1
|
Vasselon V, Rivera SF, Ács É, Almeida SB, Andree KB, Apothéloz-Perret-Gentil L, Bailet B, Baričević A, Beentjes KK, Bettig J, Bouchez A, Capelli C, Chardon C, Duleba M, Elersek T, Genthon C, Jablonska M, Jacas L, Kahlert M, Kelly MG, Macher JN, Mauri F, Moletta-Denat M, Mortágua A, Pawlowski J, Pérez-Burillo J, Pfannkuchen M, Pilgrim E, Pissaridou P, Rimet F, Stanic K, Tapolczai K, Theroux S, Trobajo R, Van der Hoorn B, Vasquez MI, Vidal M, Wanless D, Warren J, Zimmermann J, Paix B. Proficiency testing and cross-laboratory method comparison to support standardisation of diatom DNA metabarcoding for freshwater biomonitoring. METABARCODING AND METAGENOMICS 2025; 3:1-23. [PMID: 40213263 PMCID: PMC11980862 DOI: 10.3897/mbmg.9.133264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2025] Open
Abstract
DNA metabarcoding of benthic diatoms has been successfully applied for biomonitoring at the national scale and can now be considered technically ready for routine application. However, protocols and methods still vary between and within countries, limiting their transferability and the comparability of results. In order to overcome this, routine use of DNA metabarcoding for diatom biomonitoring requires knowledge of the sources of variability introduced by the different steps of the procedure. Here, we examine how elements of routine procedures contribute to variability between European laboratories. A set of four experiments were performed focusing on DNA extraction and PCR amplification steps to evaluate their reproducibility between different laboratories and the variability introduced by different protocols currently applied by the scientific community. Under the guidance of a reference laboratory, 17 participants from 14 countries performed DNA extraction and PCR amplification in parallel, using the same fixed protocol and their own choice of protocol. Experiments were performed by each participant on a set of standardised DNA and biofilm samples (river, lake and mock community) to investigate potential systematic and random errors. Our results revealed the successful transferability of a protocol amongst labs and a highly similar and consistent ecological assessment outcome obtained regardless of the protocols used by each participant. We propose an "all for one but prove them all" strategy, suggesting that distinct protocols can be used within the scientific community, as long as their consistency is be proven by following minimum standard requirements.
Collapse
Affiliation(s)
| | - Sinziana F. Rivera
- Swiss Federal Research Institute WSL Agroscope, Birmensdorf, Switzerland
| | - Éva Ács
- Faculty of Water Sciences, University of Public Service, Baja, Hungary
| | | | | | | | | | - Ana Baričević
- Ruder Boskovic Institute, Center for Marine Research, Laboratory for Evolutionary Ecology (LEE), Rovinj, Croatia
| | | | - Juliane Bettig
- Botanic Garden and Botanical Museum, Freie Universität Berlin, Berlin, Germany
| | - Agnès Bouchez
- UMR CARRTEL, INRAE, Université de Savoie Mont-Blanc, Thonon-Les-Bains, France
| | | | - Cécile Chardon
- UMR CARRTEL, INRAE, Université de Savoie Mont-Blanc, Thonon-Les-Bains, France
| | - Mónika Duleba
- Faculty of Water Sciences, University of Public Service, Baja, Hungary
| | - Tina Elersek
- National Institute of Biology, Ljubljana, Slovenia
| | - Clémence Genthon
- INRAE Transfert - Metys- Service Génomique Plateforme GeT-PlaGe, Castanet-Tolosan, France
| | - Maša Jablonska
- National Institute of Biology, Ljubljana, Slovenia
- University of Ljubljana, Ljubljana, Slovenia
| | - Louis Jacas
- UMR CARRTEL, INRAE, Université de Savoie Mont-Blanc, Thonon-Les-Bains, France
| | - Maria Kahlert
- Department Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | | | - Federica Mauri
- SUPSI, Institute of Microbiology, Mendrisio, Switzerland
| | | | - Andreia Mortágua
- GeoBioTec and Biology Department, University of Aveiro, Aveiro, Portugal
| | - Jan Pawlowski
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| | | | - Martin Pfannkuchen
- Ruder Boskovic Institute, Center for Marine Research, Laboratory for Evolutionary Ecology (LEE), Rovinj, Croatia
| | - Erik Pilgrim
- US Environmental Protection Agency, Cincinnati, USA
| | | | - Frédéric Rimet
- UMR CARRTEL, INRAE, Université de Savoie Mont-Blanc, Thonon-Les-Bains, France
| | - Karmen Stanic
- INRAE Transfert - Metys- Service Génomique Plateforme GeT-PlaGe, Castanet-Tolosan, France
| | - Kálmán Tapolczai
- HUN-REN Balaton Limnological Research Institute, Tihany, Hungary
| | | | | | | | | | - Marie Vidal
- INRAE Transfert - Metys- Service Génomique Plateforme GeT-PlaGe, Castanet-Tolosan, France
| | | | | | - Jonas Zimmermann
- Botanic Garden and Botanical Museum, Freie Universität Berlin, Berlin, Germany
| | - Benoît Paix
- UMR CARRTEL, INRAE, Université de Savoie Mont-Blanc, Thonon-Les-Bains, France
| |
Collapse
|
2
|
Liu Z, Wang J, Li Z, Zhang G. mRNA for Body Fluid and Individual Identification. Electrophoresis 2025; 46:44-55. [PMID: 39498727 DOI: 10.1002/elps.202400077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 08/02/2024] [Accepted: 10/20/2024] [Indexed: 11/07/2024]
Abstract
Biological stains are one of the most important pieces of evidence, playing a multifaceted role in forensic investigations. An integral facet of forensic practice involves the identification of body fluids, typically achieved through chemical and enzymatic reactions. In recent decades, the introduction of mRNA markers has been posited as a pivotal advancement to augment the capabilities of body fluid identification (BFID). The mRNA coding region single-nucleotide polymorphisms (cSNPs) also present notable advantages, particularly in the task of individual identification. Here, we review the specificity and stability of mRNA markers in the context of BFID and the prowess of mRNA polymorphism in individual identification. Additionally, innovative methods for mRNA detection are discussed.
Collapse
Affiliation(s)
- Zidong Liu
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, China
| | - Jiaqi Wang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, China
| | - Zeqin Li
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, China
| | - Gengqian Zhang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, China
| |
Collapse
|
3
|
Lourenço CF, Almeida AR, Soares AM, Marques CR. Efficiency comparison of DNA extraction kits for analysing the cockle gut bacteriome. Heliyon 2024; 10:e38846. [PMID: 39640665 PMCID: PMC11620152 DOI: 10.1016/j.heliyon.2024.e38846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/11/2024] [Accepted: 10/01/2024] [Indexed: 12/07/2024] Open
Abstract
Cockles play a vital ecological role and provide valuable ecosystem services globally. However, the performance, production, and safe consumption of cockles are significantly influenced by their gut-associated bacteriome. Accurate understanding of gut-bacteriome interactions, and surveillance of pathogenic bacteria loads in cockles, rely on efficient DNA extraction methods that yield high-quality and representative bacterial DNA. Despite this importance, reliable extraction methods for cockles are currently overlooked. Therefore, we evaluated the performance of five DNA extraction kits (E.Z.N.A.® Soil DNA; FastDNA® Spin; DNeasy PowerSoil Pro; QIAamp PowerFecal DNA; ZymoBIOMICS™DNA Miniprep) in terms of DNA quality, yield, bacterial community structure (analysed by using denaturating gradient gel electrophoresis; DGGE), and bacteriome composition (analysed by 16S rRNA gene sequencing) in Cerastoderma edule gut. The DNeasy kit provided the highest purity and quantity of bacterial DNA, while the PowerFecal and Zymo kits exhibited reduced extraction efficiency. DGGE profiles revealed significant variability between the tested kits (R = 0.512; mean P = 0.011), but the FastDNA kit under-represented the bacterial community in cockles' gut. Based on alpha diversity, the DNeasy kit outperformed the others and successfully detected all abundant genera found with the alternative kits. Our findings indicate that the DNeasy kit is an efficient DNA extraction method, enabling a molecular representation of the gut-associated bacteriome in C. edule. These results contribute to the development of effective techniques for studying the cockle gut bacteriome and its ecological implications.
Collapse
Affiliation(s)
- Catarina F. Lourenço
- Center for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Ana R. Almeida
- Center for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Amadeu M.V.M. Soares
- Center for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Catarina R. Marques
- Center for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| |
Collapse
|
4
|
Ledesma F, Nishitani S, Cunningham FJ, Hubbard JD, Yim D, Lui A, Chio L, Murali A, Landry MP. Covalent Attachment of Horseradish Peroxidase to Single-Walled Carbon Nanotubes for Hydrogen Peroxide Detection. ADVANCED FUNCTIONAL MATERIALS 2024; 34:2316028. [PMID: 39677986 PMCID: PMC11636629 DOI: 10.1002/adfm.202316028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Indexed: 12/17/2024]
Abstract
Single-walled carbon nanotubes (SWCNTs) are desirable nanoparticles for sensing biological analytes due to their photostability and intrinsic near-infrared fluorescence. Previous strategies for generating SWCNT nanosensors have leveraged nonspecific adsorption of sensing modalities to the hydrophobic SWCNT surface that often require engineering new molecular recognition elements. An attractive alternate strategy is to leverage pre-existing molecular recognition of proteins for analyte specificity, yet attaching proteins to SWCNT for nanosensor generation remains challenging. Towards this end, we introduce a generalizable platform to generate protein-SWCNT-based optical sensors and use this strategy to synthesize a hydrogen peroxide (H2O2) nanosensor by covalently attaching horseradish peroxidase (HRP) to the SWCNT surface. We demonstrate a concentration-dependent response to H2O2, confirm the nanosensor can image H2O2 in real-time, and assess the nanosensor's selectivity for H2O2 against a panel of biologically relevant analytes. Taken together, these results demonstrate successful covalent attachment of enzymes to SWCNTs while preserving both intrinsic SWCNT fluorescence and enzyme function. We anticipate this platform can be adapted to covalently attach other proteins of interest including other enzymes for sensing or antibodies for targeted imaging and cargo delivery.
Collapse
Affiliation(s)
- Francis Ledesma
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
| | - Shoichi Nishitani
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
| | - Francis J Cunningham
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
| | - Joshua D Hubbard
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
| | - Dabin Yim
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
| | - Alison Lui
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
| | - Linda Chio
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
| | - Aishwarya Murali
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
| | - Markita P Landry
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
- Innovative Genomics Institute (IGI), Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA
- Chan-Zuckerberg Biohub, San Francisco, CA 94158, USA
| |
Collapse
|
5
|
Jia H, Tan S, Zhang YE. Chasing Sequencing Perfection: Marching Toward Higher Accuracy and Lower Costs. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzae024. [PMID: 38991976 PMCID: PMC11423848 DOI: 10.1093/gpbjnl/qzae024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 07/13/2024]
Abstract
Next-generation sequencing (NGS), represented by Illumina platforms, has been an essential cornerstone of basic and applied research. However, the sequencing error rate of 1 per 1000 bp (10-3) represents a serious hurdle for research areas focusing on rare mutations, such as somatic mosaicism or microbe heterogeneity. By examining the high-fidelity sequencing methods developed in the past decade, we summarized three major factors underlying errors and the corresponding 12 strategies mitigating these errors. We then proposed a novel framework to classify 11 preexisting representative methods according to the corresponding combinatory strategies and identified three trends that emerged during methodological developments. We further extended this analysis to eight long-read sequencing methods, emphasizing error reduction strategies. Finally, we suggest two promising future directions that could achieve comparable or even higher accuracy with lower costs in both NGS and long-read sequencing.
Collapse
Affiliation(s)
- Hangxing Jia
- CAS Key Laboratory of Zoological Systematics and Evolution & State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shengjun Tan
- CAS Key Laboratory of Zoological Systematics and Evolution & State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yong E Zhang
- CAS Key Laboratory of Zoological Systematics and Evolution & State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| |
Collapse
|
6
|
Sidstedt M, Gynnå AH, Kiesler KM, Jansson L, Steffen CR, Håkansson J, Johansson G, Österlund T, Bogestål Y, Tillmar A, Rådström P, Ståhlberg A, Vallone PM, Hedman J. Ultrasensitive sequencing of STR markers utilizing unique molecular identifiers and the SiMSen-Seq method. Forensic Sci Int Genet 2024; 71:103047. [PMID: 38598919 DOI: 10.1016/j.fsigen.2024.103047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/27/2024] [Accepted: 04/01/2024] [Indexed: 04/12/2024]
Abstract
Massively parallel sequencing (MPS) is increasingly applied in forensic short tandem repeat (STR) analysis. The presence of stutter artefacts and other PCR or sequencing errors in the MPS-STR data partly limits the detection of low DNA amounts, e.g., in complex mixtures. Unique molecular identifiers (UMIs) have been applied in several scientific fields to reduce noise in sequencing. UMIs consist of a stretch of random nucleotides, a unique barcode for each starting DNA molecule, that is incorporated in the DNA template using either ligation or PCR. The barcode is used to generate consensus reads, thus removing errors. The SiMSen-Seq (Simple, multiplexed, PCR-based barcoding of DNA for sensitive mutation detection using sequencing) method relies on PCR-based introduction of UMIs and includes a sophisticated hairpin design to reduce unspecific primer binding as well as PCR protocol adjustments to further optimize the reaction. In this study, SiMSen-Seq is applied to develop a proof-of-concept seven STR multiplex for MPS library preparation and an associated bioinformatics pipeline. Additionally, machine learning (ML) models were evaluated to further improve UMI allele calling. Overall, the seven STR multiplex resulted in complete detection and concordant alleles for 47 single-source samples at 1 ng input DNA as well as for low-template samples at 62.5 pg input DNA. For twelve challenging mixtures with minor contributions of 10 pg to 150 pg and ratios of 1-15% relative to the major donor, 99.2% of the expected alleles were detected by applying the UMIs in combination with an ML filter. The main impact of UMIs was a substantially lowered number of artefacts as well as reduced stutter ratios, which were generally below 5% of the parental allele. In conclusion, UMI-based STR sequencing opens new means for improved analysis of challenging crime scene samples including complex mixtures.
Collapse
Affiliation(s)
- Maja Sidstedt
- National Forensic Centre, Swedish Police Authority, Linköping SE-581 94, Sweden
| | - Arvid H Gynnå
- National Forensic Centre, Swedish Police Authority, Linköping SE-581 94, Sweden
| | - Kevin M Kiesler
- National Institute of Standards and Technology, 100 Bureau Drive, M/S 8314, Gaithersburg, MD 20899, USA
| | - Linda Jansson
- National Forensic Centre, Swedish Police Authority, Linköping SE-581 94, Sweden; Applied Microbiology, Department of Chemistry, Lund University, Lund SE-221 00, Sweden
| | - Carolyn R Steffen
- National Institute of Standards and Technology, 100 Bureau Drive, M/S 8314, Gaithersburg, MD 20899, USA
| | - Joakim Håkansson
- RISE Unit of Biological Function, Division Materials and Production, Box 857, Borås SE-501 15, Sweden; Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg SE-405 30, Sweden; Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg SE-405 30, Sweden
| | - Gustav Johansson
- SIMSEN Diagnostics, Sahlgrenska Science Park, Gothenburg, Sweden
| | - Tobias Österlund
- Department of Laboratory Medicine, Sahlgrenska Center for Cancer Research, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 1F, Gothenburg 41390, Sweden; Wallenberg Center for Molecular and Translational Medicine, University of Gothenburg, Gothenburg 41390, Sweden; Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Region Västra Götaland 41390, Sweden
| | - Yalda Bogestål
- RISE Unit of Biological Function, Division Materials and Production, Box 857, Borås SE-501 15, Sweden
| | - Andreas Tillmar
- Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, Linköping SE-587 58, Sweden
| | - Peter Rådström
- Applied Microbiology, Department of Chemistry, Lund University, Lund SE-221 00, Sweden
| | - Anders Ståhlberg
- Department of Laboratory Medicine, Sahlgrenska Center for Cancer Research, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 1F, Gothenburg 41390, Sweden; Wallenberg Center for Molecular and Translational Medicine, University of Gothenburg, Gothenburg 41390, Sweden; Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Region Västra Götaland 41390, Sweden
| | - Peter M Vallone
- National Institute of Standards and Technology, 100 Bureau Drive, M/S 8314, Gaithersburg, MD 20899, USA
| | - Johannes Hedman
- National Forensic Centre, Swedish Police Authority, Linköping SE-581 94, Sweden; Applied Microbiology, Department of Chemistry, Lund University, Lund SE-221 00, Sweden.
| |
Collapse
|
7
|
Wang H, Liu K, He Z, Chen Y, Hu Z, Chen W, Leaw CP, Chen N. Extensive intragenomic variations of the 18S rDNA V4 region in the toxigenic diatom species Pseudo-nitzschia multistriata revealed through high-throughput sequencing. MARINE POLLUTION BULLETIN 2024; 201:116198. [PMID: 38428045 DOI: 10.1016/j.marpolbul.2024.116198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/21/2024] [Accepted: 02/21/2024] [Indexed: 03/03/2024]
Abstract
Metabarcoding analysis is an effective technique for monitoring the domoic acid-producing Pseudo-nitzschia species in marine environments, uncovering high-levels of molecular diversity. However, such efforts may result in the overinterpretation of Pseudo-nitzschia species diversity, as molecular diversity not only encompasses interspecies and intraspecies diversities but also exhibits extensive intragenomic variations (IGVs). In this study, we analyzed the V4 region of the 18S rDNA of 30 strains of Pseudo-nitzschia multistriata collected from the coasts of China. The results showed that each P. multistriata strain harbored about a hundred of unique 18S rDNA V4 sequence varieties, of which each represented by a unique amplicon sequence variant (ASV). This study demonstrated the extensive degree of IGVs in P. multistriata strains, suggesting that IGVs may also present in other Pseudo-nitzschia species and other phytoplankton species. Understanding the scope and levels of IGVs is crucial for accurately interpreting the results of metabarcoding analysis.
Collapse
Affiliation(s)
- Hui Wang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China; College of Marine Science, University of Chinese Academy of Sciences, Beijing 100039, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Kuiyan Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China; College of Marine Science, University of Chinese Academy of Sciences, Beijing 100039, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Ziyan He
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China; College of Marine Science, University of Chinese Academy of Sciences, Beijing 100039, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Yang Chen
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China; College of Marine Science, University of Chinese Academy of Sciences, Beijing 100039, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zhangxi Hu
- Department of Aquaculture, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - Weizhou Chen
- Institution of Marine Biology, Shantou University, Shantou, Guangdong 515063, China
| | - Chui Pin Leaw
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, 16310 Bachok, Kelantan, Malaysia
| | - Nansheng Chen
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada.
| |
Collapse
|
8
|
Shahi F, Rasti M, Moradi M. Overview of the different methods for RNA preparation in COVID-19 diagnosis process during the pandemic. Anal Biochem 2024; 686:115410. [PMID: 38006951 DOI: 10.1016/j.ab.2023.115410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
The COVID-19 pandemic brought to light the impact of a widespread disease on various aspects of human relationships, communities, and economies. One notable consequence was the increased demand for diagnostic kits, laboratory reagents, and personal health equipment. This surge in testing capacity worldwide led to shortages in the supply of essential items, including RNA extraction kits, which are crucial for detecting COVID-19 infections. To address this scarcity, researchers have proposed alternative and cost-effective strategies for RNA extraction, utilizing both chemical and physical solutions and extraction-free methods. These approaches aim to alleviate the challenges associated with the overwhelming number of tests being conducted in laboratories. The purpose of this review is intends to provide a comprehensive summary of the various kit-free RNA extraction methods available for COVID-19 diagnosis during the pandemic.
Collapse
Affiliation(s)
- Fatemeh Shahi
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mojtaba Rasti
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Melika Moradi
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran
| |
Collapse
|
9
|
Mauceri R, Coppini M, Vacca D, Bertolazzi G, Cancila V, Tripodo C, Campisi G. No Clear Clustering Dysbiosis from Salivary Microbiota Analysis by Long Sequencing Reads in Patients Affected by Oral Squamous Cell Carcinoma: A Single Center Study. Cancers (Basel) 2023; 15:4211. [PMID: 37686487 PMCID: PMC10486367 DOI: 10.3390/cancers15174211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND Advancements in DNA sequencing technology have facilitated the assessment of the connection between the oral microbiome and various diseases. The aim of the present study was to investigate the salivary microbiota composition employing for the first time in the literature the Oxford Nanopore Technology in patients affected by oral squamous cell carcinoma (OSCC). METHODS Unstimulated saliva samples of 31 patients were collected (24 OSCC patients and 7 controls). DNA was extracted using the QIAamp DNA Blood Kit and metagenomic long sequencing reads were performed using the MinION device. RESULTS In the OSCC group, 13 were males and 11 were females, with a mean age of 65.5 ± 13.9 years; in the control group, 5 were males and 2 were females, with a mean age of 51.4 ± 19.2 years. The border of the tongue was the most affected OSCC site. The microorganisms predominantly detected in OSCC patients were Prevotella, Chlamydia, Tissierellia, Calothrix, Leotiomycetes, Firmicutes and Zetaproteobacteria. CONCLUSIONS This study confirmed the predominance of periodontopathic bacteria in the salivary microbiome in the OSCC group. If a direct correlation between oral dysbiosis and OSCC onset was proven, it could lead to new prevention strategies and early diagnostic tools.
Collapse
Affiliation(s)
- Rodolfo Mauceri
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy; (R.M.); (D.V.); (G.C.)
- Unit of Oral Medicine and Dentistry for Frail Patients, Department of Rehabilitation, Fragility and Continuity of Care, University Hospital Palermo, 90127 Palermo, Italy
| | - Martina Coppini
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy; (R.M.); (D.V.); (G.C.)
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 90100 Messina, Italy
| | - Davide Vacca
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy; (R.M.); (D.V.); (G.C.)
- Tumor Immunology Unit, Department of Sciences for Health Promotion and Mother-Child Care “G. D’Alessandro”, University of Palermo, 90127 Palermo, Italy; (G.B.); (V.C.); (C.T.)
| | - Giorgio Bertolazzi
- Tumor Immunology Unit, Department of Sciences for Health Promotion and Mother-Child Care “G. D’Alessandro”, University of Palermo, 90127 Palermo, Italy; (G.B.); (V.C.); (C.T.)
- Department of Economics, Business and Statistics, University of Palermo, 90128 Palermo, Italy
| | - Valeria Cancila
- Tumor Immunology Unit, Department of Sciences for Health Promotion and Mother-Child Care “G. D’Alessandro”, University of Palermo, 90127 Palermo, Italy; (G.B.); (V.C.); (C.T.)
| | - Claudio Tripodo
- Tumor Immunology Unit, Department of Sciences for Health Promotion and Mother-Child Care “G. D’Alessandro”, University of Palermo, 90127 Palermo, Italy; (G.B.); (V.C.); (C.T.)
| | - Giuseppina Campisi
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy; (R.M.); (D.V.); (G.C.)
- Unit of Oral Medicine and Dentistry for Frail Patients, Department of Rehabilitation, Fragility and Continuity of Care, University Hospital Palermo, 90127 Palermo, Italy
| |
Collapse
|
10
|
Abstract
In order to survey noroviruses in our environment, it is essential that both wet-lab and computational methods are fit for purpose. Using a simulated sequencing data set, denoising-based (DADA2, Deblur and USEARCH-UNOISE3) and clustering-based pipelines (VSEARCH and FROGS) were compared with respect to their ability to represent composition and sequence information. Open source classifiers (Ribosomal Database Project [RDP], BLASTn, IDTAXA, QIIME2 naive Bayes, and SINTAX) were trained using three different databases: a custom database, the NoroNet database, and the Human calicivirus database. Each classifier and database combination was compared from the perspective of their classification accuracy. VSEARCH provides a robust option for analyzing viral amplicons based on composition analysis; however, all pipelines could return OTUs with high similarity to the expected sequences. Importantly, pipeline choice could lead to more false positives (DADA2) or underclassification (FROGS), a key aspect when considering pipeline application for source attribution. Classification was more strongly impacted by the classifier than the database, although disagreement increased with norovirus GII.4 capsid variant designation. We recommend the use of the RDP classifier in conjunction with VSEARCH; however, maintenance of the underlying database is essential for optimal use. IMPORTANCE In benchmarking bioinformatic pipelines for analyzing high-throughput sequencing (HTS) data sets, we provide method standardization for bioinformatics broadly and specifically for norovirus in situations for which no officially endorsed methods exist at present. This study provides recommendations for the appropriate analysis and classification of norovirus amplicon HTS data and will be widely applicable during outbreak investigations.
Collapse
|
11
|
Kamdem CN, Fogue PS, Tiofack AAZ, Mewamba EM, Womeni HM, Koffi M, Simo G. Assessment of cetyl-trimethyl-ammonium bromide (CTAB) based method for the extraction of soil-transmitted helminth DNAs from stools for molecular dagnostic of soil-transmitted helminthiasis. J Microbiol Methods 2023; 204:106661. [PMID: 36565938 DOI: 10.1016/j.mimet.2022.106661] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Although several protocols were developed to extract DNA for soil-transmitted helminthiasis diagnostic, amplifying these extracts remains challenging due to DNA polymerase inhibitors. This study aimed to assess a DNA extraction method for efficient detection of soil-transmitted helminth species by determining stool mass and the type of DNA polymerase that can be used for this extraction method. For this study, 141 stool samples harbouring soil-transmitted eggs and 50 samples without egg were obtained from school-aged children of Makenene in the Centre region of Cameroon. DNA was extracted from 10, 20, 40 and 80 mg of stool using commercial kit and/or cetyltrimethylammonium bromide (CTAB)-based method. The amount of stool for molecular diagnostic of soil-transmitted helminthiasis was determined by amplifying Ascaris lumbricoides DNA. The performances of three DNA polymerases and CTAB-based method were assessed by amplifying DNA of different soil-transmitted helminth species. For this study, 94 stools with A. lumbricoides eggs, 39 with Trichuris trichuria and 15 with hookworm were analyzed. DNA of A. lumbricoides, T. trichuria, Necator americanus and Ancylostoma duodenale were detected in 97.9% of extracts from stools harbouring soil-transmitted helminth eggs. Soil-transmitted helminth DNAs were significantly (X2 = 17.66; df = 3; p 〈00001) more amplified in extracts from 10 and 20 mg than those from 40 and 80 mg. The amplification rate with "Q5 high fidelity DNA polymerase" was significantly (X2 = 30.54; df = 2; p < 0.00001) higher than that of other DNA polymerases. Multiplex-PCR confirmed co-infections of A. lumbricoides with either T. trichuria or N. americanus. The extraction cost for the CTAB-based method was $1.45. This method appearedis reliable and 3 times cost effective than commercial kit. Its combination with the "Q5 high fidelity DNA polymerase" may improve soil-transmitted helminthiasis diagnostic.
Collapse
Affiliation(s)
- Cyrille Nguemnang Kamdem
- Molecular Parasitology and Entomology Unit, Department of Biochemistry, Faculty of Science, University of Dschang, PO. Box 67, Dschang, Cameroon
| | - Pythagore Soubgwi Fogue
- Molecular Parasitology and Entomology Unit, Department of Biochemistry, Faculty of Science, University of Dschang, PO. Box 67, Dschang, Cameroon
| | - Arnol Auvaker Zebaze Tiofack
- Molecular Parasitology and Entomology Unit, Department of Biochemistry, Faculty of Science, University of Dschang, PO. Box 67, Dschang, Cameroon
| | - Estelle Mezajou Mewamba
- Molecular Parasitology and Entomology Unit, Department of Biochemistry, Faculty of Science, University of Dschang, PO. Box 67, Dschang, Cameroon
| | - Hilaire Marcaire Womeni
- "Unité de Recherche de Biochimie, des plantes Médicinales, des Sciences alimentaires et Nutrition", University of Dschang, Dschang, Cameroon
| | - Mathurin Koffi
- "Unité de Recherche en Génétique et Epidémiology Moléculaire, Jean Lorougnon Guédé University", Daloa, Côte d'Ivoire
| | - Gustave Simo
- Molecular Parasitology and Entomology Unit, Department of Biochemistry, Faculty of Science, University of Dschang, PO. Box 67, Dschang, Cameroon.
| |
Collapse
|
12
|
Nagai S, Sildever S, Nishi N, Tazawa S, Basti L, Kobayashi T, Ishino Y. Comparing PCR-generated artifacts of different polymerases for improved accuracy of DNA metabarcoding. METABARCODING AND METAGENOMICS 2022. [DOI: 10.3897/mbmg.6.77704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Accuracy of PCR amplification is vital for obtaining reliable amplicon-sequencing results by metabarcoding. Here, we performed a comparative analysis of error profiles in the PCR products by 14 different PCR kits using a mock eukaryotic community DNA sample mimicking metabarcoding analysis. To prepare a mock eukaryotic community from the marine environment, equal amounts of plasmid DNA from 40 microalgal species were mixed and used for amplicon-sequencing by a high-throughput sequencing approach. To compare the differences in PCR kits used for this experiment, we focused on the following seven parameters: 1) Quality, 2) Chimera, 3) Blast top hit accuracy, 4) Deletion, 5) Insertion, 6) Base substitution and 7) Amplification bias amongst species. The results showed statistically significant differences (p < 0.05) for all of the seven parameters depending on the PCR kits used. These differences may result from the different DNA polymerases included in each kit, although the result can also be influenced by PCR reaction conditions. Simultaneous analysis of several parameters suggested that kits containing KOD plus Neo (TOYOBO) and HotStart Taq DNA polymerase (BiONEER, CA, US) at the annealing temperature of 65 °C displayed better results in terms of parameters associated with chimeras, top hit similarity and deletions.
Collapse
|
13
|
Vacca D, Fiannaca A, Tramuto F, Cancila V, La Paglia L, Mazzucco W, Gulino A, La Rosa M, Maida CM, Morello G, Belmonte B, Casuccio A, Maugeri R, Iacopino G, Balistreri CR, Vitale F, Tripodo C, Urso A. Direct RNA Nanopore Sequencing of SARS-CoV-2 Extracted from Critical Material from Swabs. Life (Basel) 2022; 12:69. [PMID: 35054462 PMCID: PMC8778588 DOI: 10.3390/life12010069] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 12/30/2022] Open
Abstract
In consideration of the increasing prevalence of COVID-19 cases in several countries and the resulting demand for unbiased sequencing approaches, we performed a direct RNA sequencing (direct RNA seq.) experiment using critical oropharyngeal swab samples collected from Italian patients infected with SARS-CoV-2 from the Palermo region in Sicily. Here, we identified the sequences SARS-CoV-2 directly in RNA extracted from critical samples using the Oxford Nanopore MinION technology without prior cDNA retrotranscription. Using an appropriate bioinformatics pipeline, we could identify mutations in the nucleocapsid (N) gene, which have been reported previously in studies conducted in other countries. In conclusion, to the best of our knowledge, the technique used in this study has not been used for SARS-CoV-2 detection previously owing to the difficulties in the extraction of RNA of sufficient quantity and quality from routine oropharyngeal swabs. Despite these limitations, this approach provides the advantages of true native RNA sequencing and does not include amplification steps that could introduce systematic errors. This study can provide novel information relevant to the current strategies adopted in SARS-CoV-2 next-generation sequencing.
Collapse
Affiliation(s)
- Davide Vacca
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Antonino Fiannaca
- CNR-ICAR, National Research Council of Italy, Via Ugo La Malfa, a5c, 90146 Palermo, Italy; (A.F.); (L.L.P.); (M.L.R.); (A.U.)
| | - Fabio Tramuto
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro”, Hygiene Section, University of Palermo, 90127 Palermo, Italy; (F.T.); (W.M.); (C.M.M.); (A.C.); (F.V.)
| | - Valeria Cancila
- Tumor Immunology Unit, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro”, University of Palermo, 90127 Palermo, Italy; (V.C.); (G.M.); (B.B.); (C.T.)
| | - Laura La Paglia
- CNR-ICAR, National Research Council of Italy, Via Ugo La Malfa, a5c, 90146 Palermo, Italy; (A.F.); (L.L.P.); (M.L.R.); (A.U.)
| | - Walter Mazzucco
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro”, Hygiene Section, University of Palermo, 90127 Palermo, Italy; (F.T.); (W.M.); (C.M.M.); (A.C.); (F.V.)
| | - Alessandro Gulino
- Cogentech srl Società Benefit, FIRC Institute of Molecular Oncology (IFOM), Via Adamello 16, 20139 Milan, Italy;
| | - Massimo La Rosa
- CNR-ICAR, National Research Council of Italy, Via Ugo La Malfa, a5c, 90146 Palermo, Italy; (A.F.); (L.L.P.); (M.L.R.); (A.U.)
| | - Carmelo Massimo Maida
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro”, Hygiene Section, University of Palermo, 90127 Palermo, Italy; (F.T.); (W.M.); (C.M.M.); (A.C.); (F.V.)
| | - Gaia Morello
- Tumor Immunology Unit, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro”, University of Palermo, 90127 Palermo, Italy; (V.C.); (G.M.); (B.B.); (C.T.)
| | - Beatrice Belmonte
- Tumor Immunology Unit, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro”, University of Palermo, 90127 Palermo, Italy; (V.C.); (G.M.); (B.B.); (C.T.)
| | - Alessandra Casuccio
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro”, Hygiene Section, University of Palermo, 90127 Palermo, Italy; (F.T.); (W.M.); (C.M.M.); (A.C.); (F.V.)
| | - Rosario Maugeri
- Department of Experimental Biomedicine and Clinical Neurosciences, School of Medicine, Neurosurgical Clinic, University of Palermo, 90127 Palermo, Italy; (R.M.); (G.I.)
| | - Gerardo Iacopino
- Department of Experimental Biomedicine and Clinical Neurosciences, School of Medicine, Neurosurgical Clinic, University of Palermo, 90127 Palermo, Italy; (R.M.); (G.I.)
| | - Carmela Rita Balistreri
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, 90134 Palermo, Italy;
| | - Francesco Vitale
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro”, Hygiene Section, University of Palermo, 90127 Palermo, Italy; (F.T.); (W.M.); (C.M.M.); (A.C.); (F.V.)
| | - Claudio Tripodo
- Tumor Immunology Unit, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro”, University of Palermo, 90127 Palermo, Italy; (V.C.); (G.M.); (B.B.); (C.T.)
| | - Alfonso Urso
- CNR-ICAR, National Research Council of Italy, Via Ugo La Malfa, a5c, 90146 Palermo, Italy; (A.F.); (L.L.P.); (M.L.R.); (A.U.)
| |
Collapse
|
14
|
Slović A, Košutić-Gulija T, Forčić D, Šantak M, Jagušić M, Jurković M, Pali D, Ivančić-Jelečki J. Population Variability Generated during Rescue Process and Passaging of Recombinant Mumps Viruses. Viruses 2021; 13:2550. [PMID: 34960819 PMCID: PMC8707793 DOI: 10.3390/v13122550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/10/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022] Open
Abstract
Recombinant mumps viruses (MuVs) based on established vaccine strains represent attractive vector candidates as they have known track records for high efficacy and the viral genome does not integrate in the host cells. We developed a rescue system based on the consensus sequence of the L-Zagreb vaccine and generated seven different recombinant MuVs by (a) insertion of one or two additional transcription units (ATUs), (b) lengthening of a noncoding region to the extent that the longest noncoding region in MuV genome is created, or (c) replacement of original L-Zagreb sequences with sequences rich in CG and AT dinucleotides. All viruses were successfully rescued and faithfully matched sequences of input plasmids. In primary rescued stocks, low percentages of heterogeneous positions were found (maximum 0.12%) and substitutions were predominantly obtained in minor variants, with maximally four substitutions seen in consensus. ATUs did not accumulate more mutations than the natural MuV genes. Six substitutions characteristic for recombinant viruses generated in our system were defined, as they repetitively occurred during rescue processes. In subsequent passaging of primary rescue stocks in Vero cells, different inconsistencies within quasispecies structures were observed. In order to assure that unwanted mutations did not emerge and accumulate, sub-consensus variability should be closely monitored. As we show for Pro408Leu mutation in L gene and a stop codon in one of ATUs, positively selected variants can rise to frequencies over 85% in only few passages.
Collapse
Affiliation(s)
- Anamarija Slović
- Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (A.S.); (T.K.-G.); (D.F.); (M.J.); (M.J.); (D.P.)
| | - Tanja Košutić-Gulija
- Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (A.S.); (T.K.-G.); (D.F.); (M.J.); (M.J.); (D.P.)
| | - Dubravko Forčić
- Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (A.S.); (T.K.-G.); (D.F.); (M.J.); (M.J.); (D.P.)
| | - Maja Šantak
- Ruđer Bošković Institute, 10000 Zagreb, Croatia;
| | - Maja Jagušić
- Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (A.S.); (T.K.-G.); (D.F.); (M.J.); (M.J.); (D.P.)
| | - Mirna Jurković
- Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (A.S.); (T.K.-G.); (D.F.); (M.J.); (M.J.); (D.P.)
| | - Dorotea Pali
- Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (A.S.); (T.K.-G.); (D.F.); (M.J.); (M.J.); (D.P.)
| | - Jelena Ivančić-Jelečki
- Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (A.S.); (T.K.-G.); (D.F.); (M.J.); (M.J.); (D.P.)
| |
Collapse
|
15
|
Jurasz H, Pawłowski T, Perlejewski K. Contamination Issue in Viral Metagenomics: Problems, Solutions, and Clinical Perspectives. Front Microbiol 2021; 12:745076. [PMID: 34745046 PMCID: PMC8564396 DOI: 10.3389/fmicb.2021.745076] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/17/2021] [Indexed: 12/16/2022] Open
Abstract
We describe the most common internal and external sources and types of contamination encountered in viral metagenomic studies and discuss their negative impact on sequencing results, particularly for low-biomass samples and clinical applications. We also propose some basic recommendations for reducing the background noise in viral shotgun metagenomic (SM) studies, which would limit the bias introduced by various classes of contaminants. Regardless of the specific viral SM protocol, contamination cannot be totally avoided; in particular, the issue of reagent contamination should always be addressed with high priority. There is an urgent need for the development and validation of standards for viral metagenomic studies especially if viral SM protocols will be more widely applied in diagnostics.
Collapse
Affiliation(s)
- Henryk Jurasz
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Tomasz Pawłowski
- Division of Psychotherapy and Psychosomatic Medicine, Department of Psychiatry, Wrocław Medical University, Wrocław, Poland
| | - Karol Perlejewski
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
16
|
Groot J, Zhou Y, Marshall E, Cullen P, Carlile T, Lin D, Xu CF, Crisafulli J, Sun C, Casey F, Zhang B, Alves C. Benchmarking and optimization of a high-throughput sequencing based method for transgene sequence variant analysis in biotherapeutic cell line development. Biotechnol J 2021; 16:e2000548. [PMID: 34018310 DOI: 10.1002/biot.202000548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 12/13/2022]
Abstract
In recent years, High-Throughput Sequencing (HTS) based methods to detect mutations in biotherapeutic transgene products have become a key quality step deployed during the development of manufacturing cell line clones. Previously we reported on a higher throughput, rapid mutation detection method based on amplicon sequencing (targeting transgene RNA) and detailed its implementation to facilitate cell line clone selection. By gaining experience with our assay in a diverse set of cell line development programs, we improved the computational analysis as well as experimental protocols. Here we report on these improvements as well as on a comprehensive benchmarking of our assay. We evaluated assay performance by mixing amplicon samples of a verified mutated antibody clone with a non-mutated antibody clone to generate spike-in mutations from ∼60% down to ∼0.3% frequencies. We subsequently tested the effect of 16 different sample and HTS library preparation protocols on the assay's ability to quantify mutations and on the occurrence of false-positive background error mutations (artifacts). Our evaluation confirmed assay robustness, established a high confidence limit of detection of ∼0.6%, and identified protocols that reduce error levels thereby significantly reducing a source of false positives that bottlenecked the identification of low-level true mutations.
Collapse
Affiliation(s)
- Joost Groot
- Genome Technologies and Computational Sciences, Biogen, Cambridge, Massachusetts, USA.,Inzen Therapeutics, Cambridge, Massachusetts, USA
| | - Yizhou Zhou
- Protein Development, Biogen, Cambridge, Massachusetts, USA
| | - Eric Marshall
- Genome Technologies and Computational Sciences, Biogen, Cambridge, Massachusetts, USA
| | - Patrick Cullen
- Genome Technologies and Computational Sciences, Biogen, Cambridge, Massachusetts, USA
| | - Thomas Carlile
- Genome Technologies and Computational Sciences, Biogen, Cambridge, Massachusetts, USA
| | - Dongdong Lin
- Genome Technologies and Computational Sciences, Biogen, Cambridge, Massachusetts, USA
| | - Chong-Feng Xu
- Analytical Development, Biogen, Cambridge, Massachusetts, USA
| | | | - Chao Sun
- Genome Technologies and Computational Sciences, Biogen, Cambridge, Massachusetts, USA
| | - Fergal Casey
- Genome Technologies and Computational Sciences, Biogen, Cambridge, Massachusetts, USA
| | - Baohong Zhang
- Genome Technologies and Computational Sciences, Biogen, Cambridge, Massachusetts, USA
| | | |
Collapse
|
17
|
Fitzpatrick AH, Rupnik A, O'Shea H, Crispie F, Keaveney S, Cotter P. High Throughput Sequencing for the Detection and Characterization of RNA Viruses. Front Microbiol 2021; 12:621719. [PMID: 33692767 PMCID: PMC7938315 DOI: 10.3389/fmicb.2021.621719] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/20/2021] [Indexed: 12/12/2022] Open
Abstract
This review aims to assess and recommend approaches for targeted and agnostic High Throughput Sequencing of RNA viruses in a variety of sample matrices. HTS also referred to as deep sequencing, next generation sequencing and third generation sequencing; has much to offer to the field of environmental virology as its increased sequencing depth circumvents issues with cloning environmental isolates for Sanger sequencing. That said however, it is important to consider the challenges and biases that method choice can impart to sequencing results. Here, methodology choices from RNA extraction, reverse transcription to library preparation are compared based on their impact on the detection or characterization of RNA viruses.
Collapse
Affiliation(s)
- Amy H. Fitzpatrick
- Food Biosciences, Teagasc Food Research Centre, Fermoy, Ireland
- Shellfish Microbiology, Marine Institute, Oranmore, Ireland
- Biological Sciences, Munster Technological University, Cork, Ireland
| | | | - Helen O'Shea
- Biological Sciences, Munster Technological University, Cork, Ireland
| | - Fiona Crispie
- Food Biosciences, Teagasc Food Research Centre, Fermoy, Ireland
| | | | - Paul Cotter
- Food Biosciences, Teagasc Food Research Centre, Fermoy, Ireland
| |
Collapse
|
18
|
Fazzini F, Fendt L, Schönherr S, Forer L, Schöpf B, Streiter G, Losso JL, Kloss-Brandstätter A, Kronenberg F, Weissensteiner H. Analyzing Low-Level mtDNA Heteroplasmy-Pitfalls and Challenges from Bench to Benchmarking. Int J Mol Sci 2021; 22:ijms22020935. [PMID: 33477827 PMCID: PMC7832847 DOI: 10.3390/ijms22020935] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/05/2021] [Accepted: 01/15/2021] [Indexed: 12/27/2022] Open
Abstract
Massive parallel sequencing technologies are promising a highly sensitive detection of low-level mutations, especially in mitochondrial DNA (mtDNA) studies. However, processes from DNA extraction and library construction to bioinformatic analysis include several varying tasks. Further, there is no validated recommendation for the comprehensive procedure. In this study, we examined potential pitfalls on the sequencing results based on two-person mtDNA mixtures. Therefore, we compared three DNA polymerases, six different variant callers in five mixtures between 50% and 0.5% variant allele frequencies generated with two different amplification protocols. In total, 48 samples were sequenced on Illumina MiSeq. Low-level variant calling at the 1% variant level and below was performed by comparing trimming and PCR duplicate removal as well as six different variant callers. The results indicate that sensitivity, specificity, and precision highly depend on the investigated polymerase but also vary based on the analysis tools. Our data highlight the advantage of prior standardization and validation of the individual laboratory setup with a DNA mixture model. Finally, we provide an artificial heteroplasmy benchmark dataset that can help improve somatic variant callers or pipelines, which may be of great interest for research related to cancer and aging.
Collapse
Affiliation(s)
- Federica Fazzini
- Department of Genetics and Pharmacology, Institute of Genetic Epidemiology, Medical University of Innsbruck, A-6020 Innsbruck, Austria; (F.F.); (L.F.); (S.S.); (L.F.); (B.S.); (G.S.); (J.L.L.); (A.K.-B.); (F.K.)
| | - Liane Fendt
- Department of Genetics and Pharmacology, Institute of Genetic Epidemiology, Medical University of Innsbruck, A-6020 Innsbruck, Austria; (F.F.); (L.F.); (S.S.); (L.F.); (B.S.); (G.S.); (J.L.L.); (A.K.-B.); (F.K.)
| | - Sebastian Schönherr
- Department of Genetics and Pharmacology, Institute of Genetic Epidemiology, Medical University of Innsbruck, A-6020 Innsbruck, Austria; (F.F.); (L.F.); (S.S.); (L.F.); (B.S.); (G.S.); (J.L.L.); (A.K.-B.); (F.K.)
| | - Lukas Forer
- Department of Genetics and Pharmacology, Institute of Genetic Epidemiology, Medical University of Innsbruck, A-6020 Innsbruck, Austria; (F.F.); (L.F.); (S.S.); (L.F.); (B.S.); (G.S.); (J.L.L.); (A.K.-B.); (F.K.)
| | - Bernd Schöpf
- Department of Genetics and Pharmacology, Institute of Genetic Epidemiology, Medical University of Innsbruck, A-6020 Innsbruck, Austria; (F.F.); (L.F.); (S.S.); (L.F.); (B.S.); (G.S.); (J.L.L.); (A.K.-B.); (F.K.)
| | - Gertraud Streiter
- Department of Genetics and Pharmacology, Institute of Genetic Epidemiology, Medical University of Innsbruck, A-6020 Innsbruck, Austria; (F.F.); (L.F.); (S.S.); (L.F.); (B.S.); (G.S.); (J.L.L.); (A.K.-B.); (F.K.)
| | - Jamie Lee Losso
- Department of Genetics and Pharmacology, Institute of Genetic Epidemiology, Medical University of Innsbruck, A-6020 Innsbruck, Austria; (F.F.); (L.F.); (S.S.); (L.F.); (B.S.); (G.S.); (J.L.L.); (A.K.-B.); (F.K.)
| | - Anita Kloss-Brandstätter
- Department of Genetics and Pharmacology, Institute of Genetic Epidemiology, Medical University of Innsbruck, A-6020 Innsbruck, Austria; (F.F.); (L.F.); (S.S.); (L.F.); (B.S.); (G.S.); (J.L.L.); (A.K.-B.); (F.K.)
- Carinthia University of Applied Sciences, A-9524 Villach, Austria
| | - Florian Kronenberg
- Department of Genetics and Pharmacology, Institute of Genetic Epidemiology, Medical University of Innsbruck, A-6020 Innsbruck, Austria; (F.F.); (L.F.); (S.S.); (L.F.); (B.S.); (G.S.); (J.L.L.); (A.K.-B.); (F.K.)
| | - Hansi Weissensteiner
- Department of Genetics and Pharmacology, Institute of Genetic Epidemiology, Medical University of Innsbruck, A-6020 Innsbruck, Austria; (F.F.); (L.F.); (S.S.); (L.F.); (B.S.); (G.S.); (J.L.L.); (A.K.-B.); (F.K.)
- Correspondence: ; Tel.: +43-512-9003-70564
| |
Collapse
|
19
|
Abstract
Many biological contaminants are disseminated through water, and their occurrence has potential detrimental impacts on public and environmental health. Conventional monitoring tools rely on cultivation and are not robust in addressing modern water quality concerns. This review proposes metagenomics as a means to provide a rapid, nontargeted assessment of biological contaminants in water. When further coupled with appropriate methods (e.g., quantitative PCR and flow cytometry) and bioinformatic tools, metagenomics can provide information concerning both the abundance and diversity of biological contaminants in reclaimed waters. Further correlation between the metagenomic-derived data of selected contaminants and the measurable parameters of water quality can also aid in devising strategies to alleviate undesirable water quality. Here, we review metagenomic approaches (i.e., both sequencing platforms and bioinformatic tools) and studies that demonstrated their use for reclaimed-water quality monitoring. We also provide recommendations on areas of improvement that will allow metagenomics to significantly impact how the water industry performs reclaimed-water quality monitoring in the future.
Collapse
Affiliation(s)
- Pei-Ying Hong
- Water Desalination and Reuse Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - David Mantilla-Calderon
- Water Desalination and Reuse Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Changzhi Wang
- Water Desalination and Reuse Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
20
|
Sidstedt M, Rådström P, Hedman J. PCR inhibition in qPCR, dPCR and MPS-mechanisms and solutions. Anal Bioanal Chem 2020; 412:2009-2023. [PMID: 32052066 PMCID: PMC7072044 DOI: 10.1007/s00216-020-02490-2] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/29/2020] [Accepted: 02/04/2020] [Indexed: 12/24/2022]
Abstract
DNA analysis has seen an incredible development in terms of instrumentation, assays and applications over the last years. Massively parallel sequencing (MPS) and digital PCR are now broadly applied in research and diagnostics, and quantitative PCR is used for more and more practises. All these techniques are based on in vitro DNA polymerization and fluorescence measurements. A major limitation for successful analysis is the various sample-related substances that interfere with the analysis, i.e. PCR inhibitors. PCR inhibition affects library preparation in MPS analysis and skews quantification in qPCR, and some inhibitors have been found to quench the fluorescence of the applied fluorophores. Here, we provide a deeper understanding of mechanisms of specific PCR inhibitors and how these impact specific analytical techniques. This background knowledge is necessary in order to take full advantage of modern DNA analysis techniques, specifically for analysis of samples with low amounts of template and high amounts of background material. The classical solution to handle PCR inhibition is to purify or dilute DNA extracts, which leads to DNA loss. Applying inhibitor-tolerant DNA polymerases, either single enzymes or blends, provides a more straightforward and powerful solution. This review includes mechanisms of specific PCR inhibitors as well as solutions to the inhibition problem in relation to cutting-edge DNA analysis.
Collapse
Affiliation(s)
- Maja Sidstedt
- Swedish National Forensic Centre, Swedish Police Authority, 581 94, Linköping, Sweden
| | - Peter Rådström
- Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, 221 00, Lund, Sweden
| | - Johannes Hedman
- Swedish National Forensic Centre, Swedish Police Authority, 581 94, Linköping, Sweden.
- Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, 221 00, Lund, Sweden.
| |
Collapse
|
21
|
Lutz S, Procházková L, Benning LG, Nedbalová L, Remias D. Evaluating High-Throughput Sequencing Data of Microalgae Living in Melting Snow: Improvements and Limitations 1. FOTTEA (PRAHA) 2019; 19:115-131. [PMID: 33414851 PMCID: PMC7116558 DOI: 10.5507/fot.2019.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Melting snow fields are an extremophilic habitat dominated by closely related Chlamydomonadaceae (Chlorophyta). Microscopy-based classification of these cryophilic microalgae is challenging and may not reveal the true diversity. High-throughput sequencing (HTS) allows for a more comprehensive evaluation of the community. However, HTS approaches have been rarely used in such ecosystems and the output of their application has not been evaluated. Furthermore, there is no consensus on the choice for a suitable DNA marker or data processing workflow. We found that the correct placement of taxonomic strings onto OTUs strongly depends on the quality of the reference databases. We improved the assignments of the HST data by generating additional reference sequences of the locally abundant taxa, guided by light microscopy. Furthermore, a manual inspection of all automated OTU assignments, oligotyping of the most abundant 18S OTUs, as well as ITS2 secondary structure analyses were necessary for accurate species assignments. Moreover, the sole use of one marker can cause misleading results, either because of insufficient variability within the locus (18S) or the scarcity of reference sequences (ITS2). Our evaluation reveals that HTS output needs to be thoroughly checked when the studied habitats or organisms are poorly represented in publicly available databases. We recommend an optimized workflow for an improved biodiversity evaluation of not only snow algal communities, but generally 'exotic' ecosystems where similar problems arise. A consistent sampling strategy, two- molecular marker approach, light microscopy-based guidance, generation of appropriate reference sequences and final manual verification of all taxonomic assignments are highly recommended.
Collapse
Affiliation(s)
| | | | - Liane G. Benning
- GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany School of Earth & Environment, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK Department of Earth Sciences, Free University of Berlin, 12249 Berlin, Germany
| | - Linda Nedbalová
- Department of Ecology, Faculty of Science, Charles University in Prague, Viničná 7, 128 44 Prague 2, Czech Republic
- The Czech Academy of Sciences, Institute of Botany, Dukelská 135, 379 82 Třeboň, Czech Republic
| | - Daniel Remias
- University of Applied Sciences Upper Austria, Stelzhamerstraße 23, 4600 Wels, Austria
| |
Collapse
|
22
|
Lagström S, van der Weele P, Rounge TB, Christiansen IK, King AJ, Ambur OH. HPV16 whole genome minority variants in persistent infections from young Dutch women. J Clin Virol 2019; 119:24-30. [PMID: 31446251 DOI: 10.1016/j.jcv.2019.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 08/06/2019] [Accepted: 08/09/2019] [Indexed: 11/16/2022]
Abstract
BACKGROUND Chronic infections by one of the oncogenic human papillomaviruses (HPVs) are responsible for near 5% of the global cancer burden and HPV16 is the type most often found in cancers. HPV genomes display unexpected levels of variation when deep-sequenced. Minor nucleotide variations (MNVs) may reveal HPV genomic instability and HPV-related carcinogenic transformation of host cells. OBJECTIVES The objective of this study was to investigate HPV16 genome variation at the minor variant level on persisting HPV16 cervical infections from a population of young Dutch women. STUDY DESIGN 15 HPV16 infections were sequenced using a whole-HPV genome deep sequencing protocol (TaME-seq). One infection was followed over a three-year period, eight were followed over a two-year period, three were followed over a one-year period and three infections had a single sampling point. RESULTS AND CONCLUSIONS Using a 1% variant frequency cutoff, we find on average 48 MNVs per HPV16 genome and 1717 MNVs in total when sequencing coverage was >100 × . We find the transition mutation T > C to be the most common, in contrast to other studies detecting APOBEC-related C > T mutation profiles in pre-cancerous and cancer samples. Our results suggest that the relative mutagenic footprint of HPV16 genomes may differ between the infections in this study and transforming lesions. In addition, we identify a number of MNVs that have previously been associated with higher incidence of high-grade lesions (CIN3+) in a population study. These findings may provide a starting point for future studies exploring causality between emerging HPV minor genomic variants and cancer development.
Collapse
Affiliation(s)
- Sonja Lagström
- Department of Microbiology and Infection Control, Akershus University Hospital, Lørenskog, Norway; Department of Research, Cancer Registry of Norway, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Pascal van der Weele
- National Institute for Public Health and the Environment (RIVM), Centre for Infectious Disease Research, Diagnostics and Screening, Bilthoven, the Netherlands; Vrije Universiteit-University Medical Center (VUmc), Department of Pathology, Amsterdam, the Netherlands
| | | | - Irene Kraus Christiansen
- Department of Microbiology and Infection Control, Akershus University Hospital, Lørenskog, Norway; Department of Clinical Molecular Biology (EpiGen), Division of Medicine, Akershus University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Audrey J King
- National Institute for Public Health and the Environment (RIVM), Centre for Infectious Disease Research, Diagnostics and Screening, Bilthoven, the Netherlands.
| | - Ole Herman Ambur
- Faculty of Health Sciences, OsloMet - Oslo Metropolitan University, Oslo, Norway.
| |
Collapse
|
23
|
Pec GJ, Scott NM, Hupperts SF, Hankin SL, Landhäusser SM, Karst J. Restoration of belowground fungal communities in reclaimed landscapes of the Canadian boreal forest. Restor Ecol 2019. [DOI: 10.1111/rec.12990] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Gregory J. Pec
- Department of Renewable ResourcesUniversity of Alberta, 442 Earth Sciences Building, Edmonton, Canada, T6G 2E3
| | - Natalie M. Scott
- Department of Renewable ResourcesUniversity of Alberta, 442 Earth Sciences Building, Edmonton, Canada, T6G 2E3
| | - Stefan F. Hupperts
- Department of Renewable ResourcesUniversity of Alberta, 442 Earth Sciences Building, Edmonton, Canada, T6G 2E3
| | - Shanon L. Hankin
- Department of Renewable ResourcesUniversity of Alberta, 442 Earth Sciences Building, Edmonton, Canada, T6G 2E3
| | - Simon M. Landhäusser
- Department of Renewable ResourcesUniversity of Alberta, 442 Earth Sciences Building, Edmonton, Canada, T6G 2E3
| | - Justine Karst
- Department of Renewable ResourcesUniversity of Alberta, 442 Earth Sciences Building, Edmonton, Canada, T6G 2E3
| |
Collapse
|
24
|
Filges S, Yamada E, Ståhlberg A, Godfrey TE. Impact of Polymerase Fidelity on Background Error Rates in Next-Generation Sequencing with Unique Molecular Identifiers/Barcodes. Sci Rep 2019; 9:3503. [PMID: 30837525 PMCID: PMC6401092 DOI: 10.1038/s41598-019-39762-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 01/31/2019] [Indexed: 12/27/2022] Open
Abstract
Liquid biopsy and detection of tumor-associated mutations in cell-free circulating DNA often requires the ability to identify single nucleotide variants at allele frequencies below 0.1%. Standard sequencing protocols cannot achieve this level of sensitivity due to background noise from DNA damage and polymerase induced errors. Addition of unique molecular identifiers allows identification and removal of errors responsible for this background noise. Theoretically, high fidelity enzymes will also reduce error rates in barcoded NGS but this has not been thoroughly explored. We evaluated the impact of polymerase fidelity on the magnitude of error reduction at different steps of barcoded NGS library construction. We find that barcoding itself displays largest impact on error reduction, even with low fidelity polymerases. Use of high fidelity polymerases in the barcoding step of library construction further suppresses error in barcoded NGS, and allows detection of variant alleles below 0.1% allele frequency. However, the improvement in error correction is modest and is not directly proportional to polymerase fidelity. Depending on the specific application, other polymerase characteristics such as multiplexing capacity, PCR efficiency, buffer requirements and ability to amplify targets with high GC content may outweigh the relatively small additional decrease in error afforded by ultra-high fidelity polymerases.
Collapse
Affiliation(s)
- Stefan Filges
- Department of Pathology and Genetics, Sahlgrenska Cancer Center, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Medicinaregatan 1F, 405 30, Gothenberg, Sweden
| | - Emiko Yamada
- Department of Surgery, Boston University School of Medicine, 700 Albany Street, Boston, MA, 02118, USA
| | - Anders Ståhlberg
- Department of Pathology and Genetics, Sahlgrenska Cancer Center, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Medicinaregatan 1F, 405 30, Gothenberg, Sweden.
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.
- Department of Clinical Pathology and Genetics, Sahlgrenska University Hospital, 413 45, Gothenburg, Sweden.
| | - Tony E Godfrey
- Department of Surgery, Boston University School of Medicine, 700 Albany Street, Boston, MA, 02118, USA.
| |
Collapse
|
25
|
The impact of common PCR inhibitors on forensic MPS analysis. Forensic Sci Int Genet 2019; 40:182-191. [PMID: 30878722 DOI: 10.1016/j.fsigen.2019.03.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 02/15/2019] [Accepted: 03/01/2019] [Indexed: 11/21/2022]
Abstract
Massively parallel sequencing holds great promise for new possibilities in the field of forensic genetics, enabling simultaneous analysis of multiple markers as well as offering enhanced short tandem repeat allele resolution. A challenge in forensic DNA analysis is that the samples often contain low amounts of DNA in a background that may interfere with downstream analysis. PCR inhibition mechanisms of some relevant molecules have been studied applying e.g. real-time PCR and digital PCR. However, a detailed understanding of the effects of inhibitory molecules on forensic MPS, including mechanisms and ways to relieve inhibition, is missing. In this study, the effects of two well-characterized PCR inhibitors, humic acid and hematin, have been studied using the ForenSeq DNA Signature Prep kit. Humic acid and hematin resulted in lowered read numbers as well as specific negative effects on certain markers. Quality control of libraries with Fragment analyzer showed that increasing amounts of inhibitors caused a lowered amplicon quantity and that the larger amplicons were more likely to drop out. Further, the inhibitor tolerance could be improved 5-10 times by addition of bovine serum albumin in the initial PCR. On the contrary to the samples with inhibitors, low-template samples resulted in lowered read numbers for all markers. This difference strengthened the conclusion that the inhibitors have a negative effect on the DNA polymerase activity in the initial PCR. Additionally, a common capillary gel electrophoresis-based STR kit was shown to handle at least 200 times more inhibitors than the ForenSeq DNA Signature Prep kit. This suggests that there is room for improvement of the PCR components to ensure analytical success for challenging samples, which is needed for a broad application of MPS for forensic STR analysis.
Collapse
|
26
|
Yang Y, Xia C, Zhou Z, Wei D, Xu K, Jia J, Xu W, Zhang H. A multiplex ligation‑dependent probe amplification‑based next‑generation sequencing approach for the detection of copy number variations in the human genome. Mol Med Rep 2018; 18:5823-5833. [PMID: 30365071 DOI: 10.3892/mmr.2018.9581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 09/28/2018] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study was to describe a multiplex ligation‑dependent probe amplification (MLPA)‑based next‑generation sequencing (NGS) assay that exhibited a significantly higher efficiency in detecting copy number variations (CNVs) and known single‑nucleotide variants, compared with traditional MLPA. MLPA polymerase chain reaction products were used to construct a library with indexed adapters, which was subsequently tested on an NGS platform, and the resulting data were analyzed by a series of analytical software. The reads from each probe reflected genetic variations in the target regions, and fragment differentiation was based on the specific base composition of the sequences, rather than fragment length, which was determined by capillary electrophoresis. The results of this approach were not only consistent with the MLPA results following capillary electrophoresis, but also coincided with the CNV results from the single‑nucleotide polymorphism array chip. This method allowed high‑throughput screening for the number of fragments and samples by integrating additional indices for detection. Furthermore, this technology precisely and accurately performed large‑scale detection and quantification of DNA variations, thereby serving as an effective and sensitive method for diagnosing genetic disorders caused by CNVs and known single‑nucleotide variations. Notably, MLPA‑NGS circumvents the problems associated with the inaccuracies of NGS in CNV detection due to the use of target sequence capture.
Collapse
Affiliation(s)
- Yongchen Yang
- Department of Laboratory Medicine, Children's Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai 200040, P.R. China
| | - Chaoran Xia
- Shanghai Institute of Medical Genetics, Children's Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai 200040, P.R. China
| | - Zaiwei Zhou
- Product Department, WuXi Health Net Co., Ltd., Shanghai 200131, P.R. China
| | - Dongkai Wei
- BasePair Biotechnology Co., Ltd., Suzhou, Jiangsu 215028, P.R. China
| | - Kangping Xu
- BasePair Biotechnology Co., Ltd., Suzhou, Jiangsu 215028, P.R. China
| | - Jia Jia
- Shanghai Center for Bioinformation Technology, Shanghai Institutes of Biomedicine, Shanghai Academy of Science and Technology, Shanghai 201203, P.R. China
| | - Wuhen Xu
- Department of Laboratory Medicine, Children's Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai 200040, P.R. China
| | - Hong Zhang
- Department of Laboratory Medicine, Children's Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai 200040, P.R. China
| |
Collapse
|
27
|
Liu Q, Kämpf H, Bussert R, Krauze P, Horn F, Nickschick T, Plessen B, Wagner D, Alawi M. Influence of CO 2 Degassing on the Microbial Community in a Dry Mofette Field in Hartoušov, Czech Republic (Western Eger Rift). Front Microbiol 2018; 9:2787. [PMID: 30524401 PMCID: PMC6258768 DOI: 10.3389/fmicb.2018.02787] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 10/30/2018] [Indexed: 01/13/2023] Open
Abstract
The Cheb Basin (CZ) is a shallow Neogene intracontinental basin filled with fluvial and lacustrine sediments that is located in the western part of the Eger Rift. The basin is situated in a seismically active area and is characterized by diffuse degassing of mantle-derived CO2 in mofette fields. The Hartoušov mofette field shows a daily CO2 flux of 23-97 tons of CO2 released over an area of 0.35 km2 and a soil gas concentration of up to 100% CO2. The present study aims to explore the geo-bio interactions provoked by the influence of elevated CO2 concentrations on the geochemistry and microbial community of soils and sediments. To sample the strata, two 3-m cores were recovered. One core stems from the center of the degassing structure, whereas the other core was taken 8 m from the ENE and served as an undisturbed reference site. The sites were compared regarding their geochemical features, microbial abundances, and microbial community structures. The mofette site is characterized by a low pH and high TOC/sulfate contents. Striking differences in the microbial community highlight the substantial impact of elevated CO2 concentrations and their associated side effects on microbial processes. The abundance of microbes did not show a typical decrease with depth, indicating that the uprising CO2-rich fluid provides sufficient substrate for chemolithoautotrophic anaerobic microorganisms. Illumina MiSeq sequencing of the 16S rRNA genes and multivariate statistics reveals that the pH strongly influences microbial composition and explains around 38.7% of the variance at the mofette site and 22.4% of the variance between the mofette site and the undisturbed reference site. Accordingly, acidophilic microorganisms (e.g., OTUs assigned to Acidobacteriaceae and Acidithiobacillus) displayed a much higher relative abundance at the mofette site than at the reference site. The microbial community at the mofette site is characterized by a high relative abundance of methanogens and taxa involved in sulfur cycling. The present study provides intriguing insights into microbial life and geo-bio interactions in an active seismic region dominated by emanating mantle-derived CO2-rich fluids, and thereby builds the basis for further studies, e.g., focusing on the functional repertoire of the communities. However, it remains open if the observed patterns can be generalized for different time-points or sites.
Collapse
Affiliation(s)
- Qi Liu
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, Potsdam, Germany
| | - Horst Kämpf
- GFZ German Research Centre for Geosciences, Section Organic Geochemistry, Potsdam, Germany
| | - Robert Bussert
- Institute of Applied Geosciences, Technische Universität Berlin, Berlin, Germany
| | - Patryk Krauze
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, Potsdam, Germany
| | - Fabian Horn
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, Potsdam, Germany
| | - Tobias Nickschick
- Institute for Geophysics and Geology, University of Leipzig, Leipzig, Germany
| | - Birgit Plessen
- GFZ German Research Centre for Geosciences, Section Climate Dynamics and Landscape Evolution, Potsdam, Germany
| | - Dirk Wagner
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, Potsdam, Germany.,Institute of Earth and Environmental Science, University of Potsdam, Potsdam, Germany
| | - Mashal Alawi
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, Potsdam, Germany
| |
Collapse
|
28
|
Imai K, Tamura K, Tanigaki T, Takizawa M, Nakayama E, Taniguchi T, Okamoto M, Nishiyama Y, Tarumoto N, Mitsutake K, Murakami T, Maesaki S, Maeda T. Whole Genome Sequencing of Influenza A and B Viruses With the MinION Sequencer in the Clinical Setting: A Pilot Study. Front Microbiol 2018; 9:2748. [PMID: 30483243 PMCID: PMC6243006 DOI: 10.3389/fmicb.2018.02748] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 10/26/2018] [Indexed: 02/01/2023] Open
Abstract
Introduction: Whole genome sequencing (WGS) of influenza viruses is important for preparing vaccines and coping with newly emerging viruses. However, WGS is difficult to perform using conventional next-generation sequencers in developing countries, where facilities are often inadequate. In this study, we developed a high-throughput WGS method for influenza viruses in clinical specimens with the MinION portable sequencer. Methods: Whole genomes of influenza A and B viruses were amplified by multiplex RT-PCR from 13 clinical specimens collected in Tokyo, Japan. Barcode tags for multiplex MinION sequencing were added with each multiplex RT-PCR amplicon by nested PCR with custom barcoded primers. All barcoded amplicons were mixed and multiplex sequencing using the MinION sequencer with 1D2 sequencing kit. In addition, multiplex RT-PCR amplicons generated from each clinical specimen were sequenced using the Illumina MiSeq platform to validate the performance of MinION sequencer. The accuracy, recall, and precision rates of MinION sequencing were calculated by comparing the results of variant calling in the Illumina MiSeq platform and MinION sequencer. Results: Whole genomes of influenza A and B viruses were successfully amplified by multiplex RT-PCR from 13 clinical samples. We identified 6 samples as influenza type A virus H3N2 subtype and 7 as influenza B virus Yamagata lineage using the Illumina MiSeq platform. The overall accuracy, recall, and precision rates of the MinION sequencer were, respectively 99.95%, 89.41%, and 97.88% from 1D reads and 99.97%, 93.28%, and 99.86% from 1D2 reads. Conclusion: We developed a novel WGS method for influenza A and B viruses. It is necessary to improve read accuracy and analytical tools in order to better utilize the MinION sequencer for real-time monitoring of genetic rearrangements and for evaluation of newly emerging viruses.
Collapse
Affiliation(s)
- Kazuo Imai
- Department of Infectious Disease and Infection Control, Saitama Medical University, Saitama, Japan.,Center for Clinical Infectious Diseases and Research, Saitama Medical University, Saitama, Japan.,Department of Infectious Diseases, Self-Defense Forces Central Hospital, Japan Ground Self-Defense Forces, Tokyo, Japan
| | - Kaku Tamura
- Department of Infectious Diseases, Self-Defense Forces Central Hospital, Japan Ground Self-Defense Forces, Tokyo, Japan
| | - Tomomi Tanigaki
- NBC Counter Medical Unit, Japan Ground Self-Defense Forces, Tokyo, Japan
| | - Mari Takizawa
- Camp Asaka Medical Office, Japan Ground Self-Defense Forces, Tokyo, Japan
| | - Eiko Nakayama
- Camp Asaka Medical Office, Japan Ground Self-Defense Forces, Tokyo, Japan
| | - Takahiko Taniguchi
- Camp Asaka Medical Office, Japan Ground Self-Defense Forces, Tokyo, Japan
| | - Misako Okamoto
- Camp Asaka Medical Office, Japan Ground Self-Defense Forces, Tokyo, Japan
| | - Yasumasa Nishiyama
- NBC Counter Medical Unit, Japan Ground Self-Defense Forces, Tokyo, Japan
| | - Norihito Tarumoto
- Department of Infectious Disease and Infection Control, Saitama Medical University, Saitama, Japan.,Center for Clinical Infectious Diseases and Research, Saitama Medical University, Saitama, Japan
| | - Kotaro Mitsutake
- Center for Clinical Infectious Diseases and Research, Saitama Medical University, Saitama, Japan.,Department of Infectious Disease and Infection Control, Saitama Medical University International Medical Center, Saitama, Japan
| | - Takashi Murakami
- Center for Clinical Infectious Diseases and Research, Saitama Medical University, Saitama, Japan.,Department of Microbiology, Saitama Medical University, Saitama, Japan
| | - Shigefumi Maesaki
- Department of Infectious Disease and Infection Control, Saitama Medical University, Saitama, Japan.,Center for Clinical Infectious Diseases and Research, Saitama Medical University, Saitama, Japan
| | - Takuya Maeda
- Center for Clinical Infectious Diseases and Research, Saitama Medical University, Saitama, Japan.,Department of Microbiology, Saitama Medical University, Saitama, Japan
| |
Collapse
|
29
|
Xue Z, Kable ME, Marco ML. Impact of DNA Sequencing and Analysis Methods on 16S rRNA Gene Bacterial Community Analysis of Dairy Products. mSphere 2018; 3:e00410-18. [PMID: 30333179 PMCID: PMC6193606 DOI: 10.1128/msphere.00410-18] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 09/13/2018] [Indexed: 12/17/2022] Open
Abstract
DNA sequencing and analysis methods were compared for 16S rRNA V4 PCR amplicon and genomic DNA (gDNA) mock communities encompassing nine bacterial species commonly found in milk and dairy products. The two communities comprised strain-specific DNA that was pooled before (gDNA) or after (PCR amplicon) the PCR step. The communities were sequenced on the Illumina MiSeq and Ion Torrent PGM platforms and then analyzed using the QIIME 1 (UCLUST) and Divisive Amplicon Denoising Algorithm 2 (DADA2) analysis pipelines with taxonomic comparisons to the Greengenes and Ribosomal Database Project (RDP) databases. Examination of the PCR amplicon mock community with these methods resulted in operational taxonomic units (OTUs) and amplicon sequence variants (ASVs) that ranged from 13 to 118 and were dependent on the DNA sequencing method and read assembly steps. The additional 4 to 109 OTUs/ASVs (from 9 OTUs/ASVs) included assignments to spurious taxa and sequence variants of the 9 species included in the mock community. Comparisons between the gDNA and PCR amplicon mock communities showed that combining gDNAs from the different strains prior to PCR resulted in up to 8.9-fold greater numbers of spurious OTUs/ASVs. However, the DNA sequencing method and paired-end read assembly steps conferred the largest effects on predictions of bacterial diversity, with effect sizes of 0.88 (Bray-Curtis) and 0.32 (weighted Unifrac), independent of the mock community type. Overall, DNA sequencing performed with the Ion Torrent PGM and analyzed with DADA2 and the Greengenes database resulted in the most accurate predictions of the mock community phylogeny, taxonomy, and diversity.IMPORTANCE Validated methods are urgently needed to improve DNA sequence-based assessments of complex bacterial communities. In this study, we used 16S rRNA PCR amplicon and gDNA mock community standards, consisting of nine, dairy-associated bacterial species, to evaluate the most commonly applied 16S rRNA marker gene DNA sequencing and analysis platforms used in evaluating dairy and other bacterial habitats. Our results show that bacterial metataxonomic assessments are largely dependent on the DNA sequencing platform and read curation method used. DADA2 improved sequence annotation compared with QIIME 1, and when combined with the Ion Torrent PGM DNA sequencing platform and the Greengenes database for taxonomic assignment, the most accurate representation of the dairy mock community standards was reached. This approach will be useful for validating sample collection and DNA extraction methods and ultimately investigating bacterial population dynamics in milk- and dairy-associated environments.
Collapse
Affiliation(s)
- Zhengyao Xue
- Department of Food Science & Technology, University of California, Davis, California, USA
| | - Mary E Kable
- Department of Food Science & Technology, University of California, Davis, California, USA
| | - Maria L Marco
- Department of Food Science & Technology, University of California, Davis, California, USA
| |
Collapse
|
30
|
Hadigol M, Khiabanian H. MERIT reveals the impact of genomic context on sequencing error rate in ultra-deep applications. BMC Bioinformatics 2018; 19:219. [PMID: 29884116 PMCID: PMC5994075 DOI: 10.1186/s12859-018-2223-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 05/29/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Rapid progress in high-throughput sequencing (HTS) and the development of novel library preparation methods have improved the sensitivity of detecting mutations in heterogeneous samples, specifically in high-depth (> 500×) clinical applications. However, HTS methods are bounded by their technical and theoretical limitations and sequencing errors cannot be completely eliminated. Comprehensive quantification of the background noise can highlight both the efficiency and the limitations of any HTS methodology, and help differentiate true mutations at low abundance from artifacts. RESULTS We introduce MERIT (Mutation Error Rate Inference Toolkit), designed for in-depth quantification of erroneous substitutions and small insertions and deletions. MERIT incorporates an all-inclusive variant caller and considers genomic context, including the nucleotides immediately at 5 'and 3 ', thereby establishing error rates for 96 possible substitutions as well as four single-base and 16 double-base indels. We applied MERIT to ultra-deep sequencing data (1,300,000 ×) obtained from the amplification of multiple clinically relevant loci, and showed a significant relationship between error rates and genomic contexts. In addition to observing significant difference between transversion and transition rates, we identified variations of more than 100-fold within each error type at high sequencing depths. For instance, T >G transversions in trinucleotide GTCs occurred 133.5 ± 65.9 more often than those in ATAs. Similarly, C >T transitions in GCGs were observed at 73.8 ± 10.5 higher rate than those in TCTs. We also devised an in silico approach to determine the optimal sequencing depth, where errors occur at rates similar to those of expected true mutations. Our analyses showed that increasing sequencing depth might improve sensitivity for detecting some mutations based on their genomic context. For example, T >G rate of error in GTCs did not change when sequenced beyond 10,000 ×; in contrast, T >G rate in TTAs consistently improved even at above 500,000 ×. CONCLUSIONS Our results demonstrate significant variation in nucleotide misincorporation rates, and suggest that genomic context should be considered for comprehensive profiling of specimen-specific and sequencing artifacts in high-depth assays. This data provide strong evidence against assigning a single allele frequency threshold to call mutations, for it can result in substantial false positive as well as false negative variants, with important clinical consequences.
Collapse
Affiliation(s)
- Mohammad Hadigol
- Center for Systems and Computational Biology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ USA
| | - Hossein Khiabanian
- Center for Systems and Computational Biology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ USA
- Department of Pathology and Laboratory Medicine, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ USA
| |
Collapse
|
31
|
Camacho-Sanchez M, Quintanilla I, Hawkins MTR, Tuh FYY, Wells K, Maldonado JE, Leonard JA. Interglacial refugia on tropical mountains: Novel insights from the summit rat (Rattus baluensis), a Borneo mountain endemic. DIVERS DISTRIB 2018. [DOI: 10.1111/ddi.12761] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Miguel Camacho-Sanchez
- Conservation and Evolutionary Genetics Group; Estación Biológica de Doñana (EBD-CSIC); Seville Spain
| | - Irene Quintanilla
- Conservation and Evolutionary Genetics Group; Estación Biológica de Doñana (EBD-CSIC); Seville Spain
| | - Melissa T. R. Hawkins
- Smithsonian Conservation Biology Institute; Center for Conservation Genomics; National Zoological Park; Washington DC USA
- Division of Mammals; National Museum of Natural History; Smithsonian Institution; Washington DC USA
| | | | - Konstans Wells
- Environmental Futures Research Institute; School of Environment; Griffith University; Brisbane QLD Australia
| | - Jesus E. Maldonado
- Smithsonian Conservation Biology Institute; Center for Conservation Genomics; National Zoological Park; Washington DC USA
| | - Jennifer A. Leonard
- Conservation and Evolutionary Genetics Group; Estación Biológica de Doñana (EBD-CSIC); Seville Spain
| |
Collapse
|
32
|
Marciano MA, Panicker SX, Liddil GD, Lindgren D, Sweder KS. Development of a Method to Extract Opium Poppy (Papaver somniferum L.) DNA from Heroin. Sci Rep 2018; 8:2590. [PMID: 29416103 PMCID: PMC5803222 DOI: 10.1038/s41598-018-20996-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 01/29/2018] [Indexed: 01/03/2023] Open
Abstract
This study is the first to report the successful development of a method to extract opium poppy (Papaver somniferum L.) DNA from heroin samples. Determining of the source of an unknown heroin sample (forensic geosourcing) is vital to informing domestic and foreign policy related to counter-narcoterrorism. Current profiling methods focus on identifying process-related chemical impurities found in heroin samples. Changes to the geographically distinct processing methods may lead to difficulties in classifying and attributing heroin samples to a region/country. This study focuses on methods to optimize the DNA extraction and amplification of samples with low levels of degraded DNA and inhibiting compounds such as heroin. We compared modified commercial-off-the-shelf extraction methods such as the Qiagen Plant, Stool and the Promega Maxwell-16 RNA-LEV tissue kits for the ability to extract opium poppy DNA from latex, raw and cooked opium, white and brown powder heroin and black tar heroin. Opium poppy DNA was successfully detected in all poppy-derived samples, including heroin. The modified Qiagen stool method with post-extraction purification and a two-stage, dual DNA polymerase amplification procedure resulted in the highest DNA yield and minimized inhibition. This paper describes the initial phase in establishing a DNA-based signature method to characterize heroin.
Collapse
Affiliation(s)
- Michael A Marciano
- Forensic & National Security Sciences Institute, Syracuse University, Syracuse, New York, 13244, USA.
| | - Sini X Panicker
- U.S. Drug Enforcement Administration, Special Testing and Research Laboratory, Dulles, VA, 20166, USA
| | - Garrett D Liddil
- Forensic & National Security Sciences Institute, Syracuse University, Syracuse, New York, 13244, USA
| | - Danielle Lindgren
- Forensic & National Security Sciences Institute, Syracuse University, Syracuse, New York, 13244, USA
| | - Kevin S Sweder
- Forensic & National Security Sciences Institute, Syracuse University, Syracuse, New York, 13244, USA
| |
Collapse
|
33
|
Song X, Haghighi A, Iliuta IA, Pei Y. Molecular diagnosis of autosomal dominant polycystic kidney disease. Expert Rev Mol Diagn 2017; 17:885-895. [PMID: 28724316 DOI: 10.1080/14737159.2017.1358088] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited kidney disease that accounts for 5-10% of end-stage renal disease in developed countries. Mutations in PKD1 and PKD2 account for a majority of cases. Mutation screening of PKD1 is technically challenging largely due to the complexity resulting from duplication of its first 33 exons in six highly homologous pseudogenes (i.e. PKD1P1-P6). Protocol using locus-specific long-range and nested PCR has enabled comprehensive PKD1 mutation screening but is labor-intensive and costly. Here, the authors review how recent advances in Next Generation Sequencing are poised to transform and extend molecular diagnosis of ADPKD. Areas covered: Key original research articles and reviews of the topic published in English identified through PubMed from 1957-2017. Expert commentary: The authors review current and evolving approaches using targeted resequencing or whole genome sequencing for screening typical as well as challenging cases (e.g. cases with no detectable PKD1 and PKD2 mutations which may be due to somatic mosaicism or other cystic disease; and complex genetics such as bilineal disease).
Collapse
Affiliation(s)
- Xuewen Song
- a Division of Nephrology , University Health Network and University of Toronto , Toronto , ON , Canada
| | - Amirreza Haghighi
- a Division of Nephrology , University Health Network and University of Toronto , Toronto , ON , Canada
| | - Ioan-Andrei Iliuta
- a Division of Nephrology , University Health Network and University of Toronto , Toronto , ON , Canada
| | - York Pei
- a Division of Nephrology , University Health Network and University of Toronto , Toronto , ON , Canada
| |
Collapse
|
34
|
Vierna J, Doña J, Vizcaíno A, Serrano D, Jovani R. PCR cycles above routine numbers do not compromise high-throughput DNA barcoding results. Genome 2017; 60:868-873. [PMID: 28753409 DOI: 10.1139/gen-2017-0081] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
High-throughput DNA barcoding has become essential in ecology and evolution, but some technical questions still remain. Increasing the number of PCR cycles above the routine 20-30 cycles is a common practice when working with old-type specimens, which provide little amounts of DNA, or when facing annealing issues with the primers. However, increasing the number of cycles can raise the number of artificial mutations due to polymerase errors. In this work, we sequenced 20 COI libraries in the Illumina MiSeq platform. Libraries were prepared with 40, 45, 50, 55, and 60 PCR cycles from four individuals belonging to four species of four genera of cephalopods. We found no relationship between the number of PCR cycles and the number of mutations despite using a nonproofreading polymerase. Moreover, even when using a high number of PCR cycles, the resulting number of mutations was low enough not to be an issue in the context of high-throughput DNA barcoding (but may still remain an issue in DNA metabarcoding due to chimera formation). We conclude that the common practice of increasing the number of PCR cycles should not negatively impact the outcome of a high-throughput DNA barcoding study in terms of the occurrence of point mutations.
Collapse
Affiliation(s)
- J Vierna
- a AllGenetics & Biology SL. Edificio CICA, Campus de Elviña s/n. E-15008 A Coruña, Spain
| | - J Doña
- b Department of Evolutionary Ecology, Estación Biológica de Doñana (CSIC), Avenida Américo Vespucio s/n. E-41092 Sevilla, Spain
| | - A Vizcaíno
- a AllGenetics & Biology SL. Edificio CICA, Campus de Elviña s/n. E-15008 A Coruña, Spain
| | - D Serrano
- c Department of Conservation Biology, Estación Biológica de Doñana (CSIC), Avenida Américo Vespucio s/n. E-41092 Sevilla, Spain
| | - R Jovani
- b Department of Evolutionary Ecology, Estación Biológica de Doñana (CSIC), Avenida Américo Vespucio s/n. E-41092 Sevilla, Spain
| |
Collapse
|
35
|
Wang C, Zhang T, Wang Y, Katz LA, Gao F, Song W. Disentangling sources of variation in SSU rDNA sequences from single cell analyses of ciliates: impact of copy number variation and experimental error. Proc Biol Sci 2017; 284:20170425. [PMID: 28747472 PMCID: PMC5543213 DOI: 10.1098/rspb.2017.0425] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 06/19/2017] [Indexed: 12/25/2022] Open
Abstract
Small subunit ribosomal DNA (SSU rDNA) is widely used for phylogenetic inference, barcoding and other taxonomy-based analyses. Recent studies indicate that SSU rDNA of ciliates may have a high level of sequence variation within a single cell, which impacts the interpretation of rDNA-based surveys. However, sequence variation can come from a variety of sources including experimental errors, especially the mutations generated by DNA polymerase in PCR. In the present study, we explore the impact of four DNA polymerases on sequence variation and find that low-fidelity polymerases exaggerate the estimates of single-cell sequence variation. Therefore, using a polymerase with high fidelity is essential for surveys of sequence variation. Another source of variation results from errors during amplification of SSU rDNA within the polyploidy somatic macronuclei of ciliates. To investigate further the impact of SSU rDNA copy number variation, we use a high-fidelity polymerase to examine the intra-individual SSU rDNA polymorphism in ciliates with varying levels of macronuclear amplification: Halteria grandinella, Blepharisma americanum and Strombidium stylifer We estimate the rDNA copy numbers of these three species by single-cell quantitative PCR. The results indicate that: (i) sequence variation of SSU rDNA within a single cell is authentic in ciliates, but the level of intra-individual SSU rDNA polymorphism varies greatly among species; (ii) rDNA copy numbers vary greatly among species, even those within the same class; (iii) the average rDNA copy number of Halteria grandinella is about 567 893 (s.d. = 165 481), which is the highest record of rDNA copy number in ciliates to date; and (iv) based on our data and the records from previous studies, it is not always true in ciliates that rDNA copy numbers are positively correlated with cell or genome size.
Collapse
Affiliation(s)
- Chundi Wang
- Insititute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Tengteng Zhang
- Insititute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Yurui Wang
- Insititute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Laura A Katz
- Department of Biological Sciences, Smith College, Northampton, MA 01063, USA
| | - Feng Gao
- Insititute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, People's Republic of China
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, People's Republic of China
| | - Weibo Song
- Insititute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, People's Republic of China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, People's Republic of China
| |
Collapse
|
36
|
Shagin DA, Shagina IA, Zaretsky AR, Barsova EV, Kelmanson IV, Lukyanov S, Chudakov DM, Shugay M. A high-throughput assay for quantitative measurement of PCR errors. Sci Rep 2017; 7:2718. [PMID: 28578414 PMCID: PMC5457411 DOI: 10.1038/s41598-017-02727-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 04/18/2017] [Indexed: 01/01/2023] Open
Abstract
The accuracy with which DNA polymerase can replicate a template DNA sequence is an extremely important property that can vary by an order of magnitude from one enzyme to another. The rate of nucleotide misincorporation is shaped by multiple factors, including PCR conditions and proofreading capabilities, and proper assessment of polymerase error rate is essential for a wide range of sensitive PCR-based assays. In this paper, we describe a method for studying polymerase errors with exceptional resolution, which combines unique molecular identifier tagging and high-throughput sequencing. Our protocol is less laborious than commonly-used methods, and is also scalable, robust and accurate. In a series of nine PCR assays, we have measured a range of polymerase accuracies that is in line with previous observations. However, we were also able to comprehensively describe individual errors introduced by each polymerase after either 20 PCR cycles or a linear amplification, revealing specific substitution preferences and the diversity of PCR error frequency profiles. We also demonstrate that the detected high-frequency PCR errors are highly recurrent and that the position in the template sequence and polymerase-specific substitution preferences are among the major factors influencing the observed PCR error rate.
Collapse
Affiliation(s)
- Dmitriy A Shagin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia.,Pirogov Russian National Research Medical University, Moscow, Russia.,Evrogen JSC, Moscow, Russia
| | - Irina A Shagina
- Pirogov Russian National Research Medical University, Moscow, Russia.,Evrogen JSC, Moscow, Russia
| | - Andrew R Zaretsky
- Pirogov Russian National Research Medical University, Moscow, Russia.,Evrogen JSC, Moscow, Russia
| | - Ekaterina V Barsova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia.,Evrogen JSC, Moscow, Russia
| | - Ilya V Kelmanson
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia.,Evrogen JSC, Moscow, Russia
| | - Sergey Lukyanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia.,Pirogov Russian National Research Medical University, Moscow, Russia
| | - Dmitriy M Chudakov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia. .,Pirogov Russian National Research Medical University, Moscow, Russia. .,Skolkovo Institute of Science and Technology, Moscow, Russia. .,Central European Institute of Technology, Masaryk University, Brno, Czech Republic.
| | - Mikhail Shugay
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia. .,Pirogov Russian National Research Medical University, Moscow, Russia. .,Central European Institute of Technology, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
37
|
Islam MF, Watanabe A, Wong L, Lazarou C, Vizeacoumar FS, Abuhussein O, Hill W, Uppalapati M, Geyer CR, Vizeacoumar FJ. Enhancing the throughput and multiplexing capabilities of next generation sequencing for efficient implementation of pooled shRNA and CRISPR screens. Sci Rep 2017; 7:1040. [PMID: 28432350 PMCID: PMC5430825 DOI: 10.1038/s41598-017-01170-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 03/20/2017] [Indexed: 11/11/2022] Open
Abstract
Next generation sequencing is becoming the method of choice for functional genomic studies that use pooled shRNA or CRISPR libraries. A key challenge in sequencing these mixed-oligo libraries is that they are highly susceptible to hairpin and/or heteroduplex formation. This results in polyclonal, low quality, and incomplete reads and reduces sequencing throughput. Unfortunately, this challenge is significantly magnified in low-to-medium throughput bench-top sequencers as failed reads significantly perturb the maximization of sequence coverage and multiplexing capabilities. Here, we report a methodology that can be adapted to maximize the coverage on a bench-top, Ion PGM System for smaller shRNA libraries with high efficiency. This ligation-based, half-shRNA sequencing strategy minimizes failed sequences and is also equally amenable to high-throughput sequencers for increased multiplexing. Towards this, we also demonstrate that our strategy to reduce heteroduplex formation improves multiplexing capabilities of pooled CRISPR screens using Illumina NextSeq 500. Overall, our method will facilitate sequencing of pooled shRNA or CRISPR libraries from genomic DNA and maximize sequence coverage.
Collapse
Affiliation(s)
- Md Fahmid Islam
- Department of Biochemistry, University of Saskatchewan, Saskatoon, S7N 5E5, Canada
| | - Atsushi Watanabe
- Department of Pathology, University of Saskatchewan, Saskatoon, S7N 0W8, Canada.,Department of Hematology, Nephrology and Rheumatology, Graduate School of Medicine, Akita University, Akita, Japan
| | - Lai Wong
- Department of Biochemistry, University of Saskatchewan, Saskatoon, S7N 5E5, Canada
| | - Conor Lazarou
- Department of Pathology, University of Saskatchewan, Saskatoon, S7N 0W8, Canada
| | | | - Omar Abuhussein
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, S7N 5C9, Canada
| | - Wayne Hill
- Department of Pathology, University of Saskatchewan, Saskatoon, S7N 0W8, Canada
| | - Maruti Uppalapati
- Department of Pathology, University of Saskatchewan, Saskatoon, S7N 0W8, Canada
| | - C Ronald Geyer
- Department of Pathology, University of Saskatchewan, Saskatoon, S7N 0W8, Canada.
| | - Franco J Vizeacoumar
- Department of Pathology, University of Saskatchewan, Saskatoon, S7N 0W8, Canada. .,College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, S7N 5C9, Canada. .,Cancer Research, Saskatchewan Cancer Agency, 107 Wiggins Road, Saskatoon, S7N 5E5, Canada.
| |
Collapse
|
38
|
Hsieh YH, Peterson CM, Raggio A, Keenan MJ, Martin RJ, Ravussin E, Marco ML. Impact of Different Fecal Processing Methods on Assessments of Bacterial Diversity in the Human Intestine. Front Microbiol 2016; 7:1643. [PMID: 27812352 PMCID: PMC5071325 DOI: 10.3389/fmicb.2016.01643] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 10/03/2016] [Indexed: 12/14/2022] Open
Abstract
The intestinal microbiota are integral to understanding the relationships between nutrition and health. Therefore, fecal sampling and processing protocols for metagenomic surveys should be sufficiently robust, accurate, and reliable to identify the microorganisms present. We investigated the use of different fecal preparation methods on the bacterial community structures identified in human stools. Complete stools were collected from six healthy individuals and processed according to the following methods: (i) randomly sampled fresh stool, (ii) fresh stool homogenized in a blender for 2 min, (iii) randomly sampled frozen stool, and (iv) frozen stool homogenized in a blender for 2 min, or (v) homogenized in a pneumatic mixer for either 10, 20, or 30 min. High-throughput DNA sequencing of the 16S rRNA V4 regions of bacterial community DNA extracted from the stools showed that the fecal microbiota remained distinct between individuals, independent of processing method. Moreover, the different stool preparation approaches did not alter intra-individual bacterial diversity. Distinctions were found at the level of individual taxa, however. Stools that were frozen and then homogenized tended to have higher proportions of Faecalibacterium, Streptococcus, and Bifidobacterium and decreased quantities of Oscillospira, Bacteroides, and Parabacteroides compared to stools that were collected in small quantities and not mixed prior to DNA extraction. These findings indicate that certain taxa are at particular risk for under or over sampling due to protocol differences. Importantly, homogenization by any method significantly reduced the intra-individual variation in bacteria detected per stool. Our results confirm the robustness of fecal homogenization for microbial analyses and underscore the value of collecting and mixing large stool sample quantities in human nutrition intervention studies.
Collapse
Affiliation(s)
- Yu-Hsin Hsieh
- Department of Food Science and Technology, University of California, Davis, DavisCA, USA; Agricultural Biotechnology Center, National Chung Hsing UniversityTaichung, Taiwan
| | | | - Anne Raggio
- Louisiana State University Agricultural Center, Baton Rouge LA, USA
| | - Michael J Keenan
- Louisiana State University Agricultural Center, Baton Rouge LA, USA
| | - Roy J Martin
- Western Human Nutrition Research Center, Davis CA, USA
| | - Eric Ravussin
- Pennington Biomedical Research Center, Baton Rouge LA, USA
| | - Maria L Marco
- Department of Food Science and Technology, University of California, Davis, Davis CA, USA
| |
Collapse
|
39
|
Niland CN, Jankowsky E, Harris ME. Optimization of high-throughput sequencing kinetics for determining enzymatic rate constants of thousands of RNA substrates. Anal Biochem 2016; 510:1-10. [PMID: 27296633 DOI: 10.1016/j.ab.2016.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 06/03/2016] [Indexed: 12/12/2022]
Abstract
Quantification of the specificity of RNA binding proteins and RNA processing enzymes is essential to understanding their fundamental roles in biological processes. High-throughput sequencing kinetics (HTS-Kin) uses high-throughput sequencing and internal competition kinetics to simultaneously monitor the processing rate constants of thousands of substrates by RNA processing enzymes. This technique has provided unprecedented insight into the substrate specificity of the tRNA processing endonuclease ribonuclease P. Here, we investigated the accuracy and robustness of measurements associated with each step of the HTS-Kin procedure. We examine the effect of substrate concentration on the observed rate constant, determine the optimal kinetic parameters, and provide guidelines for reducing error in amplification of the substrate population. Importantly, we found that high-throughput sequencing and experimental reproducibility contribute to error, and these are the main sources of imprecision in the quantified results when otherwise optimized guidelines are followed.
Collapse
Affiliation(s)
- Courtney N Niland
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Eckhard Jankowsky
- Center for RNA Molecular Biology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Michael E Harris
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| |
Collapse
|
40
|
Position-specific automated processing of V3 env ultra-deep pyrosequencing data for predicting HIV-1 tropism. Sci Rep 2015; 5:16944. [PMID: 26585833 PMCID: PMC4653658 DOI: 10.1038/srep16944] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 10/22/2015] [Indexed: 11/11/2022] Open
Abstract
HIV-1 coreceptor usage must be accurately determined before starting CCR5 antagonist-based treatment as the presence of undetected minor CXCR4-using variants can cause subsequent virological failure. Ultra-deep pyrosequencing of HIV-1 V3 env allows to detect low levels of CXCR4-using variants that current genotypic approaches miss. However, the computation of the mass of sequence data and the need to identify true minor variants while excluding artifactual sequences generated during amplification and ultra-deep pyrosequencing is rate-limiting. Arbitrary fixed cut-offs below which minor variants are discarded are currently used but the errors generated during ultra-deep pyrosequencing are sequence-dependant rather than random. We have developed an automated processing of HIV-1 V3 env ultra-deep pyrosequencing data that uses biological filters to discard artifactual or non-functional V3 sequences followed by statistical filters to determine position-specific sensitivity thresholds, rather than arbitrary fixed cut-offs. It allows to retain authentic sequences with point mutations at V3 positions of interest and discard artifactual ones with accurate sensitivity thresholds.
Collapse
|
41
|
Hans JB, Haubner A, Arandjelovic M, Bergl RA, Fünfstück T, Gray M, Morgan DB, Robbins MM, Sanz C, Vigilant L. Characterization of MHC class II B polymorphism in multiple populations of wild gorillas using non-invasive samples and next-generation sequencing. Am J Primatol 2015; 77:1193-206. [PMID: 26283172 DOI: 10.1002/ajp.22458] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 07/08/2015] [Accepted: 08/03/2015] [Indexed: 01/03/2023]
Abstract
Genes encoded by the major histocompatibility complex (MHC) are crucial for the recognition and presentation of antigens to the immune system. In contrast to their closest relatives, chimpanzees and humans, much less is known about variation in gorillas at these loci. This study explored the exon 2 variation of -DPB1, -DQB1, and -DRB genes in 46 gorillas from four populations while simultaneously evaluating the feasibility of using fecal samples for high-throughput MHC genotyping. By applying strict similarity- and frequency-based analysis, we found, despite our modest sample size, a total of 18 alleles that have not been described previously, thereby illustrating the potential for efficient and highly accurate MHC genotyping from non-invasive DNA samples. We emphasize the importance of controlling for multiple potential sources of error when applying this massively parallel short-read sequencing technology to PCR products generated from low concentration DNA extracts. We observed pronounced differences in MHC variation between species, subspecies and populations that are consistent with both the ancient and recent demographic histories experienced by gorillas.
Collapse
Affiliation(s)
- Jörg B Hans
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Anne Haubner
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Mimi Arandjelovic
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Richard A Bergl
- North Carolina Zoological Park, Asheboro, North Carolina, USA
| | | | - Maryke Gray
- International Gorilla Conservation Program, Kigali, Rwanda
| | | | - Martha M Robbins
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | | | - Linda Vigilant
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|