1
|
Edmunds PJ, Combosch DJ, Torrado H, Sakai K, Sinniger F, Burgess SC. Latitudinal variation in thermal performance of the common coral Pocillopora spp. J Exp Biol 2024; 227:jeb247090. [PMID: 38699869 DOI: 10.1242/jeb.247090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 04/26/2024] [Indexed: 05/05/2024]
Abstract
Understanding how tropical corals respond to temperatures is important to evaluating their capacity to persist in a warmer future. We studied the common Pacific coral Pocillopora over 44° of latitude, and used populations at three islands with different thermal regimes to compare their responses to temperature using thermal performance curves (TPCs) for respiration and gross photosynthesis. Corals were sampled in the local autumn from Moorea, Guam and Okinawa, where mean±s.d. annual seawater temperature is 28.0±0.9°C, 28.9±0.7°C and 25.1±3.4°C, respectively. TPCs for respiration were similar among latitudes, the thermal optimum (Topt) was above the local maximum temperature at all three islands, and maximum respiration was lowest at Okinawa. TPCs for gross photosynthesis were wider, implying greater thermal eurytopy, with a higher Topt in Moorea versus Guam and Okinawa. Topt was above the maximum temperature in Moorea, but was similar to daily temperatures over 13% of the year in Okinawa and 53% of the year in Guam. There was greater annual variation in daily temperatures in Okinawa than Guam or Moorea, which translated to large variation in the supply of metabolic energy and photosynthetically fixed carbon at higher latitudes. Despite these trends, the differences in TPCs for Pocillopora spp. were not profoundly different across latitudes, reducing the likelihood that populations of these corals could better match their phenotypes to future more extreme temperatures through migration. Any such response would place a premium on high metabolic plasticity and tolerance of large seasonal variations in energy budgets.
Collapse
Affiliation(s)
- P J Edmunds
- Department of Biology, California State University, Northridge, 18111 Nordhoff Street, Northridge, CA 91330-8303, USA
| | - D J Combosch
- Marine Laboratory, University of Guam, 303 University Drive, Mangilao, 96923 Guam, USA
| | - H Torrado
- Marine Laboratory, University of Guam, 303 University Drive, Mangilao, 96923 Guam, USA
| | - K Sakai
- Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, 3422 Sesoko, Motobu, 905-0227 Okinawa, Japan
| | - F Sinniger
- Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, 3422 Sesoko, Motobu, 905-0227 Okinawa, Japan
| | - S C Burgess
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
2
|
Rosso AA, Casement B, Chung AK, Curlis JD, Folfas E, Gallegos MA, Neel LK, Nicholson DJ, Williams CE, McMillan WO, Logan ML, Cox CL. Plasticity of Gene Expression and Thermal Tolerance: Implications for Climate Change Vulnerability in a Tropical Forest Lizard. ECOLOGICAL AND EVOLUTIONARY PHYSIOLOGY 2024; 97:81-96. [PMID: 38728692 DOI: 10.1086/729927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
AbstractTropical ectotherms are thought to be especially vulnerable to climate change because they have evolved in temporally stable thermal environments and therefore have decreased tolerance for thermal variability. Thus, they are expected to have narrow thermal tolerance ranges, live close to their upper thermal tolerance limits, and have decreased thermal acclimation capacity. Although models often predict that tropical forest ectotherms are especially vulnerable to rapid environmental shifts, these models rarely include the potential for plasticity of relevant traits. We measured phenotypic plasticity of thermal tolerance and thermal preference as well as multitissue transcriptome plasticity in response to warmer temperatures in a species that previous work has suggested is highly vulnerable to climate warming, the Panamanian slender anole lizard (Anolis apletophallus). We found that many genes, including heat shock proteins, were differentially expressed across tissues in response to short-term warming. Under long-term warming, the voluntary thermal maxima of lizards also increased, although thermal preference exhibited only limited plasticity. Using these data, we modeled changes in the activity time of slender anoles through the end of the century under climate change and found that plasticity should delay declines in activity time by at least two decades. Our results suggest that slender anoles, and possibly other tropical ectotherms, can alter the expression of genes and phenotypes when responding to shifting environmental temperatures and that plasticity should be considered when predicting the future of organisms under a changing climate.
Collapse
|
3
|
Pan J, Wang Y, Li C, Zhang S, Ye Z, Ni J, Li H, Li Y, Yue H, Ruan C, Zhao D, Jiang Y, Wu X, Shen X, Zufall RA, Zhang Y, Li W, Lynch M, Long H. Molecular basis of phenotypic plasticity in a marine ciliate. THE ISME JOURNAL 2024; 18:wrae136. [PMID: 39018220 PMCID: PMC11308186 DOI: 10.1093/ismejo/wrae136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/06/2024] [Accepted: 07/16/2024] [Indexed: 07/19/2024]
Abstract
Phenotypic plasticity, which involves phenotypic transformation in the absence of genetic change, may serve as a strategy for organisms to survive in complex and highly fluctuating environments. However, its reaction norm, molecular basis, and evolution remain unclear in most organisms, especially microbial eukaryotes. In this study, we explored these questions by investigating the reaction norm, regulation, and evolution of phenotypic plasticity in the cosmopolitan marine free-living ciliates Glauconema spp., which undergo significant phenotypic changes in response to food shortages. This study led to the de novo assembly of macronuclear genomes using long-read sequencing, identified hundreds of differentially expressed genes associated with phenotypic plasticity in different life stages, validated the function of two of these genes, and revealed that the reaction norm of body shape in response to food density follows a power-law distribution. Purifying selection may be the dominant evolutionary force acting on the genes associated with phenotypic plasticity, and the overall data support the hypothesis that phenotypic plasticity is a trait maintained by natural selection. This study provides novel insight into the developmental genetics of phenotypic plasticity in non-model unicellular eukaryotes and sheds light on the complexity and long evolutionary history of this important survival strategy.
Collapse
Affiliation(s)
- Jiao Pan
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, Shandong 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266237, China
| | - Yaohai Wang
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, Shandong 266003, China
| | - Chao Li
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, Shandong 266003, China
| | - Simo Zhang
- Department of Biology, Indiana University, Bloomington, IN 47405, United States
| | - Zhiqiang Ye
- School of Life Sciences, Central China Normal University, Wuhan, Hubei 430079, China
| | - Jiahao Ni
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, Shandong 266003, China
| | - Haichao Li
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, Shandong 266003, China
| | - Yichen Li
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, Shandong 266003, China
| | - Hongwei Yue
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, Shandong 266003, China
| | - Chenchen Ruan
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, Shandong 266003, China
| | - Dange Zhao
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, Shandong 266003, China
| | - Yujian Jiang
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, Shandong 266003, China
| | - Xiaolin Wu
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, Shandong 266003, China
| | - Xiaopeng Shen
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Rebecca A Zufall
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, United States
| | - Yu Zhang
- School of Mathematics Science, Ocean University of China, Qingdao, Shandong Province 266000, China
| | - Weiyi Li
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Michael Lynch
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ 85287, United States
| | - Hongan Long
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, Shandong 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266237, China
| |
Collapse
|
4
|
Johnston EC, Burgess SC. Pocillopora tuahiniensis: a new species of scleractinian coral (Scleractinia, Pocilloporidae) from French Polynesia. Zootaxa 2023; 5369:117-124. [PMID: 38220724 DOI: 10.11646/zootaxa.5369.1.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Indexed: 01/16/2024]
Abstract
Pocillopora tuahiniensis sp. nov. is described based on mitochondrial and nuclear genomic data, algal symbiont genetic data, geographic isolation, and its distribution pattern within reefs that is distinct from other sympatric Pocillopora species (Johnston et al. 2022a, b). Mitochondrial and nuclear genomic data reveal that P. tuahiniensis sp. nov. is a unique species, sister to P. verrucosa, and in a clade different from that of P. meandrina (Johnston et al. 2022a). However, the gross in situ colony appearance of P. tuahiniensis sp. nov. cannot easily be differentiated from that of P. verrucosa or P. meandrina at Moorea. By sequencing the mtORF region, P. tuahiniensis sp. nov. can be easily distinguished from other Pocillopora species. Pocillopora tuahiniensis sp. nov. has so far been sampled in French Polynesia, Ducie Island, and Rapa Nui (Armstrong et al. 2023; Edmunds et al. 2016; Forsman et al. 2013; Glin et al. 2017; Mayfield et al. 2015; Oury et al. 2021; Voolstra et al. 2023). On the fore reefs of Moorea, P. tuahiniensis sp. nov. is very abundant 10 m and is one of the most common Pocillopora species at these depths (Johnston et al. 2022b). It can also be found at a much lower abundance at shallow depths on the fore reef and back reef lagoon. The holotype is deposited at the Smithsonian Institution as USNM-SI 1522390 and the mtORF Genbank accession number is OP418359.
Collapse
Affiliation(s)
- Erika C Johnston
- Department of Biological Science; Florida State University; 319 Stadium Drive; Tallahassee; FL; 32306-4296; USA. Hawaii Institute of Marine Biology; 46-007 Lilipuna Rd; Kneohe; HI; 96744; USA.
| | - Scott C Burgess
- Department of Biological Science; Florida State University; 319 Stadium Drive; Tallahassee; FL; 32306-4296; USA.
| |
Collapse
|
5
|
Voolstra CR, Hume BCC, Armstrong EJ, Mitushasi G, Porro B, Oury N, Agostini S, Boissin E, Poulain J, Carradec Q, Paz-García DA, Zoccola D, Magalon H, Moulin C, Bourdin G, Iwankow G, Romac S, Banaigs B, Boss E, Bowler C, de Vargas C, Douville E, Flores M, Furla P, Galand PE, Gilson E, Lombard F, Pesant S, Reynaud S, Sullivan MB, Sunagawa S, Thomas OP, Troublé R, Thurber RV, Wincker P, Planes S, Allemand D, Forcioli D. Disparate genetic divergence patterns in three corals across a pan-Pacific environmental gradient highlight species-specific adaptation. NPJ BIODIVERSITY 2023; 2:15. [PMID: 39242808 PMCID: PMC11332039 DOI: 10.1038/s44185-023-00020-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/13/2023] [Indexed: 09/09/2024]
Abstract
Tropical coral reefs are among the most affected ecosystems by climate change and face increasing loss in the coming decades. Effective conservation strategies that maximize ecosystem resilience must be informed by the accurate characterization of extant genetic diversity and population structure together with an understanding of the adaptive potential of keystone species. Here we analyzed samples from the Tara Pacific Expedition (2016-2018) that completed an 18,000 km longitudinal transect of the Pacific Ocean sampling three widespread corals-Pocillopora meandrina, Porites lobata, and Millepora cf. platyphylla-across 33 sites from 11 islands. Using deep metagenomic sequencing of 269 colonies in conjunction with morphological analyses and climate variability data, we can show that despite a targeted sampling the transect encompasses multiple cryptic species. These species exhibit disparate biogeographic patterns and, most importantly, distinct evolutionary patterns in identical environmental regimes. Our findings demonstrate on a basin scale that evolutionary trajectories are species-specific and can only in part be predicted from the environment. This highlights that conservation strategies must integrate multi-species investigations to discern the distinct genomic footprints shaped by selection as well as the genetic potential for adaptive change.
Collapse
Affiliation(s)
| | - Benjamin C C Hume
- Department of Biology, University of Konstanz, 78457, Konstanz, Germany
| | - Eric J Armstrong
- PSL Research University, EPHE, CNRS, Université de Perpignan, Perpignan, France
| | - Guinther Mitushasi
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1, Shimoda, Shizuoka, Japan
| | - Barbara Porro
- Université Côte d'Azur, CNRS, INSERM, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco, Monaco, Principality of Monaco
- French National Institute for Agriculture, Food, and Environment (INRAE), Université Côte d'Azur, ISA, France
| | - Nicolas Oury
- UMR 250/9220 ENTROPIE UR-IRD-CNRS-Ifremer-UNC, Laboratoire d'Excellence CORAIL, Université de la Réunion, St Denis de la Réunion, France
| | - Sylvain Agostini
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1, Shimoda, Shizuoka, Japan
| | - Emilie Boissin
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Laboratoire d'Excellence CORAIL, Université de Perpignan, 52 Avenue Paul Alduy, 66860, Perpignan, France
| | - Julie Poulain
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 3 rue Michel-Ange, 75016, Paris, France
| | - Quentin Carradec
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 3 rue Michel-Ange, 75016, Paris, France
| | - David A Paz-García
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Av. IPN 195, Col. Playa Palo de Santa Rita Sur, La Paz, 23096, Baja California Sur, México
| | - Didier Zoccola
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco, Monaco, Principality of Monaco
- Centre Scientifique de Monaco, 8 Quai Antoine Ier, MC-98000, Monaco, Principality of Monaco
| | - Hélène Magalon
- UMR 250/9220 ENTROPIE UR-IRD-CNRS-Ifremer-UNC, Laboratoire d'Excellence CORAIL, Université de la Réunion, St Denis de la Réunion, France
| | - Clémentine Moulin
- Fondation Tara Océan, Base Tara, 8 rue de Prague, 75 012, Paris, France
| | - Guillaume Bourdin
- School of Marine Sciences, University of Maine, Orono, 04469, ME, USA
| | - Guillaume Iwankow
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Laboratoire d'Excellence CORAIL, Université de Perpignan, 52 Avenue Paul Alduy, 66860, Perpignan, France
| | - Sarah Romac
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 3 rue Michel-Ange, 75016, Paris, France
- Sorbonne Université, CNRS, Station Biologique de Roscoff, AD2M, UMR 7144, ECOMAP, Roscoff, France
| | - Bernard Banaigs
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Laboratoire d'Excellence CORAIL, Université de Perpignan, 52 Avenue Paul Alduy, 66860, Perpignan, France
| | - Emmanuel Boss
- School of Marine Sciences, University of Maine, Orono, 04469, ME, USA
| | - Chris Bowler
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 3 rue Michel-Ange, 75016, Paris, France
- Institut de Biologie de l'Ecole Normale Supérieure, Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Colomban de Vargas
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 3 rue Michel-Ange, 75016, Paris, France
- Sorbonne Université, CNRS, Station Biologique de Roscoff, AD2M, UMR 7144, ECOMAP, Roscoff, France
| | - Eric Douville
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Michel Flores
- Weizmann Institute of Science, Department of Earth and Planetary Sciences, 76100, Rehovot, Israel
| | - Paola Furla
- Université Côte d'Azur, CNRS, INSERM, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco, Monaco, Principality of Monaco
| | - Pierre E Galand
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), Observatoire Océanologique de Banyuls, Banyuls-sur-Mer, France
| | - Eric Gilson
- Université Côte d'Azur, CNRS, INSERM, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco, Monaco, Principality of Monaco
- Department of Medical Genetics, CHU Nice, Nice, France
| | - Fabien Lombard
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 3 rue Michel-Ange, 75016, Paris, France
- Laboratoire d'Océanographie de Villefranche, UMR 7093, Sorbonne Université, CNRS, 06230, Villefranche sur mer, France
- Institut Universitaire de France, 75231, Paris, France
| | - Stéphane Pesant
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Stéphanie Reynaud
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco, Monaco, Principality of Monaco
- Centre Scientifique de Monaco, 8 Quai Antoine Ier, MC-98000, Monaco, Principality of Monaco
| | - Matthew B Sullivan
- Department of Microbiology and Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, OH, USA
| | - Shinichi Sunagawa
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, Zurich, Switzerland
| | - Olivier P Thomas
- School of Biological and Chemical Sciences, Ryan Institute, University of Galway, University Road, H91 TK33, Galway, Ireland
| | - Romain Troublé
- Fondation Tara Océan, Base Tara, 8 rue de Prague, 75 012, Paris, France
| | | | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 3 rue Michel-Ange, 75016, Paris, France
| | - Serge Planes
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Laboratoire d'Excellence CORAIL, Université de Perpignan, 52 Avenue Paul Alduy, 66860, Perpignan, France
| | - Denis Allemand
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco, Monaco, Principality of Monaco
- Centre Scientifique de Monaco, 8 Quai Antoine Ier, MC-98000, Monaco, Principality of Monaco
| | - Didier Forcioli
- Université Côte d'Azur, CNRS, INSERM, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France.
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco, Monaco, Principality of Monaco.
| |
Collapse
|
6
|
Thobor B, Tilstra A, Bourne DG, Springer K, Mezger SD, Struck U, Bockelmann F, Zimmermann L, Yánez Suárez AB, Klinke A, Wild C. The pulsating soft coral Xenia umbellata shows high resistance to warming when nitrate concentrations are low. Sci Rep 2022; 12:16788. [PMID: 36202937 PMCID: PMC9537297 DOI: 10.1038/s41598-022-21110-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 09/22/2022] [Indexed: 11/27/2022] Open
Abstract
The resistance of hard corals to warming can be negatively affected by nitrate eutrophication, but related knowledge for soft corals is scarce. We thus investigated the ecophysiological response of the pulsating soft coral Xenia umbellata to different levels of nitrate eutrophication (control = 0.6, medium = 6, high = 37 μM nitrate) in a laboratory experiment, with additional warming (27.7 to 32.8 °C) from days 17 to 37. High nitrate eutrophication enhanced cellular chlorophyll a content of Symbiodiniaceae by 168%, while it reduced gross photosynthesis by 56%. After additional warming, polyp pulsation rate was reduced by 100% in both nitrate eutrophication treatments, and additional polyp loss of 7% d−1 and total fragment mortality of 26% was observed in the high nitrate eutrophication treatment. Warming alone did not affect any of the investigated response parameters. These results suggest that X. umbellata exhibits resistance to warming, which may facilitate ecological dominance over some hard corals as ocean temperatures warm, though a clear negative physiological response occurs when combined with nitrate eutrophication. This study thus confirms the importance of investigating combinations of global and local factors to understand and manage changing coral reefs.
Collapse
Affiliation(s)
- Bianca Thobor
- Faculty of Biology and Chemistry, Department of Marine Ecology, University of Bremen, UFT Building, Leobener Str. 6, 28359, Bremen, Germany.
| | - Arjen Tilstra
- Faculty of Biology and Chemistry, Department of Marine Ecology, University of Bremen, UFT Building, Leobener Str. 6, 28359, Bremen, Germany
| | - David G Bourne
- College of Science and Engineering, James Cook University, 1 Angus Smith Drive, Douglas, QLD, 4814, Australia.,Australian Institute of Marine Science, Cape Ferguson, Townsville, QLD, 4810, Australia
| | - Karin Springer
- Faculty of Biology and Chemistry, Marine Botany, University of Bremen, NW2 Building, Leobener Str. 5, 28359, Bremen, Germany
| | - Selma Deborah Mezger
- Faculty of Biology and Chemistry, Department of Marine Ecology, University of Bremen, UFT Building, Leobener Str. 6, 28359, Bremen, Germany
| | - Ulrich Struck
- Museum Für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstr. 43, 10115, Berlin, Germany.,Department of Earth Sciences, Free University Berlin, Malteserstr. 74-100, Haus D, 12249, Berlin, Germany
| | - Franziska Bockelmann
- Faculty of Biology and Chemistry, Department of Marine Ecology, University of Bremen, UFT Building, Leobener Str. 6, 28359, Bremen, Germany
| | - Lisa Zimmermann
- Faculty of Biology and Chemistry, Department of Marine Ecology, University of Bremen, UFT Building, Leobener Str. 6, 28359, Bremen, Germany
| | - Ana Belén Yánez Suárez
- Faculty of Biology and Chemistry, Department of Marine Ecology, University of Bremen, UFT Building, Leobener Str. 6, 28359, Bremen, Germany
| | - Annabell Klinke
- Faculty of Biology and Chemistry, Department of Marine Ecology, University of Bremen, UFT Building, Leobener Str. 6, 28359, Bremen, Germany
| | - Christian Wild
- Faculty of Biology and Chemistry, Department of Marine Ecology, University of Bremen, UFT Building, Leobener Str. 6, 28359, Bremen, Germany
| |
Collapse
|
7
|
Sawall Y, Nicosia AM, McLaughlin K, Ito M. Physiological responses and adjustments of corals to strong seasonal temperature variations (20-28°C). J Exp Biol 2022; 225:275704. [PMID: 35702952 DOI: 10.1242/jeb.244196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/08/2022] [Indexed: 10/18/2022]
Abstract
Temperature is a key driver of metabolic rates. So far, we know little about potential physiological adjustments of subtropical corals to seasonal temperature changes (>8°) that substantially exceed temperature fluctuation experienced by their counterparts in the tropics. This study investigated the effect of temperature reductions on Montastrea cavernosa and Porites astreoides in Bermuda (32°N; SST: ∼19-29°C) over 5 weeks applying the following treatments: (i) constant control temperature at 28°C, and (ii) temperature reduction (0.5 °C/day) followed by constant temperature (20 days; acclimatization period) at 24 °C and (iii) at 20 °C. Both species decreased photosynthesis and respiration during temperature reduction as expected, which continued to decrease during the acclimatization period, indicating adjustment to a low energy turnover rather than thermal compensation. Trajectories of physiological adjustments and level of thermal compensation, however, differed between species: M. cavernosa zooxanthellae metrics showed a strong initial response to temperature reduction, followed by a return to close to control values during the acclimatization period, reflecting a high physiological flexibility and low thermal compensation. P. astreoides zooxanthellae, in contrast, showed no initial response, but an increase in pigment concentration zooxanthellae-1 and similar photosynthesis rates at 24° and 20°C at the end of the experiment, indicating low acute thermal sensitivity and the ability for thermal compensation at the lowest temperature. Respiration decreased more strongly than photosynthesis leading to significant build-up of biomass in both species (energy reserves). Results are important in the light of potential poleward migration of corals and of potential latitudinal and species-specific differences in coral thermal tolerance.
Collapse
Affiliation(s)
- Yvonne Sawall
- Bermuda Institute of Ocean Sciences (BIOS), 17 Ferry Reach, St. George's GE01, Bermuda
| | - Anna M Nicosia
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Kathryn McLaughlin
- Department of Computer Science, Princeton University, Princeton, NJ, USA
| | - Maysa Ito
- Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Germany
| |
Collapse
|
8
|
Haydon TD, Seymour JR, Raina JB, Edmondson J, Siboni N, Matthews JL, Camp EF, Suggett DJ. Rapid Shifts in Bacterial Communities and Homogeneity of Symbiodiniaceae in Colonies of Pocillopora acuta Transplanted Between Reef and Mangrove Environments. Front Microbiol 2021; 12:756091. [PMID: 34759906 PMCID: PMC8575411 DOI: 10.3389/fmicb.2021.756091] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/24/2021] [Indexed: 01/04/2023] Open
Abstract
It has been proposed that an effective approach for predicting whether and how reef-forming corals persist under future climate change is to examine populations thriving in present day extreme environments, such as mangrove lagoons, where water temperatures can exceed those of reef environments by more than 3°C, pH levels are more acidic (pH < 7.9, often below 7.6) and O2 concentrations are regularly considered hypoxic (<2 mg/L). Defining the physiological features of these “extreme” corals, as well as their relationships with the, often symbiotic, organisms within their microbiome, could increase our understanding of how corals will persist into the future. To better understand coral-microbe relationships that potentially underpin coral persistence within extreme mangrove environments, we therefore conducted a 9-month reciprocal transplant experiment, whereby specimens of the coral Pocillopora acuta were transplanted between adjacent mangrove and reef sites on the northern Great Barrier Reef. Bacterial communities associated with P. acuta specimens native to the reef environment were dominated by Endozoicomonas, while Symbiodiniaceae communities were dominated by members of the Cladocopium genus. In contrast, P. acuta colonies native to the mangrove site exhibited highly diverse bacterial communities with no dominating members, and Symbiodiniaceae communities dominated by Durusdinium. All corals survived for 9 months after being transplanted from reef-to-mangrove, mangrove-to-reef environments (as well as control within environment transplants), and during this time there were significant changes in the bacterial communities, but not in the Symbiodiniaceae communities or their photo-physiological functioning. In reef-to-mangrove transplanted corals, there were varied, but sometimes rapid shifts in the associated bacterial communities, including a loss of “core” bacterial members after 9 months where coral bacterial communities began to resemble those of the native mangrove corals. Bacterial communities associated with mangrove-to-reef P. acuta colonies also changed from their original composition, but remained different to the native reef corals. Our data demonstrates that P. acuta associated bacterial communities are strongly influenced by changes in environmental conditions, whereas Symbiodiniaceae associated communities remain highly stable.
Collapse
Affiliation(s)
- Trent D Haydon
- Climate Change Cluster, University of Technology, Ultimo, NSW, Australia
| | - Justin R Seymour
- Climate Change Cluster, University of Technology, Ultimo, NSW, Australia
| | | | | | - Nachshon Siboni
- Climate Change Cluster, University of Technology, Ultimo, NSW, Australia
| | | | - Emma F Camp
- Climate Change Cluster, University of Technology, Ultimo, NSW, Australia
| | - David J Suggett
- Climate Change Cluster, University of Technology, Ultimo, NSW, Australia
| |
Collapse
|
9
|
Buitrago-López C, Mariappan KG, Cárdenas A, Gegner HM, Voolstra CR. The Genome of the Cauliflower Coral Pocillopora verrucosa. Genome Biol Evol 2021; 12:1911-1917. [PMID: 32857844 PMCID: PMC7594246 DOI: 10.1093/gbe/evaa184] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2020] [Indexed: 02/06/2023] Open
Abstract
Climate change and ocean warming threaten the persistence of corals worldwide. Genomic resources are critical to study the evolutionary trajectory, adaptive potential, and genetic distinctiveness of coral species. Here, we provide a reference genome of the cauliflower coral Pocillopora verrucosa, a broadly prevalent reef-building coral with important ecological roles in the maintenance of reefs across the Red Sea, the Indian Ocean, and the Pacific Ocean. The genome has an assembly size of 380,505,698 bp with a scaffold N50 of 333,696 bp and a contig N50 of 75,704 bp. The annotation of the assembled genome returned 27,439 gene models of which 89.88% have evidence of transcription from RNA-Seq data and 97.87% show homology to known genes. A high proportion of the genome (41.22%) comprised repetitive elements in comparison to other cnidarian genomes, in particular in relation to the small genome size of P. verrucosa.
Collapse
Affiliation(s)
- Carol Buitrago-López
- Red Sea Research Center, Division of Biological BESE, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Kiruthiga G Mariappan
- Red Sea Research Center, Division of Biological BESE, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Anny Cárdenas
- Department of Biology, University of Konstanz, Germany
| | - Hagen M Gegner
- Red Sea Research Center, Division of Biological BESE, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.,Centre for Organismal Studies (COS), University of Heidelberg, Germany
| | - Christian R Voolstra
- Red Sea Research Center, Division of Biological BESE, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.,Department of Biology, University of Konstanz, Germany
| |
Collapse
|
10
|
Cornwell B, Armstrong K, Walker NS, Lippert M, Nestor V, Golbuu Y, Palumbi SR. Widespread variation in heat tolerance and symbiont load are associated with growth tradeoffs in the coral Acropora hyacinthus in Palau. eLife 2021; 10:64790. [PMID: 34387190 PMCID: PMC8457836 DOI: 10.7554/elife.64790] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 08/06/2021] [Indexed: 12/20/2022] Open
Abstract
Climate change is dramatically changing ecosystem composition and productivity, leading scientists to consider the best approaches to map natural resistance and foster ecosystem resilience in the face of these changes. Here, we present results from a large-scale experimental assessment of coral bleaching resistance, a critical trait for coral population persistence as oceans warm, in 221 colonies of the coral Acropora hyacinthus across 37 reefs in Palau. We find that bleaching-resistant individuals inhabit most reefs but are found more often in warmer microhabitats. Our survey also found wide variation in symbiont concentration among colonies, and that colonies with lower symbiont load tended to be more bleaching-resistant. By contrast, our data show that low symbiont load comes at the cost of lower growth rate, a tradeoff that may operate widely among corals across environments. Corals with high bleaching resistance have been suggested as a source for habitat restoration or selective breeding in order to increase coral reef resilience to climate change. Our maps show where these resistant corals can be found, but the existence of tradeoffs with heat resistance may suggest caution in unilateral use of this one trait in restoration.
Collapse
Affiliation(s)
- Brendan Cornwell
- Department of Biology, Hopkins Marine Station of Stanford University, Pacific Grove, United States
| | - Katrina Armstrong
- Department of Biology, Hopkins Marine Station of Stanford University, Pacific Grove, United States
| | - Nia S Walker
- Department of Biology, Hopkins Marine Station of Stanford University, Pacific Grove, United States
| | - Marilla Lippert
- Department of Biology, Hopkins Marine Station of Stanford University, Pacific Grove, United States
| | - Victor Nestor
- Research, Palau International Coral Reef Center, Koror, Palau
| | - Yimnang Golbuu
- Director, Palau International Coral Reef Center, Koror, Palau
| | - Stephen R Palumbi
- Department of Biology, Hopkins Marine Station of Stanford University, Pacific Grove, United States
| |
Collapse
|
11
|
Aeby GS, Shore A, Jensen T, Ziegler M, Work T, Voolstra CR. A comparative baseline of coral disease in three regions along the Saudi Arabian coast of the central Red Sea. PLoS One 2021; 16:e0246854. [PMID: 34242223 PMCID: PMC8270217 DOI: 10.1371/journal.pone.0246854] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 06/27/2021] [Indexed: 01/10/2023] Open
Abstract
Coral disease is a growing problem for coral reefs globally and diseases have been linked to thermal stress, excess nutrients, overfishing and other human impacts. The Red Sea is a unique environment for corals with a strong environmental gradient characterized by temperature extremes and high salinities, but minimal terrestrial runoff or riverine input and their associated pollution. Yet, relatively little is known about coral diseases in this region. Disease surveys were conducted at 22 reefs within three regions (Yanbu, Thuwal, Al Lith) in the central Red Sea along the Saudi Arabian coast. Surveys occurred in October 2015, which coincided with a hyperthermal-induced bleaching event. Our objectives were to 1) document types, prevalence, and distribution of coral diseases in a region with minimal terrestrial input, 2) compare regional differences in diseases and bleaching along a latitudinal gradient of environmental conditions, and 3) use histopathology to characterize disease lesions at the cellular level. Coral reefs of the central Red Sea had a widespread but a surprisingly low prevalence of disease (<0.5%), based on the examination of >75,750 colonies. Twenty diseases were recorded affecting 16 coral taxa and included black band disease, white syndromes, endolithic hypermycosis, skeletal eroding band, growth anomalies and focal bleached patches. The three most common diseases were Acropora white syndrome (59.1% of the survey sites), Porites growth anomalies (40.9%), and Porites white syndrome (31.8%). Sixteen out of 30 coral genera within transects had lesions and Acropora, Millepora and Lobophyllia were the most commonly affected. Cell-associated microbial aggregates were found in four coral genera including a first report in Stylophora. Differences in disease prevalence, coral cover, amount of heat stress as measured by degree heating weeks (DHW) and extent of bleaching was evident among sites. Disease prevalence was not explained by coral cover or DHW, and a negative relationship between coral bleaching and disease prevalence was found. The northern-most sites off the coast of Yanbu had the highest average disease prevalence and highest average DHW values but no bleaching. Our study provides a foundation and baseline data for coral disease prevalence in the central Red Sea, which is projected to increase as a consequence of increased frequency and severity of ocean warming.
Collapse
Affiliation(s)
- Greta Smith Aeby
- Department of Biological and Environmental Sciences, Qatar University, Doha, Qatar
| | - Amanda Shore
- Department of Biology, Farmingdale State College, Farmingdale, NY, United States of America
| | - Thor Jensen
- Division of Biological and Environmental Science and Engineering, Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, SaudiArabia
| | - Maren Ziegler
- Division of Biological and Environmental Science and Engineering, Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, SaudiArabia
- Department of Animal Ecology & Systematics, Justus Liebig University Giessen, Giessen, Germany
| | - Thierry Work
- US Geological Survey, Wildlife Health Center, Honolulu Field Station, Honolulu, Hawaii, United States of America
| | - Christian R. Voolstra
- Division of Biological and Environmental Science and Engineering, Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, SaudiArabia
- Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
12
|
Chen B, Yu K, Liao Z, Yu X, Qin Z, Liang J, Wang G, Wu Q, Jiang L. Microbiome community and complexity indicate environmental gradient acclimatisation and potential microbial interaction of endemic coral holobionts in the South China Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 765:142690. [PMID: 33071127 DOI: 10.1016/j.scitotenv.2020.142690] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/31/2020] [Accepted: 09/26/2020] [Indexed: 06/11/2023]
Abstract
Regional acclimatisation and microbial interactions significantly influence the resilience of reef-building corals facing anthropogenic climate change, allowing them to adapt to environmental stresses. However, the connections between community structure and microbial interactions of the endemic coral microbiome and holobiont acclimatisation remain unclear. Herein, we used generation sequencing of internal transcribed spacer (ITS2) and 16S rRNA genes to investigate the microbiome composition (Symbiodiniaceae and bacteria) and associated potential interactions of endemic dominant coral holobionts (Pocillopora verrucosa and Turbinaria peltata) in the South China Sea (SCS). We found that shifts in Symbiodiniaceae and bacterial communities of P. verrucosa were associated with latitudinal gradient and climate zone changes, respectively. The C1 sub-clade consistently dominated the Symbiodiniaceae community in T. peltata; yet, the bacterial community structure was spatially heterogeneous. The relative abundance of the core microbiome among P. verrucosa holobionts was reduced in the biogeographical transition zone, while bacterial taxa associated with anthropogenic activity (Escherichia coli and Sphingomonas) were identified in the core microbiomes. Symbiodiniaceae and bacteria potentially interact in microbial co-occurrence networks. Further, increased bacterial, and Symbiodiniaceae α-diversity was associated with increased and decreased network complexity, respectively. Hence, Symbiodiniaceae and bacteria demonstrated different flexibility in latitudinal or climatic environmental regimes, which correlated with holobiont acclimatisation. Core microbiome analysis has indicated that the function of core bacterial microbiota might have changed in distinct environmental regimes, implying potential human activity in the coral habitats. Increased bacterial α diversity may lead to a decline in the stability of coral-microorganism symbioses, whereas rare Symbiodiniaceae may help to retain symbioses. Cladocopium, γ-proteobacteria, while α-proteobacteria may have been the primary drivers in the Symbiodiniaceae-bacterial interactions (SBIs). Our study highlights the association between microbiome shift in distinct environmental regimes and holobiont acclimatisation, while providing insights into the impact of SBIs on holobiont health and acclimatisation during climate change.
Collapse
Affiliation(s)
- Biao Chen
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, China; Coral Reef Research Center of China, Guangxi University, Nanning, China; School of Marine Sciences, Guangxi University, Nanning, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, China; Coral Reef Research Center of China, Guangxi University, Nanning, China; School of Marine Sciences, Guangxi University, Nanning, China.
| | - Zhiheng Liao
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, China; Coral Reef Research Center of China, Guangxi University, Nanning, China; School of Marine Sciences, Guangxi University, Nanning, China
| | - Xiaopeng Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, China; Coral Reef Research Center of China, Guangxi University, Nanning, China; School of Marine Sciences, Guangxi University, Nanning, China
| | - Zhenjun Qin
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, China; Coral Reef Research Center of China, Guangxi University, Nanning, China; School of Marine Sciences, Guangxi University, Nanning, China
| | - Jiayuan Liang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, China; Coral Reef Research Center of China, Guangxi University, Nanning, China; School of Marine Sciences, Guangxi University, Nanning, China
| | - Guanghua Wang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, China; Coral Reef Research Center of China, Guangxi University, Nanning, China; School of Marine Sciences, Guangxi University, Nanning, China
| | - Qian Wu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, China; Coral Reef Research Center of China, Guangxi University, Nanning, China; School of Marine Sciences, Guangxi University, Nanning, China
| | - Leilei Jiang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, China; Coral Reef Research Center of China, Guangxi University, Nanning, China; School of Marine Sciences, Guangxi University, Nanning, China
| |
Collapse
|
13
|
Silva L, Calleja ML, Ivetic S, Huete-Stauffer T, Roth F, Carvalho S, Morán XAG. Heterotrophic bacterioplankton responses in coral- and algae-dominated Red Sea reefs show they might benefit from future regime shift. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 751:141628. [PMID: 32896805 DOI: 10.1016/j.scitotenv.2020.141628] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/06/2020] [Accepted: 08/09/2020] [Indexed: 06/11/2023]
Abstract
In coral reefs, dissolved organic matter (DOM) cycling is a critical process for sustaining ecosystem functioning. However, global and local stressors have caused persistent shifts from coral- to algae-dominated benthic communities. The influence of such phase shifts on DOM nature and its utilization by heterotrophic bacterioplankton remains poorly studied. Every second month for one year, we retrieved seawater samples enriched in DOM produced by coral- and algae-dominated benthic communities in a central Red Sea reef during a full annual cycle. Seawater incubations were conducted in the laboratory under in situ temperature and light conditions by inoculating enriched DOM samples with bacterial assemblages collected in the surrounding waters. Dissolved organic carbon (DOC) concentrations were higher in the warmer months (May-September) in both communities, resulting in higher specific growth rates and bacterial growth efficiencies (BGE). However, these high summer values were significantly enhanced in algal-DOM relative to coral-DOM, suggesting the potential for bacterioplankton biomass increase in reefs with algae replacing healthy coral cover under warmer conditions. The potential exacerbation of heterotrophic bacterial activity in the ongoing widespread regime shift from coral- to algae-dominated communities may have detrimental consequences for the overall health of tropical coral reefs.
Collapse
Affiliation(s)
- Luis Silva
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Thuwal 23955-6900, Saudi Arabia.
| | - Maria Ll Calleja
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Thuwal 23955-6900, Saudi Arabia; Department of Climate Geochemistry, Max Planck Institute for Chemistry (MPIC), Hahn-Meitner-Weg 1, 55128 Mainz, Germany
| | | | - Tamara Huete-Stauffer
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Thuwal 23955-6900, Saudi Arabia
| | - Florian Roth
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Thuwal 23955-6900, Saudi Arabia; Baltic Sea Centre, Stockholm University, 11418 Stockholm, Sweden; Tvärminne Zoological Station, University of Helsinki, 00100 Helsinki, Finland
| | - Susana Carvalho
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Thuwal 23955-6900, Saudi Arabia
| | - Xosé Anxelu G Morán
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
14
|
Roth F, RAdecker N, Carvalho S, Duarte CM, Saderne V, Anton A, Silva L, Calleja ML, MorÁn XAG, Voolstra CR, Kürten B, Jones BH, Wild C. High summer temperatures amplify functional differences between coral- and algae-dominated reef communities. Ecology 2020; 102:e03226. [PMID: 33067806 PMCID: PMC7900985 DOI: 10.1002/ecy.3226] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/06/2020] [Accepted: 08/24/2020] [Indexed: 12/30/2022]
Abstract
Shifts from coral to algal dominance are expected to increase in tropical coral reefs as a result of anthropogenic disturbances. The consequences for key ecosystem functions such as primary productivity, calcification, and nutrient recycling are poorly understood, particularly under changing environmental conditions. We used a novel in situ incubation approach to compare functions of coral‐ and algae‐dominated communities in the central Red Sea bimonthly over an entire year. In situ gross and net community primary productivity, calcification, dissolved organic carbon fluxes, dissolved inorganic nitrogen fluxes, and their respective activation energies were quantified to describe the effects of seasonal changes. Overall, coral‐dominated communities exhibited 30% lower net productivity and 10 times higher calcification than algae‐dominated communities. Estimated activation energies indicated a higher thermal sensitivity of coral‐dominated communities. In these communities, net productivity and calcification were negatively correlated with temperature (>40% and >65% reduction, respectively, with +5°C increase from winter to summer), whereas carbon losses via respiration and dissolved organic carbon release more than doubled at higher temperatures. In contrast, algae‐dominated communities doubled net productivity in summer, while calcification and dissolved organic carbon fluxes were unaffected. These results suggest pronounced changes in community functioning associated with coral‐algal phase shifts. Algae‐dominated communities may outcompete coral‐dominated communities because of their higher productivity and carbon retention to support fast biomass accumulation while compromising the formation of important reef framework structures. Higher temperatures likely amplify these functional differences, indicating a high vulnerability of ecosystem functions of coral‐dominated communities to temperatures even below coral bleaching thresholds. Our results suggest that ocean warming may not only cause but also amplify coral–algal phase shifts in coral reefs.
Collapse
Affiliation(s)
- Florian Roth
- Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia.,Baltic Sea Centre, Stockholm University, Stockholm, 10691, Sweden.,Faculty of Biological and Environmental Sciences, Tvärminne Zoological Station, University of Helsinki, Helsinki, 00014, Finland
| | - Nils RAdecker
- Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia.,Department of Biology, University of Konstanz, Konstanz, 78457, Germany.,Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Susana Carvalho
- Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Carlos M Duarte
- Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia.,Computational Biology Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Vincent Saderne
- Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Andrea Anton
- Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia.,Computational Biology Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Luis Silva
- Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Maria Ll Calleja
- Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia.,Department of Climate Geochemistry, Max Planck Institute for Chemistry (MPIC), Mainz, 55128, Germany
| | - XosÉ Anxelu G MorÁn
- Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Christian R Voolstra
- Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia.,Department of Biology, University of Konstanz, Konstanz, 78457, Germany
| | - Benjamin Kürten
- Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia.,Project Management Jülich, Jülich Research Centre GmbH, Rostock, 52425, Germany
| | - Burton H Jones
- Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Christian Wild
- Marine Ecology, Faculty of Biology and Chemistry, University of Bremen, Bremen, 28359, Germany
| |
Collapse
|
15
|
Guan Y, Hohn S, Wild C, Merico A. Vulnerability of global coral reef habitat suitability to ocean warming, acidification and eutrophication. GLOBAL CHANGE BIOLOGY 2020; 26:5646-5660. [PMID: 32713061 DOI: 10.1111/gcb.15293] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 07/03/2020] [Accepted: 07/03/2020] [Indexed: 06/11/2023]
Abstract
Coral reefs are threatened by global and local stressors. Yet, reefs appear to respond differently to different environmental stressors. Using a global dataset of coral reef occurrence as a proxy for the long-term adaptation of corals to environmental conditions in combination with global environmental data, we show here how global (warming: sea surface temperature; acidification: aragonite saturation state, Ωarag ) and local (eutrophication: nitrate concentration, and phosphate concentration) stressors influence coral reef habitat suitability. We analyse the relative distance of coral communities to their regional environmental optima. In addition, we calculate the expected change of coral reef habitat suitability across the tropics in relation to an increase of 0.1°C in temperature, an increase of 0.02 μmol/L in nitrate, an increase of 0.01 μmol/L in phosphate and a decrease of 0.04 in Ωarag . Our findings reveal that only 6% of the reefs worldwide will be unaffected by local and global stressors and can thus act as temporary refugia. Local stressors, driven by nutrient increase, will affect 22% of the reefs worldwide, whereas global stressors will affect 11% of these reefs. The remaining 61% of the reefs will be simultaneously affected by local and global stressors. Appropriate wastewater treatments can mitigate local eutrophication and could increase areas of temporary refugia to 28%, allowing us to 'buy time', while international agreements are found to abate global stressors.
Collapse
Affiliation(s)
- Yi Guan
- Systems Ecology Group, Leibniz Centre for Tropical Marine Research, Bremen, Germany
| | - Sönke Hohn
- Systems Ecology Group, Leibniz Centre for Tropical Marine Research, Bremen, Germany
| | - Christian Wild
- Department Marine Ecology, Faculty of Biology and Chemistry (FB 2), University of Bremen, Bremen, Germany
| | - Agostino Merico
- Systems Ecology Group, Leibniz Centre for Tropical Marine Research, Bremen, Germany
- Department of Physics & Earth Sciences, Jacobs University, Bremen, Germany
| |
Collapse
|
16
|
Temperature transcends partner specificity in the symbiosis establishment of a cnidarian. ISME JOURNAL 2020; 15:141-153. [PMID: 32934356 PMCID: PMC7852570 DOI: 10.1038/s41396-020-00768-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 08/13/2020] [Accepted: 09/02/2020] [Indexed: 12/21/2022]
Abstract
Coral reef research has predominantly focused on the effect of temperature on the breakdown of coral-dinoflagellate symbioses. However, less is known about how increasing temperature affects the establishment of new coral-dinoflagellate associations. Inter-partner specificity and environment-dependent colonization are two constraints proposed to limit the acquisition of more heat tolerant symbionts. Here, we investigated the symbiotic dynamics of various photosymbionts in different host genotypes under “optimal” and elevated temperature conditions. To do this, we inoculated symbiont-free polyps of the sea anemone Exaiptasia pallida originating from Hawaii (H2), North Carolina (CC7), and the Red Sea (RS) with the same mixture of native symbiont strains (Breviolum minutum, Symbiodinium linucheae, S. microadriaticum, and a Breviolum type from the Red Sea) at 25 and 32 °C, and assessed their ITS2 composition, colonization rates, and PSII photochemical efficiency (Fv/Fm). Symbiont communities across thermal conditions differed significantly for all hosts, suggesting that temperature rather than partner specificity had a stronger effect on symbiosis establishment. Overall, we detected higher abundances of more heat resistant Symbiodiniaceae types in the 32 °C treatments. Our data further showed that PSII photophysiology under elevated temperature improved with thermal pre-exposure (i.e., higher Fv/Fm), yet, this effect depended on host genotype and was influenced by active feeding as photochemical efficiency dropped in response to food deprivation. These findings highlight the role of temperature and partner fidelity in the establishment and performance of symbiosis and demonstrate the importance of heterotrophy for symbiotic cnidarians to endure and recover from stress.
Collapse
|
17
|
Roth F, Karcher DB, Rädecker N, Hohn S, Carvalho S, Thomson T, Saalmann F, Voolstra CR, Kürten B, Struck U, Jones BH, Wild C. High rates of carbon and dinitrogen fixation suggest a critical role of benthic pioneer communities in the energy and nutrient dynamics of coral reefs. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13625] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Florian Roth
- Red Sea Research Center King Abdullah University of Science and Technology (KAUST) Thuwal Saudi Arabia
- Baltic Sea Centre Stockholm University Stockholm Sweden
- Faculty of Biological and Environmental Sciences Tvärminne Zoological Station University of Helsinki Helsinki Finland
| | - Denis B. Karcher
- Marine Ecology Faculty of Biology and Chemistry University of Bremen Bremen Germany
| | - Nils Rädecker
- Red Sea Research Center King Abdullah University of Science and Technology (KAUST) Thuwal Saudi Arabia
- Laboratory for Biological Geochemistry School of Architecture Civil and Environmental Engineering Ecole Polytechnique Fédérale de Lausanne (EPFL) Lausanne Switzerland
| | - Sönke Hohn
- Systems Ecology Group Department of Theoretical Ecology and Modelling Leibniz Centre for Tropical Marine Research Bremen Germany
| | - Susana Carvalho
- Red Sea Research Center King Abdullah University of Science and Technology (KAUST) Thuwal Saudi Arabia
| | - Timothy Thomson
- Red Sea Research Center King Abdullah University of Science and Technology (KAUST) Thuwal Saudi Arabia
| | - Franziska Saalmann
- Marine Ecology Faculty of Biology and Chemistry University of Bremen Bremen Germany
- Faculty of Science and Engineering University of Groningen Groningen The Netherlands
| | - Christian R. Voolstra
- Red Sea Research Center King Abdullah University of Science and Technology (KAUST) Thuwal Saudi Arabia
- Department of Biology University of Konstanz Konstanz Germany
| | - Benjamin Kürten
- Red Sea Research Center King Abdullah University of Science and Technology (KAUST) Thuwal Saudi Arabia
- Jülich Research Centre GmbHProject Management Jülich Rostock Germany
| | - Ulrich Struck
- Museum für Naturkunde Leibniz Institute for Evolution and Biodiversity Science Berlin Germany
- Department of Earth Sciences Freie Universität Berlin Berlin Germany
| | - Burton H. Jones
- Red Sea Research Center King Abdullah University of Science and Technology (KAUST) Thuwal Saudi Arabia
| | - Christian Wild
- Marine Ecology Faculty of Biology and Chemistry University of Bremen Bremen Germany
| |
Collapse
|
18
|
Thermal Stress and Resilience of Corals in a Climate-Changing World. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2019. [DOI: 10.3390/jmse8010015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Coral reef ecosystems are under the direct threat of increasing atmospheric greenhouse gases, which increase seawater temperatures in the oceans and lead to bleaching events. Global bleaching events are becoming more frequent and stronger, and understanding how corals can tolerate and survive high-temperature stress should be accorded paramount priority. Here, we review evidence of the different mechanisms that corals employ to mitigate thermal stress, which include association with thermally tolerant endosymbionts, acclimatisation, and adaptation processes. These differences highlight the physiological diversity and complexity of symbiotic organisms, such as scleractinian corals, where each species (coral host and microbial endosymbionts) responds differently to thermal stress. We conclude by offering some insights into the future of coral reefs and examining the strategies scientists are leveraging to ensure the survival of this valuable ecosystem. Without a reduction in greenhouse gas emissions and a divergence from our societal dependence on fossil fuels, natural mechanisms possessed by corals might be insufficient towards ensuring the ecological functioning of coral reef ecosystems.
Collapse
|
19
|
Overmans S, Agustí S. Latitudinal Gradient of UV Attenuation Along the Highly Transparent Red Sea Basin. Photochem Photobiol 2019; 95:1267-1279. [PMID: 31066904 PMCID: PMC6852308 DOI: 10.1111/php.13112] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 04/21/2019] [Indexed: 01/01/2023]
Abstract
The tropical and subtropical oceans experience intense incident ultraviolet radiation (280-400 nm) while their water columns are thought to be highly transparent. This combination represents a high potential for harmful effects on organisms, yet only few reports on the UV penetration properties of oligotrophic tropical waters exist. Here, we present the pattern of UV attenuation over a wide latitudinal range of the oligotrophic Red Sea. We recorded spectroradiometer profiles of PAR and UV, together with chlorophyll-a (Chl-a) and light absorption by chromophoric dissolved organic matter (CDOM) to determine the contribution of phytoplankton and CDOM toward UV attenuation. Transparency to UV exhibited a distinct latitudinal gradient, with the lowest and highest diffuse attenuation coefficients at 313 nm (Kd (313)) of 0.130 m-1 and 0.357 m-1 observed at the northern coast off Duba, and in the south close to the Farasan islands, respectively. Phytoplankton and CDOM both modulated UV attenuation, but CDOM was found to be the key driver despite the lack of riverine inputs. We confirm that ultraviolet radiation can reach deeper into the Red Sea than previously described, which means its potential to act as a stressor and selective driver for Red Sea organisms may have been underestimated to date.
Collapse
Affiliation(s)
- Sebastian Overmans
- King Abdullah University of Science and Technology (KAUST)Red Sea Research Center (RSRC)Thuwal23955‐6900Saudi Arabia
| | - Susana Agustí
- King Abdullah University of Science and Technology (KAUST)Red Sea Research Center (RSRC)Thuwal23955‐6900Saudi Arabia
| |
Collapse
|
20
|
Cunha RL, Forsman ZH, Belderok R, Knapp ISS, Castilho R, Toonen RJ. Rare coral under the genomic microscope: timing and relationships among Hawaiian Montipora. BMC Evol Biol 2019; 19:153. [PMID: 31340762 PMCID: PMC6657087 DOI: 10.1186/s12862-019-1476-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 07/11/2019] [Indexed: 11/10/2022] Open
Abstract
Background Evolutionary patterns of scleractinian (stony) corals are difficult to infer given the existence of few diagnostic characters and pervasive phenotypic plasticity. A previous study of Hawaiian Montipora (Scleractinia: Acroporidae) based on five partial mitochondrial and two nuclear genes revealed the existence of a species complex, grouping one of the rarest known species (M. dilatata, which is listed as Endangered by the International Union for Conservation of Nature - IUCN) with widespread corals of very different colony growth forms (M. flabellata and M. cf. turgescens). These previous results could result from a lack of resolution due to a limited number of markers, compositional heterogeneity or reflect biological processes such as incomplete lineage sorting (ILS) or introgression. Results All 13 mitochondrial protein-coding genes from 55 scleractinians (14 lineages from this study) were used to evaluate if a recent origin of the M. dilatata species complex or rate heterogeneity could be compromising phylogenetic inference. Rate heterogeneity detected in the mitochondrial data set seems to have no significant impacts on the phylogenies but clearly affects age estimates. Dating analyses show different estimations for the speciation of M. dilatata species complex depending on whether taking compositional heterogeneity into account (0.8 [0.05–2.6] Myr) or assuming rate homogeneity (0.4 [0.14–0.75] Myr). Genomic data also provided evidence of introgression among all analysed samples of the complex. RADseq data indicated that M. capitata colour morphs may have a genetic basis. Conclusions Despite the volume of data (over 60,000 SNPs), phylogenetic relationships within the M. dilatata species complex remain unresolved most likely due to a recent origin and ongoing introgression. Species delimitation with genomic data is not concordant with the current taxonomy, which does not reflect the true diversity of this group. Nominal species within the complex are either undergoing a speciation process or represent ecomorphs exhibiting phenotypic polymorphisms. Electronic supplementary material The online version of this article (10.1186/s12862-019-1476-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Regina L Cunha
- University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal. .,Centre of Marine Sciences, CCMAR, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal.
| | - Zac H Forsman
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI, 96744, USA
| | - Roy Belderok
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI, 96744, USA
| | - Ingrid S S Knapp
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI, 96744, USA
| | - Rita Castilho
- University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal.,Centre of Marine Sciences, CCMAR, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Robert J Toonen
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI, 96744, USA
| |
Collapse
|
21
|
Coral bacterial community structure responds to environmental change in a host-specific manner. Nat Commun 2019; 10:3092. [PMID: 31300639 PMCID: PMC6626051 DOI: 10.1038/s41467-019-10969-5] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 06/12/2019] [Indexed: 01/09/2023] Open
Abstract
The global decline of coral reefs heightens the need to understand how corals respond to changing environmental conditions. Corals are metaorganisms, so-called holobionts, and restructuring of the associated bacterial community has been suggested as a means of holobiont adaptation. However, the potential for restructuring of bacterial communities across coral species in different environments has not been systematically investigated. Here we show that bacterial community structure responds in a coral host-specific manner upon cross-transplantation between reef sites with differing levels of anthropogenic impact. The coral Acropora hemprichii harbors a highly flexible microbiome that differs between each level of anthropogenic impact to which the corals had been transplanted. In contrast, the microbiome of the coral Pocillopora verrucosa remains remarkably stable. Interestingly, upon cross-transplantation to unaffected sites, we find that microbiomes become indistinguishable from back-transplanted controls, suggesting the ability of microbiomes to recover. It remains unclear whether differences to associate with bacteria flexibly reflects different holobiont adaptation mechanisms to respond to environmental change. The flexibility of corals to associate with different bacteria in different environments has not been systematically investigated. Here, the authors study bacterial community dynamics for two coral species and show that bacterial community structure responds to environmental changes in a host-specific manner.
Collapse
|
22
|
Ziegler M, Roik A, Röthig T, Wild C, Rädecker N, Bouwmeester J, Voolstra CR. Ecophysiology of Reef-Building Corals in the Red Sea. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/978-3-030-05802-9_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
23
|
Banguera-Hinestroza E, Ferrada E, Sawall Y, Flot JF. Computational Characterization of the mtORF of Pocilloporid Corals: Insights into Protein Structure and Function in Stylophora Lineages from Contrasting Environments. Genes (Basel) 2019; 10:E324. [PMID: 31035578 PMCID: PMC6562464 DOI: 10.3390/genes10050324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/22/2019] [Accepted: 04/23/2019] [Indexed: 01/15/2023] Open
Abstract
More than a decade ago, a new mitochondrial Open Reading Frame (mtORF) was discovered in corals of the family Pocilloporidae and has been used since then as an effective barcode for these corals. Recently, mtORF sequencing revealed the existence of two differentiated Stylophora lineages occurring in sympatry along the environmental gradient of the Red Sea (18.5°C to 33.9°C). In the endemic Red Sea lineage RS_LinB, the mtORF and the heat shock protein gene hsp70 uncovered similar phylogeographic patterns strongly correlated with environmental variations. This suggests that the mtORF too might be involved in thermal adaptation. Here, we used computational analyses to explore the features and putative function of this mtORF. In particular, we tested the likelihood that this gene encodes a functional protein and whether it may play a role in adaptation. Analyses of full mitogenomes showed that the mtORF originated in the common ancestor of Madracis and other pocilloporids, and that it encodes a transmembrane protein differing in length and domain architecture among genera. Homology-based annotation and the relative conservation of metal-binding sites revealed traces of an ancient hydrolase catalytic activity. Furthermore, signals of pervasive purifying selection, lack of stop codons in 1830 sequences analyzed, and a codon-usage bias similar to that of other mitochondrial genes indicate that the protein is functional, i.e., not a pseudogene. Other features, such as intrinsically disordered regions, tandem repeats, and signals of positive selection particularly in StylophoraRS_LinB populations, are consistent with a role of the mtORF in adaptive responses to environmental changes.
Collapse
Affiliation(s)
- Eulalia Banguera-Hinestroza
- Evolutionary Biology and Ecology, Université libre de Bruxelles, B-1050 Brussels, Belgium.
- Interuniversity Institute of Bioinformatics in Brussels-(IB)2, 1050 Brussels, Belgium.
| | - Evandro Ferrada
- Center for Genomics and Bioinformatics, Universidad Mayor, Santiago, Chile.
| | - Yvonne Sawall
- Coral Reef Ecology, Bermuda Institute of Ocean Sciences (BIOS), St.George's GE 01, Bermuda.
| | - Jean-François Flot
- Evolutionary Biology and Ecology, Université libre de Bruxelles, B-1050 Brussels, Belgium.
- Interuniversity Institute of Bioinformatics in Brussels-(IB)2, 1050 Brussels, Belgium.
| |
Collapse
|
24
|
Rinkevich B. Coral chimerism as an evolutionary rescue mechanism to mitigate global climate change impacts. GLOBAL CHANGE BIOLOGY 2019; 25:1198-1206. [PMID: 30680858 DOI: 10.1111/gcb.14576] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 01/15/2019] [Accepted: 01/17/2019] [Indexed: 06/09/2023]
Abstract
Climate change and anthropogenic pressures inflict a wide range of profound damages on coral reef ecosystems, reshaping coral reef communities due to their physiological and ecological intolerance to the newly developing environmental conditions. Here, I present coral chimerism as an evolutionary rescue tool for accelerating adaptive responses to global climate change impacts. The "evolutionary rescue" power is contingent on the premise that coral chimerism counters the erosion of genetic and phenotypic diversity. Further benefits are gained when flexible chimeric entities alter their somatic constituents following changes in environmental conditions, synergistically presenting the best-fitting combination of their genetic components to endure in a capricious environment, exhibiting always their environmentally matched physiological characteristics. Chimerism should be considered as an integral part of the ecological engineering toolbox being developed for active reef restoration.
Collapse
|
25
|
Ross CL, DeCarlo TM, McCulloch MT. Environmental and physiochemical controls on coral calcification along a latitudinal temperature gradient in Western Australia. GLOBAL CHANGE BIOLOGY 2019; 25:431-447. [PMID: 30456772 DOI: 10.1111/gcb.14488] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 08/12/2018] [Accepted: 09/19/2018] [Indexed: 06/09/2023]
Abstract
The processes that occur at the micro-scale site of calcification are fundamental to understanding the response of coral growth in a changing world. However, our mechanistic understanding of chemical processes driving calcification is still evolving. Here, we report the results of a long-term in situ study of coral calcification rates, photo-physiology, and calcifying fluid (cf) carbonate chemistry (using boron isotopes, elemental systematics, and Raman spectroscopy) for seven species (four genera) of symbiotic corals growing in their natural environments at tropical, subtropical, and temperate locations in Western Australia (latitudinal range of ~11°). We find that changes in net coral calcification rates are primarily driven by pHcf and carbonate ion concentration [ CO 3 2 - ]cf in conjunction with temperature and DICcf . Coral pHcf varies with latitudinal and seasonal changes in temperature and works together with the seasonally varying DICcf to optimize [ CO 3 2 - ]cf at species-dependent levels. Our results indicate that corals shift their pHcf to adapt and/or acclimatize to their localized thermal regimes. This biological response is likely to have critical implications for predicting the future of coral reefs under CO2 -driven warming and acidification.
Collapse
Affiliation(s)
- Claire L Ross
- School of Earth Sciences, The University of Western Australia, Crawley, Western Australia, Australia
- Oceans Institute, The University of Western Australia, Crawley, Western Australia, Australia
- ARC Centre of Excellence for Coral Reef Studies, The University of Western Australia, Crawley, Western Australia, Australia
| | - Thomas M DeCarlo
- Oceans Institute, The University of Western Australia, Crawley, Western Australia, Australia
- ARC Centre of Excellence for Coral Reef Studies, The University of Western Australia, Crawley, Western Australia, Australia
- Oceans Graduate School, The University of Western Australia, Crawley, Western Australia, Australia
| | - Malcolm T McCulloch
- Oceans Institute, The University of Western Australia, Crawley, Western Australia, Australia
- ARC Centre of Excellence for Coral Reef Studies, The University of Western Australia, Crawley, Western Australia, Australia
- Oceans Graduate School, The University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
26
|
Soto D, De Palmas S, Ho MJ, Denis V, Chen CA. Spatial variation in the morphological traits of Pocillopora verrucosa along a depth gradient in Taiwan. PLoS One 2018; 13:e0202586. [PMID: 30118513 PMCID: PMC6097691 DOI: 10.1371/journal.pone.0202586] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/06/2018] [Indexed: 11/18/2022] Open
Abstract
Pocillopora verrucosa is a widely distributed depth-generalist coral that presents plasticity in its skeletal macro- and microstructure in response to environmental gradients. Light and water movement, which covary with depth, are the main environmental drivers of morphological plasticity in this genus; however, assessing environmentally-induced plasticity may be confounded by the extent of interspecific variation in Pocillopora. We examine the morphology of 8 typed P. verrucosa specimens collected along a depth gradient ranging from 7 to 45 meters and comprising 3 sites throughout Ludao, Taiwan. We measured 36 morphological characters, 14 which are novel, in 3 regions on the corallum-the apex, branch and base-in order to quantify their relationship to site and depth. We found significant correlation between depth and 19 morphological characters, notably branch verruca area, branch verruca height, base verruca spacing, base spinule length, and branch corallite area. 60% of microstructural characters and 25% of macrostructural characters showed a correlative relation to depth, suggesting that depth acclimatization is manifested primarily at the microstructural level. Canonical discriminant analysis of all morphometric characters by depth supports clustering into 3 groups: an overlapping 7m and 15m group, a 23-30m group, and a 38-45m group. Canonical discriminant analysis by site supports clustering into low- and high-current sites, differentiated primarily by branch septa width, base septa width, pre-terminal branch width, terminal branch maximum length, and terminal branch minimum length. We conclude that distinctive patterns of morphological variation in mesophotic specimens of P. verrucosa could reflect the effects of abiotic parameters such as light and water flow. Elucidating the mechanisms behind the morphological changes that occur in response to environmental gradients can help clarify the role that physiological plasticity plays in the acclimatization of corals to the unique environmental settings of mesophotic coral ecosystems.
Collapse
Affiliation(s)
- Derek Soto
- Biodiversity Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan Normal University, Taipei, Taiwan
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Stephane De Palmas
- Biodiversity Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan Normal University, Taipei, Taiwan
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Ming Jay Ho
- Biodiversity Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan Normal University, Taipei, Taiwan
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- Green Island Marine Research Station, Academia Sinica, Ludao, Taiwan
| | - Vianney Denis
- Institute of Oceanography, National Taiwan University, Taipei, Taiwan
| | - Chaolun Allen Chen
- Biodiversity Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan Normal University, Taipei, Taiwan
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- Institute of Oceanography, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
27
|
Ross CL, Schoepf V, DeCarlo TM, McCulloch MT. Mechanisms and seasonal drivers of calcification in the temperate coral Turbinaria reniformis at its latitudinal limits. Proc Biol Sci 2018; 285:rspb.2018.0215. [PMID: 29794042 DOI: 10.1098/rspb.2018.0215] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 04/25/2018] [Indexed: 11/12/2022] Open
Abstract
High-latitude coral reefs provide natural laboratories for investigating the mechanisms and limits of coral calcification. While the calcification processes of tropical corals have been studied intensively, little is known about how their temperate counterparts grow under much lower temperature and light conditions. Here, we report the results of a long-term (2-year) study of seasonal changes in calcification rates, photo-physiology and calcifying fluid (cf) chemistry (using boron isotope systematics and Raman spectroscopy) for the coral Turbinaria reniformis growing near its latitudinal limits (34.5° S) along the southern coast of Western Australia. In contrast with tropical corals, calcification rates were found to be threefold higher during winter (16 to 17° C) compared with summer (approx. 21° C), and negatively correlated with light, but lacking any correlation with temperature. These unexpected findings are attributed to a combination of higher chlorophyll a, and hence increased heterotrophy during winter compared with summer, together with the corals' ability to seasonally modulate pHcf, with carbonate ion concentration [Formula: see text] being the main controller of calcification rates. Conversely, calcium ion concentration [Ca2+]cf declined with increasing calcification rates, resulting in aragonite saturation states Ωcf that were stable yet elevated fourfold above seawater values. Our results show that corals growing near their latitudinal limits exert strong physiological control over their cf in order to maintain year-round calcification rates that are insensitive to the unfavourable temperature regimes typical of high-latitude reefs.
Collapse
Affiliation(s)
- Claire L Ross
- Oceans Institute and School of Earth Sciences, The University of Western Australia, 35 Stirling Hwy, Crawley WA 6009, Australia .,ARC Centre of Excellence for Coral Reef Studies, The University of Western Australia, 35 Stirling Hwy, Crawley WA 6009, Australia
| | - Verena Schoepf
- Oceans Institute and School of Earth Sciences, The University of Western Australia, 35 Stirling Hwy, Crawley WA 6009, Australia.,ARC Centre of Excellence for Coral Reef Studies, The University of Western Australia, 35 Stirling Hwy, Crawley WA 6009, Australia
| | - Thomas M DeCarlo
- Oceans Institute and School of Earth Sciences, The University of Western Australia, 35 Stirling Hwy, Crawley WA 6009, Australia.,ARC Centre of Excellence for Coral Reef Studies, The University of Western Australia, 35 Stirling Hwy, Crawley WA 6009, Australia
| | - Malcolm T McCulloch
- Oceans Institute and School of Earth Sciences, The University of Western Australia, 35 Stirling Hwy, Crawley WA 6009, Australia.,ARC Centre of Excellence for Coral Reef Studies, The University of Western Australia, 35 Stirling Hwy, Crawley WA 6009, Australia
| |
Collapse
|
28
|
Monroe AA, Ziegler M, Roik A, Röthig T, Hardenstine RS, Emms MA, Jensen T, Voolstra CR, Berumen ML. In situ observations of coral bleaching in the central Saudi Arabian Red Sea during the 2015/2016 global coral bleaching event. PLoS One 2018; 13:e0195814. [PMID: 29672556 PMCID: PMC5908266 DOI: 10.1371/journal.pone.0195814] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 04/01/2018] [Indexed: 11/18/2022] Open
Abstract
Coral bleaching continues to be one of the most devastating and immediate impacts of climate change on coral reef ecosystems worldwide. In 2015, a major bleaching event was declared as the "3rd global coral bleaching event" by the United States National Oceanic and Atmospheric Administration, impacting a large number of reefs in every major ocean. The Red Sea was no exception, and we present herein in situ observations of the status of coral reefs in the central Saudi Arabian Red Sea from September 2015, following extended periods of high temperatures reaching upwards of 32.5°C in our study area. We examined eleven reefs using line-intercept transects at three different depths, including all reefs that were surveyed during a previous bleaching event in 2010. Bleaching was most prevalent on inshore reefs (55.6% ± 14.6% of live coral cover exhibited bleaching) and on shallower transects (41% ± 10.2% of live corals surveyed at 5m depth) within reefs. Similar taxonomic groups (e.g., Agariciidae) were affected in 2015 and in 2010. Most interestingly, Acropora and Porites had similar bleaching rates (~30% each) and similar relative coral cover (~7% each) across all reefs in 2015. Coral genera with the highest levels of bleaching (>60%) were also among the rarest (<1% of coral cover) in 2015. While this bodes well for the relative retention of coral cover, it may ultimately lead to decreased species richness, often considered an important component of a healthy coral reef. The resultant long-term changes in these coral reef communities remain to be seen.
Collapse
Affiliation(s)
- Alison A. Monroe
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- * E-mail:
| | - Maren Ziegler
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Anna Roik
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Marine Microbiology, GEOMAR Helmholtz Center for Ocean Research Kiel Düsternbrooker Weg 20, Kiel, Germany
| | - Till Röthig
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- The Swire Institute of Marine Science, The University of Hong Kong, Hong Kong, China
| | - Royale S. Hardenstine
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Madeleine A. Emms
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Thor Jensen
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Christian R. Voolstra
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Michael L. Berumen
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
29
|
Pogoreutz C, Rädecker N, Cárdenas A, Gärdes A, Wild C, Voolstra CR. Dominance of Endozoicomonas bacteria throughout coral bleaching and mortality suggests structural inflexibility of the Pocillopora verrucosa microbiome. Ecol Evol 2018; 8:2240-2252. [PMID: 29468040 PMCID: PMC5817147 DOI: 10.1002/ece3.3830] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/11/2017] [Accepted: 12/17/2017] [Indexed: 01/04/2023] Open
Abstract
The importance of Symbiodinium algal endosymbionts and a diverse suite of bacteria for coral holobiont health and functioning are widely acknowledged. Yet, we know surprisingly little about microbial community dynamics and the stability of host-microbe associations under adverse environmental conditions. To gain insight into the stability of coral host-microbe associations and holobiont structure, we assessed changes in the community structure of Symbiodinium and bacteria associated with the coral Pocillopora verrucosa under excess organic nutrient conditions. Pocillopora-associated microbial communities were monitored over 14 days in two independent experiments. We assessed the effect of excess dissolved organic nitrogen (DON) and excess dissolved organic carbon (DOC). Exposure to excess nutrients rapidly affected coral health, resulting in two distinct stress phenotypes: coral bleaching under excess DOC and severe tissue sloughing (>90% tissue loss resulting in host mortality) under excess DON. These phenotypes were accompanied by structural changes in the Symbiodinium community. In contrast, the associated bacterial community remained remarkably stable and was dominated by two Endozoicomonas phylotypes, comprising on average 90% of 16S rRNA gene sequences. This dominance of Endozoicomonas even under conditions of coral bleaching and mortality suggests the bacterial community of P. verrucosa may be rather inflexible and thereby unable to respond or acclimatize to rapid changes in the environment, contrary to what was previously observed in other corals. In this light, our results suggest that coral holobionts might occupy structural landscapes ranging from a highly flexible to a rather inflexible composition with consequences for their ability to respond to environmental change.
Collapse
Affiliation(s)
- Claudia Pogoreutz
- Red Sea Research Center, Biological and Environment Science and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
- Marine Ecology GroupFaculty of Biology and ChemistryUniversity of BremenBremenGermany
- Coral Reef Ecology GroupLeibniz Center for Tropical Marine Research (ZMT)BremenGermany
| | - Nils Rädecker
- Red Sea Research Center, Biological and Environment Science and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Anny Cárdenas
- Red Sea Research Center, Biological and Environment Science and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
- Tropical Marine Microbiology GroupLeibniz Center for Tropical Marine Research (ZMT)BremenGermany
| | - Astrid Gärdes
- Tropical Marine Microbiology GroupLeibniz Center for Tropical Marine Research (ZMT)BremenGermany
| | - Christian Wild
- Marine Ecology GroupFaculty of Biology and ChemistryUniversity of BremenBremenGermany
- Coral Reef Ecology GroupLeibniz Center for Tropical Marine Research (ZMT)BremenGermany
| | - Christian R. Voolstra
- Red Sea Research Center, Biological and Environment Science and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| |
Collapse
|
30
|
Díaz-Almeyda EM, Prada C, Ohdera AH, Moran H, Civitello DJ, Iglesias-Prieto R, Carlo TA, LaJeunesse TC, Medina M. Intraspecific and interspecific variation in thermotolerance and photoacclimation in Symbiodinium dinoflagellates. Proc Biol Sci 2017; 284:20171767. [PMID: 29212723 PMCID: PMC5740277 DOI: 10.1098/rspb.2017.1767] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/06/2017] [Indexed: 12/31/2022] Open
Abstract
Light and temperature are major drivers in the ecology and biogeography of symbiotic dinoflagellates living in corals and other cnidarians. We examined variations in physiology among 11 strains comprising five species of clade A Symbiodinium We grew cultures at 26°C (control) and 32°C (high temperature) over a duration of 18 days while measuring growth and photochemical efficiency (Fv /Fm ). Responses to thermal stress ranged from susceptible to tolerant across species and strains. Most strains exhibited a decrease in cell densities and Fv /Fm when grown at 32°C. Tolerance to high temperature (T32) was calculated for all strains, ranging from 0 (unable to survive at high temperature) to 1 (able survive at high temperature). There was substantial variation in thermotolerance across species and among strains. One strain had a T32 close to 1, indicating that growth was not reduced at 32°C for only this one strain. To evaluate the combined effect of temperature and light on physiological stress, we selected three strains with different levels of thermotolerance (tolerant, intermediate and susceptible) and grew them under five different light intensities (65, 80, 100, 240 and 443 µmol quanta m-2 s-1) at 26 and 32°C. High irradiance exacerbated the effect of high temperature, particularly in strains from thermally sensitive species. This work further supports the recognition that broad physiological differences exist not only among species within Symbiodinium clades, but also among strains within species demonstrating that thermotolerance varies widely between species and among strains within species.
Collapse
Affiliation(s)
- Erika M Díaz-Almeyda
- Department of Biology, The Pennsylvania State University, State College, PA 16801, USA
- Department of Biology, Emory University, Atlanta, GA 30307, USA
| | - C Prada
- Department of Biological Sciences, University of Rhode Island, Kingston, RI 02881, USA
| | - A H Ohdera
- Department of Biology, The Pennsylvania State University, State College, PA 16801, USA
| | - H Moran
- Department of Biology, The Pennsylvania State University, State College, PA 16801, USA
| | - D J Civitello
- Department of Biology, Emory University, Atlanta, GA 30307, USA
| | - R Iglesias-Prieto
- Department of Biology, The Pennsylvania State University, State College, PA 16801, USA
| | - T A Carlo
- Department of Biology, The Pennsylvania State University, State College, PA 16801, USA
| | - T C LaJeunesse
- Department of Biology, The Pennsylvania State University, State College, PA 16801, USA
| | - M Medina
- Department of Biology, The Pennsylvania State University, State College, PA 16801, USA
| |
Collapse
|
31
|
Rare symbionts may contribute to the resilience of coral-algal assemblages. ISME JOURNAL 2017; 12:161-172. [PMID: 29192903 PMCID: PMC5739009 DOI: 10.1038/ismej.2017.151] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 08/02/2017] [Accepted: 08/14/2017] [Indexed: 01/31/2023]
Abstract
The association between corals and photosynthetic dinoflagellates (Symbiodinium spp.) is the key to the success of reef ecosystems in highly oligotrophic environments, but it is also their Achilles‘ heel due to its vulnerability to local stressors and the effects of climate change. Research during the last two decades has shaped a view that coral host–Symbiodinium pairings are diverse, but largely exclusive. Deep sequencing has now revealed the existence of a rare diversity of cryptic Symbiodinium assemblages within the coral holobiont, in addition to one or a few abundant algal members. While the contribution of the most abundant resident Symbiodinium species to coral physiology is widely recognized, the significance of the rare and low abundant background Symbiodinium remains a matter of debate. In this study, we assessed how coral–Symbiodinium communities assemble and how rare and abundant components together constitute the Symbiodinium community by analyzing 892 coral samples comprising >110 000 unique Symbiodinium ITS2 marker gene sequences. Using network modeling, we show that host–Symbiodinium communities assemble in non-random ‘clusters‘ of abundant and rare symbionts. Symbiodinium community structure follows the same principles as bacterial communities, for which the functional significance of rare members (the ‘rare bacterial biosphere’) has long been recognized. Importantly, the inclusion of rare Symbiodinium taxa in robustness analyses revealed a significant contribution to the stability of the host–symbiont community overall. As such, it highlights the potential functions rare symbionts may provide to environmental resilience of the coral holobiont.
Collapse
|
32
|
Ross CL, Falter JL, McCulloch MT. Active modulation of the calcifying fluid carbonate chemistry (δ 11B, B/Ca) and seasonally invariant coral calcification at sub-tropical limits. Sci Rep 2017; 7:13830. [PMID: 29062113 PMCID: PMC5653831 DOI: 10.1038/s41598-017-14066-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 10/05/2017] [Indexed: 11/08/2022] Open
Abstract
Coral calcification is dependent on both the supply of dissolved inorganic carbon (DIC) and the up-regulation of pH in the calcifying fluid (cf). Using geochemical proxies (δ11B, B/Ca, Sr/Ca, Li/Mg), we show seasonal changes in the pHcf and DICcf for Acropora yongei and Pocillopora damicornis growing in-situ at Rottnest Island (32°S) in Western Australia. Changes in pHcf range from 8.38 in summer to 8.60 in winter, while DICcf is 25 to 30% higher during summer compared to winter (×1.5 to ×2 seawater). Thus, both variables are up-regulated well above seawater values and are seasonally out of phase with one another. The net effect of this counter-cyclical behaviour between DICcf and pHcf is that the aragonite saturation state of the calcifying fluid (Ωcf) is elevated ~4 times above seawater values and is ~25 to 40% higher during winter compared to summer. Thus, these corals control the chemical composition of the calcifying fluid to help sustain near-constant year-round calcification rates, despite a seasonal seawater temperature range from just ~19° to 24 °C. The ability of corals to up-regulate Ωcf is a key mechanism to optimise biomineralization, and is thus critical for the future of coral calcification under high CO2 conditions.
Collapse
Affiliation(s)
- Claire L Ross
- Oceans Institute and School of Earth Sciences, The University of Western Australia, Perth, Australia.
- Australian Research Council Centre of Excellence for Coral Reef Studies, The University of Western Australia, Perth, Australia.
| | - James L Falter
- Oceans Institute and School of Earth Sciences, The University of Western Australia, Perth, Australia
- Australian Research Council Centre of Excellence for Coral Reef Studies, The University of Western Australia, Perth, Australia
| | - Malcolm T McCulloch
- Oceans Institute and School of Earth Sciences, The University of Western Australia, Perth, Australia
- Australian Research Council Centre of Excellence for Coral Reef Studies, The University of Western Australia, Perth, Australia
| |
Collapse
|
33
|
Chaidez V, Dreano D, Agusti S, Duarte CM, Hoteit I. Decadal trends in Red Sea maximum surface temperature. Sci Rep 2017; 7:8144. [PMID: 28811521 PMCID: PMC5557812 DOI: 10.1038/s41598-017-08146-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 07/05/2017] [Indexed: 11/09/2022] Open
Abstract
Ocean warming is a major consequence of climate change, with the surface of the ocean having warmed by 0.11 °C decade-1 over the last 50 years and is estimated to continue to warm by an additional 0.6 - 2.0 °C before the end of the century1. However, there is considerable variability in the rates experienced by different ocean regions, so understanding regional trends is important to inform on possible stresses for marine organisms, particularly in warm seas where organisms may be already operating in the high end of their thermal tolerance. Although the Red Sea is one of the warmest ecosystems on earth, its historical warming trends and thermal evolution remain largely understudied. We characterized the Red Sea's thermal regimes at the basin scale, with a focus on the spatial distribution and changes over time of sea surface temperature maxima, using remotely sensed sea surface temperature data from 1982 - 2015. The overall rate of warming for the Red Sea is 0.17 ± 0.07 °C decade-1, while the northern Red Sea is warming between 0.40 and 0.45 °C decade-1, all exceeding the global rate. Our findings show that the Red Sea is fast warming, which may in the future challenge its organisms and communities.
Collapse
Affiliation(s)
- V Chaidez
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center (RSRC), Thuwal, 23955-6900, Saudi Arabia.
| | - D Dreano
- King Abdullah University of Science and Technology (KAUST), Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Thuwal, 23955-6900, Saudi Arabia
| | - S Agusti
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center (RSRC), Thuwal, 23955-6900, Saudi Arabia
| | - C M Duarte
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center (RSRC), Thuwal, 23955-6900, Saudi Arabia
| | - I Hoteit
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
34
|
Pogoreutz C, Rädecker N, Cárdenas A, Gärdes A, Wild C, Voolstra CR. Nitrogen Fixation Aligns with nifH Abundance and Expression in Two Coral Trophic Functional Groups. Front Microbiol 2017; 8:1187. [PMID: 28702013 PMCID: PMC5487474 DOI: 10.3389/fmicb.2017.01187] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 06/12/2017] [Indexed: 01/15/2023] Open
Abstract
Microbial nitrogen fixation (diazotrophy) is a functional trait widely associated with tropical reef-building (scleractinian) corals. While the integral role of nitrogen fixation in coral nutrient dynamics is recognized, its ecological significance across different coral functional groups remains yet to be evaluated. Here we set out to compare molecular and physiological patterns of diazotrophy (i.e., nifH gene abundance and expression as well as nitrogen fixation rates) in two coral families with contrasting trophic strategies: highly heterotrophic, free-living members of the family Fungiidae (Pleuractis granulosa, Ctenactis echinata), and mostly autotrophic coral holobionts with low heterotrophic capacity (Pocilloporidae: Pocillopora verrucosa, Stylophora pistillata). The Fungiidae exhibited low diazotroph abundance (based on nifH gene copy numbers) and activity (based on nifH gene expression and the absence of detectable nitrogen fixation rates). In contrast, the mostly autotrophic Pocilloporidae exhibited nifH gene copy numbers and gene expression two orders of magnitude higher than in the Fungiidae, which coincided with detectable nitrogen fixation activity. Based on these data, we suggest that nitrogen fixation compensates for the low heterotrophic nitrogen uptake in autotrophic corals. Consequently, the ecological importance of diazotrophy in coral holobionts may be determined by the trophic functional group of the host.
Collapse
Affiliation(s)
- Claudia Pogoreutz
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST),Thuwal, Saudi Arabia.,Marine Ecology and Coral Reef Ecology Group, Faculty of Biology and Chemistry, University of BremenBremen, Germany.,Department of Ecology, Leibniz Center for Tropical Marine ResearchBremen, Germany
| | - Nils Rädecker
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST),Thuwal, Saudi Arabia.,Marine Ecology and Coral Reef Ecology Group, Faculty of Biology and Chemistry, University of BremenBremen, Germany
| | - Anny Cárdenas
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST),Thuwal, Saudi Arabia.,Tropical Marine Microbiology Group, Department of Biogeochemistry and Geology, Leibniz Center for Tropical Marine ResearchBremen, Germany
| | - Astrid Gärdes
- Tropical Marine Microbiology Group, Department of Biogeochemistry and Geology, Leibniz Center for Tropical Marine ResearchBremen, Germany
| | - Christian Wild
- Marine Ecology and Coral Reef Ecology Group, Faculty of Biology and Chemistry, University of BremenBremen, Germany
| | - Christian R Voolstra
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST),Thuwal, Saudi Arabia
| |
Collapse
|
35
|
Krueger T, Horwitz N, Bodin J, Giovani ME, Escrig S, Meibom A, Fine M. Common reef-building coral in the Northern Red Sea resistant to elevated temperature and acidification. ROYAL SOCIETY OPEN SCIENCE 2017; 4:170038. [PMID: 28573008 PMCID: PMC5451809 DOI: 10.1098/rsos.170038] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 03/30/2017] [Indexed: 05/21/2023]
Abstract
Coral reefs are currently experiencing substantial ecological impoverishment as a result of anthropogenic stressors, and the majority of reefs are facing immediate risk. Increasing ocean surface temperatures induce frequent coral mass bleaching events-the breakdown of the nutritional photo-symbiosis with intracellular algae (genus: Symbiodinium). Here, we report that Stylophora pistillata from a highly diverse reef in the Gulf of Aqaba showed no signs of bleaching despite spending 1.5 months at 1-2°C above their long-term summer maximum (amounting to 11 degree heating weeks) and a seawater pH of 7.8. Instead, their symbiotic dinoflagellates exhibited improved photochemistry, higher pigmentation and a doubling in net oxygen production, leading to a 51% increase in primary productivity. Nanoscale secondary ion mass spectrometry imaging revealed subtle cellular-level shifts in carbon and nitrogen metabolism under elevated temperatures, but overall host and symbiont biomass proxies were not significantly affected. Now living well below their thermal threshold in the Gulf of Aqaba, these corals have been evolutionarily selected for heat tolerance during their migration through the warm Southern Red Sea after the last ice age. This may allow them to withstand future warming for a longer period of time, provided that successful environmental conservation measures are enacted across national boundaries in the region.
Collapse
Affiliation(s)
- Thomas Krueger
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- Authors for correspondence: Thomas Krueger e-mail:
| | - Noa Horwitz
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
- The Interuniversity Institute for Marine Sciences, Eilat 88103, Israel
| | - Julia Bodin
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Maria-Evangelia Giovani
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Stéphane Escrig
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Anders Meibom
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- Center for Advanced Surface Analysis, Institute of Earth Sciences, University of Lausanne, 1015 Lausanne, Switzerland
- Authors for correspondence: Anders Meibom e-mail:
| | - Maoz Fine
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
- The Interuniversity Institute for Marine Sciences, Eilat 88103, Israel
- Authors for correspondence: Maoz Fine e-mail:
| |
Collapse
|
36
|
Poli D, Fabbri E, Goffredo S, Airi V, Franzellitti S. Physiological plasticity related to zonation affects hsp70 expression in the reef-building coral Pocillopora verrucosa. PLoS One 2017; 12:e0171456. [PMID: 28199351 PMCID: PMC5310758 DOI: 10.1371/journal.pone.0171456] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 01/20/2017] [Indexed: 11/18/2022] Open
Abstract
This study investigates for the first time the transcriptional regulation of a stress-inducible 70-kDa heat shock protein (hsp70) in the scleractinian coral Pocillopora verrucosa sampled at three locations and two depths (3 m and 12 m) in Bangka Island waters (North Sulawesi, Indonesia). Percentage of coral cover indicated reduced habitat suitability with depth and at the Tanjung Husi (TA) site, which also displayed relatively higher seawater temperatures. Expression of the P. verrucosa hsp70 transcript evaluated under field conditions followed a depth-related profile, with relatively higher expression levels in 3-m collected nubbins compared to the 12-m ones. Expression levels of metabolism-related transcripts ATP synthase and NADH dehydrogenase indicated metabolic activation of nubbins to cope with habitat conditions of the TA site at 3 m. After a 14-day acclimatization to common and fixed temperature conditions in the laboratory, corals were subjected for 7 days to an altered thermal regime, where temperature was elevated at 31°C during the light phase and returned to 28°C during the dark phase. Nubbins collected at 12 m were relatively more sensitive to thermal stress, as they significantly over-expressed the selected transcripts. Corals collected at 3 m appeared more resilient, as they showed unaffected mRNA expressions. The results indicated that local habitat conditions may influence transcription of stress-related genes in P. verrucosa. Corals exhibiting higher basal hsp70 levels may display enhanced tolerance towards environmental stressors.
Collapse
Affiliation(s)
- Davide Poli
- Department of Biological, Geological and Environmental Sciences, University of Bologna, via S. Alberto, Ravenna, Italy
- Interdepartment Centre for Environmental Sciences Research, University of Bologna, via S. Alberto, Ravenna, Italy
| | - Elena Fabbri
- Department of Biological, Geological and Environmental Sciences, University of Bologna, via S. Alberto, Ravenna, Italy
- Interdepartment Centre for Environmental Sciences Research, University of Bologna, via S. Alberto, Ravenna, Italy
| | - Stefano Goffredo
- Marine Science Group, Department of Biological, Geological and Environmental Sciences, University of Bologna, Via F. Selmi 3, Bologna, Italy
| | - Valentina Airi
- Marine Science Group, Department of Biological, Geological and Environmental Sciences, University of Bologna, Via F. Selmi 3, Bologna, Italy
| | - Silvia Franzellitti
- Department of Biological, Geological and Environmental Sciences, University of Bologna, via S. Alberto, Ravenna, Italy
- Interdepartment Centre for Environmental Sciences Research, University of Bologna, via S. Alberto, Ravenna, Italy
- * E-mail:
| |
Collapse
|
37
|
Helms Cahan S, Nguyen AD, Stanton-Geddes J, Penick CA, Hernáiz-Hernández Y, DeMarco BB, Gotelli NJ. Modulation of the heat shock response is associated with acclimation to novel temperatures but not adaptation to climatic variation in the ants Aphaenogaster picea and A. rudis. Comp Biochem Physiol A Mol Integr Physiol 2017; 204:113-120. [DOI: 10.1016/j.cbpa.2016.11.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 11/22/2016] [Accepted: 11/23/2016] [Indexed: 02/04/2023]
|