1
|
Pan J, Liu R, Lu W, Peng H, Yang J, Zhang Q, Yu T, Huo B, Wei X, Liang H, Zhou L, Sun Y, Hu Y, Wen S, Fu J, Chiao PJ, Xia X, Liu J, Huang P. SQLE-catalyzed squalene metabolism promotes mitochondrial biogenesis and tumor development in K-ras-driven cancer. Cancer Lett 2025; 616:217586. [PMID: 40015662 DOI: 10.1016/j.canlet.2025.217586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/13/2025] [Accepted: 02/22/2025] [Indexed: 03/01/2025]
Abstract
It is well known that activation of oncogenic K-ras alone is insufficient to drive tumor development and that additional factors are needed for full malignant transformation, but the metabolic pathways and regulatory mechanisms that facilitate K-ras-driven cancer development remain to be characterized. Here we show that SQLE, a key enzyme in cholesterol synthesis, is upregulated in K-ras-driven cancer and its high expression is correlated with poor clinical outcome. K-ras regulates SQLE expression in a biphasic manner through reactive oxygen species and MYC signaling. Surprisingly, the pro-oncogenic role of SQLE is not mediated by promoting cholesterol synthesis, but by metabolic removal of squalene and thus mitigating its suppressive effect on the PGC-1α-mediated mitochondrial biogenesis and metabolism. Genetic silencing of SQLE in pancreatic cancer cells causes an accumulation of cellular squalene, which binds to Sp1 protein and causes a formation of a tight Sp1-TFAP2E promoter DNA complex with a highly negative binding score. This aberrant squalene/Sp1/TFAP2E promoter complex hinders the expression of TFAP2E and its downstream molecule PGC-1α, leading to suppression of mitochondrial metabolism and an almost complete inhibition of tumor formation in vivo. Importantly, administration of pharmacological squalene to mice bearing pancreatic cancer xenografts could significantly inhibit tumor growth. Our study has revealed a previously unrecognized role of SQLE in regulating gene expression and mitochondrial metabolism to facilitate K-ras-driven cancer development, and identified SQLE as a novel therapeutic target for potential treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Junchen Pan
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, China
| | - Rui Liu
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, China
| | - Wenhua Lu
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, China
| | - Hongyu Peng
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, China
| | - Jing Yang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, China
| | - Qianrui Zhang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, China
| | - Tiantian Yu
- Metabolic Innovation Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Bitao Huo
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, China; Metabolic Innovation Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaoying Wei
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, China
| | - Haixi Liang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, China
| | - Lin Zhou
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, China
| | - Yameng Sun
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, China
| | - Yumin Hu
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, China
| | - Shijun Wen
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, China
| | - Jie Fu
- Department of Cellular and Molecular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Paul J Chiao
- Department of Cellular and Molecular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaojun Xia
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, China
| | - Jinyun Liu
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, China; Hainan Academy of Biomedical Sciences, Hainan Medical University, Haiko, Hainan, China.
| | - Peng Huang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, China; Metabolic Innovation Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
2
|
Zhao L, Guo J, Xu S, Duan M, Liu B, Zhao H, Wang Y, Liu H, Yang Z, Yuan H, Jiang X, Jiang X. Abnormal changes in metabolites caused by m 6A methylation modification: The leading factors that induce the formation of immunosuppressive tumor microenvironment and their promising potential for clinical application. J Adv Res 2025; 70:159-186. [PMID: 38677545 PMCID: PMC11976433 DOI: 10.1016/j.jare.2024.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/14/2024] [Accepted: 04/14/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND N6-methyladenosine (m6A) RNA methylation modifications have been widely implicated in the metabolic reprogramming of various cell types within the tumor microenvironment (TME) and are essential for meeting the demands of cellular growth and maintaining tissue homeostasis, enabling cells to adapt to the specific conditions of the TME. An increasing number of research studies have focused on the role of m6A modifications in glucose, amino acid and lipid metabolism, revealing their capacity to induce aberrant changes in metabolite levels. These changes may in turn trigger oncogenic signaling pathways, leading to substantial alterations within the TME. Notably, certain metabolites, including lactate, succinate, fumarate, 2-hydroxyglutarate (2-HG), glutamate, glutamine, methionine, S-adenosylmethionine, fatty acids and cholesterol, exhibit pronounced deviations from normal levels. These deviations not only foster tumorigenesis, proliferation and angiogenesis but also give rise to an immunosuppressive TME, thereby facilitating immune evasion by the tumor. AIM OF REVIEW The primary objective of this review is to comprehensively discuss the regulatory role of m6A modifications in the aforementioned metabolites and their potential impact on the development of an immunosuppressive TME through metabolic alterations. KEY SCIENTIFIC CONCEPTS OF REVIEW This review aims to elaborate on the intricate networks governed by the m6A-metabolite-TME axis and underscores its pivotal role in tumor progression. Furthermore, we delve into the potential implications of the m6A-metabolite-TME axis for the development of novel and targeted therapeutic strategies in cancer research.
Collapse
Affiliation(s)
- Liang Zhao
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China; Department of Colorectal Anal Surgery, Shenyang Coloproctology Hospital, Shenyang 110002, China.
| | - Junchen Guo
- Department of Radiology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| | - Shasha Xu
- Department of Gastroendoscopy, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| | - Meiqi Duan
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| | - Baiming Liu
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| | - He Zhao
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| | - Yihan Wang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| | - Haiyang Liu
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| | - Zhi Yang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| | - Hexue Yuan
- Department of Colorectal Anal Surgery, Shenyang Coloproctology Hospital, Shenyang 110002, China.
| | - Xiaodi Jiang
- Department of Infectious Disease, Shengjing Hospital of China Medical University, Shenyang 110020, China.
| | - Xiaofeng Jiang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| |
Collapse
|
3
|
Rutkowska A, Eberl HC, Werner T, Hennrich ML, Sévin DC, Petretich M, Reddington JP, Pocha S, Gade S, Martinez-Segura A, Dvornikov D, Karpiak J, Sweetman GM, Fufezan C, Duempelfeld B, Braun F, Schofield C, Keles H, Alvarado D, Wang Z, Jansson KH, Faelth-Savitski M, Curry E, Remlinger K, Stronach EA, Feng B, Sharma G, Coleman K, Grandi P, Bantscheff M, Bergamini G. Synergistic Effects of PARP Inhibition and Cholesterol Biosynthesis Pathway Modulation. CANCER RESEARCH COMMUNICATIONS 2024; 4:2427-2443. [PMID: 39028932 PMCID: PMC11403291 DOI: 10.1158/2767-9764.crc-23-0549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/07/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
An in-depth multiomic molecular characterization of PARP inhibitors revealed a distinct poly-pharmacology of niraparib (Zejula) mediated by its interaction with lanosterol synthase (LSS), which is not observed with other PARP inhibitors. Niraparib, in a similar way to the LSS inhibitor Ro-48-8071, induced activation of the 24,25-epoxysterol shunt pathway, which is a regulatory signaling branch of the cholesterol biosynthesis pathway. Interestingly, the combination of an LSS inhibitor with a PARP inhibitor that does not bind to LSS, such as olaparib, had an additive effect on killing cancer cells to levels comparable with niraparib as a single agent. In addition, the combination of PARP inhibitors and statins, inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme A reductase, an enzyme catalyzing the rate-limiting step in the mevalonate pathway, had a synergistic effect on tumor cell killing in cell lines and patient-derived ovarian tumor organoids. These observations suggest that concomitant inhibition of the cholesterol biosynthesis pathway and PARP activity might result in stronger efficacy of these inhibitors against tumor types highly dependent on cholesterol metabolism. SIGNIFICANCE The presented data indicate, to our knowledge, for the first time, the potential benefit of concomitant modulation of cholesterol biosynthesis pathway and PARP inhibition and highlight the need for further investigation to assess its translational relevance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Joel Karpiak
- Medicine Design-Computational Sciences, R&D, GSK, Heidelberg, Germany.
| | | | - Christian Fufezan
- Data Streams and Operations, and Data Science and Data Engineering, R&D, GSK, Heidelberg, Germany.
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany.
| | | | - Florian Braun
- Chemical Biology Core Facility, EMBL Heidelberg, Heidelberg, Germany.
| | | | - Hakan Keles
- Genomic Sciences, R&D, GSK, Heidelberg, Germany.
| | - David Alvarado
- Oncology, Synthetic Lethality Research Unit, R&D, GSK, Heidelberg, Germany.
| | - Zhuo Wang
- Oncology, Synthetic Lethality Research Unit, R&D, GSK, Heidelberg, Germany.
| | | | | | - Edward Curry
- Genomic Sciences, R&D, GSK, Heidelberg, Germany.
| | | | | | - Bin Feng
- Oncology, Advanced Analytics Experimental Medicine Unit, R&D, GSK, Heidelberg, Germany.
| | - Geeta Sharma
- Oncology, Synthetic Lethality Research Unit, R&D, GSK, Heidelberg, Germany.
| | - Kevin Coleman
- Oncology, Synthetic Lethality Research Unit, R&D, GSK, Heidelberg, Germany.
| | | | | | | |
Collapse
|
4
|
Zhou X, Wang G, Tian C, Du L, Prochownik EV, Li Y. Inhibition of DUSP18 impairs cholesterol biosynthesis and promotes anti-tumor immunity in colorectal cancer. Nat Commun 2024; 15:5851. [PMID: 38992029 PMCID: PMC11239938 DOI: 10.1038/s41467-024-50138-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/02/2024] [Indexed: 07/13/2024] Open
Abstract
Tumor cells reprogram their metabolism to produce specialized metabolites that both fuel their own growth and license tumor immune evasion. However, the relationships between these functions remain poorly understood. Here, we report CRISPR screens in a mouse model of colo-rectal cancer (CRC) that implicates the dual specificity phosphatase 18 (DUSP18) in the establishment of tumor-directed immune evasion. Dusp18 inhibition reduces CRC growth rates, which correlate with high levels of CD8+ T cell activation. Mechanistically, DUSP18 dephosphorylates and stabilizes the USF1 bHLH-ZIP transcription factor. In turn, USF1 induces the SREBF2 gene, which allows cells to accumulate the cholesterol biosynthesis intermediate lanosterol and release it into the tumor microenvironment (TME). There, lanosterol uptake by CD8+ T cells suppresses the mevalonate pathway and reduces KRAS protein prenylation and function, which in turn inhibits their activation and establishes a molecular basis for tumor cell immune escape. Finally, the combination of an anti-PD-1 antibody and Lumacaftor, an FDA-approved small molecule inhibitor of DUSP18, inhibits CRC growth in mice and synergistically enhances anti-tumor immunity. Collectively, our findings support the idea that a combination of immune checkpoint and metabolic blockade represents a rationally-designed, mechanistically-based and potential therapy for CRC.
Collapse
Affiliation(s)
- Xiaojun Zhou
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, 430071, China
| | - Genxin Wang
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, 430071, China
| | - Chenhui Tian
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, 430071, China
| | - Lin Du
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, 430071, China
| | - Edward V Prochownik
- Division of Hematology/Oncology, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, 15224, USA
- Department of Microbiology and Molecular Genetics of UPMC, Pittsburgh, PA, 15224, USA
- The Pittsburgh Liver Research Center, The Hillman Cancer Institute of UPMC, Pittsburgh, PA, 15224, USA
| | - Youjun Li
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China.
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, 430071, China.
| |
Collapse
|
5
|
Liu Q, Zhang Y, Li H, Gao H, Zhou Y, Luo D, Shan Z, Yang Y, Weng J, Li Q, Yang W, Li X. Squalene epoxidase promotes the chemoresistance of colorectal cancer via (S)-2,3-epoxysqualene-activated NF-κB. Cell Commun Signal 2024; 22:278. [PMID: 38762737 PMCID: PMC11102232 DOI: 10.1186/s12964-024-01649-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 05/05/2024] [Indexed: 05/20/2024] Open
Abstract
BACKGROUND While de novo cholesterol biosynthesis plays a crucial role in chemotherapy resistance of colorectal cancer (CRC), the underlying molecular mechanism remains poorly understood. METHODS We conducted cell proliferation assays on CRC cells with or without depletion of squalene epoxidase (SQLE), with or without 5-fluorouracil (5-FU) treatment. Additionally, a xenograft mouse model was utilized to explore the impact of SQLE on the chemosensitivity of CRC to 5-FU. RNA-sequencing analysis and immunoblotting analysis were performed to clarify the mechanism. We further explore the effect of SQLE depletion on the ubiquitin of NF-κB inhibitor alpha (IκBα) and (S)-2,3-epoxysqualene on the binding of IκBα to beta-transducin repeat containing E3 ubiquitin protein ligase (BTRC) by using immunoprecipitation assay. In addition, a cohort of 272 CRC patients were selected for our clinical analyses. RESULTS Mechanistically, (S)-2,3-epoxysqualene promotes IκBα degradation and subsequent NF-κB activation by enhancing the interaction between BTRC and IκBα. Activated NF-κB upregulates the expression of baculoviral IAP repeat containing 3 (BIRC3), sustains tumor cell survival after 5-FU treatment and promotes 5-FU resistance of CRC in vivo. Notably, the treatment of terbinafine, an inhibitor of SQLE commonly used as antifungal drug in clinic, enhances the sensitivity of CRC to 5-FU in vivo. Additionally, the expression of SQLE is associated with the prognosis of human CRC patients with 5-FU-based chemotherapy. CONCLUSIONS Thus, our finding not only demonstrates a new role of SQLE in chemoresistance of CRC, but also reveals a novel mechanism of (S)-2,3-epoxysqualene-dependent NF-κB activation, implicating the combined potential of terbinafine for 5-FU-based CRC treatment.
Collapse
Affiliation(s)
- Qi Liu
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yajuan Zhang
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Huimin Li
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Hong Gao
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yijie Zhou
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Dakui Luo
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zezhi Shan
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yufei Yang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Junyong Weng
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qingguo Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Weiwei Yang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
| | - Xinxiang Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
6
|
Jiang W, Jin WL, Xu AM. Cholesterol metabolism in tumor microenvironment: cancer hallmarks and therapeutic opportunities. Int J Biol Sci 2024; 20:2044-2071. [PMID: 38617549 PMCID: PMC11008265 DOI: 10.7150/ijbs.92274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/27/2024] [Indexed: 04/16/2024] Open
Abstract
Cholesterol is crucial for cell survival and growth, and dysregulation of cholesterol homeostasis has been linked to the development of cancer. The tumor microenvironment (TME) facilitates tumor cell survival and growth, and crosstalk between cholesterol metabolism and the TME contributes to tumorigenesis and tumor progression. Targeting cholesterol metabolism has demonstrated significant antitumor effects in preclinical and clinical studies. In this review, we discuss the regulatory mechanisms of cholesterol homeostasis and the impact of its dysregulation on the hallmarks of cancer. We also describe how cholesterol metabolism reprograms the TME across seven specialized microenvironments. Furthermore, we discuss the potential of targeting cholesterol metabolism as a therapeutic strategy for tumors. This approach not only exerts antitumor effects in monotherapy and combination therapy but also mitigates the adverse effects associated with conventional tumor therapy. Finally, we outline the unresolved questions and suggest potential avenues for future investigations on cholesterol metabolism in relation to cancer.
Collapse
Affiliation(s)
- Wen Jiang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, P. R. China
| | - Wei-Lin Jin
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Lanzhou 730000, P. R. China
| | - A-Man Xu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, P. R. China
- Anhui Public Health Clinical Center, Hefei 230022, P. R. China
| |
Collapse
|
7
|
Coradini D. Impact of De Novo Cholesterol Biosynthesis on the Initiation and Progression of Breast Cancer. Biomolecules 2024; 14:64. [PMID: 38254664 PMCID: PMC10813427 DOI: 10.3390/biom14010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/26/2023] [Accepted: 01/01/2024] [Indexed: 01/24/2024] Open
Abstract
Cholesterol (CHOL) is a multifaceted lipid molecule. It is an essential structural component of cell membranes, where it cooperates in regulating the intracellular trafficking and signaling pathways. Additionally, it serves as a precursor for vital biomolecules, including steroid hormones, isoprenoids, vitamin D, and bile acids. Although CHOL is normally uptaken from the bloodstream, cells can synthesize it de novo in response to an increased requirement due to physiological tissue remodeling or abnormal proliferation, such as in cancer. Cumulating evidence indicated that increased CHOL biosynthesis is a common feature of breast cancer and is associated with the neoplastic transformation of normal mammary epithelial cells. After an overview of the multiple biological activities of CHOL and its derivatives, this review will address the impact of de novo CHOL production on the promotion of breast cancer with a focus on mammary stem cells. The review will also discuss the effect of de novo CHOL production on in situ and invasive carcinoma and its impact on the response to adjuvant treatment. Finally, the review will discuss the present and future therapeutic strategies to normalize CHOL biosynthesis.
Collapse
Affiliation(s)
- Danila Coradini
- Laboratory of Medical Statistics and Biometry, "Giulio A. Maccacaro", Department of Clinical Sciences and Community Health, University of Milan, Campus Cascina Rosa, 20133 Milan, Italy
| |
Collapse
|
8
|
Lee H, Park S, Yun JH, Seo C, Ahn JM, Cha HY, Shin YS, Park HR, Lee D, Roh J, Heo HJ, Baek SE, Kim EK, Lee HS, Kim CH, Kim YH, Jang JY. Deciphering head and neck cancer microenvironment: Single-cell and spatial transcriptomics reveals human papillomavirus-associated differences. J Med Virol 2024; 96:e29386. [PMID: 38235919 DOI: 10.1002/jmv.29386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/19/2024]
Abstract
Human papillomavirus (HPV) is a major causative factor of head and neck squamous cell carcinoma (HNSCC), and the incidence of HPV- associated HNSCC is increasing. The role of tumor microenvironment in viral infection and metastasis needs to be explored further. We studied the molecular characteristics of primary tumors (PTs) and lymph node metastatic tumors (LNMTs) by stratifying them based on their HPV status. Eight samples for single-cell RNA profiling and six samples for spatial transcriptomics (ST), composed of matched primary tumors (PT) and lymph node metastases (LNMT), were collected from both HPV- negative (HPV- ) and HPV-positive (HPV+ ) patients. Using the 10x Genomics Visium platform, integrative analyses with single-cell RNA sequencing were performed. Intracellular and intercellular alterations were analyzed, and the findings were confirmed using experimental validation and publicly available data set. The HPV+ tissues were composed of a substantial amount of lymphoid cells regardless of the presence or absence of metastasis, whereas the HPV- tissue exhibited remarkable changes in the number of macrophages and plasma cells, particularly in the LNMT. From both single-cell RNA and ST data set, we discovered a central gene, pyruvate kinase muscle isoform 1/2 (PKM2), which is closely associated with the stemness of cancer stem cell-like populations in LNMT of HPV- tissue. The consistent expression was observed in HPV- HNSCC cell line and the knockdown of PKM2 weakened spheroid formation ability. Furthermore, we found an ectopic lymphoid structure morphology and clinical effects of the structure in ST slide of the HPV+ patients and verified their presence in tumor tissue using immunohistochemistry. Finally, the ephrin-A (EPHA2) pathway was detected as important signals in angiogenesis for HPV- patients from single-cell RNA and ST profiles, and knockdown of EPHA2 declined the cell migration. Our study described the distinct cellular composition and molecular alterations in primary and metastatic sites in HNSCC patients based on their HPV status. These results provide insights into HNSCC biology in the context of HPV infection and its potential clinical implications.
Collapse
Affiliation(s)
- Hansong Lee
- Medical Research Institute, Pusan National University, Yangsan, South Korea
| | - Sohee Park
- Data Science Center, Insilicogen, Inc., Yongin-si, South Korea
| | - Ju Hyun Yun
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, South Korea
| | - Chorong Seo
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, South Korea
| | - Ji Mi Ahn
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, South Korea
| | - Hyun-Young Cha
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, South Korea
| | - Yoo Seob Shin
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, South Korea
| | - Hae Ryoun Park
- Department of Periodontology and Dental Research Institute, Pusan National University Dental Hospital, Yangsan, South Korea
- Periodontal Disease Signaling Network Research Center, School of Dentistry, Pusan National University, Yangsan, South Korea
- Department of Oral Pathology, School of Dentistry, Pusan National University, Yangsan, South Korea
| | - Dongjun Lee
- Department of Convergence Medicine, School of Medicine, Pusan National University, Yangsan, South Korea
| | - Jin Roh
- Department of Pathology, School of Medicine, Ajou University, Suwon, South Korea
| | - Hye Jin Heo
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, South Korea
| | - Seung Eun Baek
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, South Korea
| | - Eun Kyoung Kim
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, South Korea
| | - Hae Seul Lee
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, South Korea
| | - Chul-Ho Kim
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, South Korea
| | - Yun Hak Kim
- Periodontal Disease Signaling Network Research Center, School of Dentistry, Pusan National University, Yangsan, South Korea
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, South Korea
- Department of Biomedical Informatics, School of Medicine, Pusan National University, Yangsan, South Korea
| | - Jeon Yeob Jang
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, South Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, South Korea
- Department of Convergence Healthcare Medicine, Graduate School of Ajou University, Suwon, South Korea
| |
Collapse
|
9
|
He X, Lan H, Jin K, Liu F. Cholesterol in colorectal cancer: an essential but tumorigenic precursor? Front Oncol 2023; 13:1276654. [PMID: 38023258 PMCID: PMC10655112 DOI: 10.3389/fonc.2023.1276654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most lethal human malignancies, and with the growth of societies and lifestyle changes, the rate of people suffering from it increases yearly. Important factors such as genetics, family history, nutrition, lifestyle, smoking, and alcohol can play a significant role in increasing susceptibility to this cancer. On the other hand, the metabolism of several macromolecules is also involved in the fate of tumors and immune cells. The evidence discloses that cholesterol and its metabolism can play a role in the pathogenesis of several cancers because there appears to be an association between cholesterol levels and CRC, and cholesterol-lowering drugs may reduce the risk. Furthermore, changes or mutations of some involved genes in cholesterol metabolism, such as CYP7A1 as well as signaling pathways, such as mitogen-activated protein kinase (MAPK), can play a role in CRC pathogenesis. This review summarized and discussed the role of cholesterol in the pathogenesis of CRC as well as available cholesterol-related therapeutic approaches in CRC.
Collapse
Affiliation(s)
- Xing He
- Department of Gastroenterology, Jinhua Wenrong Hospital, Jinhua, Zhejiang, China
| | - Huanrong Lan
- Department of Surgical Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, China
| | - Ketao Jin
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Fanlong Liu
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
10
|
Liu X, Lv M, Zhang W, Zhan Q. Dysregulation of cholesterol metabolism in cancer progression. Oncogene 2023; 42:3289-3302. [PMID: 37773204 DOI: 10.1038/s41388-023-02836-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/18/2023] [Accepted: 09/05/2023] [Indexed: 10/01/2023]
Abstract
Cholesterol homeostasis has been implicated in the regulation of cellular and body metabolism. Hence, deregulated cholesterol homeostasis leads to the development of many diseases such as cardiovascular diseases, and neurodegenerative diseases, among others. Recent studies have unveiled the connection between abnormal cholesterol metabolism and cancer development. Cholesterol homeostasis at the cellular level dynamically circulates between synthesis, influx, efflux, and esterification. Any dysregulation of this dynamic process disrupts cholesterol homeostasis and its derivatives, which potentially contributes to tumor progression. There is also evidence that cancer-related signals, which promote malignant progression, also regulate cholesterol metabolism. Here, we described the relationship between cholesterol metabolism and cancer hallmarks, with particular focus on the molecular mechanisms, and the anticancer drugs that target cholesterol metabolism.
Collapse
Affiliation(s)
- Xuesong Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
- Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China
- Peking University International Cancer Institute, Beijing, 100191, China
| | - Mengzhu Lv
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
- Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Weimin Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
- Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China.
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518107, China.
| | - Qimin Zhan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
- Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China.
- Peking University International Cancer Institute, Beijing, 100191, China.
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518107, China.
- Soochow University Cancer Institute, Suzhou, 215127, China.
| |
Collapse
|
11
|
Whitehead J, Leferink NGH, Johannissen LO, Hay S, Scrutton NS. Decoding Catalysis by Terpene Synthases. ACS Catal 2023; 13:12774-12802. [PMID: 37822860 PMCID: PMC10563020 DOI: 10.1021/acscatal.3c03047] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/31/2023] [Indexed: 10/13/2023]
Abstract
The review by Christianson, published in 2017 on the twentieth anniversary of the emergence of the field, summarizes the foundational discoveries and key advances in terpene synthase/cyclase (TS) biocatalysis (Christianson, D. W. Chem Rev2017, 117 (17), 11570-11648. DOI: 10.1021/acs.chemrev.7b00287). Here, we review the TS literature published since then, bringing the field up to date and looking forward to what could be the near future of TS rational design. Many revealing discoveries have been made in recent years, building on the knowledge and fundamental principles uncovered during those initial two decades of study. We use these to explore TS reaction chemistry and see how a combined experimental and computational approach helps to decipher the complexities of TS catalysis. Revealed are a suite of catalytic motifs which control product outcome in TSs, some obvious, some more subtle. We examine each in detail, using the most recent papers and insights to illustrate how exactly this fascinating class of enzymes takes a single acyclic substrate and turns it into the many thousands of complex terpenoids found in Nature. We then explore some of the recent strategies for TS engineering, including machine learning and other data-driven approaches. From this, rational and predictive engineering of TSs, "designer terpene synthases", will begin to emerge as a realistic goal.
Collapse
Affiliation(s)
- Joshua
N. Whitehead
- Manchester
Institute of Biotechnology, Department of Chemistry, The University of Manchester, Manchester, M1 7DN, United Kingdom
| | - Nicole G. H. Leferink
- Future
Biomanufacturing Research Hub (FBRH), Manchester Institute of Biotechnology,
Department of Chemistry, The University
of Manchester, Manchester, M1 7DN, United
Kingdom
| | - Linus O. Johannissen
- Manchester
Institute of Biotechnology, Department of Chemistry, The University of Manchester, Manchester, M1 7DN, United Kingdom
| | - Sam Hay
- Manchester
Institute of Biotechnology, Department of Chemistry, The University of Manchester, Manchester, M1 7DN, United Kingdom
| | - Nigel S. Scrutton
- Manchester
Institute of Biotechnology, Department of Chemistry, The University of Manchester, Manchester, M1 7DN, United Kingdom
- Future
Biomanufacturing Research Hub (FBRH), Manchester Institute of Biotechnology,
Department of Chemistry, The University
of Manchester, Manchester, M1 7DN, United
Kingdom
| |
Collapse
|
12
|
Qusairy Z, Gangloff A, Leung SOA. Dysregulation of Cholesterol Homeostasis in Ovarian Cancer. Curr Oncol 2023; 30:8386-8400. [PMID: 37754524 PMCID: PMC10527727 DOI: 10.3390/curroncol30090609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 09/28/2023] Open
Abstract
Cholesterol plays an essential role in maintaining the rigidity of cell membranes and signal transduction. Various investigations confirmed empirically that the dysregulation of cholesterol homeostasis positively correlates with tumor progression. More specifically, recent studies suggested the distinct role of cholesterol in ovarian cancer cell proliferation, metastasis and chemoresistance. In this review, we summarize the current findings that suggest the contribution of cholesterol homeostasis dysregulation to ovarian cancer progression and resistance to anti-cancer agents. We also discuss the therapeutic implications of cholesterol-lowering drugs in ovarian cancer.
Collapse
Affiliation(s)
- Zahraa Qusairy
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Anne Gangloff
- CHU de Québec-Université Laval Research Center, Québec City, QC G1V 4G2, Canada;
- Faculty of Medicine, Laval University, Québec City, QC G1V 0A6, Canada
| | - Shuk On Annie Leung
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, McGill University Health Centre, McGill University, Montreal, QC H4A 3J1, Canada
| |
Collapse
|
13
|
Xiao M, Xu J, Wang W, Zhang B, Liu J, Li J, Xu H, Zhao Y, Yu X, Shi S. Functional significance of cholesterol metabolism in cancer: from threat to treatment. Exp Mol Med 2023; 55:1982-1995. [PMID: 37653037 PMCID: PMC10545798 DOI: 10.1038/s12276-023-01079-w] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 05/18/2023] [Accepted: 06/20/2023] [Indexed: 09/02/2023] Open
Abstract
Cholesterol is an essential structural component of membranes that contributes to membrane integrity and fluidity. Cholesterol homeostasis plays a critical role in the maintenance of cellular activities. Recently, increasing evidence has indicated that cholesterol is a major determinant by modulating cell signaling events governing the hallmarks of cancer. Numerous studies have shown the functional significance of cholesterol metabolism in tumorigenesis, cancer progression and metastasis through its regulatory effects on the immune response, ferroptosis, autophagy, cell stemness, and the DNA damage response. Here, we summarize recent literature describing cholesterol metabolism in cancer cells, including the cholesterol metabolism pathways and the mutual regulatory mechanisms involved in cancer progression and cholesterol metabolism. We also discuss various drugs targeting cholesterol metabolism to suggest new strategies for cancer treatment.
Collapse
Affiliation(s)
- Mingming Xiao
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Center Institute, Shanghai, 200032, China
- Pancreatic Center Institute, Fudan University, Shanghai, 200032, China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Center Institute, Shanghai, 200032, China
- Pancreatic Center Institute, Fudan University, Shanghai, 200032, China
| | - Wei Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Center Institute, Shanghai, 200032, China
- Pancreatic Center Institute, Fudan University, Shanghai, 200032, China
| | - Bo Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Center Institute, Shanghai, 200032, China
- Pancreatic Center Institute, Fudan University, Shanghai, 200032, China
| | - Jiang Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Center Institute, Shanghai, 200032, China
- Pancreatic Center Institute, Fudan University, Shanghai, 200032, China
| | - Jialin Li
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Center Institute, Shanghai, 200032, China
- Pancreatic Center Institute, Fudan University, Shanghai, 200032, China
| | - Hang Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Center Institute, Shanghai, 200032, China
- Pancreatic Center Institute, Fudan University, Shanghai, 200032, China
| | - Yingjun Zhao
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Center Institute, Shanghai, 200032, China.
- Pancreatic Center Institute, Fudan University, Shanghai, 200032, China.
| | - Si Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Center Institute, Shanghai, 200032, China.
- Pancreatic Center Institute, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
14
|
Liu S, Shen YY, Yin LY, Liu J, Zu X. Lipid Metabolic Regulatory Crosstalk Between Cancer Cells and Tumor-Associated Macrophages. DNA Cell Biol 2023; 42:445-455. [PMID: 37535386 DOI: 10.1089/dna.2023.0071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023] Open
Abstract
In the tumor microenvironment, tumor-associated macrophages (TAMs) are one of the most abundant cell populations, playing key roles in tumorigenesis, chemoresistance, immune evasion, and metastasis. There is an important interaction between TAMs and cancer cells: on the one hand, tumors control the function of infiltrating macrophages, contributing to reprogramming of TAMs, and on the other hand, TAMs affect the growth of cancer cells. This review focuses on lipid metabolism changes in the complex relationship between cancer cells and TAMs. We discuss how lipid metabolism in cancer cells affects macrophage phenotypic and metabolic changes and, subsequently, how altered lipid metabolism of TAMs influences tumor progression. Identifying the metabolic changes that influence the complex interaction between tumor cells and TAMs is also an important step in exploring new therapeutic approaches that target metabolic reprogramming of immune cells to enhance their tumoricidal potential and bypass therapy resistance. Our work may provide new targets for antitumor therapies.
Collapse
Affiliation(s)
- Shu Liu
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Ying Ying Shen
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Li Yang Yin
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jianghua Liu
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xuyu Zu
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
15
|
Sun X, Zhang J, Liu H, Li M, Liu L, Yang Z, Hu W, Bai H, Xu J, Xing J, Xu Z, Mo A, Guo Z, Bai Y, Zhou Q, Wang Y, Zhang S, Zhang S. Lanosterol synthase loss of function decreases the malignant phenotypes of HepG2 cells by deactivating the Src/MAPK signaling pathway. Oncol Lett 2023; 26:295. [PMID: 37274468 PMCID: PMC10236266 DOI: 10.3892/ol.2023.13881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 02/23/2023] [Indexed: 06/06/2023] Open
Abstract
Cholesterol is critical for tumor cells to maintain their membrane components, cell morphology and activity functions. The inhibition of the cholesterol pathway may be an efficient strategy with which to limit tumor growth and the metastatic process. In the present study, lanosterol synthase (LSS) was knocked down by transfecting LSS short hairpin RNA into HepG2 cells, and cell growth, apoptosis and migratory potential were then detected by Cell Counting Kit-8 cell proliferation assay, flow cytometric analysis and wound healing assay, respectively. In addition, proteins associated with the regulation of the aforementioned cell biological behaviors were analyzed by western blot analysis. The activity of the Src/MAPK signaling pathway was measured by western blotting to elucidate the possible signal transduction mechanisms. LSS knockdown in the HepG2 liver cancer cell line inhibited cell proliferation, with cell cycle arrest at the S phase; it also decreased cell migratory ability and increased apoptosis. The expression proteins involved in the regulation of cell cycle, cell apoptosis and migration was altered by LSS knockdown in HepG2 cells. Furthermore, a decreased Src/MAPK activity was observed in the HepG2 cells subjected to LSS knockdown. LSS loss of function decreased the malignant phenotypes of HepG2 cells by deactivating the Src/MAPK signaling pathway and regulating expression of genes involved in cell cycle regulation, cell apoptosis and migration.
Collapse
Affiliation(s)
- Xiaomei Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Jun Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Hui Liu
- Department of Hyperbaric Oxygen, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230011, P.R. China
| | - Mingcong Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
- Department of Pathology, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230011, P.R. China
| | - Li Liu
- Center for Scientific Research, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Zhen Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Weikang Hu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Hongmei Bai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Jiansheng Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
- Department of First Clinical Medicine, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Jun Xing
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
- Department of First Clinical Medicine, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Zhijun Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
- Department of First Clinical Medicine, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Aizhu Mo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
- Department of First Clinical Medicine, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Ziyi Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
- Department of First Clinical Medicine, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yajie Bai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
- Department of First Clinical Medicine, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Qing Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yuan Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Shengquan Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Sumei Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
16
|
Nair IM, Kochupurackal J. Squalene hopene cyclases and oxido squalene cyclases: potential targets for regulating cyclisation reactions. Biotechnol Lett 2023; 45:573-588. [PMID: 37055654 DOI: 10.1007/s10529-023-03366-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 03/01/2023] [Accepted: 03/14/2023] [Indexed: 04/15/2023]
Abstract
Squalene hopene cyclases (SHC) convert squalene, the linear triterpene to fused ring product hopanoid by the cationic cyclization mechanism. The main function of hopanoids, a class of pentacyclic triterpenoids in bacteria involves the maintenance of membrane fluidity and stability. 2, 3-oxido squalene cyclases are functional analogues of SHC in eukaryotes and both these enzymes have fascinated researchers for the high stereo selectivity, complexity, and efficiency they possess. The peculiar property of the enzyme squalene hopene cyclase to accommodate substrates other than its natural substrate can be exploited for the use of these enzymes in an industrial perspective. Here, we present an extensive overview of the enzyme squalene hopene cyclase with emphasis on the cloning and overexpression strategies. An attempt has been made to explore recent research trends around squalene cyclase mediated cyclization reactions of flavour and pharmaceutical significance by using non-natural molecules as substrates.
Collapse
Affiliation(s)
- Indu Muraleedharan Nair
- School of Biosciences, Mahatma Gandhi University, Athirampuzha, Kottayam, 686560, India
- Department of Physiology, School of Medicine, University College Cork, Cork, T12 XF62, Ireland
| | | |
Collapse
|
17
|
Gao YH, Li X. Cholesterol metabolism: Towards a therapeutic approach for multiple sclerosis. Neurochem Int 2023; 164:105501. [PMID: 36803679 DOI: 10.1016/j.neuint.2023.105501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/17/2023]
Abstract
Growing evidence points to the importance of cholesterol in preserving brain homeostasis. Cholesterol makes up the main component of myelin in the brain, and myelin integrity is vital in demyelinating diseases such as multiple sclerosis. Because of the connection between myelin and cholesterol, the interest in cholesterol in the central nervous system increased during the last decade. In this review, we provide a detailed overview on brain cholesterol metabolism in multiple sclerosis and its role in promoting oligodendrocyte precursor cell differentiation and remyelination.
Collapse
Affiliation(s)
- Yu-Han Gao
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Xing Li
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China.
| |
Collapse
|
18
|
Liang Y, Nephew KP, Hyder SM. Cholesterol Biosynthesis Inhibitor RO 48-8071 Suppresses Growth of Epithelial Ovarian Cancer Cells in Vitro and In Vivo. JOURNAL OF CANCER SCIENCE AND CLINICAL THERAPEUTICS 2023; 7:1-8. [PMID: 38105923 PMCID: PMC10723059 DOI: 10.26502/jcsct.5079185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Introduction Epithelial Ovarian Cancer (EOC) cells express enzymes in the cholesterol biosynthetic pathway, making this pathway an attractive therapeutic target for controlling ovarian cancer. Potent small molecule inhibitors of one biosynthetic enzyme, Oxidosqualene Cyclase (OSC), have been identified, and RO 48-8071 (4'-[6-(allylmethylamino)hexyloxy]-4-bromo-2'-fluorobenzophenone fumarate) (RO), has emerged as a useful chemotherapeutic agent for breast and prostate cancer. Methods Cell viability assays were performed to determine effects of RO 48-8071 on growth of EOC cells. Aldehyde Dehydrogenase (ALDH) assay was conducted to determine the effects of drug on reducing stem cell like properties of EOC cells. Finally, xenograft studies were performed to assess the ability of RO 48-8071 to inhibit the growth of EOC cells in vivo. Results We found that short-term (24-48 h) administration of pharmacological doses of RO effectively reduced the viability of drug-resistant EOC cells (SK-OV-3 and OVCAR-3), as determined with sulforhodamine B colorimetric assays. In 7-day assays, nanomolar concentrations of RO effectively inhibited the growth of EOC cells. RO also suppressed ALDH activity, a marker of stem cells. Importantly, RO significantly suppressed growth of xenografts derived from EOC cells when given to mice intraperitoneally (20-40 mg kg-1 day-1) for 27 days once tumors reached 100 mm3 (controls: 336 + 60 mm3; treated: 171 + 20 mm3) with no toxicity to the experimental animals. Mechanistically, RO induced apoptosis in tumor cells in vivo as shown with immunohistochemistry. Conclusion Cholesterol biosynthesis inhibitor RO 48-8071 is thus a novel and potent inhibitor of human EOC, including EOC stem cells.
Collapse
Affiliation(s)
- Yayun Liang
- Dalton Cardiovascular Research Center, University of Missouri, Columbia 65211, United States
- Dept of Biomedical Sciences, University of Missouri, Columbia 65211, United States
| | - Kenneth P Nephew
- Indiana University School of Medicine, Bloomington, IN 47405, United States
| | - Salman M Hyder
- Dalton Cardiovascular Research Center, University of Missouri, Columbia 65211, United States
- Dept of Biomedical Sciences, University of Missouri, Columbia 65211, United States
| |
Collapse
|
19
|
Xia W, Wang H, Zhou X, Wang Y, Xue L, Cao B, Song J. The role of cholesterol metabolism in tumor therapy, from bench to bed. Front Pharmacol 2023; 14:928821. [PMID: 37089950 PMCID: PMC10117684 DOI: 10.3389/fphar.2023.928821] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 03/28/2023] [Indexed: 04/25/2023] Open
Abstract
Cholesterol and its metabolites have important biological functions. Cholesterol is able to maintain the physical properties of cell membrane, play an important role in cellular signaling, and cellular cholesterol levels reflect the dynamic balance between biosynthesis, uptake, efflux and esterification. Cholesterol metabolism participates in bile acid production and steroid hormone biosynthesis. Increasing evidence suggests a strict link between cholesterol homeostasis and tumors. Cholesterol metabolism in tumor cells is reprogrammed to differ significantly from normal cells, and disturbances of cholesterol balance also induce tumorigenesis and progression. Preclinical and clinical studies have shown that controlling cholesterol metabolism suppresses tumor growth, suggesting that targeting cholesterol metabolism may provide new possibilities for tumor therapy. In this review, we summarized the metabolic pathways of cholesterol in normal and tumor cells and reviewed the pre-clinical and clinical progression of novel tumor therapeutic strategy with the drugs targeting different stages of cholesterol metabolism from bench to bedside.
Collapse
Affiliation(s)
- Wenhao Xia
- Cancer Center of Peking University Third Hospital, Beijing, China
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Hao Wang
- Cancer Center of Peking University Third Hospital, Beijing, China
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| | - Xiaozhu Zhou
- Department of Clinical Pharmacy, School of Pharmacy, Capital Medical University, Beijing, China
| | - Yan Wang
- Cancer Center of Peking University Third Hospital, Beijing, China
- Third Hospital Institute of Medical Innovation and Research, Beijing, China
| | - Lixiang Xue
- Cancer Center of Peking University Third Hospital, Beijing, China
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
- Third Hospital Institute of Medical Innovation and Research, Beijing, China
- *Correspondence: Lixiang Xue, ; Baoshan Cao, ; Jiagui Song,
| | - Baoshan Cao
- Cancer Center of Peking University Third Hospital, Beijing, China
- Department of Medical Oncology and Radiation Sickness, Peking University Third Hospital, Beijing, China
- *Correspondence: Lixiang Xue, ; Baoshan Cao, ; Jiagui Song,
| | - Jiagui Song
- Cancer Center of Peking University Third Hospital, Beijing, China
- Third Hospital Institute of Medical Innovation and Research, Beijing, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University as the Third Responsibility Unit of Song Jiagui, Beijing, China
- *Correspondence: Lixiang Xue, ; Baoshan Cao, ; Jiagui Song,
| |
Collapse
|
20
|
SH S, SM H. Should oxidosqualene cyclase in the cholesterol biosynthetic pathway be considered an anti-cancer target? Front Cell Dev Biol 2022; 10:1081151. [PMID: 36582466 PMCID: PMC9792840 DOI: 10.3389/fcell.2022.1081151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/30/2022] [Indexed: 12/15/2022] Open
Affiliation(s)
| | - Hyder SM
- Department of Biomedical Sciences and Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States
| |
Collapse
|
21
|
Ediriweera MK. Use of cholesterol metabolism for anti-cancer strategies. Drug Discov Today 2022; 27:103347. [PMID: 36087905 DOI: 10.1016/j.drudis.2022.103347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/08/2022] [Accepted: 09/02/2022] [Indexed: 11/03/2022]
Abstract
Irregularities in cholesterol metabolism occur in a range of human cancers. Cholesterol precursors and derivatives support tumorigenesis and weaken immune responses. Intriguing preclinical and clinical findings demonstrate that cholesterol biosynthesis inhibition achieved by targeting major events and metabolites in cholesterol metabolism is an ideal anti-tumor strategy. Investigations addressing the effects of β-hydroxy β-methylglutaryl-CoA (HMG-CoA) reductase (HMGCR), 2,3-oxidosqualene cyclase (OSC), squalene synthase (SQS), liver X receptors (LXR), and cholesterol trafficking and esterification inhibition on cancer progression have shown encouraging results. Notably, manipulation of cholesterol metabolism strengthens the function of immune cells in the tumor microenvironment (TME). In this review, I discuss the role of cholesterol metabolism in cancer progression and the latest research related to cholesterol metabolism-based anti-cancer therapies and intend to bring this stylish biochemistry topic to the Sri Lankan research landscape.
Collapse
Affiliation(s)
- Meran Keshawa Ediriweera
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Colombo, Colombo 08, Sri Lanka.
| |
Collapse
|
22
|
Hu LP, Huang W, Wang X, Xu C, Qin WT, Li D, Tian G, Li Q, Zhou Y, Chen S, Nie HZ, Hao Y, Song J, Zhang XL, Sundquist J, Sundquist K, Li J, Jiang SH, Zhang ZG, Ji J. Terbinafine prevents colorectal cancer growth by inducing dNTP starvation and reducing immune suppression. Mol Ther 2022; 30:3284-3299. [PMID: 35765243 PMCID: PMC9552806 DOI: 10.1016/j.ymthe.2022.06.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 06/07/2022] [Accepted: 06/23/2022] [Indexed: 12/31/2022] Open
Abstract
Existing evidence indicates that gut fungal dysbiosis might play a key role in the pathogenesis of colorectal cancer (CRC). We sought to explore whether reversing the fungal dysbiosis by terbinafine, an approved antifungal drug, might inhibit the development of CRC. A population-based study from Sweden identified a total of 185 patients who received terbinafine after their CRC diagnosis and found that they had a decreased risk of death (hazard ratio = 0.50) and metastasis (hazard ratio = 0.44) compared with patients without terbinafine administration. In multiple mouse models of CRC, administration of terbinafine decreased the fungal load, the fungus-induced myeloid-derived suppressor cell (MDSC) expansion, and the tumor burden. Fecal microbiota transplantation from mice without terbinafine treatment reversed MDSC infiltration and partially restored tumor proliferation. Mechanistically, terbinafine directly impaired tumor cell proliferation by reducing the ratio of nicotinamide adenine dinucleotide phosphate (NADP+) to reduced form of nicotinamide adenine dinucleotide phosphate (NADPH), suppressing the activity of glucose-6-phosphate dehydrogenase (G6PD), resulting in nucleotide synthesis disruption, deoxyribonucleotide (dNTP) starvation, and cell-cycle arrest. Collectively, terbinafine can inhibit CRC by reversing fungal dysbiosis, suppressing tumor cell proliferation, inhibiting fungus-induced MDSC infiltration, and restoring antitumor immune response.
Collapse
Affiliation(s)
- Li-Peng Hu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wuqing Huang
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, FuZhou 350108, China
| | - Xu Wang
- Department of Radiation Oncology, Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang 212013, China
| | - Chunjie Xu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei-Ting Qin
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dongxue Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guangang Tian
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qing Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yaoqi Zhou
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Suyuan Chen
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hui-Zhen Nie
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yujun Hao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jian Song
- Department of Radiation Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xue-Li Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jan Sundquist
- Center for Primary Health Care Research, Department of Clinical Sciences, Lund University, Malmö 20502, Sweden; Department of Family Medicine and Community Health, Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kristina Sundquist
- Center for Primary Health Care Research, Department of Clinical Sciences, Lund University, Malmö 20502, Sweden; Department of Family Medicine and Community Health, Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jun Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Shu-Heng Jiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Zhi-Gang Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Jianguang Ji
- Center for Primary Health Care Research, Department of Clinical Sciences, Lund University, Malmö 20502, Sweden.
| |
Collapse
|
23
|
Terrassoux L, Claux H, Bacari S, Meignan S, Furlan A. A Bloody Conspiracy. Blood Vessels and Immune Cells in the Tumor Microenvironment. Cancers (Basel) 2022; 14:cancers14194581. [PMID: 36230504 PMCID: PMC9558972 DOI: 10.3390/cancers14194581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/10/2022] [Accepted: 09/15/2022] [Indexed: 11/29/2022] Open
Abstract
Simple Summary The tumor microenvironment has risen over the last years as a significant contributor to the failure of antitumoral strategies due to its numerous pro-tumorigenic activities. In this review, we focused on two features of this microenvironment, namely angiogenesis and immunity, which have been the targets of therapies to tackle tumors via its microenvironmental part over the last decade. Increasing our knowledge of the complex interactions within this ecosystem is mandatory to optimize these therapeutic approaches. The development of innovative experimental models is of great help in reaching this goal. Abstract Cancer progression occurs in concomitance with a profound remodeling of the cellular microenvironment. Far from being a mere passive event, the re-orchestration of interactions between the various cell types surrounding tumors highly contributes to the progression of the latter. Tumors notably recruit and stimulate the sprouting of new blood vessels through a process called neo-angiogenesis. Beyond helping the tumor cope with an increased metabolic demand associated with rapid growth, this also controls the metastatic dissemination of cancer cells and the infiltration of immune cells in the tumor microenvironment. To decipher this critical interplay for the clinical progression of tumors, the research community has developed several valuable models in the last decades. This review offers an overview of the various instrumental solutions currently available, including microfluidic chips, co-culture models, and the recent rise of organoids. We highlight the advantages of each technique and the specific questions they can address to better understand the tumor immuno-angiogenic ecosystem. Finally, we discuss this development field’s fundamental and applied perspectives.
Collapse
Affiliation(s)
- Lisa Terrassoux
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France
- Tumorigenesis and Resistance to Treatment Unit, Centre Oscar Lambret, F-59000 Lille, France
| | - Hugo Claux
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France
- Tumorigenesis and Resistance to Treatment Unit, Centre Oscar Lambret, F-59000 Lille, France
| | - Salimata Bacari
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France
- Tumorigenesis and Resistance to Treatment Unit, Centre Oscar Lambret, F-59000 Lille, France
| | - Samuel Meignan
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France
- Tumorigenesis and Resistance to Treatment Unit, Centre Oscar Lambret, F-59000 Lille, France
| | - Alessandro Furlan
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France
- Tumorigenesis and Resistance to Treatment Unit, Centre Oscar Lambret, F-59000 Lille, France
- Correspondence:
| |
Collapse
|
24
|
Vasseur S, Guillaumond F. Lipids in cancer: a global view of the contribution of lipid pathways to metastatic formation and treatment resistance. Oncogenesis 2022; 11:46. [PMID: 35945203 PMCID: PMC9363460 DOI: 10.1038/s41389-022-00420-8] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 12/13/2022] Open
Abstract
Lipids are essential constituents for malignant tumors, as they are absolutely required for tumor growth and dissemination. Provided by the tumor microenvironment (TME) or by cancer cells themselves through activation of de novo synthesis pathways, they orchestrate a large variety of pro-tumorigenic functions. Importantly, TME cells, especially immune cells, cancer-associated fibroblasts (CAFs) and cancer-associated adipocytes (CAAs), are also prone to changes in their lipid content, which hinder or promote tumor aggressiveness. In this review, we address the significant findings for lipid contribution in tumor progression towards a metastatic disease and in the poor response to therapeutic treatments. We also highlight the benefits of targeting lipid pathways in preclinical models to slow down metastasis development and overcome chemo-and immunotherapy resistance.
Collapse
Affiliation(s)
- Sophie Vasseur
- Centre de Recherche en Cancérologie de Marseille, INSERM, Aix-Marseille Université, CNRS, Institut Paoli-Calmettes, F-13009, Marseille, France
| | - Fabienne Guillaumond
- Centre de Recherche en Cancérologie de Marseille, INSERM, Aix-Marseille Université, CNRS, Institut Paoli-Calmettes, F-13009, Marseille, France.
| |
Collapse
|
25
|
Wei M, Nurjanah U, Herkilini A, Huang C, Li Y, Miyagishi M, Wu S, Kasim V. Unspliced XBP1 contributes to cholesterol biosynthesis and tumorigenesis by stabilizing SREBP2 in hepatocellular carcinoma. Cell Mol Life Sci 2022; 79:472. [PMID: 35933495 PMCID: PMC11073046 DOI: 10.1007/s00018-022-04504-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/03/2022] [Accepted: 07/22/2022] [Indexed: 11/03/2022]
Abstract
Cholesterol biosynthesis plays a critical role in rapidly proliferating tumor cells. X-box binding protein 1 (XBP1), which was first characterized as a basic leucine zipper-type transcription factor, exists in an unspliced (XBP1-u) and spliced (XBP1-s) form. Recent studies showed that unspliced XBP1 (XBP1-u) has unique biological functions independent from XBP1-s and could promote tumorigenesis; however, whether it is involved in tumor metabolic reprogramming remains unknown. Herein, we found that XBP1-u promotes tumor growth by enhancing cholesterol biosynthesis in hepatocellular carcinoma (HCC) cells. Specifically, XBP1-u colocalizes with sterol regulatory element-binding protein 2 (SREBP2) and inhibits its ubiquitination/proteasomal degradation. The ensuing stabilization of SREBP2 activates the transcription of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), a rate-limiting enzyme in cholesterol biosynthesis. We subsequently show that the XBP1-u/SREBP2/HMGCR axis is crucial for enhancing cholesterol biosynthesis and lipid accumulation as well as tumorigenesis in HCC cells. Taken together, these findings reveal a novel function of XBP1-u in promoting tumorigenesis through increased cholesterol biosynthesis in hepatocarcinoma cells. Hence, XBP1-u might be a potential target for anti-tumor therapeutic strategies that focus on cholesterol metabolism in HCC.
Collapse
Affiliation(s)
- Mankun Wei
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, 174 Shazheng Street, Shapingba, Chongqing, 400044, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Uli Nurjanah
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, 174 Shazheng Street, Shapingba, Chongqing, 400044, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Arin Herkilini
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, 174 Shazheng Street, Shapingba, Chongqing, 400044, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Can Huang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Yanjun Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, 174 Shazheng Street, Shapingba, Chongqing, 400044, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Makoto Miyagishi
- Molecular Composite Medicine Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8566, Japan
| | - Shourong Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, 174 Shazheng Street, Shapingba, Chongqing, 400044, China.
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing, 400030, China.
| | - Vivi Kasim
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, 174 Shazheng Street, Shapingba, Chongqing, 400044, China.
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
26
|
Chen Y, Guan Z, Shen G. Naples prognostic score: a novel predictor of survival in patients with HER2-positive breast cancer. Future Oncol 2022; 18:2655-2665. [PMID: 35592939 DOI: 10.2217/fon-2022-0212] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Purpose: The predictive significance of the Naples prognostic score (NPS) in HER2-positive breast cancer is unclear. Hence we sought to evaluate the relationship between NPS and the clinical outcomes in HER2-positive breast cancer patients. Methods: This study retrospectively collected and analyzed data from 173 HER2-positive breast cancer patients between August 2004 and February 2014. The Cox regression model was applied in univariate and multivariate statistical analysis. Results: In multivariate analysis, increased NPS score correlated significantly with poor overall survival (p = 0.001) and disease-free survival (p < 0.001). Conclusion: Our findings may point to NPS being a novel and reliable prognostic score system with favorable predictive ability for HER2-positive breast cancer patients.
Collapse
Affiliation(s)
- Yuye Chen
- Department of Oncology, Zhuji People's Hospital of Zhejiang Province, Zhuji, Shaoxing City, 311800, China
| | - Zheming Guan
- Weifang People's Hospital, Weifang City, 261000, China
| | - Guo Shen
- Department of General Surgery, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou City, 311202, China
| |
Collapse
|
27
|
Xuan J, Peng J, Wang S, Cai Y. Prognostic significance of Naples prognostic score in non-small-cell lung cancer patients with brain metastases. Future Oncol 2022; 18:1545-1555. [PMID: 35107367 DOI: 10.2217/fon-2021-1530] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aims: The authors aimed to evaluate the prognostic value of Naples prognostic score (NPS) in advanced non-small-cell lung cancer patients with brain metastases. Materials & methods: A total of 186 consecutive advanced non-small-cell lung cancer patients were retrospectively analyzed. Kaplan-Meier survival analysis and Cox proportional regression models were used to assess the significance of NPS in overall survival and disease-free survival. Results: Multivariate Cox proportional regression analysis revealed that NPS was a significant independent predictive indicator for overall survival (hazard ratio: 1.897; 95% CI: 1.184-3.041; p = 0.008) and disease-free survival (hazard ratio: 2.169; 95% CI: 1.367-3.44; p = 0.001). Conclusion: NPS was a powerful prognostic indicator for outcome in advanced non-small-cell lung cancer patients with brain metastases.
Collapse
Affiliation(s)
- Junmei Xuan
- Department of General medicine, Shaoxing People's Hospital, Shaoxing City, 312000, China
| | - Jianghua Peng
- Department of General medicine, Shaoxing People's Hospital, Shaoxing City, 312000, China
| | - Shuai Wang
- Department of Thoracic surgery, Yidu Central Hospital of Weifang, Weifang City, 261000, China
| | - Yaojie Cai
- Department of Neurology, Zhuji Affiliated Hospital of Shaoxing University, Shaoxing City, 312000, China
| |
Collapse
|
28
|
Zou H, Yang N, Zhang X, Chen HW. RORγ is a context-specific master regulator of cholesterol biosynthesis and an emerging therapeutic target in cancer and autoimmune diseases. Biochem Pharmacol 2022; 196:114725. [PMID: 34384758 DOI: 10.1016/j.bcp.2021.114725] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 01/04/2023]
Abstract
Aberrant cholesterol metabolism and homeostasis in the form of elevated cholesterol biosynthesis and dysregulated efflux and metabolism is well recognized as a major feature of metabolic reprogramming in solid tumors. Recent studies have emphasized on major drivers and regulators such as Myc, mutant p53, SREBP2, LXRs and oncogenic signaling pathways that play crucial roles in tumor cholesterol metabolic reprogramming. Therapeutics such as statins targeting the mevalonate pathway were tried at the clinic without showing consistent benefits to cancer patients. Nuclear receptors are prominent regulators of mammalian metabolism. Their de-regulation often drives tumorigenesis. RORγ and its immune cell-specific isoform RORγt play important functions in control of mammalian metabolism, circadian rhythm and immune responses. Although RORγ, together with its closely related members RORα and RORβ were identified initially as orphan receptors, recent studies strongly support the conclusion that specific intermediates and metabolites of cholesterol pathways serve as endogenous ligands of RORγ. More recent studies also reveal a critical role of RORγ in tumorigenesis through major oncogenic pathways including acting a new master-like regulator of tumor cholesterol biosynthesis program. Importantly, an increasing number of RORγ orthosteric and allosteric ligands are being identified that display potent activities in blocking tumor growth and autoimmune disorders in preclinical models. This review summarizes the recent preclinical and clinical progress on RORγ with emphasis on its role in reprogramming tumor cholesterol metabolism and its regulation. It will also discuss RORγ functional mechanisms, context-specificity and its value as a therapeutic target for effective cancer treatment.
Collapse
Affiliation(s)
- Hongye Zou
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Sacramento, CA, USA
| | - Nianxin Yang
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Sacramento, CA, USA
| | - Xiong Zhang
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Sacramento, CA, USA
| | - Hong-Wu Chen
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Sacramento, CA, USA; UC Davis Comprehensive Cancer Center, University of California, Davis, Sacramento, CA, USA; VA Northern California Health Care System, Mather, CA, USA.
| |
Collapse
|
29
|
Murer L, Volle R, Andriasyan V, Petkidis A, Gomez-Gonzalez A, Yang L, Meili N, Suomalainen M, Bauer M, Policarpo Sequeira D, Olszewski D, Georgi F, Kuttler F, Turcatti G, Greber UF. Identification of broad anti-coronavirus chemical agents for repurposing against SARS-CoV-2 and variants of concern. CURRENT RESEARCH IN VIROLOGICAL SCIENCE 2022; 3:100019. [PMID: 35072124 PMCID: PMC8760634 DOI: 10.1016/j.crviro.2022.100019] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/04/2022] [Accepted: 01/04/2022] [Indexed: 01/18/2023]
Abstract
Endemic human coronaviruses (hCoVs) 229E and OC43 cause respiratory disease with recurrent infections, while severe acute respiratory syndrome (SARS)-CoV-2 spreads across the world with impact on health and societies. Here, we report an image-based multicycle infection procedure with α-coronavirus hCoV-229E-eGFP in an arrayed chemical library screen of 5440 clinical and preclinical compounds. Toxicity counter selection and challenge with the β-coronaviruses OC43 and SARS-CoV-2 in tissue culture and human airway epithelial explant cultures (HAEEC) identified four FDA-approved compounds with oral availability. Methylene blue (MB, used for the treatment of methemoglobinemia), Mycophenolic acid (MPA, used in organ transplantation) and the anti-fungal agent Posaconazole (POS) had the broadest anti-CoV spectrum. They inhibited the shedding of SARS-CoV-2 and variants-of-concern (alpha, beta, gamma, delta) from HAEEC in either pre- or post exposure regimens at clinically relevant concentrations. Co-treatment of cultured cells with MB and the FDA-approved SARS-CoV-2 RNA-polymerase inhibitor Remdesivir reduced the effective anti-viral concentrations of MB by 2-fold, and Remdesivir by 4 to 10-fold, indicated by BLISS independence synergy modelling. Neither MB, nor MPA, nor POS affected the cell delivery of SARS-CoV-2 or OC43 (+)sense RNA, but blocked subsequent viral RNA accumulation in cells. Unlike Remdesivir, MB, MPA or POS did not reduce the release of viral RNA in post exposure regimen, thus indicating infection inhibition at a post-replicating step as well. In summary, the data emphasize the power of unbiased, full cycle compound screens to identify and repurpose broadly acting drugs against coronaviruses.
Collapse
Affiliation(s)
- Luca Murer
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Romain Volle
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Vardan Andriasyan
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Anthony Petkidis
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Alfonso Gomez-Gonzalez
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Liliane Yang
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Nicole Meili
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Maarit Suomalainen
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Michael Bauer
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Daniela Policarpo Sequeira
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Dominik Olszewski
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Fanny Georgi
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Fabien Kuttler
- Biomolecular Screening Facility, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 15, 1015, Lausanne, Switzerland
| | - Gerardo Turcatti
- Biomolecular Screening Facility, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 15, 1015, Lausanne, Switzerland
| | - Urs F Greber
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| |
Collapse
|
30
|
Liang Y, Besch-Williford C, Hyder SM. The estrogen receptor beta agonist liquiritigenin enhances the inhibitory effects of the cholesterol biosynthesis inhibitor RO 48-8071 on hormone-dependent breast-cancer growth. Breast Cancer Res Treat 2022; 192:53-63. [PMID: 35037188 DOI: 10.1007/s10549-021-06487-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 12/04/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE Most hormone-dependent human breast cancers develop resistance to anti-hormone therapy over time. Our goal was to identify novel treatment strategies to avoid this drug resistance and thereby control hormone-dependent breast cancer. METHODS Sulforhodamine B assays were used to measure viability of cultured human breast-cancer cells. BT-474 cell tumor xenografts in nude mice were used to evaluate tumor growth. Immunohistochemistry was used to assess estrogen-receptor and angiogenesis-marker expression, as well as apoptosis, in tumor-xenograft tissues. RESULTS MCF-7 and BT-474 breast-cancer cells treated with either RO 48-8071 <[4'-[6-(Allylmethylamino)hexyloxy]-4-bromo-2'-fluorobenzophenone fumarate] [RO]; a small-molecule inhibitor of oxidosqualene cyclase, a key enzyme in cholesterol biosynthesis> or liquiritigenin [LQ; an estrogen receptor (ER) β agonist] exhibited significantly reduced viability in vitro. RO + LQ treatment further significantly reduced cell viability. Administration of RO, LQ, or RO + LQ significantly inhibited growth of BT-474 tumor xenografts in vivo. RO, LQ, or RO + LQ reduced ERα but induced ER β expression in tumor xenografts. Both compounds significantly reduced angiogenesis-marker expression and increased apoptosis in tumor xenografts; use of RO + LQ significantly enhanced the effects observed with a single agent. CONCLUSION The ERβ ligand LQ significantly enhanced the inhibition of breast-cancer cell viability and tumor-xenograft growth by RO. The anti-tumor properties of RO may in part be due to an off-target effect that reduces ERα and increases ERβ, the latter of which can then interact with LQ to promote anti-proliferative effects. The RO + LQ combination may have value when considering novel treatment strategies for hormone-dependent breast cancer.
Collapse
Affiliation(s)
- Yayun Liang
- Dalton Cardiovascular Research Center, University of Missouri, 134 Research Park Drive, Columbia, MO, 65211, USA.,Department of Biomedical Sciences, University of Missouri, Columbia, MO, 65211, USA
| | | | - Salman M Hyder
- Dalton Cardiovascular Research Center, University of Missouri, 134 Research Park Drive, Columbia, MO, 65211, USA. .,Department of Biomedical Sciences, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
31
|
Coradini D. De novo cholesterol biosynthesis: an additional therapeutic target for the treatment of postmenopausal breast cancer with excessive adipose tissue. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2022; 3:841-852. [PMID: 36654818 PMCID: PMC9834634 DOI: 10.37349/etat.2022.00116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/08/2022] [Indexed: 12/29/2022] Open
Abstract
The onset and development of breast cancer in postmenopausal women are associated with closely related individual-dependent factors, including weight gain and high levels of circulating androgens. Adipose tissue is the most peripheral site of aromatase enzyme synthesis; therefore, the excessive accumulation of visceral fat results in increased androgens aromatization and estradiol production that provides the microenvironment favorable to tumorigenesis in mammary epithelial cells expressing estrogen receptors (ERs). Moreover, to meet the increased requirement of cholesterol for cell membrane assembly and the production of steroid hormones to sustain their proliferation, ER-positive cells activate de novo cholesterol biosynthesis and subsequent steroidogenesis. Several approaches have been followed to neutralize the de novo cholesterol synthesis, including specific enzyme inhibitors, statins, and, more recently, metformin. Cumulating evidence indicated that inhibiting cholesterol biosynthesis by statins and metformin may be a promising therapeutic strategy to block breast cancer progression. Unlike antiestrogens and aromatase inhibitors (AIs) which compete for binding to ER and inhibit androgens aromatization, respectively, statins block the production of mevalonic acid by inhibiting the activity of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, and metformin hampers the activation of the sterol regulatory element-binding protein 2 (SREBP2) transcription factor, thus inhibiting the synthesis of several enzymes involved in cholesterol biosynthesis. Noteworthy, statins and metformin not only improve the prognosis of overweight patients with ER-positive cancer but also improve the prognosis of patients with triple-negative breast cancer, the aggressive tumor subtype that lacks, at present, specific therapy.
Collapse
Affiliation(s)
- Danila Coradini
- Department of Clinical Sciences and Community Health, Campus Cascina Rosa, University of Milan, 20133 Milan, Italy,Correspondence: Danila Coradini, Department of Clinical Sciences and Community Health, Campus Cascina Rosa, University of Milan, Via Vanzetti 5, 20133 Milan, Italy.
| |
Collapse
|
32
|
Ding Z, Gu Y, Huang D, Zhou H, Zhu T, Luo X, Zhang S, Zhang S, Qian Y. Cholesterol biosynthesis inhibitor RO 48‑8071 inhibits pancreatic ductal adenocarcinoma cell viability by deactivating the JNK and ERK/MAPK signaling pathway. Mol Med Rep 2021; 24:828. [PMID: 34590153 PMCID: PMC8503744 DOI: 10.3892/mmr.2021.12468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 07/12/2021] [Indexed: 11/08/2022] Open
Abstract
The morbidity and mortality of pancreatic cancer have been continuously increasing, causing seven deaths per 100,000 individuals/year. At present, effective therapies are severely lacking, thus, highlighting the importance of developing novel therapeutic approaches. The present study aimed to investigate the inhibitory roles of the 2,3-oxidosqualene cyclase inhibitor, RO 48-8071 (RO), on pancreatic ductal adenocarcinoma. RO was used to treat the pancreatic cancer cell line (PANC-1) in vitro to examine the effects of RO on cell viability, as well as to determine its potential molecular mechanism. Moreover, experiments in a xenograft model of subcutaneous tumors generated by injecting PANC-1 cells hypodermically into nude mice were performed to observe the inhibition of RO on tumor growth. It was found that RO inhibited PANC-1 cell viability when treatment was given for 24, 48 and 72 h. The in vivo study demonstrated that RO markedly inhibited subcutaneous tumor growth in nude mice. Further studies revealed that RO could induce cell cycle arrest in the G1 phase by regulating p27, cyclin B1 and cyclin E expression to inhibit PANC-1 cell viability. Moreover, RO inactivated the JNK and ERK MAPK signaling pathway by decreasing the phosphorylation levels of JNK and ERK. Collectively, the present study demonstrated that RO served anti-pancreatic cancer roles in vitro and in vivo, which may provide new ideas and facilitate the development of novel treatment options for pancreatic cancer.
Collapse
Affiliation(s)
- Zhen Ding
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Yanan Gu
- Department of Biochemistry and Molecular Biology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Dake Huang
- Comprehensive Laboratory, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Hong Zhou
- Department of Biochemistry and Molecular Biology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Tingting Zhu
- Department of Biochemistry and Molecular Biology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Xin Luo
- Department of Biochemistry and Molecular Biology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Sumei Zhang
- Department of Biochemistry and Molecular Biology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Shengquan Zhang
- Department of Biochemistry and Molecular Biology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yeben Qian
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| |
Collapse
|
33
|
Giacomini I, Gianfanti F, Desbats MA, Orso G, Berretta M, Prayer-Galetti T, Ragazzi E, Cocetta V. Cholesterol Metabolic Reprogramming in Cancer and Its Pharmacological Modulation as Therapeutic Strategy. Front Oncol 2021; 11:682911. [PMID: 34109128 PMCID: PMC8181394 DOI: 10.3389/fonc.2021.682911] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/06/2021] [Indexed: 12/14/2022] Open
Abstract
Cholesterol is a ubiquitous sterol with many biological functions, which are crucial for proper cellular signaling and physiology. Indeed, cholesterol is essential in maintaining membrane physical properties, while its metabolism is involved in bile acid production and steroid hormone biosynthesis. Additionally, isoprenoids metabolites of the mevalonate pathway support protein-prenylation and dolichol, ubiquinone and the heme a biosynthesis. Cancer cells rely on cholesterol to satisfy their increased nutrient demands and to support their uncontrolled growth, thus promoting tumor development and progression. Indeed, transformed cells reprogram cholesterol metabolism either by increasing its uptake and de novo biosynthesis, or deregulating the efflux. Alternatively, tumor can efficiently accumulate cholesterol into lipid droplets and deeply modify the activity of key cholesterol homeostasis regulators. In light of these considerations, altered pathways of cholesterol metabolism might represent intriguing pharmacological targets for the development of exploitable strategies in the context of cancer therapy. Thus, this work aims to discuss the emerging evidence of in vitro and in vivo studies, as well as clinical trials, on the role of cholesterol pathways in the treatment of cancer, starting from already available cholesterol-lowering drugs (statins or fibrates), and moving towards novel potential pharmacological inhibitors or selective target modulators.
Collapse
Affiliation(s)
- Isabella Giacomini
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Federico Gianfanti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, VIMM, Padova, Italy
| | | | - Genny Orso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Massimiliano Berretta
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Tommaso Prayer-Galetti
- Department of Surgery, Oncology and Gastroenterology - Urology, University of Padova, Padova, Italy
| | - Eugenio Ragazzi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Veronica Cocetta
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| |
Collapse
|
34
|
Paradela LS, Wall RJ, Carvalho S, Chemi G, Corpas-Lopez V, Moynihan E, Bello D, Patterson S, Güther MLS, Fairlamb AH, Ferguson MAJ, Zuccotto F, Martin J, Gilbert IH, Wyllie S. Multiple unbiased approaches identify oxidosqualene cyclase as the molecular target of a promising anti-leishmanial. Cell Chem Biol 2021; 28:711-721.e8. [PMID: 33691122 PMCID: PMC8153249 DOI: 10.1016/j.chembiol.2021.02.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/25/2021] [Accepted: 02/11/2021] [Indexed: 12/31/2022]
Abstract
Phenotypic screening identified a benzothiophene compound with activity against Leishmania donovani, the causative agent of visceral leishmaniasis. Using multiple orthogonal approaches, oxidosqualene cyclase (OSC), a key enzyme of sterol biosynthesis, was identified as the target of this racemic compound and its enantiomers. Whole genome sequencing and screening of a genome-wide overexpression library confirmed that OSC gene amplification is associated with resistance to compound 1. Introduction of an ectopic copy of the OSC gene into wild-type cells reduced susceptibility to these compounds confirming the role of this enzyme in resistance. Biochemical analyses demonstrated the accumulation of the substrate of OSC and depletion of its product in compound (S)-1-treated-promastigotes and cell-free membrane preparations, respectively. Thermal proteome profiling confirmed that compound (S)-1 binds directly to OSC. Finally, modeling and docking studies identified key interactions between compound (S)-1 and the LdOSC active site. Strategies to improve the potency for this promising anti-leishmanial are proposed. Genetics and chemo-proteomics identify the target of a promising anti-leishmanial Biochemical assays confirm the direct inhibition of oxidosqualene cyclase in cells Docking and modeling studies identify key interactions between compound and target Strategies to improve the potency of this benzothiophene are proposed
Collapse
Affiliation(s)
- Luciana S Paradela
- Division of Biological Chemistry and Drug Discovery, Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Richard J Wall
- Division of Biological Chemistry and Drug Discovery, Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Sandra Carvalho
- Division of Biological Chemistry and Drug Discovery, Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Giulia Chemi
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Victoriano Corpas-Lopez
- Division of Biological Chemistry and Drug Discovery, Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Eoin Moynihan
- Division of Biological Chemistry and Drug Discovery, Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Davide Bello
- Division of Biological Chemistry and Drug Discovery, Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Stephen Patterson
- Division of Biological Chemistry and Drug Discovery, Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Maria Lucia S Güther
- Division of Biological Chemistry and Drug Discovery, Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Alan H Fairlamb
- Division of Biological Chemistry and Drug Discovery, Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Michael A J Ferguson
- Division of Biological Chemistry and Drug Discovery, Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Fabio Zuccotto
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Julio Martin
- Global Health R&D, GlaxoSmithKline, Tres Cantos 28760, Spain
| | - Ian H Gilbert
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Susan Wyllie
- Division of Biological Chemistry and Drug Discovery, Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK.
| |
Collapse
|
35
|
Fu Y, Zou T, Shen X, Nelson PJ, Li J, Wu C, Yang J, Zheng Y, Bruns C, Zhao Y, Qin L, Dong Q. Lipid metabolism in cancer progression and therapeutic strategies. MedComm (Beijing) 2021; 2:27-59. [PMID: 34766135 PMCID: PMC8491217 DOI: 10.1002/mco2.27] [Citation(s) in RCA: 167] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/17/2020] [Accepted: 07/23/2020] [Indexed: 12/24/2022] Open
Abstract
Dysregulated lipid metabolism represents an important metabolic alteration in cancer. Fatty acids, cholesterol, and phospholipid are the three most prevalent lipids that act as energy producers, signaling molecules, and source material for the biogenesis of cell membranes. The enhanced synthesis, storage, and uptake of lipids contribute to cancer progression. The rewiring of lipid metabolism in cancer has been linked to the activation of oncogenic signaling pathways and cross talk with the tumor microenvironment. The resulting activity favors the survival and proliferation of tumor cells in the harsh conditions within the tumor. Lipid metabolism also plays a vital role in tumor immunogenicity via effects on the function of the noncancer cells within the tumor microenvironment, especially immune-associated cells. Targeting altered lipid metabolism pathways has shown potential as a promising anticancer therapy. Here, we review recent evidence implicating the contribution of lipid metabolic reprogramming in cancer to cancer progression, and discuss the molecular mechanisms underlying lipid metabolism rewiring in cancer, and potential therapeutic strategies directed toward lipid metabolism in cancer. This review sheds new light to fully understanding of the role of lipid metabolic reprogramming in the context of cancer and provides valuable clues on therapeutic strategies targeting lipid metabolism in cancer.
Collapse
Affiliation(s)
- Yan Fu
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Tiantian Zou
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Xiaotian Shen
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Peter J. Nelson
- Medical Clinic and Policlinic IVLudwig‐Maximilian‐University (LMU)MunichGermany
| | - Jiahui Li
- General, Visceral and Cancer SurgeryUniversity Hospital of CologneCologneGermany
| | - Chao Wu
- Department of General Surgery, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jimeng Yang
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Yan Zheng
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Christiane Bruns
- General, Visceral and Cancer SurgeryUniversity Hospital of CologneCologneGermany
| | - Yue Zhao
- General, Visceral and Cancer SurgeryUniversity Hospital of CologneCologneGermany
| | - Lunxiu Qin
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Qiongzhu Dong
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| |
Collapse
|
36
|
Matsushita Y, Nakagawa H, Koike K. Lipid Metabolism in Oncology: Why It Matters, How to Research, and How to Treat. Cancers (Basel) 2021; 13:474. [PMID: 33530546 PMCID: PMC7865757 DOI: 10.3390/cancers13030474] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 12/11/2022] Open
Abstract
Lipids in our body, which are mainly composed of fatty acids, triacylglycerides, sphingolipids, phospholipids, and cholesterol, play important roles at the cellular level. In addition to being energy sources and structural components of biological membranes, several types of lipids serve as signaling molecules or secondary messengers. Metabolic reprogramming has been recognized as a hallmark of cancer, but changes in lipid metabolism in cancer have received less attention compared to glucose or glutamine metabolism. However, recent innovations in mass spectrometry- and chromatography-based lipidomics technologies have increased our understanding of the role of lipids in cancer. Changes in lipid metabolism, so-called "lipid metabolic reprogramming", can affect cellular functions including the cell cycle, proliferation, growth, and differentiation, leading to carcinogenesis. Moreover, interactions between cancer cells and adjacent immune cells through altered lipid metabolism are known to support tumor growth and progression. Characterization of cancer-specific lipid metabolism can be used to identify novel metabolic targets for cancer treatment, and indeed, several clinical trials are currently underway. Thus, we discuss the latest findings on the roles of lipid metabolism in cancer biology and introduce current advances in lipidomics technologies, focusing on their applications in cancer research.
Collapse
Affiliation(s)
| | - Hayato Nakagawa
- Department of Gastroenterology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; (Y.M.); (K.K.)
| | | |
Collapse
|
37
|
Wu J, Guo L, Qiu X, Ren Y, Li F, Cui W, Song S. Genkwadaphnin inhibits growth and invasion in hepatocellular carcinoma by blocking DHCR24-mediated cholesterol biosynthesis and lipid rafts formation. Br J Cancer 2020; 123:1673-1685. [PMID: 32958824 PMCID: PMC7686505 DOI: 10.1038/s41416-020-01085-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 07/23/2020] [Accepted: 09/02/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The liver is the central organ for cholesterol homoeostasis, and its dysfunction might cause liver pathological alterations including hepatocellular carcinomas (HCCs). 3β-hydroxysteroid-Δ24 reductase (DHCR24), a crucial enzyme of cholesterol biosynthetic pathway, is involved in lipid rafts formation. Genkwadaphnin (GD) is a daphnane diterpene isolated from the flower buds of Daphne genkwa Siebold et Zuccarini (Thymelaeaceae). METHODS We evaluated in vitro and in vivo effect of GD using HCC cells and BALB/c nude mice. Microarray assays were used to identify the differential genes by GD. DHCR24 expression and activity, cholesterol level, lipid rafts structure and the role of DHCR24 in human HCC specimens were tested by various molecular biology techniques. RESULTS High expression of DHCR24 in human HCC specimens was correlated with poor clinical outcome. Interfering DHCR24 altered growth and migration of HCC cells. GD inhibited growth and metastasis of HCC cells both in vivo and in vitro. GD suppressed DHCR24 expression and activity, as well as DHCR24-mediated cholesterol biosynthesis and lipid rafts formation, then further inhibited HCC cell invasion and migration. CONCLUSIONS Our data suggest that DHCR24-mediated cholesterol metabolism might be an effective therapeutic strategy in HCC, and natural product GD might be a promising agent for HCC therapy.
Collapse
Affiliation(s)
- Jie Wu
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Ling Guo
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Xiaoran Qiu
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Yong Ren
- Department of Pathology, Central Theater Command General Hospital PLA, Wuhan, Hubei, 430070, People's Republic of China
| | - Feifei Li
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Wei Cui
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China.
| | - Shaojiang Song
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China.
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China.
| |
Collapse
|
38
|
The MARCH6-SQLE Axis Controls Endothelial Cholesterol Homeostasis and Angiogenic Sprouting. Cell Rep 2020; 32:107944. [DOI: 10.1016/j.celrep.2020.107944] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/23/2020] [Accepted: 07/01/2020] [Indexed: 12/17/2022] Open
|
39
|
Michalak M, Katzenmaier EM, Roeckel N, Woerner SM, Fuchs V, Warnken U, Yuan YP, Bork P, Neu-Yilik G, Kulozik A, von Knebel Doeberitz M, Kloor M, Kopitz J, Gebert J. (Phospho)proteomic Profiling of Microsatellite Unstable CRC Cells Reveals Alterations in Nuclear Signaling and Cholesterol Metabolism Caused by Frameshift Mutation of NMD Regulator UPF3A. Int J Mol Sci 2020; 21:ijms21155234. [PMID: 32718059 PMCID: PMC7432364 DOI: 10.3390/ijms21155234] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/13/2020] [Accepted: 07/20/2020] [Indexed: 12/13/2022] Open
Abstract
DNA mismatch repair-deficient colorectal cancers (CRCs) accumulate numerous frameshift mutations at repetitive sequences recognized as microsatellite instability (MSI). When coding mononucleotide repeats (cMNRs) are affected, tumors accumulate frameshift mutations and premature termination codons (PTC) potentially leading to truncated proteins. Nonsense-mediated RNA decay (NMD) can degrade PTC-containing transcripts and protect from such faulty proteins. As it also regulates normal transcripts and cellular physiology, we tested whether NMD genes themselves are targets of MSI frameshift mutations. A high frequency of cMNR frameshift mutations in the UPF3A gene was found in MSI CRC cell lines (67.7%), MSI colorectal adenomas (55%) and carcinomas (63%). In normal colonic crypts, UPF3A expression was restricted to single chromogranin A-positive cells. SILAC-based proteomic analysis of KM12 CRC cells revealed UPF3A-dependent down-regulation of several enzymes involved in cholesterol biosynthesis. Furthermore, reconstituted UPF3A expression caused alterations of 85 phosphosites in 52 phosphoproteins. Most of them (38/52, 73%) reside in nuclear phosphoproteins involved in regulation of gene expression and RNA splicing. Since UPF3A mutations can modulate the (phospho)proteomic signature and expression of enzymes involved in cholesterol metabolism in CRC cells, UPF3A may influence other processes than NMD and loss of UPF3A expression might provide a growth advantage to MSI CRC cells.
Collapse
Affiliation(s)
- Malwina Michalak
- Department of Applied Tumor Biology, Institute of Pathology, Heidelberg University Hospital, Im Neuenheimer Feld 224, 69120 Heidelberg, Germany; (M.M.); (E.-M.K.); (N.R.); (V.F.); (M.v.K.D.); (M.K.); (J.K.)
- Molecular Medicine Partnership Unit, Medical Faculty of the University of Heidelberg and European Molecular Biology Laboratory, 69120 Heidelberg, Germany; (S.M.W.); (P.B.); (G.N.-Y.); (A.K.)
- Department of Pediatric Oncology, Hematology and Immunology, Children’s Hospital, University of Heidelberg, Im Neuenheimer Feld 430, 69120 Heidelberg, Germany
| | - Eva-Maria Katzenmaier
- Department of Applied Tumor Biology, Institute of Pathology, Heidelberg University Hospital, Im Neuenheimer Feld 224, 69120 Heidelberg, Germany; (M.M.); (E.-M.K.); (N.R.); (V.F.); (M.v.K.D.); (M.K.); (J.K.)
- Molecular Medicine Partnership Unit, Medical Faculty of the University of Heidelberg and European Molecular Biology Laboratory, 69120 Heidelberg, Germany; (S.M.W.); (P.B.); (G.N.-Y.); (A.K.)
| | - Nina Roeckel
- Department of Applied Tumor Biology, Institute of Pathology, Heidelberg University Hospital, Im Neuenheimer Feld 224, 69120 Heidelberg, Germany; (M.M.); (E.-M.K.); (N.R.); (V.F.); (M.v.K.D.); (M.K.); (J.K.)
| | - Stefan M. Woerner
- Molecular Medicine Partnership Unit, Medical Faculty of the University of Heidelberg and European Molecular Biology Laboratory, 69120 Heidelberg, Germany; (S.M.W.); (P.B.); (G.N.-Y.); (A.K.)
- Department of Internal Medicine I, Endocrinology and Metabolism, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Vera Fuchs
- Department of Applied Tumor Biology, Institute of Pathology, Heidelberg University Hospital, Im Neuenheimer Feld 224, 69120 Heidelberg, Germany; (M.M.); (E.-M.K.); (N.R.); (V.F.); (M.v.K.D.); (M.K.); (J.K.)
- Molecular Medicine Partnership Unit, Medical Faculty of the University of Heidelberg and European Molecular Biology Laboratory, 69120 Heidelberg, Germany; (S.M.W.); (P.B.); (G.N.-Y.); (A.K.)
| | - Uwe Warnken
- Clinical Cooperation Unit Neurooncology, DKFZ (German Cancer Research Center), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany;
| | - Yan P. Yuan
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany;
| | - Peer Bork
- Molecular Medicine Partnership Unit, Medical Faculty of the University of Heidelberg and European Molecular Biology Laboratory, 69120 Heidelberg, Germany; (S.M.W.); (P.B.); (G.N.-Y.); (A.K.)
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany;
- Max-Delbrück-Centre for Molecular Medicine, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Gabriele Neu-Yilik
- Molecular Medicine Partnership Unit, Medical Faculty of the University of Heidelberg and European Molecular Biology Laboratory, 69120 Heidelberg, Germany; (S.M.W.); (P.B.); (G.N.-Y.); (A.K.)
- Department of Pediatric Oncology, Hematology and Immunology, Children’s Hospital, University of Heidelberg, Im Neuenheimer Feld 430, 69120 Heidelberg, Germany
| | - Andreas Kulozik
- Molecular Medicine Partnership Unit, Medical Faculty of the University of Heidelberg and European Molecular Biology Laboratory, 69120 Heidelberg, Germany; (S.M.W.); (P.B.); (G.N.-Y.); (A.K.)
- Department of Pediatric Oncology, Hematology and Immunology, Children’s Hospital, University of Heidelberg, Im Neuenheimer Feld 430, 69120 Heidelberg, Germany
| | - Magnus von Knebel Doeberitz
- Department of Applied Tumor Biology, Institute of Pathology, Heidelberg University Hospital, Im Neuenheimer Feld 224, 69120 Heidelberg, Germany; (M.M.); (E.-M.K.); (N.R.); (V.F.); (M.v.K.D.); (M.K.); (J.K.)
- Molecular Medicine Partnership Unit, Medical Faculty of the University of Heidelberg and European Molecular Biology Laboratory, 69120 Heidelberg, Germany; (S.M.W.); (P.B.); (G.N.-Y.); (A.K.)
- Clinical Cooperation Unit Applied Tumor Biology, DKFZ (German Cancer Research Center) Heidelberg, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Matthias Kloor
- Department of Applied Tumor Biology, Institute of Pathology, Heidelberg University Hospital, Im Neuenheimer Feld 224, 69120 Heidelberg, Germany; (M.M.); (E.-M.K.); (N.R.); (V.F.); (M.v.K.D.); (M.K.); (J.K.)
- Molecular Medicine Partnership Unit, Medical Faculty of the University of Heidelberg and European Molecular Biology Laboratory, 69120 Heidelberg, Germany; (S.M.W.); (P.B.); (G.N.-Y.); (A.K.)
- Clinical Cooperation Unit Applied Tumor Biology, DKFZ (German Cancer Research Center) Heidelberg, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Jürgen Kopitz
- Department of Applied Tumor Biology, Institute of Pathology, Heidelberg University Hospital, Im Neuenheimer Feld 224, 69120 Heidelberg, Germany; (M.M.); (E.-M.K.); (N.R.); (V.F.); (M.v.K.D.); (M.K.); (J.K.)
- Molecular Medicine Partnership Unit, Medical Faculty of the University of Heidelberg and European Molecular Biology Laboratory, 69120 Heidelberg, Germany; (S.M.W.); (P.B.); (G.N.-Y.); (A.K.)
- Clinical Cooperation Unit Applied Tumor Biology, DKFZ (German Cancer Research Center) Heidelberg, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Johannes Gebert
- Department of Applied Tumor Biology, Institute of Pathology, Heidelberg University Hospital, Im Neuenheimer Feld 224, 69120 Heidelberg, Germany; (M.M.); (E.-M.K.); (N.R.); (V.F.); (M.v.K.D.); (M.K.); (J.K.)
- Molecular Medicine Partnership Unit, Medical Faculty of the University of Heidelberg and European Molecular Biology Laboratory, 69120 Heidelberg, Germany; (S.M.W.); (P.B.); (G.N.-Y.); (A.K.)
- Clinical Cooperation Unit Applied Tumor Biology, DKFZ (German Cancer Research Center) Heidelberg, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Correspondence: ; Tel.: +49-6221-564223
| |
Collapse
|
40
|
Cholesterol metabolism: New functions and therapeutic approaches in cancer. Biochim Biophys Acta Rev Cancer 2020; 1874:188394. [PMID: 32698040 DOI: 10.1016/j.bbcan.2020.188394] [Citation(s) in RCA: 207] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/08/2020] [Accepted: 07/12/2020] [Indexed: 02/05/2023]
Abstract
Cholesterol and its metabolites (precursors and derivatives) play an important role in cancer. In recent years, numerous studies have reported the functions of cholesterol metabolism in the regulation of tumor biological processes, especially oncogenic signaling pathways, ferroptosis, and tumor microenvironment. Preclinical studies have over the years indicated the inhibitory effects of blocking cholesterol synthesis and uptake on tumor formation and growth. Besides, some new cholesterol metabolic molecules such as SOAT1, SQLE, and NPC1 have recently emerged as promising drug targets for cancer treatment. Here, we systematically review the roles of cholesterol and its metabolites, and the latest advances in cancer therapy targeting cholesterol metabolism.
Collapse
|
41
|
The Pivotal Role of the Dysregulation of Cholesterol Homeostasis in Cancer: Implications for Therapeutic Targets. Cancers (Basel) 2020; 12:cancers12061410. [PMID: 32486083 DOI: 10.3390/cancers12061410] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/23/2020] [Accepted: 05/28/2020] [Indexed: 12/12/2022] Open
Abstract
Cholesterol plays an important role in cellular homeostasis by maintaining the rigidity of cell membranes, providing a medium for signaling transduction, and being converted into other vital macromolecules, such as sterol hormones and bile acids. Epidemiological studies have shown the correlation between cholesterol content and cancer incidence worldwide. Accumulating evidence has shown the emerging roles of the dysregulation of cholesterol metabolism in cancer development. More specifically, recent reports have shown the distinct role of cholesterol in the suppression of immune cells, regulation of cell survival, and modulation of cancer stem cells in cancer. Here, we provide a comprehensive review of the epidemiological analysis, functional roles, and mechanistic action of cholesterol homeostasis in regard to its contribution to cancer development. Based on the existing data, cholesterol homeostasis is identified to be a new key player in cancer pathogenesis. Lastly, we also discuss the therapeutic implications of natural compounds and cholesterol-lowering drugs in cancer prevention and treatment. In conclusion, intervention in cholesterol metabolism may offer a new therapeutic avenue for cancer treatment.
Collapse
|
42
|
Leitão MIPS, Rama Raju B, Cerqueira NMFSA, Sousa MJ, Gonçalves MST. Benzo[a]phenoxazinium chlorides: Synthesis, antifungal activity, in silico studies and evaluation as fluorescent probes. Bioorg Chem 2020; 98:103730. [PMID: 32199304 DOI: 10.1016/j.bioorg.2020.103730] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/05/2020] [Accepted: 03/05/2020] [Indexed: 12/16/2022]
Abstract
Four new benzo[a]phenoxazinium chlorides with combinations of chloride, ethyl ester and methyl as terminals of the amino substituents were synthesized. These compounds were characterized and their optical properties were studied in absolute dry ethanol and water. Their antiproliferative activity was tested against Saccharomyces cerevisiae in a broth microdilution assay, along with an array of 36 other benzo[a]phenoxazinium chlorides. Minimum Inhibitory Concentration (MIC) values between 1.56 and >200 µM were observed. Fluorescence microscopy studies, used to assess the intracellular distribution of the dyes, showed that these benzo[a]phenoxazinium chlorides function as efficient and site specific probes for the detection of the vacuole membrane. The added advantage of some of the compounds, that displayed the lower MIC values, was the simultaneous staining of both the vacuole membrane and the perinuclear membrane of endoplasmic reticulum (ER). Molecular docking studies were performed on the human membrane protein oxidosqualene cyclase (OSC), using the crystal structure available on PDB (code 1W6K). The results showed that these most active compounds accommodated better in the active sites of ER enzyme OSC suggesting this enzyme as a potential target. As a whole, the results demonstrate that the benzo[a]phenoxazinium chlorides are interesting alternatives to the available commercial dyes. Changes in the substituents of these compounds can tailor both their staining specificity and antimicrobial activity.
Collapse
Affiliation(s)
- Maria Inês P S Leitão
- Centre of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; Centre of Molecular and Environmental Biology/Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - B Rama Raju
- Centre of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; Centre of Physics, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Nuno M F S A Cerqueira
- REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Maria João Sousa
- Centre of Molecular and Environmental Biology/Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - M Sameiro T Gonçalves
- Centre of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
43
|
Huang B, Song BL, Xu C. Cholesterol metabolism in cancer: mechanisms and therapeutic opportunities. Nat Metab 2020; 2:132-141. [PMID: 32694690 DOI: 10.1038/s42255-020-0174-0] [Citation(s) in RCA: 529] [Impact Index Per Article: 105.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 01/17/2020] [Indexed: 12/16/2022]
Abstract
Cholesterol metabolism produces essential membrane components as well as metabolites with a variety of biological functions. In the tumour microenvironment, cell-intrinsic and cell-extrinsic cues reprogram cholesterol metabolism and consequently promote tumourigenesis. Cholesterol-derived metabolites play complex roles in supporting cancer progression and suppressing immune responses. Preclinical and clinical studies have shown that manipulating cholesterol metabolism inhibits tumour growth, reshapes the immunological landscape and reinvigorates anti-tumour immunity. Here, we review cholesterol metabolism in cancer cells, its role in cancer progression and the mechanisms through which cholesterol metabolites affect immune cells in the tumour microenvironment. We also discuss therapeutic strategies aimed at interfering with cholesterol metabolism, and how the combination of such approaches with existing anti-cancer therapies can have synergistic effects, thus offering new therapeutic opportunities.
Collapse
Affiliation(s)
- Binlu Huang
- State Key Laboratory of Molecular Biology, Shanghai Science Research Center, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Bao-Liang Song
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Chenqi Xu
- State Key Laboratory of Molecular Biology, Shanghai Science Research Center, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
44
|
Hu LD, Wang J, Chen XJ, Yan YB. Lanosterol modulates proteostasis via dissolving cytosolic sequestosomes/aggresome-like induced structures. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2020; 1867:118617. [PMID: 31785334 DOI: 10.1016/j.bbamcr.2019.118617] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 11/17/2019] [Accepted: 11/25/2019] [Indexed: 01/06/2023]
Abstract
Sequestration of misfolded proteins into distinct cellular compartments plays a pivotal role in proteostasis and proteopathies. Cytoplasmic ubiquitinated proteins are sequestered by p62/SQSTM1 to deposit in sequestosomes or aggresome-like induced structures (ALIS). Most aggresome or ALIS regulators identified thus far are recruiters, while little is known about the disaggregases or dissolvers. In this research, we showed that lanosterol synthase and its enzymatic product lanosterol effectively reduced the number and/or size of sequestosomes/ALIS/aggresomes formed by endogenous proteins in the HeLa and HEK-293A cells cultured under both non-stressed and stressed conditions. Supplemented lanosterol did not affect the proteasome and autophagic activities, but released the trapped proteins from the p62-positive inclusions accompanied with the activation of HSF1 and up-regulation of various heat shock proteins. Our results suggested that the coordinated actions of disaggregation by lanosterol and refolding by heat shock proteins might facilitate the cells to recycle proteins from aggregates. The disaggregation activity of lanosterol was not shared by cholesterol, indicating that lanosterol possesses additional cellular functions in proteostasis regulation. Our findings highlight that besides protein modulators, the cells also possess endogenous low-molecular-weight compounds as efficient proteostasis regulators.
Collapse
Affiliation(s)
- Li-Dan Hu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jing Wang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiang-Jun Chen
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Eye Center of the 2nd Affiliated Hospital, Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310009, China.
| | - Yong-Bin Yan
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
45
|
Yang J, Wang L, Jia R. Role of de novo cholesterol synthesis enzymes in cancer. J Cancer 2020; 11:1761-1767. [PMID: 32194787 PMCID: PMC7052851 DOI: 10.7150/jca.38598] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 11/30/2019] [Indexed: 12/23/2022] Open
Abstract
Despite extensive research in the cancer field, cancer remains one of the most prevalent diseases. There is an urgent need to identify specific targets that are safe and effective for the treatment of cancer. In recent years, cancer metabolism has come into the spotlight in cancer research. Lipid metabolism, especially cholesterol metabolism, plays a critical role in membrane synthesis as well as lipid signaling in cancer. This review focuses on the contribution of the de novo cholesterol synthesis pathway to tumorigenesis, cancer progression and metastasis. In conclusion, cholesterol metabolism could be an effective target for novel anticancer treatment.
Collapse
Affiliation(s)
- Jie Yang
- Department of Ophthalmology, Ninth People's Hospital of Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Lihua Wang
- Department of Ophthalmology, Ninth People's Hospital of Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital of Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| |
Collapse
|
46
|
Ferrante T, Adinolfi S, D'Arrigo G, Poirier D, Daga M, Lolli ML, Balliano G, Spyrakis F, Oliaro-Bosso S. Multiple catalytic activities of human 17β-hydroxysteroid dehydrogenase type 7 respond differently to inhibitors. Biochimie 2019; 170:106-117. [PMID: 31887335 DOI: 10.1016/j.biochi.2019.12.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 12/26/2019] [Indexed: 10/25/2022]
Abstract
Cholesterol biosynthesis is a multistep process in mammals that includes the aerobic removal of three methyl groups from the intermediate lanosterol, one from position 14 and two from position 4. During the demethylations at position 4, a 3-ketosteroid reductase catalyses the conversion of both 4-methylzymosterone and zymosterone to 4-methylzymosterol and zymosterol, respectively, restoring the alcoholic function of lanosterol, which is also maintained in cholesterol. Unlike other eukaryotes, mammals also use the same enzyme as an estrone reductase that can transform estrone (E1) into estradiol (E2). This enzyme, named 17β-hydroxysteroid dehydrogenase type 7 (HSD17B7), is therefore a multifunctional protein in mammals, and one that belongs to both the HSD17B family, which is involved in steroid-hormone metabolism, and to the family of post-squalene cholesterol biosynthesis enzymes. In the present study, a series of known inhibitors of human HSD17B7's E1-reductase activity have been assayed for potential inhibition against 3-ketosteroid reductase activity. Surprisingly, the assayed compounds lost their inhibition activity when tested in HepG2 cells that were incubated with radiolabelled acetate and against the recombinant overexpressed human enzyme incubated with 4-methylzymosterone (both radiolabelled and not). Preliminary kinetic analyses suggest a mixed or non-competitive inhibition on the E1-reductase activity, which is in agreement with Molecular Dynamics simulations. These results raise questions about the mechanism(s) of action of these possible inhibitors, the enzyme dynamic regulation and the interplay between the two activities.
Collapse
Affiliation(s)
- Terenzio Ferrante
- Department of Science and Drug Technology, University of Torino, Via P. Giuria 9, 10125, Turin, Italy
| | - Salvatore Adinolfi
- Department of Science and Drug Technology, University of Torino, Via P. Giuria 9, 10125, Turin, Italy
| | - Giulia D'Arrigo
- Department of Science and Drug Technology, University of Torino, Via P. Giuria 9, 10125, Turin, Italy
| | - Donald Poirier
- Laboratory of Medicinal Chemistry, CHU de Québec - Research Centre and Université Laval, 2705, Boulevard Laurier T-4-50 Québec, G1V 4G2, Canada
| | - Martina Daga
- Department of Science and Drug Technology, University of Torino, Via P. Giuria 9, 10125, Turin, Italy
| | - Marco Lucio Lolli
- Department of Science and Drug Technology, University of Torino, Via P. Giuria 9, 10125, Turin, Italy
| | - Gianni Balliano
- Department of Science and Drug Technology, University of Torino, Via P. Giuria 9, 10125, Turin, Italy
| | - Francesca Spyrakis
- Department of Science and Drug Technology, University of Torino, Via P. Giuria 9, 10125, Turin, Italy
| | - Simonetta Oliaro-Bosso
- Department of Science and Drug Technology, University of Torino, Via P. Giuria 9, 10125, Turin, Italy.
| |
Collapse
|
47
|
Liver Transcriptome Changes of Hyla Rabbit in Response to Chronic Heat Stress. Animals (Basel) 2019; 9:ani9121141. [PMID: 31847222 PMCID: PMC6940982 DOI: 10.3390/ani9121141] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 12/11/2019] [Indexed: 01/04/2023] Open
Abstract
Simple Summary It has been widely acknowledged in farm animals that environmental heat stress would have comprehensive influences on many kinds of physiological aspects, including the metabolic characteristics, production performances, welfare concerns, etc. The rabbit is a small herbivore and needs to regulate the body temperature in a fine mechanism. Little is known, however, about the genes and pathways that are involved in the regulatory responses under chronic heat stress conditions. In the present study, we investigated the liver transcriptome changes in response to chronic heat stress for Hyla rabbit, that is a commercial meat breed recently introduced into China. We successfully revealed the differentially expressed genes that were significantly enriched in heat stress related biological processes. The results would help us for better understanding the molecular mechanisms underlying physiological responses against heat stress in rabbits. Abstract Rabbit is an economically important farm animal in China and also is a widely used animal model in biological researches. Rabbits are very sensitive to the environmental conditions, therefore we investigated the liver transcriptome changes in response to chronic heat stress in the present study. Six Hyla rabbits were randomly divided into two groups: chronic heat stress (HS) and controls without heat stress (CN). Six RNA-Seq libraries totally yielded 380 million clean reads after the quality filtering. Approximately 85.07% of reads were mapped to the reference genome. After assembling transcripts and quantifying gene expression levels, we detected 51 differentially expressed genes (DEGs) between HS and CN groups with thresholds of the adjusted p-value < 0.05 and |log2(FoldChange)| > 1. Among them, 33 and 18 genes were upregulated and downregulated, respectively. Gene ontology analyses further revealed that these DEGs were mainly associated with metabolism of lipids, thyroid hormone metabolic process, and cellular modified amino acid catabolic process. The upregulated ACACB, ACLY, LSS, and CYP7A1 genes were found to be inter-related through biological processes of thioester biosynthetic process, acyl-CoA biosynthetic process, acetyl-CoA metabolic process, and others. Six DEGs were further validated by quantitative real-time PCR analysis. The results revealed the candidate genes and biological processes that will potentially be considered as important regulatory factors involved in the heat stress response in rabbits.
Collapse
|
48
|
Dettori D, Orso F, Penna E, Baruffaldi D, Brundu S, Maione F, Turco E, Giraudo E, Taverna D. Therapeutic Silencing of miR-214 Inhibits Tumor Progression in Multiple Mouse Models. Mol Ther 2019; 26:2008-2018. [PMID: 29929788 DOI: 10.1016/j.ymthe.2018.05.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 05/21/2018] [Accepted: 05/21/2018] [Indexed: 11/30/2022] Open
Abstract
We previously demonstrated that miR-214 is upregulated in malignant melanomas and triple-negative breast tumors and promotes metastatic dissemination by affecting a complex pathway including the anti-metastatic miR-148b. Importantly, tumor dissemination could be reduced by blocking miR-214 function or increasing miR-148b expression or by simultaneous interventions. Based on this evidence, with the intent to explore the role of miR-214 as a target for therapy, we evaluated the capability of new chemically modified anti-miR-214, R97/R98, to inhibit miR-214 coordinated metastatic traits. Relevantly, when melanoma or breast cancer cells were transfected with R97/R98, anti-miR-214 reduced miR-214 expression and impaired transendothelial migration were observed. Noteworthy, when the same cells were injected in the tail vein of mice, cell extravasation and metastatic nodule formation in lungs were strongly reduced. Thus, suggesting that R97/R98 anti-miR-214 oligonucleotides were able to inhibit tumor cell escaping through the endothelium. More importantly, when R97/R98 anti-miR-214 compounds were systemically delivered to mice carrying melanomas or breast or neuroendocrine pancreatic cancers, a reduced number of circulating tumor cells and lung or lymph node metastasis formation were detected. Similar results were also obtained when AAV8-miR-214 sponges were used in neuroendocrine pancreatic tumors. Based on this evidence, we propose miR-214 as a promising target for anti-metastatic therapies.
Collapse
Affiliation(s)
- Daniela Dettori
- Molecular Biotechnology Center (MBC), University of Torino, Torino, Italy; Department Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Francesca Orso
- Molecular Biotechnology Center (MBC), University of Torino, Torino, Italy; Department Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy; Center for Complex Systems in Molecular Biology and Medicine, University of Torino, Torino, Italy.
| | - Elisa Penna
- Molecular Biotechnology Center (MBC), University of Torino, Torino, Italy; Department Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Désirée Baruffaldi
- Molecular Biotechnology Center (MBC), University of Torino, Torino, Italy; Department Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Serena Brundu
- Department of Science and Drug Technology, University of Torino, Torino, Italy; Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Torino, Italy
| | - Federica Maione
- Department of Science and Drug Technology, University of Torino, Torino, Italy; Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Torino, Italy
| | - Emilia Turco
- Molecular Biotechnology Center (MBC), University of Torino, Torino, Italy; Department Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Enrico Giraudo
- Department of Science and Drug Technology, University of Torino, Torino, Italy; Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Torino, Italy
| | - Daniela Taverna
- Molecular Biotechnology Center (MBC), University of Torino, Torino, Italy; Department Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy; Center for Complex Systems in Molecular Biology and Medicine, University of Torino, Torino, Italy.
| |
Collapse
|
49
|
Sharma B, Gupta V, Dahiya D, Kumar H, Vaiphei K, Agnihotri N. Clinical relevance of cholesterol homeostasis genes in colorectal cancer. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:1314-1327. [PMID: 31202724 DOI: 10.1016/j.bbalip.2019.06.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/31/2019] [Accepted: 06/10/2019] [Indexed: 12/12/2022]
Abstract
Accumulation of cholesterol is a well-known feature in cancer. Preclinical studies suggest the contribution of various cholesterol regulators in CRC. However, their clinical relevance remains poorly understood. The aim of the present study is to evaluate the expression of these modulators in CRC and elucidate their diagnostic and prognostic value. mRNA levels of HMGCR, SREBF2, NR1H3 and NR1H2 were downregulated in tumors in local and TCGA cohort. The expression of LDLR, ABCA1 and SCARB1 was not consistent in the two cohorts. Western Blot analysis showed the increased levels of LDLR and reduced levels of LXR in early stage patients. Tumoral SREBP2 levels were enhanced in early stage whereas decreased in late stage. The individual expression of HMGCR, SREBF2, NR1H3 and NR1H2 did not have the potential to be used as independent prognostic marker, however, the combined expression of these genes associated with poor clinical outcome independent of lymph node metastasis, distant metastasis and advanced stage. This work sheds light on deregulation of cholesterol uptake and efflux pathways and provides novel leads in the development of biomarkers and therapeutic regimens that can detect and target CRC at initial stages.
Collapse
Affiliation(s)
- Bhoomika Sharma
- Department of Biochemistry, Panjab University, Sector-25, Chandigarh 160014, India
| | - Vikas Gupta
- Department of General Surgery, Post Graduate Institute of Medical Education & Research (PGIMER),Sector 12, Chandigarh 160012, India
| | - Divya Dahiya
- Department of General Surgery, Post Graduate Institute of Medical Education & Research (PGIMER),Sector 12, Chandigarh 160012, India
| | - Hemanth Kumar
- Department of General Surgery, Post Graduate Institute of Medical Education & Research (PGIMER),Sector 12, Chandigarh 160012, India
| | - Kim Vaiphei
- Department of Histopathology, Post Graduate Institute of Medical Education & Research (PGIMER), Sector 12, Chandigarh 160012, India.
| | - Navneet Agnihotri
- Department of Biochemistry, Panjab University, Sector-25, Chandigarh 160014, India.
| |
Collapse
|
50
|
Perturbation-Based Proteomic Correlation Profiling as a Target Deconvolution Methodology. Cell Chem Biol 2018; 26:137-143.e8. [PMID: 30449674 DOI: 10.1016/j.chembiol.2018.10.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/13/2018] [Accepted: 10/08/2018] [Indexed: 01/10/2023]
Abstract
Molecular target identification of small molecules, so-called target deconvolution, is a major obstacle to phenotype-based drug discovery. Here, we developed an approach called perturbation-based proteomic correlation profiling (PPCP) utilizing the correlation between protein quantity and binding activity of compounds under cellular perturbation by gene silencing and successfully identified lanosterol synthase as a molecular target of TGF-β pathway inhibitor. This PPCP concept was extended to the use of a cell line panel and provides a new option for target deconvolution.
Collapse
|