1
|
Zong W, Guo X, Zhang K, Chen L, Liu YG, Guo J. Photoperiod and temperature synergistically regulate heading date and regional adaptation in rice. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3762-3777. [PMID: 38779909 DOI: 10.1093/jxb/erae209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 05/22/2024] [Indexed: 05/25/2024]
Abstract
Plants must accurately integrate external environmental signals with their own development to initiate flowering at the appropriate time for reproductive success. Photoperiod and temperature are key external signals that determine flowering time; both are cyclical and periodic, and they are closely related. In this review, we describe photoperiod-sensitive genes that simultaneously respond to temperature signals in rice (Oryza sativa). We introduce the mechanisms by which photoperiod and temperature synergistically regulate heading date and regional adaptation in rice. We also discuss the prospects for designing different combinations of heading date genes and other cold tolerance or thermo-tolerance genes to help rice better adapt to changes in light and temperature via molecular breeding to enhance yield in the future.
Collapse
Affiliation(s)
- Wubei Zong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xiaotong Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Kai Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Letian Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yao-Guang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jingxin Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
2
|
Wen X, Zhong Z, Xu P, Yang Q, Wang Y, Liu L, Wu Z, Wu Y, Zhang Y, Liu Q, Zhou Z, Peng Z, He Y, Cheng S, Cao L, Zhan X, Wu W. OsCOL5 suppresses heading through modulation of Ghd7 and Ehd2, enhancing rice yield. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:162. [PMID: 38884792 DOI: 10.1007/s00122-024-04674-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 05/12/2024] [Indexed: 06/18/2024]
Abstract
KEY MESSAGE OsCOL5, an ortholog of Arabidopsis COL5, is involved in photoperiodic flowering and enhances rice yield through modulation of Ghd7 and Ehd2 and interactions with OsELF3-1 and OsELF3-2. Heading date, also known as flowering time, plays a crucial role in determining the adaptability and yield potential of rice (Oryza sativa L.). CONSTANS (CO)-like is one of the most critical flowering-associated gene families, members of which are evolutionarily conserved. Here, we report the molecular functional characterization of OsCOL5, an ortholog of Arabidopsis COL5, which is involved in photoperiodic flowering and influences rice yield. Structural analysis revealed that OsCOL5 is a typical member of CO-like family, containing two B-box domains and one CCT domain. Rice plants overexpressing OsCOL5 showed delayed heading and increases in plant height, main spike number, total grain number per plant, and yield per plant under both long-day (LD) and short-day (SD) conditions. Gene expression analysis indicated that OsCOL5 was primarily expressed in the leaves and stems with a diurnal rhythm expression pattern. RT-qPCR analysis of heading date genes showed that OsCOL5 suppressed flowering by up-regulating Ghd7 and down-regulating Ehd2, consequently reducing the expression of Ehd1, Hd3a, RFT1, OsMADS14, and OsMADS15. Yeast two-hybrid experiments showed direct interactions of OsCOL5 with OsELF3-1 and OsELF3-2. Further verification showed specific interactions between the zinc finger/B-box domain of OsCOL5 and the middle region of OsELF3-1 and OsELF3-2. Yeast one-hybrid assays revealed that OsCOL5 may bind to the CCACA motif. The results suggest that OsCOL5 functions as a floral repressor, playing a vital role in rice's photoperiodic flowering regulation. This gene shows potential in breeding programs aimed at improving rice yield by influencing the timing of flowering, which directly impacts crop productivity.
Collapse
Affiliation(s)
- Xiaoxia Wen
- China National Center for Rice Improvement and State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 311400, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Zhengzheng Zhong
- China National Center for Rice Improvement and State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 311400, China
| | - Peng Xu
- China National Center for Rice Improvement and State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 311400, China
| | - Qinqin Yang
- China National Center for Rice Improvement and State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 311400, China
| | - Yinping Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
- Shenzhen Research Institute of Henan University, Shenzhen, 518000, China
| | - Ling Liu
- China National Center for Rice Improvement and State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 311400, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Zhaozhong Wu
- China National Center for Rice Improvement and State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 311400, China
| | - Yewen Wu
- China National Center for Rice Improvement and State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 311400, China
| | - Yingxin Zhang
- China National Center for Rice Improvement and State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 311400, China
| | - Qunen Liu
- China National Center for Rice Improvement and State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 311400, China
| | - Zhengping Zhou
- China National Center for Rice Improvement and State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 311400, China
| | - Zequn Peng
- China National Center for Rice Improvement and State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 311400, China
| | - Yuqing He
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Shihua Cheng
- China National Center for Rice Improvement and State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 311400, China
| | - Liyong Cao
- China National Center for Rice Improvement and State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 311400, China.
| | - Xiaodeng Zhan
- China National Center for Rice Improvement and State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 311400, China.
| | - Weixun Wu
- China National Center for Rice Improvement and State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 311400, China.
| |
Collapse
|
3
|
Zhu X, Wang H, Li Y, Rao D, Wang F, Gao Y, Zhong W, Zhao Y, Wu S, Chen X, Qiu H, Zhang W, Xia Z. A Novel 10-Base Pair Deletion in the First Exon of GmHY2a Promotes Hypocotyl Elongation, Induces Early Maturation, and Impairs Photosynthetic Performance in Soybean. Int J Mol Sci 2024; 25:6483. [PMID: 38928189 PMCID: PMC11203641 DOI: 10.3390/ijms25126483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/03/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Plants photoreceptors perceive changes in light quality and intensity and thereby regulate plant vegetative growth and reproductive development. By screening a γ irradiation-induced mutant library of the soybean (Glycine max) cultivar "Dongsheng 7", we identified Gmeny, a mutant with elongated nodes, yellowed leaves, decreased chlorophyll contents, altered photosynthetic performance, and early maturation. An analysis of bulked DNA and RNA data sampled from a population segregating for Gmeny, using the BVF-IGV pipeline established in our laboratory, identified a 10 bp deletion in the first exon of the candidate gene Glyma.02G304700. The causative mutation was verified by a variation analysis of over 500 genes in the candidate gene region and an association analysis, performed using two populations segregating for Gmeny. Glyma.02G304700 (GmHY2a) is a homolog of AtHY2a in Arabidopsis thaliana, which encodes a PΦB synthase involved in the biosynthesis of phytochrome. A transcriptome analysis of Gmeny using the Kyoto Encyclopedia of Genes and Genomes (KEGG) revealed changes in multiple functional pathways, including photosynthesis, gibberellic acid (GA) signaling, and flowering time, which may explain the observed mutant phenotypes. Further studies on the function of GmHY2a and its homologs will help us to understand its profound regulatory effects on photosynthesis, photomorphogenesis, and flowering time.
Collapse
Affiliation(s)
- Xiaobin Zhu
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China; (X.Z.); (H.W.); (Y.L.); (F.W.); (Y.G.); (W.Z.); (Y.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haiyan Wang
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China; (X.Z.); (H.W.); (Y.L.); (F.W.); (Y.G.); (W.Z.); (Y.Z.)
| | - Yuzhuo Li
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China; (X.Z.); (H.W.); (Y.L.); (F.W.); (Y.G.); (W.Z.); (Y.Z.)
| | - Demin Rao
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun 132102, China; (D.R.); (H.Q.); (W.Z.)
| | - Feifei Wang
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China; (X.Z.); (H.W.); (Y.L.); (F.W.); (Y.G.); (W.Z.); (Y.Z.)
| | - Yi Gao
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China; (X.Z.); (H.W.); (Y.L.); (F.W.); (Y.G.); (W.Z.); (Y.Z.)
| | - Weiyu Zhong
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China; (X.Z.); (H.W.); (Y.L.); (F.W.); (Y.G.); (W.Z.); (Y.Z.)
| | - Yujing Zhao
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China; (X.Z.); (H.W.); (Y.L.); (F.W.); (Y.G.); (W.Z.); (Y.Z.)
| | - Shihao Wu
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (S.W.); (X.C.)
| | - Xin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (S.W.); (X.C.)
| | - Hongmei Qiu
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun 132102, China; (D.R.); (H.Q.); (W.Z.)
| | - Wei Zhang
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun 132102, China; (D.R.); (H.Q.); (W.Z.)
| | - Zhengjun Xia
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China; (X.Z.); (H.W.); (Y.L.); (F.W.); (Y.G.); (W.Z.); (Y.Z.)
| |
Collapse
|
4
|
Zong W, Song Y, Xiao D, Guo X, Li F, Sun K, Tang W, Xie W, Luo Y, Liang S, Zhou J, Xie X, Liu D, Chen L, Wang H, Liu YG, Guo J. Dominance complementation of parental heading date alleles of Hd1, Ghd7, DTH8, and PRR37 confers transgressive late maturation in hybrid rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:2108-2123. [PMID: 38526880 DOI: 10.1111/tpj.16732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/11/2024] [Accepted: 03/05/2024] [Indexed: 03/27/2024]
Abstract
Rice (Oryza sativa L.) is a short-day plant whose heading date is largely determined by photoperiod sensitivity (PS). Many parental lines used in hybrid rice breeding have weak PS, but their F1 progenies have strong PS and exhibit an undesirable transgressive late-maturing phenotype. However, the genetic basis for this phenomenon is unclear. Therefore, effective methods are needed for selecting parents to create F1 hybrid varieties with the desired PS. In this study, we used bulked segregant analysis with F1 Ningyou 1179 (strong PS) and its F2 population, and through analyzing both parental haplotypes and PS data for 918 hybrid rice varieties, to identify the genetic basis of transgressive late maturation which is dependent on dominance complementation effects of Hd1, Ghd7, DTH8, and PRR37 from both parents rather than from a single parental genotype. We designed a molecular marker-assisted selection system to identify the genotypes of Hd1, Ghd7, DTH8, and PRR37 in parental lines to predict PS in F1 plants prior to crossing. Furthermore, we used CRISPR/Cas9 technique to knock out Hd1 in Ning A (sterile line) and Ning B (maintainer line) and obtained an hd1-NY material with weak PS while retaining the elite agronomic traits of NY. Our findings clarified the genetic basis of transgressive late maturation in hybrid rice and developed effective methods for parental selection and gene editing to facilitate the breeding of hybrid varieties with the desired PS for improving their adaptability.
Collapse
Affiliation(s)
- Wubei Zong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yingang Song
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Dongdong Xiao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaotong Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Fuquan Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Kangli Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Wenjing Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Wenhao Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yanqiu Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Shan Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Jingyao Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xianrong Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Dilin Liu
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of New Technology in Rice, Breeding-Guangdong Rice Engineering Laboratory, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Letian Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Haiyang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yao-Guang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Jingxin Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
5
|
Tam NT, Nhan DK. Identification of Insertion/Deletion Markers for Photoperiod Sensitivity in Rice ( Oryza sativa L.). BIOLOGY 2024; 13:358. [PMID: 38785840 PMCID: PMC11117668 DOI: 10.3390/biology13050358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/06/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
The current study aims to identify candidate insertion/deletion (INDEL) markers associated with photoperiod sensitivity (PS) in rice landraces from the Vietnamese Mekong Delta. The whole-genome sequencing of 20 accessions was conducted to analyze INDEL variations between two photoperiod-sensitivity groups. A total of 2240 INDELs were identified between the two photoperiod-sensitivity groups. The selection criteria included INDELs with insertions or deletions of at least 20 base pairs within the improved rice group. Six INDELs were discovered on chromosomes 01 (5 INDELs) and 6 (1 INDEL), and two genes were identified: LOC_Os01g23780 and LOC_Os01g36500. The gene LOC_Os01g23780, which may be involved in rice flowering, was identified in a 20 bp deletion on chromosome 01 from the improved rice accession group. A marker was devised for this gene, indicating a polymorphism rate of 20%. Remarkably, 20% of the materials comprised improved rice accessions. This INDEL marker could explain 100% of the observed distinctions. Further analysis of the mapping population demonstrated that an INDEL marker associated with the MADS-box gene on chromosome 01 was linked to photoperiod sensitivity. The F1 population displayed two bands across all hybrid individuals. The marker demonstrates efficacy in distinguishing improved rice accessions within the indica accessions. This study underscores the potential applicability of the INDEL marker in breeding strategies.
Collapse
Affiliation(s)
- Nguyen Thanh Tam
- Mekong Delta Development Research Institute, Can Tho University, Campus 2, 3-2 Street, Can Tho 94115, Vietnam
| | - Dang Kieu Nhan
- Mekong Delta Development Research Institute, Can Tho University, Campus 2, 3-2 Street, Can Tho 94115, Vietnam
| |
Collapse
|
6
|
Li S, Luo Y, Wei G, Zong W, Zeng W, Xiao D, Zhang H, Song Y, Hao Y, Sun K, Lei C, Guo X, Xu B, Li W, Wu Z, Liu Y, Xie X, Guo J. Improving yield-related traits by editing the promoter of the heading date gene Ehd1 in rice. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:239. [PMID: 37930441 DOI: 10.1007/s00122-023-04489-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/16/2023] [Indexed: 11/07/2023]
Abstract
KEY MESSAGE We developed an efficient promoter editing method to create different weak Ehd1 alleles in elite japonica rice variety ZJ8 with slightly delayed heading and improved yield for use in breeding. Heading date is an important agronomic trait of rice (Oryza sativa) that determines the planting areas and cultivation seasons of different varieties, thus affecting final yield. Early heading date 1 (Ehd1) is a major rice integrator gene in the regulatory network of heading date whose expression level is negatively correlated with heading date and grain yield. Some elite japonica varieties such as Zhongjia 8 (ZJ8) show very early heading with poor agronomic traits when planted in South China. This problem can be addressed by downregulating the expression of Ehd1. In this study, we analyzed the cis-regulatory elements in the Ehd1 promoter region. We then used CRISPR/Cas9-mediated editing to modify the Ehd1 promoter at multiple target sites in ZJ8. We rapidly identified homozygous allelic mutations in the T2 generation via long-read sequencing. We obtained several Ehd1 promoter mutants with different degrees of lower Ehd1 expression, delayed heading date, and improved yield-related traits. We developed an efficient promoter editing method to create different weak Ehd1 alleles for breeding selection. Using this method, a series of heading date materials from elite varieties can be created to expand the planting area of rice and improve grain yields.
Collapse
Affiliation(s)
- Shengting Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-BioresourcesGuangdong Laboratory for Lingnan Modern AgricultureCollege of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yanqiu Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-BioresourcesGuangdong Laboratory for Lingnan Modern AgricultureCollege of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, 525000, China
| | - Guangliang Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-BioresourcesGuangdong Laboratory for Lingnan Modern AgricultureCollege of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Wubei Zong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-BioresourcesGuangdong Laboratory for Lingnan Modern AgricultureCollege of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Wanyong Zeng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-BioresourcesGuangdong Laboratory for Lingnan Modern AgricultureCollege of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Dongdong Xiao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-BioresourcesGuangdong Laboratory for Lingnan Modern AgricultureCollege of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Han Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-BioresourcesGuangdong Laboratory for Lingnan Modern AgricultureCollege of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yingang Song
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-BioresourcesGuangdong Laboratory for Lingnan Modern AgricultureCollege of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yu Hao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-BioresourcesGuangdong Laboratory for Lingnan Modern AgricultureCollege of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Kangli Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-BioresourcesGuangdong Laboratory for Lingnan Modern AgricultureCollege of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Chen Lei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-BioresourcesGuangdong Laboratory for Lingnan Modern AgricultureCollege of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaotong Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-BioresourcesGuangdong Laboratory for Lingnan Modern AgricultureCollege of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Bingqun Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-BioresourcesGuangdong Laboratory for Lingnan Modern AgricultureCollege of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Weitao Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-BioresourcesGuangdong Laboratory for Lingnan Modern AgricultureCollege of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Zeqiang Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-BioresourcesGuangdong Laboratory for Lingnan Modern AgricultureCollege of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yaoguang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-BioresourcesGuangdong Laboratory for Lingnan Modern AgricultureCollege of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xianrong Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-BioresourcesGuangdong Laboratory for Lingnan Modern AgricultureCollege of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - Jingxin Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-BioresourcesGuangdong Laboratory for Lingnan Modern AgricultureCollege of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
7
|
Zhang Z, Yang S, Wang Q, Yu H, Zhao B, Wu T, Tang K, Ma J, Yang X, Feng X. Soybean GmHY2a encodes a phytochromobilin synthase that regulates internode length and flowering time. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6646-6662. [PMID: 35946571 PMCID: PMC9629791 DOI: 10.1093/jxb/erac318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Plant height and flowering time are important agronomic traits that directly affect soybean [Glycine max (L.) Merr.] adaptability and yield. Here, the Glycine max long internode 1 (Gmlin1) mutant was selected from an ethyl methyl sulfonate (EMS)-mutated Williams 82 population due to its long internodes and early flowering. Using bulked segregant analysis (BSA), the Gmlin1 locus was mapped to Glyma.02G304700, a homologue of the Arabidopsis HY2 gene, which encodes a phytochromobilin (PΦB) synthase involved in phytochrome chromophore synthesis. Mutation of GmHY2a results in failure of the de-etiolation response under both red and far-red light. The Gmlin1 mutant exhibits a constitutive shade avoidance response under normal light, and the mutations influence the auxin and gibberellin pathways to promote internode elongation. The Gmlin1 mutant also exhibits decreased photoperiod sensitivity. In addition, the soybean photoperiod repressor gene E1 is down-regulated in the Gmlin1 mutant, resulting in accelerated flowering. The nuclear import of phytochrome A (GmphyA) and GmphyB following light treatment is decreased in Gmlin1 protoplasts, indicating that the weak light response of the Gmlin1 mutant is caused by a decrease in functional phytochrome. Together, these results indicate that GmHY2a plays an important role in soybean phytochrome biosynthesis and provide insights into the adaptability of the soybean plant.
Collapse
Affiliation(s)
- Zhirui Zhang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun 130102, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Qiushi Wang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun 130102, China
| | - Hui Yu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun 130102, China
| | - Beifang Zhao
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun 130102, China
| | - Tao Wu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun 130102, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kuanqiang Tang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun 130102, China
| | - Jingjing Ma
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun 130102, China
| | - Xinjing Yang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun 130102, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xianzhong Feng
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun 130102, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Shi M, Wang C, Wang P, Zhang M, Liao W. Methylation in DNA, histone, and RNA during flowering under stress condition: A review. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 324:111431. [PMID: 36028071 DOI: 10.1016/j.plantsci.2022.111431] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/07/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Flowering is the most critical transition period in the whole lifecycle of plants, and it is a highly sensitive period to stress. New combinations of temperature, drought stress, carbon dioxide and other abiotic/biotic conditions resulting from contemporary climate change affect the flowering process. Plants have evolved several strategies to deal with environmental stresses, including epigenetic modifications. Numerous studies show that environmental stresses trigger methylation/demethylation during flowering to preserve/accelerate plant lifecycle. What's more, histone and DNA methylation can be induced to respond to stresses, resulting in changes of flowering gene expression and enhancing stress tolerance in plants. Furthermore, RNA methylation may influence stress-regulated flowering by regulating mRNA stability and antioxidant mechanism. Our review presents the involvement of methylation in stress-repressed and stress-induced flowering. The crosstalk between methylation and small RNAs, phytohormones and exogenous substances (such as salicylic acid, nitric oxide) during flowering under different stresses were discussed. The latest regulatory evidence of RNA methylation in stress-regulated flowering was collected for the first time. Meanwhile, the limited evidences of methylation in biotic stress-induced flowering were summarized. Thus, the review provides insights into understanding of methylation mechanism in stress-regulated flowering and makes use for the development of regulating plant flowering at epigenetic level in the future.
Collapse
Affiliation(s)
- Meimei Shi
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Chunlei Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Peng Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Meiling Zhang
- College of Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
9
|
Zhao G, Wang J, Chen X, Sha H, Liu X, Han Y, Qiu G, Zhang F, Fang J. OsASHL1 and OsASHL2, two members of the COMPASS-like complex, control floral transition and plant development in rice. J Genet Genomics 2022; 49:870-880. [DOI: 10.1016/j.jgg.2022.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/14/2022] [Accepted: 02/20/2022] [Indexed: 11/26/2022]
|
10
|
Chen R, Deng Y, Ding Y, Guo J, Qiu J, Wang B, Wang C, Xie Y, Zhang Z, Chen J, Chen L, Chu C, He G, He Z, Huang X, Xing Y, Yang S, Xie D, Liu Y, Li J. Rice functional genomics: decades' efforts and roads ahead. SCIENCE CHINA. LIFE SCIENCES 2022. [PMID: 34881420 DOI: 10.1007/s11427-021-2024-2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Rice (Oryza sativa L.) is one of the most important crops in the world. Since the completion of rice reference genome sequences, tremendous progress has been achieved in understanding the molecular mechanisms on various rice traits and dissecting the underlying regulatory networks. In this review, we summarize the research progress of rice biology over past decades, including omics, genome-wide association study, phytohormone action, nutrient use, biotic and abiotic responses, photoperiodic flowering, and reproductive development (fertility and sterility). For the roads ahead, cutting-edge technologies such as new genomics methods, high-throughput phenotyping platforms, precise genome-editing tools, environmental microbiome optimization, and synthetic methods will further extend our understanding of unsolved molecular biology questions in rice, and facilitate integrations of the knowledge for agricultural applications.
Collapse
Affiliation(s)
- Rongzhi Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yiwen Deng
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yanglin Ding
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jingxin Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Jie Qiu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Bing Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Changsheng Wang
- National Center for Gene Research, Center of Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200233, China
| | - Yongyao Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Zhihua Zhang
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Jiaxin Chen
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Letian Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guangcun He
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zuhua He
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xuehui Huang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yongzhong Xing
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuhua Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Daoxin Xie
- MOE Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Yaoguang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China.
| | - Jiayang Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
11
|
Rice functional genomics: decades' efforts and roads ahead. SCIENCE CHINA. LIFE SCIENCES 2021; 65:33-92. [PMID: 34881420 DOI: 10.1007/s11427-021-2024-0] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/01/2021] [Indexed: 12/16/2022]
Abstract
Rice (Oryza sativa L.) is one of the most important crops in the world. Since the completion of rice reference genome sequences, tremendous progress has been achieved in understanding the molecular mechanisms on various rice traits and dissecting the underlying regulatory networks. In this review, we summarize the research progress of rice biology over past decades, including omics, genome-wide association study, phytohormone action, nutrient use, biotic and abiotic responses, photoperiodic flowering, and reproductive development (fertility and sterility). For the roads ahead, cutting-edge technologies such as new genomics methods, high-throughput phenotyping platforms, precise genome-editing tools, environmental microbiome optimization, and synthetic methods will further extend our understanding of unsolved molecular biology questions in rice, and facilitate integrations of the knowledge for agricultural applications.
Collapse
|
12
|
Liu T, Du L, Li Q, Kang J, Guo Q, Wang S. AtCRY2 Negatively Regulates the Functions of AtANN2 and AtANN3 in Drought Tolerance by Affecting Their Subcellular Localization and Transmembrane Ca 2+ Flow. FRONTIERS IN PLANT SCIENCE 2021; 12:754567. [PMID: 34887887 PMCID: PMC8649957 DOI: 10.3389/fpls.2021.754567] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
Annexins are a multifunctional class of calcium-binding proteins in plants, and their physiological functions and regulation in response to drought stress remain to be elucidated. Here, we found that AtANN2 and AtANN3 conferred to drought tolerance under short-day and long-day conditions, respectively. Under their functional photoperiod, AtANN2 and AtANN3 gene expression was enhanced in the mannitol-treated roots, and their encoded proteins were rapidly targeted to the plasma membrane, and mediated significant Ca2+ flows across the plasma membrane. Cryptochromes as photoreceptors can not only sense the photoperiod and regulate ion channels on the plasma membrane to influence ion flow but also induce downstream physiological responses. AtCRY2 repressed the functions of AtANN2 and AtANN3 by affecting their plasma membrane localization and inhibited AtANN2- and AtANN3-dependent transmembrane Ca2+ flow in response to drought stress. Taken together, these results uncover a mechanism linking Annexins-AtCRY2 to transmembrane Ca2+ flow and resulting in enhanced drought tolerance in Arabidopsis.
Collapse
Affiliation(s)
- Ting Liu
- College of Teacher Education, Hebei Normal University, Shijiazhuang, China
- College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Leyan Du
- College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Qiushi Li
- College of Teacher Education, Hebei Normal University, Shijiazhuang, China
- College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Jingda Kang
- College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Qi Guo
- College of Life Sciences, Hebei Normal University, Shijiazhuang, China
- Root Biology Center, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Shilin Wang
- College of Life Sciences, Hebei Normal University, Shijiazhuang, China
- College of Agriculture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
13
|
Cui Y, Xu Z, Xu Q. Elucidation of the relationship between yield and heading date using CRISPR/Cas9 system-induced mutation in the flowering pathway across a large latitudinal gradient. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:23. [PMID: 37309418 PMCID: PMC10236111 DOI: 10.1007/s11032-021-01213-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 02/03/2021] [Indexed: 06/14/2023]
Abstract
The naturally occurring genetic variation in the universal flowering (or heading date in crops) pathway has produced major advancements in crop domestication and expansion, and the various combinations of heading date genes have facilitated the plants to heading at suitable times in different ecological zones. However, gene combinations that can maximize crop yields may not exist in natural populations. Here, we planted a series of heading date mutants that harbored different heading mutant gene combinations generated by CRISPR/Cas9 gene editing technology, along with a collection of commercial varieties, across a large latitude gradient to evaluate the major effects of heading date genes and preferable gene combinations for each area. The relationship between yield and heading date was investigated. According to the pattern obtained from gene editing mutants, we concluded that the growth period of commercial varieties could be adjusted to achieve maximum yield performance in some areas. By combining the long vegetative growth allele and weak photoperiod sensitivity allele, we pinpointed an optimal balance between growth period and yield production, resulting in new partially determinate heading date to maximum yields and improved adaptability. We propose that harnessing mutations in the florigen pathway to customize the balance between vegetative and reproductive growth offers a broad toolkit for boosting crop productivity. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-021-01213-4.
Collapse
Affiliation(s)
- Yue Cui
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866 China
| | - Zhengjin Xu
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866 China
| | - Quan Xu
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866 China
| |
Collapse
|
14
|
Wei H, Wang X, Xu H, Wang L. Molecular basis of heading date control in rice. ABIOTECH 2020; 1:219-232. [PMID: 36304129 PMCID: PMC9590479 DOI: 10.1007/s42994-020-00019-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/06/2020] [Indexed: 01/25/2023]
Abstract
Flowering time is of great significance for crop reproduction, yield, and regional adaptability, which is intricately regulated by various environmental cues and endogenous signals. Genetic approaches in Arabidopsis have revealed the elaborate underlying mechanisms of sensing the dynamic change of photoperiod via a coincidence between light signaling and circadian clock, the cellular time keeping system, to precisely control photoperiodic flowering time, and many other signaling pathways including internal hormones and external temperature cues. Extensive studies in rice (Oryza sativa.), one of the short-day plants (SDP), have uncovered the multiple major genetic components in regulating heading date, and revealed the underlying mechanisms for regulating heading date. Here we summarize the current progresses on the molecular basis for rice heading date control, especially focusing on the integration mechanism between photoperiod and circadian clock, and epigenetic regulation and heading procedures in response to abiotic stresses.
Collapse
Affiliation(s)
- Hua Wei
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China.,University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Xiling Wang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China.,University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Hang Xu
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China.,University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Lei Wang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China.,University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
15
|
The G123 rice mutant, carrying a mutation in SE13, presents alterations in the expression patterns of photosynthetic and major flowering regulatory genes. PLoS One 2020; 15:e0233120. [PMID: 32421736 PMCID: PMC7233571 DOI: 10.1371/journal.pone.0233120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 04/28/2020] [Indexed: 12/11/2022] Open
Abstract
Day length is a determinant of flowering time in rice. Phytochromes participate in flowering regulation by measuring the number of daylight hours to which the plant is exposed. Here we describe G123, a rice mutant generated by irradiation, which displays insensitivity to the photoperiod and early flowering under both long day and short day conditions. To detect the mutation responsible for the early flowering phenotype exhibited by G123, we generated an F2 population, derived from crossing with the wild-type, and used a pipeline to detect genomic structural variation, initially developed for human genomes. We detected a deletion in the G123 genome that affects the PHOTOPERIOD SENSITIVITY13 (SE13) gene, which encodes a phytochromobilin synthase, an enzyme implicated in phytochrome chromophore biosynthesis. The transcriptomic analysis, performed by RNA-seq, in the G123 plants indicated an alteration in photosynthesis and other processes related to response to light. The expression patterns of the main flowering regulatory genes, such as Ghd7, Ghd8 and PRR37, were altered in the plants grown under both long day and short day conditions. These findings indicate that phytochromes are also involved in the regulation of these genes under short day conditions, and extend the role of phytochromes in flowering regulation in rice.
Collapse
|
16
|
Herath V. The architecture of the GhD7 promoter reveals the roles of GhD7 in growth, development and the abiotic stress response in rice. Comput Biol Chem 2019; 82:1-8. [PMID: 31247396 DOI: 10.1016/j.compbiolchem.2019.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/09/2019] [Accepted: 06/04/2019] [Indexed: 10/26/2022]
Abstract
Grain number, plant height and heading date 7 (GhD7) is considered to be one of the key yield-related genes in the production of high-yielding and climate-ready super rice varieties. GhD7 delays the plant's flowering under long-day conditions, which ultimately results in increased yield. Recent findings indicate that GhD7 also plays a major role in the abiotic stress response; however, the fine regulatory mechanisms controlling Ghd7 expression have yet to be uncovered. This study was carried out to explore the transcription factor binding site (TFBS) architecture of the GhD7 promoter to identify the regulatory dynamics of GhD7 transcription. The promoter sequence (-2000 to +200 base pairs from the transcription start site) was retrieved from the PlantPAN 2.0 database. Ab initio promoter analysis, DNase I hypersensitive site (DHS) analysis, and methylation analysis were carried out to identify TFBSs. The TFBS diversity among rice varieties was also assessed. In addition to the previously identified 8 cis-elements, 448 novel cis-elements were identified in the GhD7 promoter that provide binding sites for 25 transcription factor families. Furthermore, a DNase I hypersensitive site and a CpG island were also identified. The identified transcription factor families include key transcription factors involved in both development and abiotic stress responses, revealing the regulatory dynamics of GhD7. Comparative analysis of multiple GhD7 promoters identified 31 single-nucleotide polymorphisms that result in TFBS variations among rice accessions. These variations are mostly found in relation to flowering and abiotic stress responsive TFBSs on the promoter. This study supports the model that GhD7 acts as a central regulator of rice growth, development, and the abiotic stress response.
Collapse
Affiliation(s)
- Venura Herath
- Department of Agricultural Biology, Faculty of Agriculture, University of Peradeniya, Peradeniya 20400, Sri Lanka.
| |
Collapse
|
17
|
Cui Y, Zhu M, Xu Z, Xu Q. Assessment of the effect of ten heading time genes on reproductive transition and yield components in rice using a CRISPR/Cas9 system. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:1887-1896. [PMID: 30887096 DOI: 10.1007/s00122-019-03324-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 03/11/2019] [Indexed: 05/22/2023]
Abstract
We demonstrated the effect of heading time genes on reproductive transition and yield components under an identical genetic background using CRISPR/Cas9 gene-editing technology, and we propose that the elite allele will provide a new breeding strategy for rice breeding in high-latitude regions. Heading date is a factor closely associated with grain yield in rice (Oryza sativa L). In recent decades, a number of genes responsible for heading time have been identified, the variation of which contributes to the expansion of the rice cultivation area. However, it is difficult to compare the phenotypic effects of these genes due to the different genetic backgrounds. In this study, we generated 14 heading time mutants using CRISPR/Cas9 gene-editing technology and marker-assisted selection with a japonica Sasanishiki wild-type (WT) genetic background. Photoperiod sensitivity, the relationship between days to heading (DTH), and yield components of mutants were investigated. We found that the yield increases with increases in DTH, but eventually plateaus at maximum and then began to decrease, whereas the biomass continued to increase. The mutants exerted distinctly different effects on DTH and yield components. The convergent double mutants had severe yield reduction compared with single mutants, even with a DTH that was similar to that of single mutants. We also found that an elite mutant of se14 achieved a yield equal to that of the WT, but with heading occurring 10 days earlier. A sequence analysis of 72 cultivars collected from the japonica cultivated zone shows that elite se14 mutants have not been applied to rice breeding. Our study demonstrates the effect of heading time genes on reproductive transition and yield components under an identical genetic background. These results may provide new insights into rice breeding using heading time mutants.
Collapse
Affiliation(s)
- Yue Cui
- Rice Research Institute of Shenyang Agricultural University, Shenyang, 110866, China
| | - Mengmeng Zhu
- Rice Research Institute of Shenyang Agricultural University, Shenyang, 110866, China
| | - Zhengjin Xu
- Rice Research Institute of Shenyang Agricultural University, Shenyang, 110866, China
| | - Quan Xu
- Rice Research Institute of Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
18
|
Zhou T, Song B, Liu T, Shen Y, Dong L, Jing S, Xie C, Liu J. Phytochrome F plays critical roles in potato photoperiodic tuberization. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:42-54. [PMID: 30552774 DOI: 10.1111/tpj.14198] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 11/25/2018] [Accepted: 11/30/2018] [Indexed: 05/09/2023]
Abstract
The transition to tuberization contributes greatly to the adaptability of potato to a wide range of environments. Phytochromes are important light receptors for the growth and development of plants, but the detailed functions of phytochromes remain unclear in potato. In this study, we first confirmed that phytochrome F (StPHYF) played essential roles in photoperiodic tuberization in potato. By suppressing the StPHYF gene, the strict short-day potato genotype exhibited normal tuber formation under long-day (LD) conditions, together with the degradation of the CONSTANTS protein StCOL1 and modulation of two FLOWERING LOCUS T (FT) paralogs, as demonstrated by the repression of StSP5G and by the activation of StSP6A during the light period. The function of StPHYF was further confirmed through grafting the scion of StPHYF-silenced lines, which induced the tuberization of untransformed stock under LDs, suggesting that StPHYF was involved in the production of mobile signals for tuberization in potato. We also identified that StPHYF exhibited substantial interaction with StPHYB both in vitro and in vivo. Therefore, our results indicate that StPHYF plays a role in potato photoperiodic tuberization, possibly by forming a heterodimer with StPHYB.
Collapse
Affiliation(s)
- Tingting Zhou
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Countryside, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- National Center for Vegetable Improvement (Central China), Wuhan, Hubei, 430070, China
| | - Botao Song
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Countryside, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- National Center for Vegetable Improvement (Central China), Wuhan, Hubei, 430070, China
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Wuhan, Hubei, 430070, China
| | - Tengfei Liu
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Countryside, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- National Center for Vegetable Improvement (Central China), Wuhan, Hubei, 430070, China
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Wuhan, Hubei, 430070, China
| | - Yunlong Shen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- National Center for Vegetable Improvement (Central China), Wuhan, Hubei, 430070, China
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Wuhan, Hubei, 430070, China
| | - Liepeng Dong
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Countryside, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Shenglin Jing
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Countryside, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- National Center for Vegetable Improvement (Central China), Wuhan, Hubei, 430070, China
| | - Conghua Xie
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Countryside, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- National Center for Vegetable Improvement (Central China), Wuhan, Hubei, 430070, China
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Wuhan, Hubei, 430070, China
| | - Jun Liu
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Countryside, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- National Center for Vegetable Improvement (Central China), Wuhan, Hubei, 430070, China
| |
Collapse
|
19
|
Lee HJ, Park YJ, Ha JH, Baldwin IT, Park CM. Multiple Routes of Light Signaling during Root Photomorphogenesis. TRENDS IN PLANT SCIENCE 2017; 22:803-812. [PMID: 28705537 DOI: 10.1016/j.tplants.2017.06.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 06/08/2017] [Accepted: 06/12/2017] [Indexed: 05/06/2023]
Abstract
Plants dynamically adjust their architecture to optimize growth and performance under fluctuating light environments, a process termed photomorphogenesis. A variety of photomorphogenic responses have been studied extensively in the shoots, where diverse photoreceptors and signaling molecules have been functionally characterized. Notably, accumulating evidence demonstrates that the underground roots also undergo photomorphogenesis, raising the question of how roots perceive and respond to aboveground light. Recent findings indicate that root photomorphogenesis is mediated by multiple signaling routes, including shoot-to-root transmission of mobile signaling molecules, direct sensing of light by the roots, and light channeling through the plant body. In this review we discuss recent advances in how light signals are transmitted to the roots to trigger photomorphogenic responses.
Collapse
Affiliation(s)
- Hyo-Jun Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Korea; These authors contributed equally to this work
| | - Young-Joon Park
- Department of Chemistry, Seoul National University, Seoul 08826, Korea; These authors contributed equally to this work
| | - Jun-Ho Ha
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena 07745, Germany
| | - Chung-Mo Park
- Department of Chemistry, Seoul National University, Seoul 08826, Korea; Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
20
|
Hori K, Matsubara K, Yano M. Genetic control of flowering time in rice: integration of Mendelian genetics and genomics. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:2241-2252. [PMID: 27695876 DOI: 10.1007/s00122-016-2773-4] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 08/12/2016] [Indexed: 05/20/2023]
Abstract
Integration of previous Mendelian genetic analyses and recent molecular genomics approaches, such as linkage mapping and QTL cloning, dramatically strengthened our current understanding of genetic control of rice flowering time. Flowering time is one of the most important agronomic traits for seed production in rice (Oryza sativa L.). It is controlled mainly by genes associated with photoperiod sensitivity, particularly in short-day plants such as rice. Since the early twentieth century, rice breeders and researchers have been interested in elucidating the genetic basis of flowering time because its modification is important for regional adaptation and yield optimization. Although flowering time is a complex trait controlled by many quantitative trait loci (QTLs), classical genetic studies have shown that many associated genes are inherited in accordance with Mendelian laws. Decoding the rice genome sequence opened a new era in understanding the genetic control of flowering time on the basis of genome-wide mapping and gene cloning. Heading date 1 (Hd1) was the first flowering time QTL to be isolated using natural variation in rice. Recent accumulation of information on rice genome has facilitated the cloning of other QTLs, including those with minor effects on flowering time. This information has allowed us to rediscover some of the flowering genes that were identified by classical Mendelian genetics. The genes characterized so far, including Hd1, have been assigned to specific photoperiod pathways. In this review, we provide an overview of the studies that led to an in-depth understanding of the genetic control of flowering time in rice, and of the current state of improving and fine-tuning this trait for rice breeding.
Collapse
|