1
|
Tang D, Quan J, Gao Z, He B, Hou Y, Fan P, Pan M, Yang J. Prenylation of Flavanones by an Aromatic Prenyltransferase from Fusarium globosum. Molecules 2025; 30:1558. [PMID: 40286157 PMCID: PMC11990136 DOI: 10.3390/molecules30071558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/26/2025] [Accepted: 03/28/2025] [Indexed: 04/29/2025] Open
Abstract
Prenylation increases the structural diversity and biological activity of flavonoids. In this study, an aromatic prenyltransferase, FgPT1, was identified from Fusarium globosum. This enzyme was demonstrated to specifically catalyze the prenylation of flavanones, including naringenin, hesperitin, eriodictyol, liquiritigenin, rac-pinocembrin, and dihydrogenistein, and exhibited no activity toward other types of flavonoids, including chalcones, flavonols, isoflavonoids, and flavonols. Ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) and nuclear magnetic resonance (NMR) analysis indicated that the majority of prenylated products were 6-C prenyl flavanones, with the exception of liquiritigenin, which was additionally transformed to 4'-O prenyl liquiritigenin. Enzyme kinetic analysis suggested that FgPT1 exhibited the highest catalytic efficiency towards naringenin, with a kcat/KM value determined as 61.92 s-1 M-1, and the lowest catalytic efficiency towards liquiritigenin, with a kcat/KM of 1.18 s-1 M-1. Biochemical characterization suggested that FgPT1 functioned as a metal-dependent enzyme with optimal activity in the presence of Ba2+ at pH 7.5 and 30 °C. Site-directed mutagenesis resulted in a series of mutants, including A325V with impaired prenylation activity and V116I, V181I, and V194I with enhanced activity. V194I displayed the highest enzymatic activity with a nine-fold increase compared to wild-type FgPT1.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jiali Yang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; (D.T.); (J.Q.); (Z.G.); (B.H.); (Y.H.); (P.F.); (M.P.)
| |
Collapse
|
2
|
Zhang X, Yao W, Tang Y, Ye J, Niu T, Yang L, Wang R, Wang Z. Coupling the Isopentenol Utilization Pathway and Prenyltransferase for the Biosynthesis of Licoflavanone in Recombinant Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15832-15840. [PMID: 38957132 DOI: 10.1021/acs.jafc.4c03655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Prenylflavonoids are promising candidates for food additives and functional foods due to their diverse biological activities and potential health benefits. However, natural prenylflavonoids are generally present in low abundance and are limited to specific plant species. Here, we report the biosynthesis of licoflavanone from naringenin and prenol by recombinant Escherichia coli. By investigating the activities of seven different sources of prenyltransferases overexpressed in E. coli toward various flavonoid substrates, the prenyltransferase AnaPT exhibits substrate preference when naringenin serves as the prenyl acceptor. Furthermore, licoflavanone production was successfully achieved by coupling the isopentenol utilization pathway and AnaPT in recombinant E. coli. In addition, the effects of fermentation temperatures, induction temperatures, naringenin concentrations, and substrate feeding strategies were investigated on the biosynthesis of licoflavanone in recombinant E. coli. Consequently, the recombinant E. coli strain capable of improved dimethylallyl diphosphate (DMAPP) supply and suitable for prenylflavonoid biosynthesis increased licoflavanone titers to 142.1 mg/L in a shake flask and to 537.8 mg/L in a 1.3 L fermentor, which is the highest yield for any prenylflavonoids reported to date. These strategies proposed in this study provide a reference for initiating the production of high-value prenylflavonoids.
Collapse
Affiliation(s)
- Xuxuan Zhang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Weilin Yao
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yuanyuan Tang
- School of Pharmacy, Qinghai Nationalities University, Xining 810007, China
| | - Ju Ye
- School of Pharmacy, Qinghai Nationalities University, Xining 810007, China
| | - Tengfei Niu
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Li Yang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Rufeng Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhengtao Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
3
|
Vo LK, Tran NT, Kubo Y, Sahashi D, Komatsu M, Shiozaki K. Enhancement of Edwardsiella piscicida infection, biofilm formation, and motility caused by N-acetylneuraminate lyase. Glycoconj J 2022; 39:429-442. [PMID: 35192095 DOI: 10.1007/s10719-022-10045-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/19/2022] [Accepted: 01/26/2022] [Indexed: 01/05/2023]
Abstract
Sialic acid and its catabolism are involved in bacterial pathogenicity. N-acetylneuraminate lyase (NAL), which catalyzes the reversible aldol cleavage of sialic acid to form N-acetyl-D-mannosamine in the first step of sialic acid degradation, has been recently investigated to elucidate whether NAL enhances bacterial virulence; however, the role of NAL in bacterial pathogenicity remains unclear. In the present study, we demonstrated that the existence of two enzymes in Edwardsiella piscicida, referred to as dihydrodipicolinate synthase (DHDPS) and NAL, induced the cleavage/condensation activity toward sialic acids such as N-acetylneuraminic acid, N-glycolylneuraminic acid and 3-deoxy-D-glycero-D-galacto-non-2-ulopyranosonic acid. NAL enhanced cellular infection in vitro and suppressed the survival rate in zebrafish larvae in bath-infection in vivo, whereas DHDPS did not. Furthermore, NAL strongly activated the expression of E. piscicida phenotypes such as biofilm formation and motility, whereas DHDPS did not. Besides, the gene expression level of nanK, nanE, and glmU were up-regulated in the NAL-overexpressing strain, along with an increase in the total amount of N-acetylglucosamine.
Collapse
Affiliation(s)
- Linh Khanh Vo
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| | - Nhung Thi Tran
- Department of Food Life Sciences, Faculty of Fisheries, Kagoshima University, Kagoshima, Japan
| | - Yurina Kubo
- Department of Food Life Sciences, Faculty of Fisheries, Kagoshima University, Kagoshima, Japan
| | - Daichi Sahashi
- Department of Food Life Sciences, Faculty of Fisheries, Kagoshima University, Kagoshima, Japan
| | - Masaharu Komatsu
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan.,Department of Food Life Sciences, Faculty of Fisheries, Kagoshima University, Kagoshima, Japan
| | - Kazuhiro Shiozaki
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan. .,Department of Food Life Sciences, Faculty of Fisheries, Kagoshima University, Kagoshima, Japan.
| |
Collapse
|
4
|
Yang J, Zhou T, Jiang Y, Yang B. Substrate specificity change of a flavonoid prenyltransferase AhPT1 induced by metal ion. Int J Biol Macromol 2020; 153:264-275. [PMID: 32142844 DOI: 10.1016/j.ijbiomac.2020.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/25/2020] [Accepted: 03/02/2020] [Indexed: 11/29/2022]
Abstract
Prenylated flavonoids are good drug candidates due to multiple biological activities and health benefits. Prenyltransferase is an important enzyme involved in the biosynthesis of prenylated flavonoids. In this work, a flavonoid prenyltransferase (AhPT1) from Artocarpus heterophyllus showed an unexpectedly metal ion-induced specificity to flavonoid substrates. AhPT1 could catalyse 6-C-prenylation of genistein when Mg2+ serving as cofactor. Its catalytic activity to 6-hydroxyflavone was undetectable. However, when Mn2+ was used instead of Mg2+, 5-C-prenylated 6-hydroxyflavone was generated with a high conversion rate. Mn2+ altered the regiospecificity of AhPT1 and turned it into a 5-C-prenyltransferase. 2'-Hydroxyl could improve the conversion rate of 6-hydroxyflavone, whereas 3'- or 4'-hydroxyl impaired the catalysis efficiency of AhPT1. NQIFDADID174 and DLTDVEGD305 were active motifs involved in substrate binding and catalysis. Asn166, Asp170, Asp174, Asp298, Asp301 and Asp305 in the active center were critical to the prenylation reaction.
Collapse
Affiliation(s)
- Jiali Yang
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting Zhou
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yueming Jiang
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Bao Yang
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
5
|
Yu L, Teoh ST, Ensink E, Ogrodzinski MP, Yang C, Vazquez AI, Lunt SY. Cysteine catabolism and the serine biosynthesis pathway support pyruvate production during pyruvate kinase knockdown in pancreatic cancer cells. Cancer Metab 2019; 7:13. [PMID: 31893043 PMCID: PMC6937848 DOI: 10.1186/s40170-019-0205-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 12/06/2019] [Indexed: 12/11/2022] Open
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with limited treatment options. Pyruvate kinase, especially the M2 isoform (PKM2), is highly expressed in PDAC cells, but its role in pancreatic cancer remains controversial. To investigate the role of pyruvate kinase in pancreatic cancer, we knocked down PKM2 individually as well as both PKM1 and PKM2 concurrently (PKM1/2) in cell lines derived from a KrasG12D/-; p53-/- pancreatic mouse model. Methods We used liquid chromatography tandem mass spectrometry (LC-MS/MS) to determine metabolic profiles of wildtype and PKM1/2 knockdown PDAC cells. We further used stable isotope-labeled metabolic precursors and LC-MS/MS to determine metabolic pathways upregulated in PKM1/2 knockdown cells. We then targeted metabolic pathways upregulated in PKM1/2 knockdown cells using CRISPR/Cas9 gene editing technology. Results PDAC cells are able to proliferate and continue to produce pyruvate despite PKM1/2 knockdown. The serine biosynthesis pathway partially contributed to pyruvate production during PKM1/2 knockdown: knockout of phosphoglycerate dehydrogenase in this pathway decreased pyruvate production from glucose. In addition, cysteine catabolism generated ~ 20% of intracellular pyruvate in PDAC cells. Other potential sources of pyruvate include the sialic acid pathway and catabolism of glutamine, serine, tryptophan, and threonine. However, these sources did not provide significant levels of pyruvate in PKM1/2 knockdown cells. Conclusion PKM1/2 knockdown does not impact the proliferation of pancreatic cancer cells. The serine biosynthesis pathway supports conversion of glucose to pyruvate during pyruvate kinase knockdown. However, direct conversion of serine to pyruvate was not observed during PKM1/2 knockdown. Investigating several alternative sources of pyruvate identified cysteine catabolism for pyruvate production during PKM1/2 knockdown. Surprisingly, we find that a large percentage of intracellular pyruvate comes from cysteine. Our results highlight the ability of PDAC cells to adaptively rewire their metabolic pathways during knockdown of a key metabolic enzyme.
Collapse
Affiliation(s)
- Lei Yu
- 1Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI USA
| | - Shao Thing Teoh
- 1Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI USA
| | - Elliot Ensink
- 1Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI USA
| | - Martin P Ogrodzinski
- 1Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI USA.,2Department of Physiology, Michigan State University, East Lansing, MI USA
| | - Che Yang
- 1Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI USA
| | - Ana I Vazquez
- 3Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI USA.,4The Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI USA
| | - Sophia Y Lunt
- 1Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI USA.,5Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI USA
| |
Collapse
|
6
|
Multi-enzyme systems and recombinant cells for synthesis of valuable saccharides: Advances and perspectives. Biotechnol Adv 2019; 37:107406. [DOI: 10.1016/j.biotechadv.2019.06.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/30/2019] [Accepted: 06/08/2019] [Indexed: 02/07/2023]
|
7
|
Mydy LS, Hoppe RW, Hagemann TM, Schwabacher AW, Silvaggi NR. Mechanistic Studies of the Streptomyces bingchenggensis Aldolase-Dehydratase: Implications for Substrate and Reaction Specificity in the Acetoacetate Decarboxylase-like Superfamily. Biochemistry 2019; 58:4136-4147. [PMID: 31524380 DOI: 10.1021/acs.biochem.9b00652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The acetoacetate decarboxylase-like superfamily (ADCSF) is a little-explored group of enzymes that may contain new biocatalysts. The low level of sequence identity (∼20%) between many ADCSF enzymes and the confirmed acetoacetate decarboxylases led us to investigate the degree of diversity in the reaction and substrate specificity of ADCSF enzymes. We have previously reported on Sbi00515, which belongs to Family V of the ADCSF and functions as an aldolase-dehydratase. Here, we more thoroughly characterize the substrate specificity of Sbi00515 and find that aromatic, unsaturated aldehydes yield lower KM and higher kcat values compared to those of other small electrophilic substrates in the condensation reaction. The roles of several active site residues were explored by site-directed mutagenesis and steady state kinetics. The lysine-glutamate catalytic dyad, conserved throughout the ADCSF, is required for catalysis. Tyrosine 252, which is unique to Sbi00515, is hypothesized to orient the incoming aldehyde in the condensation reaction. Transient state kinetics and an intermediate-bound crystal structure aid in completing a proposed mechanism for Sbi00515.
Collapse
Affiliation(s)
- Lisa S Mydy
- Department of Chemistry and Biochemistry , University of Wisconsin-Milwaukee , 3210 North Cramer Street , Milwaukee , Wisconsin 53211 , United States
| | - Robert W Hoppe
- Department of Chemistry and Biochemistry , University of Wisconsin-Milwaukee , 3210 North Cramer Street , Milwaukee , Wisconsin 53211 , United States
| | - Trevor M Hagemann
- Department of Chemistry and Biochemistry , University of Wisconsin-Milwaukee , 3210 North Cramer Street , Milwaukee , Wisconsin 53211 , United States
| | - Alan W Schwabacher
- Department of Chemistry and Biochemistry , University of Wisconsin-Milwaukee , 3210 North Cramer Street , Milwaukee , Wisconsin 53211 , United States
| | - Nicholas R Silvaggi
- Department of Chemistry and Biochemistry , University of Wisconsin-Milwaukee , 3210 North Cramer Street , Milwaukee , Wisconsin 53211 , United States
| |
Collapse
|
8
|
Gurung MK, Altermark B, Helland R, Smalås AO, Ræder ILU. Features and structure of a cold active N-acetylneuraminate lyase. PLoS One 2019; 14:e0217713. [PMID: 31185017 PMCID: PMC6559660 DOI: 10.1371/journal.pone.0217713] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 05/16/2019] [Indexed: 11/23/2022] Open
Abstract
N-acetylneuraminate lyases (NALs) are enzymes that catalyze the reversible cleavage and synthesis of sialic acids. They are therefore commonly used for the production of these high-value sugars. This study presents the recombinant production, together with biochemical and structural data, of the NAL from the psychrophilic bacterium Aliivibrio salmonicida LFI1238 (AsNAL). Our characterization shows that AsNAL possesses high activity and stability at alkaline pH. We confirm that these properties allow for the use in a one-pot reaction at alkaline pH for the synthesis of N-acetylneuraminic acid (Neu5Ac, the most common sialic acid) from the inexpensive precursor N-acetylglucosamine. We also show that the enzyme has a cold active nature with an optimum temperature for Neu5Ac synthesis at 20°C. The equilibrium constant for the reaction was calculated at different temperatures, and the formation of Neu5Ac acid is favored at low temperatures, making the cold active enzyme a well-suited candidate for use in such exothermic reactions. The specific activity is high compared to the homologue from Escherichia coli at three tested temperatures, and the enzyme shows a higher catalytic efficiency and turnover number for cleavage at 37°C. Mutational studies reveal that amino acid residue Asn 168 is important for the high kcat. The crystal structure of AsNAL was solved to 1.65 Å resolution and reveals a compact, tetrameric protein similar to other NAL structures. The data presented provides a framework to guide further optimization of its application in sialic acid production and opens the possibility for further design of the enzyme.
Collapse
Affiliation(s)
- Man Kumari Gurung
- The Norwegian Structural Biology Center (NorStruct), Department of Chemistry, UiT- The Arctic University of Norway, Tromsø, Norway
| | - Bjørn Altermark
- The Norwegian Structural Biology Center (NorStruct), Department of Chemistry, UiT- The Arctic University of Norway, Tromsø, Norway
| | - Ronny Helland
- The Norwegian Structural Biology Center (NorStruct), Department of Chemistry, UiT- The Arctic University of Norway, Tromsø, Norway
| | - Arne O. Smalås
- The Norwegian Structural Biology Center (NorStruct), Department of Chemistry, UiT- The Arctic University of Norway, Tromsø, Norway
| | - Inger Lin U. Ræder
- The Norwegian Structural Biology Center (NorStruct), Department of Chemistry, UiT- The Arctic University of Norway, Tromsø, Norway
- * E-mail:
| |
Collapse
|
9
|
Zhao L, Tian R, Shen Q, Liu Y, Liu L, Li J, Du G. Pathway Engineering of
Bacillus subtilis
for Enhanced
N
‐Acetylneuraminic Acid Production via Whole‐Cell Biocatalysis. Biotechnol J 2019; 14:e1800682. [DOI: 10.1002/biot.201800682] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 02/15/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Lin Zhao
- Key Laboratory of Carbohydrate Chemistry and BiotechnologyMinistry of EducationJiangnan University214122 Wuxi China
- Key Laboratory of Industrial BiotechnologyMinistry of EducationJiangnan University214122 Wuxi China
| | - Rongzhen Tian
- Key Laboratory of Carbohydrate Chemistry and BiotechnologyMinistry of EducationJiangnan University214122 Wuxi China
- Key Laboratory of Industrial BiotechnologyMinistry of EducationJiangnan University214122 Wuxi China
| | - Qingyang Shen
- Key Laboratory of Carbohydrate Chemistry and BiotechnologyMinistry of EducationJiangnan University214122 Wuxi China
- Key Laboratory of Industrial BiotechnologyMinistry of EducationJiangnan University214122 Wuxi China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and BiotechnologyMinistry of EducationJiangnan University214122 Wuxi China
- Key Laboratory of Industrial BiotechnologyMinistry of EducationJiangnan University214122 Wuxi China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and BiotechnologyMinistry of EducationJiangnan University214122 Wuxi China
- Key Laboratory of Industrial BiotechnologyMinistry of EducationJiangnan University214122 Wuxi China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and BiotechnologyMinistry of EducationJiangnan University214122 Wuxi China
- Key Laboratory of Industrial BiotechnologyMinistry of EducationJiangnan University214122 Wuxi China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and BiotechnologyMinistry of EducationJiangnan University214122 Wuxi China
- Key Laboratory of Industrial BiotechnologyMinistry of EducationJiangnan University214122 Wuxi China
| |
Collapse
|
10
|
Kumar JP, Rao H, Nayak V, Ramaswamy S. Crystal structures and kinetics of N-acetylneuraminate lyase from Fusobacterium nucleatum. Acta Crystallogr F Struct Biol Commun 2018; 74:725-732. [PMID: 30387778 PMCID: PMC6213981 DOI: 10.1107/s2053230x18012992] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 09/13/2018] [Indexed: 12/18/2022] Open
Abstract
N-Acetyl-D-neuraminic acid lyase (NanA) catalyzes the breakdown of sialic acid (Neu5Ac) to N-acetyl-D-mannosamine (ManNAc) and pyruvate. NanA plays a key role in Neu5Ac catabolism in many pathogenic and bacterial commensals where sialic acid is available as a carbon and nitrogen source. Several pathogens or commensals decorate their surfaces with sialic acids as a strategy to escape host innate immunity. Catabolism of sialic acid is key to a range of host-pathogen interactions. In this study, atomic resolution structures of NanA from Fusobacterium nucleatum (FnNanA) in ligand-free and ligand-bound forms are reported at 2.32 and 1.76 Å resolution, respectively. F. nucleatum is a Gram-negative pathogen that causes gingival and periodontal diseases in human hosts. Like other bacterial N-acetylneuraminate lyases, FnNanA also shares the triosephosphate isomerase (TIM)-barrel fold. As observed in other homologous enzymes, FnNanA forms a tetramer. In order to characterize the structure-function relationship, the steady-state kinetic parameters of the enzyme are also reported.
Collapse
Affiliation(s)
- Jay Prakash Kumar
- Technologies for the Advancement of Science, Institute for Stem Cell Biology and Regenerative Medicine, NCBS, GKVK Campus, Bangalore, Karnataka 560 065, India
- School of Life Science, The University of Trans-Disciplinary Health Sciences and Technology (TDU), Bangalore, Karnataka 560 065, India
| | - Harshvardhan Rao
- Technologies for the Advancement of Science, Institute for Stem Cell Biology and Regenerative Medicine, NCBS, GKVK Campus, Bangalore, Karnataka 560 065, India
| | - Vinod Nayak
- Technologies for the Advancement of Science, Institute for Stem Cell Biology and Regenerative Medicine, NCBS, GKVK Campus, Bangalore, Karnataka 560 065, India
| | - S. Ramaswamy
- Technologies for the Advancement of Science, Institute for Stem Cell Biology and Regenerative Medicine, NCBS, GKVK Campus, Bangalore, Karnataka 560 065, India
| |
Collapse
|
11
|
Molecular Characterization of a Novel N-Acetylneuraminate Lyase from a Deep-Sea Symbiotic Mycoplasma. Mar Drugs 2018; 16:md16030080. [PMID: 29510563 PMCID: PMC5867624 DOI: 10.3390/md16030080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/19/2018] [Accepted: 02/26/2018] [Indexed: 12/01/2022] Open
Abstract
N-acetylneuraminic acid (Neu5Ac) based novel pharmaceutical agents and diagnostic reagents are highly required in medical fields. However, N-acetylneuraminate lyase(NAL)for Neu5Ac synthesis is not applicable for industry due to its low catalytic efficiency. In this study, we biochemically characterized a deep-sea NAL enzyme (abbreviated form: MyNal) from a symbiotic Mycoplasma inhabiting the stomach of a deep-sea isopod, Bathynomus jamesi. Enzyme kinetic studies of MyNal showed that it exhibited a very low Km for both cleavage and synthesis activities compared to previously described NALs. Though it favors the cleavage process, MyNal out-competes the known NALs with respect to the efficiency of Neu5Ac synthesis and exhibits the highest kcat/Km values. High expression levels of recombinant MyNal could be achieved (9.56 mol L−1 culture) with a stable activity in a wide pH (5.0–9.0) and temperature (40–60 °C) range. All these features indicated that the deep-sea NAL has potential in the industrial production of Neu5Ac. Furthermore, we found that the amino acid 189 of MyNal (equivalent to Phe190 in Escherichia coli NAL), located in the sugar-binding domain, GX189DE, was also involved in conferring its enzymatic features. Therefore, the results of this study improved our understanding of the NALs from different environments and provided a model for protein engineering of NAL for biosynthesis of Neu5Ac.
Collapse
|
12
|
Wang Z, Zhuang W, Cheng J, Sun W, Wu J, Chen Y, Ying H. In Vivo Multienzyme Complex Coconstruction of N-Acetylneuraminic Acid Lyase and N-Acetylglucosamine-2-epimerase for Biosynthesis of N-Acetylneuraminic Acid. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:7467-7475. [PMID: 28791861 DOI: 10.1021/acs.jafc.7b02708] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Metabolic channeling enables efficient transfer of the intermediates by forming a multienzyme complex. To leverage the metabolic channeling for improved biosynthesis, we coexpressed N-acetylneuraminic acid lyase from C. glutamicum ATCC 13032 (CgNal) and N-acetylglucosamine-2-epimerase from Anabaena sp. CH1 (anAGE) in Escherichia coli and used the whole cell to synthesize N-acetylneuraminic acid (Neu5Ac) from N-acetylglucosamine (GlcNAc) and pyruvate. To get the multienzyme complex, polycistronic plasmid with high levels of CgNal and anAGE expression was constructed by tuning the orders of the genes. The Shine-Dalgarno (SD) sequence and aligned spacing (AS) distance were optimized. The E. coli Rosetta harboring the polycistronic plasmid pET-28a-SD2-AS1-CgNal-SD-AS-anAGE increased the production of Neu5Ac by 58.7% to 92.5 g/L in 36 h by whole-cell catalysis and by 21.9% up to 112.8 g/L in 24 h with the addition of Triton X-100.
Collapse
Affiliation(s)
- Zhenfu Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University , No. 5 Xinmofan Road, Nanjing 210009, China
- College of Biotechnology and Pharmaceutical Engineering, National Engineering Technique Research Center for Biotechnology, Nanjing Tech University , No. 30 Puzhu South Road, Nanjing 211816, China
- Synergetic Innovation Center for Advanced Materials, Nanjing Tech University , No. 30 Puzhu South Road, Nanjing 211816, China
| | - Wei Zhuang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University , No. 5 Xinmofan Road, Nanjing 210009, China
- College of Biotechnology and Pharmaceutical Engineering, National Engineering Technique Research Center for Biotechnology, Nanjing Tech University , No. 30 Puzhu South Road, Nanjing 211816, China
- Synergetic Innovation Center for Advanced Materials, Nanjing Tech University , No. 30 Puzhu South Road, Nanjing 211816, China
| | - Jian Cheng
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University , No. 5 Xinmofan Road, Nanjing 210009, China
- College of Biotechnology and Pharmaceutical Engineering, National Engineering Technique Research Center for Biotechnology, Nanjing Tech University , No. 30 Puzhu South Road, Nanjing 211816, China
| | - Wujin Sun
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University , Raleigh, North Carolina 27695, United States
| | - Jinglan Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University , No. 5 Xinmofan Road, Nanjing 210009, China
- College of Biotechnology and Pharmaceutical Engineering, National Engineering Technique Research Center for Biotechnology, Nanjing Tech University , No. 30 Puzhu South Road, Nanjing 211816, China
| | - Yong Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University , No. 5 Xinmofan Road, Nanjing 210009, China
- College of Biotechnology and Pharmaceutical Engineering, National Engineering Technique Research Center for Biotechnology, Nanjing Tech University , No. 30 Puzhu South Road, Nanjing 211816, China
- Synergetic Innovation Center for Advanced Materials, Nanjing Tech University , No. 30 Puzhu South Road, Nanjing 211816, China
| | - Hanjie Ying
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University , No. 5 Xinmofan Road, Nanjing 210009, China
- College of Biotechnology and Pharmaceutical Engineering, National Engineering Technique Research Center for Biotechnology, Nanjing Tech University , No. 30 Puzhu South Road, Nanjing 211816, China
- Synergetic Innovation Center for Advanced Materials, Nanjing Tech University , No. 30 Puzhu South Road, Nanjing 211816, China
| |
Collapse
|
13
|
Yang P, Wang J, Pang Q, Zhang F, Wang J, Wang Q, Qi Q. Pathway optimization and key enzyme evolution of N-acetylneuraminate biosynthesis using an in vivo aptazyme-based biosensor. Metab Eng 2017; 43:21-28. [PMID: 28780284 DOI: 10.1016/j.ymben.2017.08.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 07/18/2017] [Accepted: 08/01/2017] [Indexed: 10/19/2022]
Abstract
N-acetylneuraminate (NeuAc) biosynthesis has drawn much attention owing to its wide applications in many aspects. Previously, we engineered for the first time an artificial NeuAc biosynthetic pathway in Escherichia coli using glucose as sole substrate. However, rigorous requirements for the flux and cofactor balance make subsequent strain improvement rather difficult. In this study, an in vivo NeuAc biosensor was designed and applied for genetic screening the mutant library of NeuAc producer. Its NeuAc responsive manner was demonstrated using sfgfp as a reporter and a Ni2+-based selection system was developed to couple the cell growth with in vivo NeuAc concentration. Employing this selection system, the NeuAc biosynthesis pathway was optimized and the key enzyme NeuAc synthase was evolved, which improved the titer by 34% and 23%, respectively. The final strain produced up to 8.31g/L NeuAc in minimal medium using glucose as sole carbon source. This work demonstrated the effectiveness of NeuAc biosensor in genetic screening and great potential in metabolic engineering of other organisms.
Collapse
Affiliation(s)
- Peng Yang
- State Key Laboratory of Microbial Technology, National Glycoengineering Center, Shandong University, Jinan 250100, People's Republic of China
| | - Jing Wang
- State Key Laboratory of Microbial Technology, National Glycoengineering Center, Shandong University, Jinan 250100, People's Republic of China
| | - Qingxiao Pang
- State Key Laboratory of Microbial Technology, National Glycoengineering Center, Shandong University, Jinan 250100, People's Republic of China
| | - Fengyu Zhang
- State Key Laboratory of Microbial Technology, National Glycoengineering Center, Shandong University, Jinan 250100, People's Republic of China
| | - Junshu Wang
- State Key Laboratory of Microbial Technology, National Glycoengineering Center, Shandong University, Jinan 250100, People's Republic of China
| | - Qian Wang
- State Key Laboratory of Microbial Technology, National Glycoengineering Center, Shandong University, Jinan 250100, People's Republic of China.
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, National Glycoengineering Center, Shandong University, Jinan 250100, People's Republic of China.
| |
Collapse
|
14
|
Phosphate-catalyzed epimerization of N -acetyl- d -glucosamine to N -acetyl- d -mannosamine for the synthesis of N -acetylneuraminic acid. J Taiwan Inst Chem Eng 2016. [DOI: 10.1016/j.jtice.2016.09.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
15
|
Yang X, Yang J, Jiang Y, Yang H, Yun Z, Rong W, Yang B. Regiospecific synthesis of prenylated flavonoids by a prenyltransferase cloned from Fusarium oxysporum. Sci Rep 2016; 6:24819. [PMID: 27098599 PMCID: PMC4838938 DOI: 10.1038/srep24819] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 03/31/2016] [Indexed: 11/09/2022] Open
Abstract
Due to their impressive pharmaceutical activities and safety, prenylated flavonoids have a high potent to be applied as medicines and nutraceuticals. Biocatalysis is an effective technique to synthesize prenylated flavonoids. The major concern of this technique is that the microbe-derived prenyltransferases usually have poor regiospecificity and generate multiple prenylated products. In this work, a highly regiospecific prenyltransferase (FoPT1) was found from Fusarium oxysporum. It could recognize apigenin, naringenin, genistein, dihydrogenistein, kampferol, luteolin and hesperetin as substrates, and only 6-C-prenylated flavonoids were detected as the products. The catalytic efficiency of FoPT1 on flavonoids was in a decreasing order with hesperetin >naringenin >apigenin >genistein >luteolin >dihydrogenistein >kaempferol. Chalcones, flavanols and stilbenes were not active when acting as the substrates. 5,7-Dihydroxy and 4-carbonyl groups of flavonid were required for the catalysis. 2,3-Alkenyl was beneficial to the catalysis whereas 3-hydroxy impaired the prenylation reaction. Docking studies simulated the prenyl transfer reaction of FoPT1. E186 was involved in the formation of prenyl carbonium ion. E98, F89, F182, Y197 and E246 positioned apigenin for catalysis.
Collapse
Affiliation(s)
- Xiaoman Yang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiali Yang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yueming Jiang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Hongshun Yang
- Food Science and Technology Programme, c/o Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 Singapore, Singapore
| | - Ze Yun
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Weiliang Rong
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Bao Yang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|