Santiago, Chile
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile
| | - Lina Rivas
- Genomics and Resistant Microbes Group (GeRM), Instituto de Ciencias e Innovación en Medicina (ICIM), Facultad de Medicina, Clínica Alemana, Universidad Del Desarrollo, Santiago, Chile
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile
| | - Roberto Riquelme-Neira
- Genomics and Resistant Microbes Group (GeRM), Instituto de Ciencias e Innovación en Medicina (ICIM), Facultad de Medicina, Clínica Alemana, Universidad Del Desarrollo, Santiago, Chile
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile
- Núcleo de Investigaciones Aplicadas en Ciencias Veterinarias y Agronómicas, Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago, Chile
| | - Juan A. Ugalde
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Aniela Wozniak
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile
- Laboratory of Microbiology, Department of Clinical Laboratories, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Clinical Laboratories Network, Red de Salud UC-CHRISTUS, Santiago, Chile
| | - Patricia García
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile
- Laboratory of Microbiology, Department of Clinical Laboratories, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Clinical Laboratories Network, Red de Salud UC-CHRISTUS, Santiago, Chile
| | - José M. Munita
- Genomics and Resistant Microbes Group (GeRM), Instituto de Ciencias e Innovación en Medicina (ICIM), Facultad de Medicina, Clínica Alemana, Universidad Del Desarrollo, Santiago, Chile
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile
- *Correspondence: José M. Munita, ; Jorge Olivares-Pacheco, ; Manuel Alcalde-Rico,
| | - Jorge Olivares-Pacheco
- Grupo de Resistencia Antimicrobiana en Bacterias Patógenas y Ambientales (GRABPA), Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile
- *Correspondence: José M. Munita, ; Jorge Olivares-Pacheco, ; Manuel Alcalde-Rico,
| | - Manuel Alcalde-Rico
- Grupo de Resistencia Antimicrobiana en Bacterias Patógenas y Ambientales (GRABPA), Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
- Genomics and Resistant Microbes Group (GeRM), Instituto de Ciencias e Innovación en Medicina (ICIM), Facultad de Medicina, Clínica Alemana, Universidad Del Desarrollo, Santiago, Chile
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile
- *Correspondence: José M. Munita, ; Jorge Olivares-Pacheco, ; Manuel Alcalde-Rico,
| |
Collapse
|
21
|
Blanchard AC, Waters VJ. Opportunistic Pathogens in Cystic Fibrosis: Epidemiology and Pathogenesis of Lung Infection. J Pediatric Infect Dis Soc 2022; 11:S3-S12. [PMID: 36069904 DOI: 10.1093/jpids/piac052] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022]
Abstract
Cystic fibrosis (CF) is one of the most common life-shortening genetic diseases in Caucasians. Due to abnormal accumulation of mucus, respiratory failure caused by chronic infections is the leading cause of mortality in this patient population. The microbiology of these respiratory infections includes a distinct set of opportunistic pathogens, including Pseudomonas aeruginosa, Burkholderia spp., Achromobacter spp., Stenotrophomonas maltophilia, anaerobes, nontuberculous mycobacteria, and fungi. In recent years, culture-independent methods have shown the polymicrobial nature of lung infections, and the dynamics of microbial communities. The unique environment of the CF airway predisposes to infections caused by opportunistic pathogens. In this review, we will highlight how the epidemiology and role in disease of these pathogens in CF differ from that in individuals with other medical conditions. Infectious diseases (ID) physicians should be aware of these differences and the specific characteristics of infections associated with CF.
Collapse
Affiliation(s)
- Ana C Blanchard
- Department of Pediatrics, Division of Infectious Diseases, CHU Sainte-Justine, Université de Montréal, 3175 Chemin de la Côte-Sainte-Catherine, Montreal, Quebec, H3T 1C5, Canada
| | - Valerie J Waters
- Department of Pediatrics, Division of Infectious Diseases, The Hospital for Sick Children, University of Toronto, 555 University Avenue, Toronto, Ontario, M5G 1X8, Canada
| |
Collapse
|
22
|
Planet PJ. Adaptation and Evolution of Pathogens in the Cystic Fibrosis Lung. J Pediatric Infect Dis Soc 2022; 11:S23-S31. [PMID: 36069898 PMCID: PMC9451014 DOI: 10.1093/jpids/piac073] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/11/2022] [Indexed: 02/05/2023]
Abstract
As opposed to acute respiratory infections, the persistent bacterial infections of the lung that characterize cystic fibrosis (CF) provide ample time for bacteria to evolve and adapt. The process of adaptation is recorded in mutations that accumulate over time in the genomes of the infecting bacteria. Some of these mutations lead to obvious phenotypic differences such as antibiotic resistance or the well-known mucoid phenotype of Pseudomonas aeruginosa. Other mutations may be just as important but harder to detect such as increased mutation rates, cell surface changes, and shifts in metabolism and nutrient acquisition. Remarkably, many of the adaptations occur again and again in different patients, signaling that bacteria are adapting to solve specific challenges in the CF respiratory tract. This parallel evolution even extends across distinct bacterial species. This review addresses the bacterial systems that are known to change in long-term CF infections with a special emphasis on cross-species comparisons. Consideration is given to how adaptation may impact health in CF, and the possible evolutionary mechanisms that lead to the repeated parallel adaptations.
Collapse
Affiliation(s)
- Paul J Planet
- Corresponding Author: Paul J. Planet, MD, PhD, 3615 Civic Center Blvd, Philadelphia, PA 19104. E-mail:
| |
Collapse
|
23
|
Bernardy EE, Raghuram V, Goldberg JB. Staphylococcus aureus and Pseudomonas aeruginosa Isolates from the Same Cystic Fibrosis Respiratory Sample Coexist in Coculture. Microbiol Spectr 2022; 10:e0097622. [PMID: 35867391 PMCID: PMC9431432 DOI: 10.1128/spectrum.00976-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/02/2022] [Indexed: 11/26/2022] Open
Abstract
Respiratory infections with bacterial pathogens remain the major cause of morbidity in individuals with the genetic disease cystic fibrosis (CF). Some studies have shown that CF patients that harbor both Staphylococcus aureus and Pseudomonas aeruginosa in their lungs are at even greater risk for more severe and complicated respiratory infections and earlier death. However, the drivers for this worse clinical condition are not well understood. To investigate the interactions between these two microbes that might be responsible for their increased pathogenic potential, we obtained 28 pairs of S. aureus and P. aeruginosa from the same respiratory samples from 18 individuals with CF. We compared the survival of each S. aureus CF isolate cocultured with its corresponding coinfecting CF P. aeruginosa to when it was cocultured with non-CF laboratory strains of P. aeruginosa. We found that the S. aureus survival was significantly higher in the presence of the coinfecting P. aeruginosa compared to laboratory P. aeruginosa strains, regardless of whether the coinfecting isolate was mucoid or nonmucoid. We also tested how a non-CF S. aureus strain, JE2, behaved with each P. aeruginosa CF isolate and found that its interaction was similar to how the CF S. aureus isolate interacted with its coinfecting P. aeruginosa. Altogether, our work suggests that interactions between S. aureus and P. aeruginosa that promote coexistence in the CF lung are isolate-dependent and that this interaction appears to be driven mainly by P. aeruginosa. IMPORTANCE Previous studies have shown that in laboratory settings, Pseudomonas aeruginosa generally kills Staphylococcus aureus. However, these bacteria are often found coinfecting the lungs of cystic fibrosis (CF) patients, which has been associated with worse patient outcomes. To investigate the interactions between these two bacteria, we competed 28 coinfection pairs obtained from the same lung samples of 18 different CF patients. We compared these results to those we previously reported of each CF S. aureus isolate against a non-CF laboratory strain of P. aeruginosa. We found that S. aureus survival against its corresponding coinfection P. aeruginosa was higher than its survival against the laboratory strain of P. aeruginosa. These results suggest that there may be selection for coexistence of these microbes in the CF lung environment. Further understanding of the interactions between P. aeruginosa and S. aureus will provide insights into the drivers of coexistence and their impact on the host.
Collapse
Affiliation(s)
- Eryn E. Bernardy
- Department of Biology, Elon University, Elon, North Carolina, USA
- Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Vishnu Raghuram
- Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA
| | - Joanna B. Goldberg
- Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
24
|
Ahator SD, Sagar S, Zhu M, Wang J, Zhang LH. Nutrient Availability and Phage Exposure Alter the Quorum-Sensing and CRISPR-Cas-Controlled Population Dynamics of Pseudomonas aeruginosa. mSystems 2022; 7:e0009222. [PMID: 35699339 PMCID: PMC9426516 DOI: 10.1128/msystems.00092-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/10/2022] [Indexed: 11/20/2022] Open
Abstract
Quorum sensing (QS) coordinates bacterial communication and cooperation essential for virulence and dominance in polymicrobial settings. QS also regulates the CRISPR-Cas system for targeted defense against parasitic genomes from phages and horizontal gene transfer. Although the QS and CRISPR-Cas systems are vital for bacterial survival, they undergo frequent selection in response to biotic and abiotic factors. Using the opportunistic Pseudomonas aeruginosa with well-established QS and CRISPR-Cas systems, we show how the social interactions between the acyl-homoserine lactone (AHL)-QS signal-blind mutants (ΔlasRrhlR) and the CRISPR-Cas mutants are affected by phage exposure and nutrient availability. We demonstrate that media conditions and phage exposure alter the resistance and relative fitness of ΔlasRrhlR and CRISPR-Cas mutants while tipping the fitness advantage in favor of the QS signal-blind mutants under nutrient-limiting conditions. We also show that the AHL signal-blind mutants are less selected by phages under QS-inducing conditions than the CRISPR-Cas mutants, whereas the mixed population of the CRISPR-Cas and AHL signal-blind mutants reduce phage infectivity, which can improve survival during phage exposure. Our data reveal that phage exposure and nutrient availability reshape the population dynamics between the ΔlasRrhlR QS mutants and CRISPR-Cas mutants, with key indications for cooperation and conflict between the strains. IMPORTANCE The increase in antimicrobial resistance has created the need for alternative interventions such as phage therapy. However, as previously observed with antimicrobial resistance, phage therapy will not be effective if bacteria evolve resistance and persist in the presence of the phages. The QS is commonly known as an arsenal for bacteria communication, virulence, and regulation of the phage defense mechanism, the CRISPR-Cas system. The QS and CRISPR-Cas systems are widespread in bacteria. However, they are known to evolve rapidly under the influence of biotic and abiotic factors in the bacterial environment, resulting in alteration in bacterial genotypes, which enhance phage resistance and fitness. We believe that adequate knowledge of the influence of environmental factors on the bacterial community lifestyle and phage defense mechanisms driven by the QS and CRISPR-Cas system is necessary for developing effective phage therapy.
Collapse
Affiliation(s)
- Stephen Dela Ahator
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Centre for New Antibacterial Strategies (CANS) & Research Group for Host-Microbe Interactions, Faculty of Health Sciences, The Arctic University of Norway, Tromsø, Norway
| | - Sadhanna Sagar
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Minya Zhu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Jianhe Wang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Lian-Hui Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
25
|
Abstract
Chronic (long-lasting) infections are globally a major and rising cause of morbidity and mortality. Unlike typical acute infections, chronic infections are ecologically diverse, characterized by the presence of a polymicrobial mix of opportunistic pathogens and human-associated commensals. To address the challenge of chronic infection microbiomes, we focus on a particularly well-characterized disease, cystic fibrosis (CF), where polymicrobial lung infections persist for decades despite frequent exposure to antibiotics. Epidemiological analyses point to conflicting results on the benefits of antibiotic treatment yet are confounded by the dependency of antibiotic exposures on prior pathogen presence, limiting their ability to draw causal inferences on the relationships between antibiotic exposure and pathogen dynamics. To address this limitation, we develop a synthetic infection microbiome model representing CF metacommunity diversity and benchmark on clinical data. We show that in the absence of antibiotics, replicate microbiome structures in a synthetic sputum medium are highly repeatable and dominated by oral commensals. In contrast, challenge with physiologically relevant antibiotic doses leads to substantial community perturbation characterized by multiple alternate pathogen-dominant states and enrichment of drug-resistant species. These results provide evidence that antibiotics can drive the expansion (via competitive release) of previously rare opportunistic pathogens and offer a path toward microbiome-informed conditional treatment strategies. IMPORTANCE We develop and clinically benchmark an experimental model of the cystic fibrosis (CF) lung infection microbiome to investigate the impacts of antibiotic exposures on chronic, polymicrobial infections. We show that a single experimental model defined by metacommunity data can partially recapitulate the diversity of individual microbiome states observed across a population of people with CF. In the absence of antibiotics, we see highly repeatable community structures, dominated by oral microbes. Under clinically relevant antibiotic exposures, we see diverse and frequently pathogen-dominated communities, and a nonevolutionary enrichment of antimicrobial resistance on the community scale, mediated by competitive release. The results highlight the potential importance of nonevolutionary (community-ecological) processes in driving the growing global crisis of increasing antibiotic resistance.
Collapse
|
26
|
Thänert R, Choi J, Reske KA, Hink T, Thänert A, Wallace MA, Wang B, Seiler S, Cass C, Bost MH, Struttmann EL, Iqbal ZH, Sax SR, Fraser VJ, Baker AW, Foy KR, Williams B, Xu B, Capocci-Tolomeo P, Lautenbach E, Burnham CAD, Dubberke ER, Kwon JH, Dantas G. Persisting uropathogenic Escherichia coli lineages show signatures of niche-specific within-host adaptation mediated by mobile genetic elements. Cell Host Microbe 2022; 30:1034-1047.e6. [PMID: 35545083 PMCID: PMC10365138 DOI: 10.1016/j.chom.2022.04.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 03/09/2022] [Accepted: 04/14/2022] [Indexed: 11/24/2022]
Abstract
Large-scale genomic studies have identified within-host adaptation as a hallmark of bacterial infections. However, the impact of physiological, metabolic, and immunological differences between distinct niches on the pathoadaptation of opportunistic pathogens remains elusive. Here, we profile the within-host adaptation and evolutionary trajectories of 976 isolates representing 119 lineages of uropathogenic Escherichia coli (UPEC) sampled longitudinally from both the gastrointestinal and urinary tracts of 123 patients with urinary tract infections. We show that lineages persisting in both niches within a patient exhibit increased allelic diversity. Habitat-specific selection results in niche-specific adaptive mutations and genes, putatively mediating fitness in either environment. Within-lineage inter-habitat genomic plasticity mediated by mobile genetic elements (MGEs) provides the opportunistic pathogen with a mechanism to adapt to the physiological conditions of either habitat, and reduced MGE richness is associated with recurrence in gut-adapted UPEC lineages. Collectively, our results establish niche-specific adaptation as a driver of UPEC within-host evolution.
Collapse
Affiliation(s)
- Robert Thänert
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - JooHee Choi
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kimberly A Reske
- Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Tiffany Hink
- Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Anna Thänert
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Meghan A Wallace
- Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Bin Wang
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Sondra Seiler
- Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Candice Cass
- Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Margaret H Bost
- Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Emily L Struttmann
- Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Zainab Hassan Iqbal
- Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Steven R Sax
- Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Victoria J Fraser
- Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Arthur W Baker
- Division of Infectious Diseases, Duke University School of Medicine, Durham, NC, USA; Duke Center for Antimicrobial Stewardship and Infection Prevention, Durham, NC, USA
| | - Katherine R Foy
- Division of Infectious Diseases, Duke University School of Medicine, Durham, NC, USA; Duke Center for Antimicrobial Stewardship and Infection Prevention, Durham, NC, USA
| | - Brett Williams
- Division of Infectious Diseases, Department of Internal Medicine, Rush Medical College, Chicago, IL, USA
| | - Ben Xu
- Division of Infectious Diseases, Department of Internal Medicine, Rush Medical College, Chicago, IL, USA
| | - Pam Capocci-Tolomeo
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ebbing Lautenbach
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Division of Infectious Diseases, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Carey-Ann D Burnham
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA; Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA; Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Erik R Dubberke
- Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA.
| | - Jennie H Kwon
- Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA.
| | - Gautam Dantas
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
27
|
Resistance Is Not Futile: The Role of Quorum Sensing Plasticity in Pseudomonas aeruginosa Infections and Its Link to Intrinsic Mechanisms of Antibiotic Resistance. Microorganisms 2022; 10:microorganisms10061247. [PMID: 35744765 PMCID: PMC9228389 DOI: 10.3390/microorganisms10061247] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 01/01/2023] Open
Abstract
Bacteria use a cell-cell communication process called quorum sensing (QS) to orchestrate collective behaviors. QS relies on the group-wide detection of extracellular signal molecules called autoinducers (AI). Quorum sensing is required for virulence and biofilm formation in the human pathogen Pseudomonas aeruginosa. In P. aeruginosa, LasR and RhlR are homologous LuxR-type soluble transcription factor receptors that bind their cognate AIs and activate the expression of genes encoding functions required for virulence and biofilm formation. While some bacterial signal transduction pathways follow a linear circuit, as phosphoryl groups are passed from one carrier protein to another ultimately resulting in up- or down-regulation of target genes, the QS system in P. aeruginosa is a dense network of receptors and regulators with interconnecting regulatory systems and outputs. Once activated, it is not understood how LasR and RhlR establish their signaling hierarchy, nor is it clear how these pathway connections are regulated, resulting in chronic infection. Here, we reviewed the mechanisms of QS progression as it relates to bacterial pathogenesis and antimicrobial resistance and tolerance.
Collapse
|
28
|
Schick A, Shewaramani S, Kassen R. Genomics of diversification of Pseudomonas aeruginosa in cystic fibrosis lung-like conditions. Genome Biol Evol 2022; 14:6602282. [PMID: 35660861 PMCID: PMC9168666 DOI: 10.1093/gbe/evac074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 04/22/2022] [Accepted: 05/12/2022] [Indexed: 12/03/2022] Open
Abstract
Pseudomonas aeruginosa is among the most problematic opportunistic pathogens for adults with cystic fibrosis (CF), causing repeated and resilient infections in the lung and surrounding airways. Evidence suggests that long-term infections are associated with diversification into specialized types but the underlying cause of that diversification and the effect it has on the persistence of infections remains poorly understood. Here, we use evolve-and-resequence experiments to investigate the genetic changes accompanying rapid, de novo phenotypic diversification in lab environments designed to mimic two aspects of human lung ecology: spatial structure and complex nutritional content. After ∼220 generations of evolution, we find extensive genetic variation present in all environments, including those that most closely resemble the CF lung. We use the abundance and frequency of nonsynonymous and synonymous mutations to estimate the ratio of mutations that are selectively neutral (hitchhikers) to those that are under positive selection (drivers). A significantly lower proportion of driver mutations in spatially structured populations suggests that reduced dispersal generates subpopulations with reduced effective population size, decreasing the supply of beneficial mutations and causing more divergent evolutionary trajectories. In addition, we find mutations in a handful of genes typically associated with chronic infection in the CF lung, including one gene associated with antibiotic resistance. This demonstrates that many of the genetic changes considered to be hallmarks of CF lung adaptation can arise as a result of adaptation to a novel environment and do not necessarily require antimicrobial treatment, immune system suppression, or competition from other microbial species to occur.
Collapse
Affiliation(s)
- Alana Schick
- Biology Department and Centre for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Sonal Shewaramani
- Biology Department and Centre for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Rees Kassen
- Biology Department and Centre for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| |
Collapse
|
29
|
Lewis KA, Vermilyea DM, Webster SS, Geiger CJ, de Anda J, Wong GCL, O’Toole GA, Hogan DA. Nonmotile Subpopulations of Pseudomonas aeruginosa Repress Flagellar Motility in Motile Cells through a Type IV Pilus- and Pel-Dependent Mechanism. J Bacteriol 2022; 204:e0052821. [PMID: 35377166 PMCID: PMC9112919 DOI: 10.1128/jb.00528-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/05/2022] [Indexed: 01/03/2023] Open
Abstract
The downregulation of Pseudomonas aeruginosa flagellar motility is a key event in biofilm formation, host colonization, and the formation of microbial communities, but the external factors that repress motility are not well understood. Here, we report that on soft agar, swarming motility can be repressed by cells that are nonmotile due to the absence of a flagellum or flagellar rotation. Mutants that lack either flagellum biosynthesis or rotation, when present at as little as 5% of the total population, suppressed swarming of wild-type cells. Non-swarming cells required functional type IV pili and the ability to produce Pel exopolysaccharide to suppress swarming by the flagellated wild type. Flagellated cells required only type IV pili, but not Pel production, for their swarming to be repressed by non-flagellated cells. We hypothesize that interactions between motile and nonmotile cells may enhance the formation of sessile communities, including those involving multiple genotypes, phenotypically diverse cells, and perhaps other species. IMPORTANCE Our study shows that, under the conditions tested, a small population of non-swarming cells can impact the motility behavior of a larger population. The interactions that lead to the suppression of swarming motility require type IV pili and a secreted polysaccharide, two factors with known roles in biofilm formation. These data suggest that interactions between motile and nonmotile cells may enhance the transition to sessile growth in populations and promote interactions between cells with different genotypes.
Collapse
Affiliation(s)
- Kimberley A. Lewis
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Danielle M. Vermilyea
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Shanice S. Webster
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Christopher J. Geiger
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Jaime de Anda
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California, USA
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, USA
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, California, USA
| | - Gerard C. L. Wong
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California, USA
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, USA
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, California, USA
| | - George A. O’Toole
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Deborah A. Hogan
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
30
|
Unni R, Pintor KL, Diepold A, Unterweger D. Presence and absence of type VI secretion systems in bacteria. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35467500 DOI: 10.1099/mic.0.001151] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The type VI secretion system (T6SS) is a molecular puncturing device that enables Gram-negative bacteria to kill competitors, manipulate host cells and take up nutrients. Who would want to miss such superpowers? Indeed, many studies show how widespread the secretion apparatus is among microbes. However, it is becoming evident that, on multiple taxonomic levels, from phyla to species and strains, some bacteria lack a T6SS. Here, we review who does and does not have a type VI secretion apparatus and speculate on the dynamic process of gaining and losing the secretion system to better understand its spread and distribution across the microbial world.
Collapse
Affiliation(s)
- Rahul Unni
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Straße 2, 24306 Plön, Germany.,Institute for Experimental Medicine, Kiel University, Michaelisstraße 5, 24105 Kiel, Germany
| | - Katherine L Pintor
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany
| | - Andreas Diepold
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany
| | - Daniel Unterweger
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Straße 2, 24306 Plön, Germany.,Institute for Experimental Medicine, Kiel University, Michaelisstraße 5, 24105 Kiel, Germany
| |
Collapse
|
31
|
Lister AP, Highmore CJ, Hanrahan N, Read J, Munro APS, Tan S, Allan RN, Faust SN, Webb JS, Mahajan S. Multi-Excitation Raman Spectroscopy for Label-Free, Strain-Level Characterization of Bacterial Pathogens in Artificial Sputum Media. Anal Chem 2022; 94:669-677. [DOI: 10.1021/acs.analchem.1c02501] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Adam P. Lister
- School of Chemistry, Faculty of Engineering and Physical Sciences, University of Southampton, SO17 1BJ Southampton, United Kingdom
- National Biofilms Innovation Centre (NBIC) and Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Callum J. Highmore
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, SO17 1BJ Southampton, United Kingdom
- Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Niall Hanrahan
- School of Chemistry, Faculty of Engineering and Physical Sciences, University of Southampton, SO17 1BJ Southampton, United Kingdom
- National Biofilms Innovation Centre (NBIC) and Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - James Read
- School of Chemistry, Faculty of Engineering and Physical Sciences, University of Southampton, SO17 1BJ Southampton, United Kingdom
- National Biofilms Innovation Centre (NBIC) and Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Alasdair P. S. Munro
- NIHR Southampton Clinical Research Facility and Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
- Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Samuel Tan
- Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Raymond N. Allan
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, SO17 1BJ Southampton, United Kingdom
- NIHR Southampton Clinical Research Facility and Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
- School of Pharmacy, Faculty of Health and Life Sciences, De Montfort University, Leicester LE1 9BH, UK
| | - Saul N. Faust
- NIHR Southampton Clinical Research Facility and Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
- Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
- National Biofilms Innovation Centre (NBIC) and Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Jeremy S. Webb
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, SO17 1BJ Southampton, United Kingdom
- National Biofilms Innovation Centre (NBIC) and Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Sumeet Mahajan
- School of Chemistry, Faculty of Engineering and Physical Sciences, University of Southampton, SO17 1BJ Southampton, United Kingdom
- National Biofilms Innovation Centre (NBIC) and Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| |
Collapse
|
32
|
Abstract
Drugs called CFTR modulators improve the physiologic defect underlying cystic fibrosis (CF) and alleviate many disease manifestations. However, studies to date indicate that chronic lung infections that are responsible for most disease-related mortality generally persist. Here, we investigated whether combining the CFTR modulator ivacaftor with an intensive 3.5-month antibiotic course could clear chronic Pseudomonas aeruginosa or Staphylococcus aureus lung infections in subjects with R117H-CFTR, who are highly ivacaftor-responsive. Ivacaftor alone improved CFTR activity, and lung function and inflammation within 48 h, and reduced P. aeruginosa and S. aureus pathogen density by ∼10-fold within a week. Antibiotics produced an additional ∼10-fold reduction in pathogen density, but this reduction was transient in subjects who remained infected. Only 1/5 P. aeruginosa-infected and 1/7 S. aureus-infected subjects became persistently culture-negative after the combined treatment. Subjects appearing to clear infection did not have particularly favorable baseline lung function or inflammation, pathogen density or antibiotic susceptibility, or bronchiectasis scores on CT scans, but they did have remarkably low sweat chloride values before and after ivacaftor. All persistently P. aeruginosa-positive subjects remained infected by their pretreatment strain, whereas subjects persistently S. aureus-positive frequently lost and gained strains. This work suggests chronic CF infections may resist eradication despite marked and rapid modulator-induced improvements in lung infection and inflammation parameters and aggressive antibiotic treatment.
Collapse
|
33
|
Genomic and Metabolic Characteristics of the Pathogenicity in Pseudomonas aeruginosa. Int J Mol Sci 2021; 22:ijms222312892. [PMID: 34884697 PMCID: PMC8657582 DOI: 10.3390/ijms222312892] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 01/22/2023] Open
Abstract
In recent years, the effectiveness of antimicrobials in the treatment of Pseudomonas aeruginosa infections has gradually decreased. This pathogen can be observed in several clinical cases, such as pneumonia, urinary tract infections, sepsis, in immunocompromised hosts, such as neutropenic cancer, burns, and AIDS patients. Furthermore, Pseudomonas aeruginosa causes diseases in both livestock and pets. The highly flexible and versatile genome of P. aeruginosa allows it to have a high rate of pathogenicity. The numerous secreted virulence factors, resulting from its numerous secretion systems, the multi-resistance to different classes of antibiotics, and the ability to produce biofilms are pathogenicity factors that cause numerous problems in the fight against P. aeruginosa infections and that must be better understood for an effective treatment. Infections by P. aeruginosa represent, therefore, a major health problem and, as resistance genes can be disseminated between the microbiotas associated with humans, animals, and the environment, this issue needs be addressed on the basis of an One Health approach. This review intends to bring together and describe in detail the molecular and metabolic pathways in P. aeruginosa's pathogenesis, to contribute for the development of a more targeted therapy against this pathogen.
Collapse
|
34
|
Van den Bossche S, De Broe E, Coenye T, Van Braeckel E, Crabbé A. The cystic fibrosis lung microenvironment alters antibiotic activity: causes and effects. Eur Respir Rev 2021; 30:30/161/210055. [PMID: 34526313 DOI: 10.1183/16000617.0055-2021] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/23/2021] [Indexed: 01/08/2023] Open
Abstract
Chronic airway colonisation by Pseudomonas aeruginosa, a hallmark of cystic fibrosis (CF) lung disease, is associated with increased morbidity and mortality and despite aggressive antibiotic treatment, P. aeruginosa is able to persist in CF airways. In vitro antibiotic susceptibility assays are poor predictors of antibiotic efficacy to treat respiratory tract infections in the CF patient population and the selection of the antibiotic(s) is often made on an empirical base. In the current review, we discuss the factors that are responsible for the discrepancies between antibiotic activity in vitro and clinical efficacy in vivo We describe how the CF lung microenvironment, shaped by host factors (such as iron, mucus, immune mediators and oxygen availability) and the microbiota, influences antibiotic activity and varies widely between patients. A better understanding of the CF microenvironment and population diversity may thus help improve in vitro antibiotic susceptibility testing and clinical decision making, in turn increasing the success rate of antibiotic treatment.
Collapse
Affiliation(s)
| | - Emma De Broe
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Eva Van Braeckel
- Dept of Respiratory Medicine, Cystic Fibrosis Reference Centre, Ghent University Hospital, Ghent, Belgium.,Dept of Internal Medicine and Paediatrics, Ghent University, Ghent, Belgium
| | - Aurélie Crabbé
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
35
|
Pseudomonas aeruginosa mexR and mexEF Antibiotic Efflux Pump Variants Exhibit Increased Virulence. Antibiotics (Basel) 2021; 10:antibiotics10101164. [PMID: 34680745 PMCID: PMC8532662 DOI: 10.3390/antibiotics10101164] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 11/18/2022] Open
Abstract
Antibiotic-resistant Pseudomonas aeruginosa infections are the primary cause of mortality in people with cystic fibrosis (CF). Yet, it has only recently become appreciated that resistance mutations can also increase P. aeruginosa virulence, even in the absence of antibiotics. Moreover, the mechanisms by which resistance mutations increase virulence are poorly understood. In this study we tested the hypothesis that mutations affecting efflux pumps can directly increase P. aeruginosa virulence. Using genetics, physiological assays, and model infections, we show that efflux pump mutations can increase virulence. Mutations of the mexEF efflux pump system increased swarming, rhamnolipid production, and lethality in a mouse infection model, while mutations in mexR that increased expression of the mexAB-oprM efflux system increased virulence during an acute murine lung infection without affecting swarming or rhamnolipid gene expression. Finally, we show that an efflux pump inhibitor, which represents a proposed novel treatment approach for P. aeruginosa, increased rhamnolipid gene expression in a dose-dependent manner. This finding is important because rhamnolipids are key virulence factors involved in dissemination through epithelial barriers and cause neutrophil necrosis. Together, these data show how current and proposed future anti-Pseudomonal treatments may unintentionally make infections worse by increasing virulence. Therefore, treatments that target efflux should be pursued with caution.
Collapse
|
36
|
O-Specific Antigen-Dependent Surface Hydrophobicity Mediates Aggregate Assembly Type in Pseudomonas aeruginosa. mBio 2021; 12:e0086021. [PMID: 34372703 PMCID: PMC8406328 DOI: 10.1128/mbio.00860-21] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Bacteria live in spatially organized aggregates during chronic infections, where they adapt to the host environment, evade immune responses, and resist therapeutic interventions. Although it is known that environmental factors such as polymers influence bacterial aggregation, it is not clear how bacterial adaptation during chronic infection impacts the formation and spatial organization of aggregates in the presence of polymers. Here, we show that in an in vitro model of cystic fibrosis (CF) containing the polymers extracellular DNA (eDNA) and mucin, O-specific antigen is a major factor determining the formation of two distinct aggregate assembly types of Pseudomonas aeruginosa due to alterations in cell surface hydrophobicity. Our findings suggest that during chronic infection, the interplay between cell surface properties and polymers in the environment may influence the formation and structure of bacterial aggregates, which would shed new light on the fitness costs and benefits of O-antigen production in environments such as CF lungs.
Collapse
|
37
|
Heterogenous Susceptibility to R-Pyocins in Populations of Pseudomonas aeruginosa Sourced from Cystic Fibrosis Lungs. mBio 2021; 12:mBio.00458-21. [PMID: 33947755 PMCID: PMC8262887 DOI: 10.1128/mbio.00458-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Bacteriocins are proteinaceous antimicrobials produced by bacteria that are active against other strains of the same species. R-type pyocins are phage tail-like bacteriocins produced by Pseudomonas aeruginosa Due to their antipseudomonal activity, R-pyocins have potential as therapeutics in infection. P. aeruginosa is a Gram-negative opportunistic pathogen and is particularly problematic for individuals with cystic fibrosis (CF). P. aeruginosa organisms from CF lung infections develop increasing resistance to antibiotics, making new treatment approaches essential. P. aeruginosa populations become phenotypically and genotypically diverse during infection; however, little is known of the efficacy of R-pyocins against heterogeneous populations. R-pyocins vary by subtype (R1 to R5), distinguished by binding to different residues on the lipopolysaccharide (LPS). Each type varies in killing spectrum, and each strain produces only one R-type. To evaluate the prevalence of different R-types, we screened P. aeruginosa strains from the International Pseudomonas Consortium Database (IPCD) and from our biobank of CF strains. We found that (i) R1-types were the most prevalent R-type among strains from respiratory sources, (ii) a large number of strains lack R-pyocin genes, and (iii) isolates collected from the same patient have the same R-type. We then assessed the impact of intrastrain diversity on R-pyocin susceptibility and found a heterogenous response to R-pyocins within populations, likely due to differences in the LPS core. Our work reveals that heterogeneous populations of microbes exhibit variable susceptibility to R-pyocins and highlights that there is likely heterogeneity in response to other types of LPS-binding antimicrobials, including phage.IMPORTANCE R-pyocins have potential as alternative therapeutics against Pseudomonas aeruginosa in chronic infection; however, little is known about the efficacy of R-pyocins in heterogeneous bacterial populations. P. aeruginosa is known to become resistant to multiple antibiotics and to evolve phenotypic and genotypic diversity over time; thus, it is particularly difficult to eradicate in chronic cystic fibrosis (CF) lung infections. In this study, we found that P. aeruginosa populations from CF lungs maintain the same R-pyocin genotype but exhibit heterogeneity in susceptibility to R-pyocins from other strains. Our findings suggest there is heterogeneity in response to other types of LPS-binding antimicrobials, such as phage, highlighting the necessity of further studying the potential of LPS-binding antimicrobial particles as alternative therapies in chronic infections.
Collapse
|
38
|
Moore MP, Lamont IL, Williams D, Paterson S, Kukavica-Ibrulj I, Tucker NP, Kenna DTD, Turton JF, Jeukens J, Freschi L, Wee BA, Loman NJ, Holden S, Manzoor S, Hawkey P, Southern KW, Walshaw MJ, Levesque RC, Fothergill JL, Winstanley C. Transmission, adaptation and geographical spread of the Pseudomonas aeruginosa Liverpool epidemic strain. Microb Genom 2021; 7:mgen000511. [PMID: 33720817 PMCID: PMC8190615 DOI: 10.1099/mgen.0.000511] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 12/21/2020] [Indexed: 12/18/2022] Open
Abstract
The Liverpool epidemic strain (LES) is an important transmissible clonal lineage of Pseudomonas aeruginosa that chronically infects the lungs of people with cystic fibrosis (CF). Previous studies have focused on the genomics of the LES in a limited number of isolates, mostly from one CF centre in the UK, and from studies highlighting identification of the LES in Canada. Here we significantly extend the current LES genome database by genome sequencing 91 isolates from multiple CF centres across the UK, and we describe the comparative genomics of this large collection of LES isolates from the UK and Canada. Phylogenetic analysis revealed that the 145 LES genomes analysed formed a distinct clonal lineage when compared with the wider P. aeruginosa population. Notably, the isolates formed two clades: one associated with isolates from Canada, and the other associated with UK isolates. Further analysis of the UK LES isolates revealed clustering by clinic geography. Where isolates clustered closely together, the association was often supported by clinical data linking isolates or patients. When compared with the earliest known isolate, LESB58 (from 1988), many UK LES isolates shared common loss-of-function mutations, such as in genes gltR and fleR. Other loss-of-function mutations identified in previous studies as common adaptations during CF chronic lung infections were also identified in multiple LES isolates. Analysis of the LES accessory genome (including genomic islands and prophages) revealed variations in the carriage of large genomic regions, with some evidence for shared genomic island/prophage complement according to clinic location. Our study reveals divergence and adaptation during the spread of the LES, within the UK and between continents.
Collapse
Affiliation(s)
- Matthew P. Moore
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
- Present address: Nuffield Department of Health, University of Oxford, UK
| | - Iain L. Lamont
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - David Williams
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Steve Paterson
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Irena Kukavica-Ibrulj
- Institute for Integrative and Systems Biology, Université Laval, Quebec City, QC, Canada
| | - Nicholas P. Tucker
- Strathclyde Institute of Pharmacy & Biomedical Sciences. University of Strathclyde, Glasgow, UK
| | | | - Jane F. Turton
- National Infection Service, Public Health England, London, UK
| | - Julie Jeukens
- Institute for Integrative and Systems Biology, Université Laval, Quebec City, QC, Canada
| | - Luca Freschi
- Institute for Integrative and Systems Biology, Université Laval, Quebec City, QC, Canada
- Present address: Harvard Medical School, Boston, MA, USA
| | - Bryan A. Wee
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Present address: Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Nicholas J. Loman
- Institute for Microbiology & Infection, University of Birmingham, Birmingham, UK
| | - Stephen Holden
- Nottingham University Hospitals NHS Trust, Nottingham, UK
- Present address: MSD Research Laboratories, Two Pancras Square, London, UK
| | - Susan Manzoor
- University Hospitals Birmingham, Heartlands Hospital, Bordesley Green East, Birmingham, UK
| | - Peter Hawkey
- Institute for Microbiology & Infection, University of Birmingham, Birmingham, UK
- Present address: University of Birmingham Microbiome Treatment Centre, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | | | | | - Roger C. Levesque
- Institute for Integrative and Systems Biology, Université Laval, Quebec City, QC, Canada
| | - Joanne L. Fothergill
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Craig Winstanley
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| |
Collapse
|
39
|
Camus L, Vandenesch F, Moreau K. From genotype to phenotype: adaptations of Pseudomonas aeruginosa to the cystic fibrosis environment. Microb Genom 2021; 7:mgen000513. [PMID: 33529147 PMCID: PMC8190622 DOI: 10.1099/mgen.0.000513] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022] Open
Abstract
Pseudomonas aeruginosa is one of the main microbial species colonizing the lungs of cystic fibrosis patients and is responsible for the decline in respiratory function. Despite the hostile pulmonary environment, P. aeruginosa is able to establish chronic infections thanks to its strong adaptive capacity. Various longitudinal studies have attempted to compare the strains of early infection with the adapted strains of chronic infection. Thanks to new '-omics' techniques, convergent genetic mutations, as well as transcriptomic and proteomic dysregulations have been identified. As a consequence of this evolution, the adapted strains of P. aeruginosa have particular phenotypes that promote persistent infection.
Collapse
Affiliation(s)
- Laura Camus
- CIRI – Centre International de Recherche en Infectiologie, Université de Lyon/Inserm U1111/Université Claude Bernard Lyon 1/CNRS UMR5308/ENS de Lyon, Lyon, France
| | - François Vandenesch
- CIRI – Centre International de Recherche en Infectiologie, Université de Lyon/Inserm U1111/Université Claude Bernard Lyon 1/CNRS UMR5308/ENS de Lyon, Lyon, France
- Centre National de Référence des Staphylocoques, Hospices Civils de Lyon, Lyon, France
- Institut des Agents Infectieux, Hospices Civils de Lyon, Lyon, France
| | - Karen Moreau
- CIRI – Centre International de Recherche en Infectiologie, Université de Lyon/Inserm U1111/Université Claude Bernard Lyon 1/CNRS UMR5308/ENS de Lyon, Lyon, France
| |
Collapse
|
40
|
Harrington NE, Sweeney E, Harrison F. Building a better biofilm - Formation of in vivo-like biofilm structures by Pseudomonas aeruginosa in a porcine model of cystic fibrosis lung infection. Biofilm 2020; 2:100024. [PMID: 33381751 PMCID: PMC7762787 DOI: 10.1016/j.bioflm.2020.100024] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/24/2020] [Accepted: 04/24/2020] [Indexed: 12/20/2022] Open
Abstract
Pseudomonas aeruginosa biofilm infections in the cystic fibrosis (CF) lung are highly resistant to current antimicrobial treatments and are associated with increased mortality rates. The existing models for such infections are not able to reliably mimic the clinical biofilms observed. We aimed to further optimise an ex vivo pig lung (EVPL) model for P. aeruginosa CF lung infection that can be used to increase understanding of chronic CF biofilm infection. The EVPL model will facilitate discovery of novel infection prevention methods and treatments, and enhanced exploration of biofilm architecture. We investigated purine metabolism and biofilm formation in the model using transposon insertion mutants in P. aeruginosa PA14 for key genes: purD, gacA and pelA. Our results demonstrate that EVPL recapitulates a key aspect of in vivo P. aeruginosa infection metabolism, and that the pathogen forms a biofilm with a clinically realistic structure not seen in other in vitro studies. Two pathways known to be required for in vivo biofilm infection - the Gac regulatory pathway and production of the Pel exopolysaccharide - are essential to the formation of this mature, structured biofilm on EVPL tissue. We propose the high-throughput EVPL model as a validated biofilm platform to bridge the gap between in vitro work and CF lung infection.
Collapse
Affiliation(s)
- Niamh E. Harrington
- School of Life Sciences, Gibbet Hill Campus, The University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Esther Sweeney
- School of Life Sciences, Gibbet Hill Campus, The University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Freya Harrison
- School of Life Sciences, Gibbet Hill Campus, The University of Warwick, Coventry, CV4 7AL, United Kingdom
| |
Collapse
|
41
|
Sweeney E, Sabnis A, Edwards AM, Harrison F. Effect of host-mimicking medium and biofilm growth on the ability of colistin to kill Pseudomonas aeruginosa. MICROBIOLOGY-SGM 2020; 166:1171-1180. [PMID: 33253080 PMCID: PMC7819359 DOI: 10.1099/mic.0.000995] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In vivo biofilms cause recalcitrant infections with extensive and unpredictable antibiotic tolerance. Here, we demonstrate increased tolerance of colistin by Pseudomonas aeruginosa when grown in medium that mimics cystic fibrosis (CF) sputum versus standard medium in in vitro biofilm assays, and drastically increased tolerance when grown in an ex vivo CF model versus the in vitro assay. We used colistin conjugated to the fluorescent dye BODIPY to assess the penetration of the antibiotic into ex vivo biofilms and showed that poor penetration partly explains the high doses of drug necessary to kill bacteria in these biofilms. The ability of antibiotics to penetrate the biofilm matrix is key to their clinical success, but hard to measure. Our results demonstrate both the importance of reduced entry into the matrix in in vivo-like biofilm, and the tractability of using a fluorescent tag and benchtop fluorimeter to assess antibiotic entry into biofilms. This method could be a relatively quick, cheap and useful addition to diagnostic and drug development pipelines, allowing the assessment of drug entry into biofilms, in in vivo-like conditions, prior to more detailed tests of biofilm killing.
Collapse
Affiliation(s)
- Esther Sweeney
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry CV4 7AL, UK
| | - Akshay Sabnis
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, Armstrong Rd, London SW7 2AZ, UK
| | - Andrew M Edwards
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, Armstrong Rd, London SW7 2AZ, UK
| | - Freya Harrison
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
42
|
Vanderwoude J, Fleming D, Azimi S, Trivedi U, Rumbaugh KP, Diggle SP. The evolution of virulence in Pseudomonas aeruginosa during chronic wound infection. Proc Biol Sci 2020; 287:20202272. [PMID: 33081616 DOI: 10.1098/rspb.2020.2272] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Opportunistic pathogens are associated with a number of chronic human infections, yet the evolution of virulence in these organisms during chronic infection remains poorly understood. Here, we tested the evolution of virulence in the human opportunistic pathogen Pseudomonas aeruginosa in a murine chronic wound model using a two-part serial passage and sepsis experiment, and found that virulence evolved in different directions in each line of evolution. We also assessed P. aeruginosa adaptation to a chronic wound after 42 days of evolution and found that morphological diversity in our evolved populations was limited compared with that previously described in cystic fibrosis (CF) infections. Using whole-genome sequencing, we found that genes previously implicated in P. aeruginosa pathogenesis (lasR, pilR, fleQ, rpoN and pvcA) contained mutations during the course of evolution in wounds, with selection occurring in parallel across all lines of evolution. Our findings highlight that: (i) P. aeruginosa heterogeneity may be less extensive in chronic wounds than in CF lungs; (ii) genes involved in P. aeruginosa pathogenesis acquire mutations during chronic wound infection; (iii) similar genetic adaptations are employed by P. aeruginosa across multiple infection environments; and (iv) current models of virulence may not adequately explain the diverging evolutionary trajectories observed in an opportunistic pathogen during chronic wound infection.
Collapse
Affiliation(s)
- Jelly Vanderwoude
- Center for Microbial Dynamics and Infection, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Derek Fleming
- Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Sheyda Azimi
- Center for Microbial Dynamics and Infection, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Urvish Trivedi
- Section of Microbiology, Department of Biology, Faculty of Science, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Kendra P Rumbaugh
- Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Stephen P Diggle
- Center for Microbial Dynamics and Infection, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
43
|
Nolan LM, Turnbull L, Katrib M, Osvath SR, Losa D, Lazenby JJ, Whitchurch CB. Pseudomonas aeruginosa is capable of natural transformation in biofilms. MICROBIOLOGY (READING, ENGLAND) 2020; 166:995-1003. [PMID: 32749953 PMCID: PMC7660920 DOI: 10.1099/mic.0.000956] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/11/2020] [Indexed: 12/28/2022]
Abstract
Natural transformation is a mechanism that enables competent bacteria to acquire naked, exogenous DNA from the environment. It is a key process that facilitates the dissemination of antibiotic resistance and virulence determinants throughout bacterial populations. Pseudomonas aeruginosa is an opportunistic Gram-negative pathogen that produces large quantities of extracellular DNA (eDNA) that is required for biofilm formation. P. aeruginosa has a remarkable level of genome plasticity and diversity that suggests a high degree of horizontal gene transfer and recombination but is thought to be incapable of natural transformation. Here we show that P. aeruginosa possesses homologues of all proteins known to be involved in natural transformation in other bacterial species. We found that P. aeruginosa in biofilms is competent for natural transformation of both genomic and plasmid DNA. Furthermore, we demonstrate that type-IV pili (T4P) facilitate but are not absolutely essential for natural transformation in P. aeruginosa.
Collapse
Affiliation(s)
- Laura M. Nolan
- The ithree institute, University of Technology Sydney, Ultimo, New South Wales, 2007, Australia
- National Heart and Lung Institute, Imperial College London, London, SW3 6LR, UK
| | - Lynne Turnbull
- The ithree institute, University of Technology Sydney, Ultimo, New South Wales, 2007, Australia
| | - Marilyn Katrib
- The ithree institute, University of Technology Sydney, Ultimo, New South Wales, 2007, Australia
| | - Sarah R. Osvath
- The ithree institute, University of Technology Sydney, Ultimo, New South Wales, 2007, Australia
| | - Davide Losa
- The ithree institute, University of Technology Sydney, Ultimo, New South Wales, 2007, Australia
- Present address: Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, TN 38123, Italy
| | - James J. Lazenby
- Microbes in the Food Chain Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - Cynthia B. Whitchurch
- The ithree institute, University of Technology Sydney, Ultimo, New South Wales, 2007, Australia
- Microbes in the Food Chain Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| |
Collapse
|
44
|
Hassan MM, Harrington NE, Sweeney E, Harrison F. Predicting Antibiotic-Associated Virulence of Pseudomonas aeruginosa Using an ex vivo Lung Biofilm Model. Front Microbiol 2020; 11:568510. [PMID: 32983077 PMCID: PMC7492588 DOI: 10.3389/fmicb.2020.568510] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/17/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Bacterial biofilms are known to have high antibiotic tolerance which directly affects clearance of bacterial infections in people with cystic fibrosis (CF). Current antibiotic susceptibility testing methods are either based on planktonic cells or do not reflect the complexity of biofilms in vivo. Consequently, inaccurate diagnostics affect treatment choice, preventing bacterial clearance and potentially selecting for antibiotic resistance. This leads to prolonged, ineffective treatment. METHODS In this study, we use an ex vivo lung biofilm model to study antibiotic tolerance and virulence of Pseudomonas aeruginosa. Sections of pig bronchiole were dissected, prepared and infected with clinical isolates of P. aeruginosa and incubated in artificial sputum media to form biofilms, as previously described. Then, lung-associated biofilms were challenged with antibiotics, at therapeutically relevant concentrations, before their bacterial load and virulence were quantified and detected, respectively. RESULTS The results demonstrated minimal effect on the bacterial load with therapeutically relevant concentrations of ciprofloxacin and meropenem, with the latter causing an increased production of proteases and pyocyanin. A combination of meropenem and tobramycin did not show any additional decrease in bacterial load but demonstrated a slight decrease in total proteases and pyocyanin production. CONCLUSION In this initial study of six clinical isolates of P. aeruginosa showed high levels of antibiotic tolerance, with minimal effect on bacterial load and increased proteases production, which could negatively affect lung function. Thus, the ex vivo lung model has the potential to be effectively used in larger studies of antibiotic tolerance in in vivo-like biofilms, and show how sub optimal antibiotic treatment of biofilms may potentially contribute to exacerbations and eventual lung failure. We demonstrate a realistic model for understanding antibiotic resistance and tolerance in biofilms clinically and for molecules screening in anti-biofilm drug development.
Collapse
Affiliation(s)
- Marwa M. Hassan
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, University of Surrey, Guildford, United Kingdom
| | | | - Esther Sweeney
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Freya Harrison
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
45
|
Development and Application of a Core Genome Multilocus Sequence Typing Scheme for the Health Care-Associated Pathogen Pseudomonas aeruginosa. J Clin Microbiol 2020; 58:JCM.00214-20. [PMID: 32493782 DOI: 10.1128/jcm.00214-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 05/28/2020] [Indexed: 12/11/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic human pathogen that frequently causes health care-associated infections (HAIs). Due to its metabolic diversity and ability to form biofilms, this Gram-negative nonfermenting bacterium can persist in the health care environment, which can lead to prolonged HAI outbreaks. We describe the creation of a core genome multilocus sequence typing (cgMLST) scheme to provide a stable platform for the rapid comparison of P. aeruginosa isolates using whole-genome sequencing (WGS) data. We used a diverse set of 58 complete P. aeruginosa genomes to curate a set of 4,440 core genes found in each isolate, representing ∼64% of the average genome size. We then expanded the alleles for each gene using 1,991 contig-level genome sequences. The scheme was used to analyze genomes from four historical HAI outbreaks to compare the phylogenies generated using cgMLST to those of other means (traditional MLST, pulsed-field gel electrophoresis [PFGE], and single-nucleotide variant [SNV] analysis). The cgMLST scheme provides sufficient resolution for analyzing individual outbreaks, as well as the stability for comparisons across a variety of isolates encountered in surveillance studies, making it a valuable tool for the rapid analysis of P. aeruginosa genomes.
Collapse
|
46
|
Podlesek Z, Žgur Bertok D. The DNA Damage Inducible SOS Response Is a Key Player in the Generation of Bacterial Persister Cells and Population Wide Tolerance. Front Microbiol 2020; 11:1785. [PMID: 32849403 PMCID: PMC7417476 DOI: 10.3389/fmicb.2020.01785] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/08/2020] [Indexed: 12/28/2022] Open
Abstract
Population-wide tolerance and persisters enable susceptible bacterial cells to endure hostile environments, including antimicrobial exposure. The SOS response can play a significant role in the generation of persister cells, population-wide tolerance, and shielding. The SOS pathway is an inducible DNA damage repair system that is also pivotal for bacterial adaptation, pathogenesis, and diversification. In addition to the two key SOS regulators, LexA and RecA, some other stressors and stress responses can control SOS factors. Bacteria are exposed to DNA-damaging agents and other environmental and intracellular factors, including cigarette smoke, that trigger the SOS response at a number of sites within the host. The Escherichia coli TisB/IstR module is as yet the only known SOS-regulated toxin–antitoxin module involved in persister formation. Nevertheless, the SOS response plays a key role in the formation of biofilms that are highly recalcitrant to antimicrobials and can be abundant in persisters. Furthermore, the dynamic biofilm environment generates DNA-damaging factors that trigger the SOS response within the biofilm, fueling bacterial adaptation and diversification. This review highlights the SOS response in relation to antimicrobial recalcitrance to antimicrobials in four clinically significant species, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Zdravko Podlesek
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Darja Žgur Bertok
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
47
|
Azimi S, Roberts AEL, Peng S, Weitz JS, McNally A, Brown SP, Diggle SP. Allelic polymorphism shapes community function in evolving Pseudomonas aeruginosa populations. ISME JOURNAL 2020; 14:1929-1942. [PMID: 32341475 DOI: 10.1038/s41396-020-0652-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 03/23/2020] [Accepted: 03/31/2020] [Indexed: 12/31/2022]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that chronically infects the lungs of individuals with cystic fibrosis (CF) by forming antibiotic-resistant biofilms. Emergence of phenotypically diverse isolates within CF P. aeruginosa populations has previously been reported; however, the impact of heterogeneity on social behaviors and community function is poorly understood. Here we describe how this heterogeneity impacts on behavioral traits by evolving the strain PAO1 in biofilms grown in a synthetic sputum medium for 50 days. We measured social trait production and antibiotic tolerance, and used a metagenomic approach to analyze and assess genomic changes over the duration of the evolution experiment. We found that (i) evolutionary trajectories were reproducible in independently evolving populations; (ii) over 60% of genomic diversity occurred within the first 10 days of selection. We then focused on quorum sensing (QS), a well-studied P. aeruginosa trait that is commonly mutated in strains isolated from CF lungs. We found that at the population level, (i) evolution in sputum medium selected for decreased the production of QS and QS-dependent traits; (ii) there was a significant correlation between lasR mutant frequency, the loss of protease, and the 3O-C12-HSL signal, and an increase in resistance to clinically relevant β-lactam antibiotics, despite no previous antibiotic exposure. Overall, our findings provide insights into the effect of allelic polymorphism on community functions in diverse P. aeruginosa populations. Further, we demonstrate that P. aeruginosa population and evolutionary dynamics can impact on traits important for virulence and can lead to increased tolerance to β-lactam antibiotics.
Collapse
Affiliation(s)
- Sheyda Azimi
- Center for Microbial Dynamics & Infection, Georgia Institute of Technology, Atlanta, GA, USA.,School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Aled E L Roberts
- Microbiology & Infectious Diseases Group, Institute of Life Science, Swansea University Medical School, Swansea, UK
| | - Shengyun Peng
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Joshua S Weitz
- Center for Microbial Dynamics & Infection, Georgia Institute of Technology, Atlanta, GA, USA.,School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.,School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Alan McNally
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Samuel P Brown
- Center for Microbial Dynamics & Infection, Georgia Institute of Technology, Atlanta, GA, USA.,School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Stephen P Diggle
- Center for Microbial Dynamics & Infection, Georgia Institute of Technology, Atlanta, GA, USA. .,School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
48
|
Banerji R, Kanojiya P, Saroj SD. Role of interspecies bacterial communication in the virulence of pathogenic bacteria. Crit Rev Microbiol 2020; 46:136-146. [DOI: 10.1080/1040841x.2020.1735991] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Rajashri Banerji
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| | - Poonam Kanojiya
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| | - Sunil D. Saroj
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| |
Collapse
|
49
|
Cornforth DM, Diggle FL, Melvin JA, Bomberger JM, Whiteley M. Quantitative Framework for Model Evaluation in Microbiology Research Using Pseudomonas aeruginosa and Cystic Fibrosis Infection as a Test Case. mBio 2020; 11:e03042-19. [PMID: 31937646 PMCID: PMC6960289 DOI: 10.1128/mbio.03042-19] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 11/27/2019] [Indexed: 01/14/2023] Open
Abstract
Laboratory models are a cornerstone of modern microbiology, but the accuracy of these models has not been systematically evaluated. As a result, researchers often choose models based on intuition or incomplete data. We propose a general quantitative framework to assess model accuracy from RNA sequencing data and use this framework to evaluate models of Pseudomonas aeruginosa cystic fibrosis (CF) lung infection. We found that an in vitro synthetic CF sputum medium model and a CF airway epithelial cell model had the highest genome-wide accuracy but underperformed on distinct functional categories, including porins and polyamine biosynthesis for the synthetic sputum medium and protein synthesis for the epithelial cell model. We identified 211 "elusive" genes that were not mimicked in a reference strain grown in any laboratory model but found that many were captured by using a clinical isolate. These methods provide researchers with an evidence-based foundation to select and improve laboratory models.IMPORTANCE Laboratory models have become a cornerstone of modern microbiology. However, the accuracy of even the most commonly used models has never been evaluated. Here, we propose a quantitative framework based on gene expression data to evaluate model performance and apply it to models of Pseudomonas aeruginosa cystic fibrosis lung infection. We discovered that these models captured different aspects of P. aeruginosa infection physiology, and we identify which functional categories are and are not captured by each model. These methods will provide researchers with a solid basis to choose among laboratory models depending on the scientific question of interest and will help improve existing experimental models.
Collapse
Affiliation(s)
- Daniel M Cornforth
- School of Biological Sciences, Georgia Institute of Technology, Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
- Emory-Children's Cystic Fibrosis Center, Atlanta, Georgia, USA
| | - Frances L Diggle
- School of Biological Sciences, Georgia Institute of Technology, Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
- Emory-Children's Cystic Fibrosis Center, Atlanta, Georgia, USA
| | - Jeffrey A Melvin
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jennifer M Bomberger
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Marvin Whiteley
- School of Biological Sciences, Georgia Institute of Technology, Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
- Emory-Children's Cystic Fibrosis Center, Atlanta, Georgia, USA
| |
Collapse
|
50
|
Clark ST, Guttman DS, Hwang DM. Diversification of Pseudomonas aeruginosa within the cystic fibrosis lung and its effects on antibiotic resistance. FEMS Microbiol Lett 2019; 365:4834010. [PMID: 29401362 DOI: 10.1093/femsle/fny026] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 01/30/2018] [Indexed: 12/13/2022] Open
Abstract
The evolution and diversification of bacterial pathogens within human hosts represent potential barriers to the diagnosis and treatment of life-threatening infections. Tremendous genetic and phenotypic diversity is characteristic of host adaptation in strains of Pseudomonas aeruginosa that infect the airways of individuals with chronic lung diseases and prove to be extremely difficult to eradicate. In this MiniReview, we examine recent advances in understanding within-host diversity and antimicrobial resistance in P. aeruginosa populations from the lower airways of individuals with the fatal genetic disease cystic fibrosis and the potential impacts that this diversity may have on detecting and interpreting antimicrobial susceptibility within these populations.
Collapse
Affiliation(s)
- Shawn T Clark
- Toronto General Hospital Research Institute, University Health Network, 101 College Street, PMCRT - MaRS Centre, Toronto, Ontario M5G 1L7, Canada
| | - David S Guttman
- Department of Cell & Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario M5S 3G5, Canada.,Centre for the Analysis of Genome Evolution & Function, University of Toronto, 25 Willcocks Street, Toronto, Ontario M5S 3B2, Canada
| | - David M Hwang
- Toronto General Hospital Research Institute, University Health Network, 101 College Street, PMCRT - MaRS Centre, Toronto, Ontario M5G 1L7, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|