1
|
Guo XP, Yan HQ, Yang W, Yin Z, Vadyvaloo V, Zhou D, Sun YC. A frameshift in Yersinia pestis rcsD alters canonical Rcs signalling to preserve flea-mammal plague transmission cycles. eLife 2023; 12:e83946. [PMID: 37010269 PMCID: PMC10191623 DOI: 10.7554/elife.83946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 04/02/2023] [Indexed: 04/04/2023] Open
Abstract
Multiple genetic changes in the enteric pathogen Yersinia pseudotuberculosis have driven the emergence of Yesinia pestis, the arthropod-borne, etiological agent of plague. These include developing the capacity for biofilm-dependent blockage of the flea foregut to enable transmission by flea bite. Previously, we showed that pseudogenization of rcsA, encoding a component of the Rcs signalling pathway, is an important evolutionary step facilitating Y. pestis flea-borne transmission. Additionally, rcsD, another important gene in the Rcs system, harbours a frameshift mutation. Here, we demonstrated that this rcsD mutation resulted in production of a small protein composing the C-terminal RcsD histidine-phosphotransferase domain (designated RcsD-Hpt) and full-length RcsD. Genetic analysis revealed that the rcsD frameshift mutation followed the emergence of rcsA pseudogenization. It further altered the canonical Rcs phosphorylation signal cascade, fine-tuning biofilm production to be conducive with retention of the pgm locus in modern lineages of Y. pestis. Taken together, our findings suggest that a frameshift mutation in rcsD is an important evolutionary step that fine-tuned biofilm production to ensure perpetuation of flea-mammal plague transmission cycles.
Collapse
Affiliation(s)
- Xiao-Peng Guo
- NHC key laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Hai-Qin Yan
- Department of Basic Medical Sciences, Anhui Key Laboratory of Infection and Immunity, Bengbu Medical CollegeBengbuChina
- Paul G. Allen School for Global Health, Washington State UniversityPullmanUnited States
| | - Wenhui Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and EpidemiologyBeijingChina
| | - Zhe Yin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and EpidemiologyBeijingChina
| | - Viveka Vadyvaloo
- Paul G. Allen School for Global Health, Washington State UniversityPullmanUnited States
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and EpidemiologyBeijingChina
| | - Yi-Cheng Sun
- NHC key laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
2
|
Stella NA, Romanowski EG, Brothers KM, Calvario RC, Shanks RMQ. IgaA Protein, GumB, Has a Global Impact on the Transcriptome and Surface Proteome of Serratia marcescens. Infect Immun 2022; 90:e0039922. [PMID: 36317876 PMCID: PMC9671016 DOI: 10.1128/iai.00399-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 09/30/2022] [Indexed: 11/07/2022] Open
Abstract
Bacterial stress response signaling systems, like the Rcs system are triggered by membrane and cell wall damaging compounds, including antibiotics and immune system factors. These regulatory systems help bacteria survive envelope stress by altering the transcriptome resulting in protective phenotypic changes that may also influence the virulence of the bacterium. This study investigated the role of the Rcs stress response system using a clinical keratitis isolate of Serratia marcescens with a mutation in the gumB gene. GumB, an IgaA ortholog, inhibits activation of the Rcs system, such that mutants have overactive Rcs signaling. Transcriptomic analysis indicated that approximately 15% of all S. marcescens genes were significantly altered with 2-fold or greater changes in expression in the ΔgumB mutant compared to the wild type, indicating a global transcriptional regulatory role for GumB. We further investigated the phenotypic consequences of two classes of genes with altered expression in the ΔgumB mutant expected to contribute to infections: serralysin metalloproteases PrtS, SlpB, and SlpE, and type I pili coded by fimABCD. Secreted fractions from the ΔgumB mutant had reduced cytotoxicity to a corneal cell line, and could be complemented by induced expression of prtS, but not cytolysin shlBA, phospholipase phlAB, or flagellar master regulator flhDC operons. Proteomic analysis, qRT-PCR, and type I pili-dependent yeast agglutination indicated an inhibitory role for the Rcs system in adhesin production. Together these data demonstrate GumB has a global impact on S. marcescens gene expression that had measurable effects on bacterial cytotoxicity and surface adhesin production.
Collapse
Affiliation(s)
- Nicholas A. Stella
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh Pennsylvania, USA
| | - Eric G. Romanowski
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh Pennsylvania, USA
| | - Kimberly M. Brothers
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh Pennsylvania, USA
| | - Rachel C. Calvario
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh Pennsylvania, USA
| | - Robert M. Q. Shanks
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh Pennsylvania, USA
| |
Collapse
|
3
|
Elken EM, Tan ZN, Wang Q, Jiang XY, Wang Y, Wang YM, Ma HX. Impact of Sub-MIC Eugenol on Klebsiella pneumoniae Biofilm Formation via Upregulation of rcsB. Front Vet Sci 2022; 9:945491. [PMID: 35903134 PMCID: PMC9315372 DOI: 10.3389/fvets.2022.945491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
The Rcs phosphorelay system is present in many members of the Enterobacteriaceae. The aim of this study was to illustrate the possible mechanisms of eugenol on ultimate targets of Klebsiella pneumoniae (K. pneumoniae) Rcs phosphorelay, rcsB, and impact on biofilm formation. The minimum inhibitory concentration (MIC) of eugenol against K. pneumoniae KP1 and KP1 ΔrcsB strain was determined using the 2-fold micro-dilution method. Biofilm was measured by crystal violet staining. Transcriptome sequencing was performed to investigate sub-MIC eugenol on K. pneumoniae, and gene expression at mRNA level was analyzed by RT-qPCR. In vitro biofilm formation test and molecular docking were used to evaluate the effect of eugenol and to predict potential interactions with RcsB. MicroScale Thermophoresis (MST) was conducted for further validation. MIC of eugenol against K. pneumoniae KP1 and KP1 ΔrcsB strain was both 200 μg/ml. Transcriptome sequencing and RT-qPCR results indicated that rpmg, degP, rnpA, and dapD were downregulated, while rcsB, rcsD, rcsA, yiaG, and yiaD were upregulated in the eugenol-treated group. ΔrcsB exhibited a weakened biofilm formation capacity. Additional isopropyl-β-d-thiogalactoside (IPTG) hinders biofilm formation, while sub-MIC eugenol could promote biofilm formation greatly. Docking analysis revealed that eugenol forms more hydrophobic bonds than hydrogen bonds. MST assay also showed a weak binding affinity between eugenol and RcsB. These results provide significant evidence that rcsB plays a key role in K. pneumoniae biofilm formation. Sub-MIC eugenol facilitates biofilm formation to a large extent instead of inhibiting it. Our findings reveal the potential risk of natural anti-biofilm ingredients at sub-MIC to treat drug-resistance bacteria.
Collapse
Affiliation(s)
- Emad Mohammed Elken
- College of Animal Medicine, Jilin Agricultural University, Changchun, China
- The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Changchun, China
- Animal Production Department, Faculty of Agriculture, Al-Azhar University, Nasr City, Egypt
| | - Zi-ning Tan
- College of Animal Medicine, Jilin Agricultural University, Changchun, China
- The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Changchun, China
| | - Qian Wang
- The 3nd Affiliated Clinical Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Xiu-yun Jiang
- College of Animal Medicine, Jilin Agricultural University, Changchun, China
- The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Changchun, China
- College of Life Science, Jilin Agricultural University, Changchun, China
- The Engineering Research Center of Bioreactor and Drug Development, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yu Wang
- College of Animal Medicine, Jilin Agricultural University, Changchun, China
- The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Changchun, China
| | - Yi-ming Wang
- College of Animal Medicine, Jilin Agricultural University, Changchun, China
- The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Changchun, China
- Yi-ming Wang
| | - Hong-xia Ma
- College of Animal Medicine, Jilin Agricultural University, Changchun, China
- The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Changchun, China
- College of Life Science, Jilin Agricultural University, Changchun, China
- The Engineering Research Center of Bioreactor and Drug Development, Ministry of Education, Jilin Agricultural University, Changchun, China
- *Correspondence: Hong-xia Ma
| |
Collapse
|
4
|
Nlp enhances biofilm formation by Yersinia pestis biovar microtus. Microb Pathog 2022; 169:105659. [PMID: 35760284 DOI: 10.1016/j.micpath.2022.105659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 11/22/2022]
Abstract
Biofilms formed by Yersinia pestis are able to attach to and block flea's proventriculus, which stimulates the transmission of this pathogen from fleas to mammals. In this study, we found that Nlp (YP1143) enhanced biofilm formation by Y. pestis and had regulatory effects on biofilm-associated genes at the transcriptional level. Phenotypic assays, including colony morphology assay, crystal violet staining, and Caenorhabditis elegans biofilm assay, disclosed that Nlp strongly promoted biofilm formation by Y. pestis. Further gene regulation assays showed that Nlp stimulated the expression of hmsHFRS, hmsCDE and hmsB, while had no regulatory effect on the expression of hmsT and hmsP at the transcriptional level. These findings promoted us to gain more understanding of the complex regulatory circuits controlling biofilm formation by Y. pestis.
Collapse
|
5
|
Small Insertions and Deletions Drive Genomic Plasticity during Adaptive Evolution of Yersinia pestis. Microbiol Spectr 2022; 10:e0224221. [PMID: 35438532 PMCID: PMC9248902 DOI: 10.1128/spectrum.02242-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The life cycle of Yersinia pestis has changed a lot to adapt to flea-borne transmission since it evolved from an enteric pathogen, Yersinia pseudotuberculosis. Small insertions and deletions (indels), especially frameshift mutations, can have major effects on phenotypes and contribute to virulence and host adaptation through gene disruption and inactivation. Here, we analyzed 365 Y. pestis genomes and identified 2,092 genome-wide indels on the core genome. As recently reported in Mycobacterium tuberculosis, we also detected "indel pockets" in Y. pestis, with average complexity scores declining around indel positions, which we speculate might also exist in other prokaryotes. Phylogenic analysis showed that indel-based phylogenic tree could basically reflect the phylogenetic relationships of major phylogroups in Y. pestis, except some inconsistency around the Big Bang polytomy. We observed 83 indels arising in the trunk of the phylogeny, which played a role in accumulation of pseudogenes related to key metabolism and putatively pathogenicity. We also discovered 32 homoplasies at the level of phylogroups and 7 frameshift scars (i.e., disrupted reading frame being rescued by a second frameshift). Additionally, our analysis showed evidence of parallel evolution at the level of genes, with sspA, rpoS, rnd, and YPO0624, having enriched mutations in Brazilian isolates, which might be advantageous for Y. pestis to cope with fluctuating environments. The diversified selection signals observed here demonstrates that indels are important contributors to the adaptive evolution of Y. pestis. Meanwhile, we provide potential targets for further exploration, as some genes/pseudogenes with indels we focus on remain uncharacterized. IMPORTANCE Yersinia pestis, the causative agent of plague, is a highly pathogenic clone of Yersinia pseudotuberculosis. Previous genome-wide SNP analysis provided few adaptive signatures during its evolution. Here by investigating 365 public genomes of Y. pestis, we give a comprehensive overview of general features of genome-wide indels on the core genome and their roles in Y. pestis evolution. Detection of "indel pockets," with average complexity scores declining around indel positions, in both Mycobacterium tuberculosis and Y. pestis, gives us a clue that this phenomenon might appear in other bacterial genomes. Importantly, the identification of four different forms of selection signals in indels would improve our understanding on adaptive evolution of Y. pestis, and provide targets for further physiological mechanism researches of this pathogen. As evolutionary research based on genome-wide indels is still rare in bacteria, our study would be a helpful reference in deciphering the role of indels in other species.
Collapse
|
6
|
Gahlot DK, Wai SN, Erickson DL, Francis MS. Cpx-signalling facilitates Hms-dependent biofilm formation by Yersinia pseudotuberculosis. NPJ Biofilms Microbiomes 2022; 8:13. [PMID: 35351893 PMCID: PMC8964730 DOI: 10.1038/s41522-022-00281-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 02/18/2022] [Indexed: 11/30/2022] Open
Abstract
Bacteria often reside in sessile communities called biofilms, where they adhere to a variety of surfaces and exist as aggregates in a viscous polymeric matrix. Biofilms are resistant to antimicrobial treatments, and are a major contributor to the persistence and chronicity of many bacterial infections. Herein, we determined that the CpxA-CpxR two-component system influenced the ability of enteropathogenic Yersinia pseudotuberculosis to develop biofilms. Mutant bacteria that accumulated the active CpxR~P isoform failed to form biofilms on plastic or on the surface of the Caenorhabditis elegans nematode. A failure to form biofilms on the worm surface prompted their survival when grown on the lawns of Y. pseudotuberculosis. Exopolysaccharide production by the hms loci is the major driver of biofilms formed by Yersinia. We used a number of molecular genetic approaches to demonstrate that active CpxR~P binds directly to the promoter regulatory elements of the hms loci to activate the repressors of hms expression and to repress the activators of hms expression. Consequently, active Cpx-signalling culminated in a loss of exopolysaccharide production. Hence, the development of Y. pseudotuberculosis biofilms on multiple surfaces is controlled by the Cpx-signalling, and at least in part this occurs through repressive effects on the Hms-dependent exopolysaccharide production.
Collapse
|
7
|
Shen L, Zhang J, Xue J, Du L, Yuan L, Nie H, Dai S, Yu Q, Li Y. Regulation of ECP fimbriae-related genes by the transcriptional regulator RcsAB in Klebsiella pneumoniae NTUH-K2044. J Basic Microbiol 2022; 62:593-603. [PMID: 35132658 DOI: 10.1002/jobm.202100595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/06/2022] [Accepted: 01/15/2022] [Indexed: 11/11/2022]
Abstract
Klebsiella pneumoniae is one of the major pathogens causing nosocomial infections. The regulator of capsule synthesis (Rcs) system is a complex signal transduction pathway that is involved in the regulation of virulence factors of K. pneumoniae as an important transcriptional regulator. The RcsAB box-like sequence was found to be present in the promoter-proximal regions of ykgK, one of the ECP fimbriae-related genes, which suggested the expression of ECP fimbriae may be regulated by RcsAB. The ykgK gene in K. pneumoniae has 86% similarity to the ecpR gene in Escherichia coli. Nucleotide sequence alignment revealed a similar ECP fimbriae gene cluster including six genes in K. pneumoniae, which was proved to be on the same operon in this study. The electrophoretic mobility shift assay and DNase I assay, relative fluorescence expression, β-galactosidase activity, and relative gene expression of ykgK in the wild-type and mutant strains were performed to determine the transcriptional regulation mechanism of RcsAB on ECP fimbriae. The mutant ΔykgK and complementary strain ΔykgK/cΔykgK were constructed to complete the Galleria mellonella larvae infection experiment and biofilm formation assay. This study showed that RcsAB binds directly to the promoter region of the ykgK gene to positively regulate ECP fimbriae-related gene clusters, and then positively affect the biofilm formation.
Collapse
Affiliation(s)
- Lifei Shen
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Jiaxue Zhang
- Chongqing Jiangbei District Center for Disease Control and Prevention, Chongqing, China
| | - Jian Xue
- Zunyi Medical and Pharmaceutical College, Zunyi, China
| | - Ling Du
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Lingyue Yuan
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Hao Nie
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Sue Dai
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Qian Yu
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Yingli Li
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| |
Collapse
|
8
|
Meng J, Young G, Chen J. The Rcs System in Enterobacteriaceae: Envelope Stress Responses and Virulence Regulation. Front Microbiol 2021; 12:627104. [PMID: 33658986 PMCID: PMC7917084 DOI: 10.3389/fmicb.2021.627104] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 01/18/2021] [Indexed: 11/13/2022] Open
Abstract
The bacterial cell envelope is a protective barrier at the frontline of bacterial interaction with the environment, and its integrity is regulated by various stress response systems. The Rcs (regulator of capsule synthesis) system, a non-orthodox two-component regulatory system (TCS) found in many members of the Enterobacteriaceae family, is one of the envelope stress response pathways. The Rcs system can sense envelope damage or defects and regulate the transcriptome to counteract stress, which is particularly important for the survival and virulence of pathogenic bacteria. In this review, we summarize the roles of the Rcs system in envelope stress responses (ESRs) and virulence regulation. We discuss the environmental and intrinsic sources of envelope stress that cause activation of the Rcs system with an emphasis on the role of RcsF in detection of envelope stress and signal transduction. Finally, the different regulation mechanisms governing the Rcs system's control of virulence in several common pathogens are introduced. This review highlights the important role of the Rcs system in the environmental adaptation of bacteria and provides a theoretical basis for the development of new strategies for control, prevention, and treatment of bacterial infections.
Collapse
Affiliation(s)
- Jiao Meng
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Glenn Young
- Department of Food Science and Technology, University of California, Davis, Davis, CA, United States
| | - Jingyu Chen
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
9
|
Hinnebusch BJ, Jarrett CO, Bland DM. Molecular and Genetic Mechanisms That Mediate Transmission of Yersinia pestis by Fleas. Biomolecules 2021; 11:210. [PMID: 33546271 PMCID: PMC7913351 DOI: 10.3390/biom11020210] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 12/19/2022] Open
Abstract
The ability to cause plague in mammals represents only half of the life history of Yersinia pestis. It is also able to colonize and produce a transmissible infection in the digestive tract of the flea, its insect host. Parallel to studies of the molecular mechanisms by which Y. pestis is able to overcome the immune response of its mammalian hosts, disseminate, and produce septicemia, studies of Y. pestis-flea interactions have led to the identification and characterization of important factors that lead to transmission by flea bite. Y. pestis adapts to the unique conditions in the flea gut by altering its metabolic physiology in ways that promote biofilm development, a common strategy by which bacteria cope with a nutrient-limited environment. Biofilm localization to the flea foregut disrupts normal fluid dynamics of blood feeding, resulting in regurgitative transmission. Many of the important genes, regulatory pathways, and molecules required for this process have been identified and are reviewed here.
Collapse
Affiliation(s)
- B. Joseph Hinnebusch
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA; (C.O.J.); (D.M.B.)
| | | | | |
Collapse
|
10
|
Rcs Phosphorelay Responses to Truncated Lipopolysaccharide-Induced Cell Envelope Stress in Yersinia enterocolitica. Molecules 2020; 25:molecules25235718. [PMID: 33287412 PMCID: PMC7730088 DOI: 10.3390/molecules25235718] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/28/2020] [Accepted: 11/30/2020] [Indexed: 01/22/2023] Open
Abstract
Lipopolysaccharide (LPS) is the major component of the outer membrane of Gram-negative bacteria, and its integrity is monitored by various stress response systems. Although the Rcs system is involved in the envelope stress response and regulates genes controlling numerous bacterial cell functions of Yersinia enterocolitica, whether it can sense the truncated LPS in Y. enterocolitica remains unclear. In this study, the deletion of the Y. enterocolitica waaF gene truncated the structure of LPS and produced a deep rough LPS. The truncated LPS increased the cell surface hydrophobicity and outer membrane permeability, generating cell envelope stress. The truncated LPS also directly exposed the smooth outer membrane to the external environment and attenuated the resistance to adverse conditions, such as impaired survival under polymyxin B and sodium dodecyl sulfate (SDS) exposure. Further phenotypic experiment and gene expression analysis indicated that the truncated LPS was correlated with the activation of the Rcs phosphorelay, thereby repressing cell motility and biofilm formation. Our findings highlight the importance of LPS integrity in maintaining membrane function and broaden the understanding of Rcs phosphorelay signaling in response to cell envelope stress, thus opening new avenues to develop effective antimicrobial agents for combating Y. enterocolitica infections.
Collapse
|
11
|
A Trimeric Autotransporter Enhances Biofilm Cohesiveness in Yersinia pseudotuberculosis but Not in Yersinia pestis. J Bacteriol 2020; 202:JB.00176-20. [PMID: 32778558 DOI: 10.1128/jb.00176-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 08/01/2020] [Indexed: 12/17/2022] Open
Abstract
Cohesion of biofilms made by Yersinia pestis and Yersinia pseudotuberculosis has been attributed solely to an extracellular polysaccharide matrix encoded by the hms genes (Hms-dependent extracellular matrix [Hms-ECM]). However, mutations in the Y. pseudotuberculosis BarA/UvrY/CsrB regulatory cascade enhance biofilm stability without dramatically increasing Hms-ECM production. We found that treatment with proteinase K enzyme effectively destabilized Y. pseudotuberculosis csrB mutant biofilms, suggesting that cell-cell interactions might be mediated by protein adhesins or extracellular matrix proteins. We identified an uncharacterized trimeric autotransporter lipoprotein (YPTB2394), repressed by csrB, which has been referred to as YadE. Biofilms made by a ΔyadE mutant strain were extremely sensitive to mechanical disruption. Overexpression of yadE in wild-type Y. pseudotuberculosis increased biofilm cohesion, similar to biofilms made by csrB or uvrY mutants. We found that the Rcs signaling cascade, which represses Hms-ECM production, activated expression of yadE The yadE gene appears to be functional in Y. pseudotuberculosis but is a pseudogene in modern Y. pestis strains. Expression of functional yadE in Y. pestis KIM6+ weakened biofilms made by these bacteria. This suggests that although the YadE autotransporter protein increases Y. pseudotuberculosis biofilm stability, it may be incompatible with the Hms-ECM production that is essential for Y. pestis biofilm production in fleas. Inactivation of yadE in Y. pestis may be another instance of selective gene loss in the evolution of flea-borne transmission by this species.IMPORTANCE The evolution of Yersinia pestis from its Y. pseudotuberculosis ancestor involved gene acquisition and gene losses, leading to differences in biofilm production. Characterizing the unique biofilm features of both species may provide better understanding of how each adapts to its specific niches. This study identifies a trimeric autotransporter, YadE, that promotes biofilm stability of Y. pseudotuberculosis but which has been inactivated in Y. pestis, perhaps because it is not compatible with the Hms polysaccharide that is crucial for biofilms inside fleas. We also reveal that the Rcs signaling cascade, which represses Hms expression, activates YadE in Y. pseudotuberculosis The ability of Y. pseudotuberculosis to use polysaccharide or YadE protein for cell-cell adhesion may help it produce biofilms in different environments.
Collapse
|
12
|
Meng J, Bai J, Xu J, Huang C, Chen J. Differential regulation of physiological activities by RcsB and OmpR in Yersinia enterocolitica. FEMS Microbiol Lett 2020; 366:5584338. [PMID: 31598670 DOI: 10.1093/femsle/fnz210] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 10/07/2019] [Indexed: 12/15/2022] Open
Abstract
A thorough understanding of the mechanisms of Rcs and EnvZ/OmpR phosphorelay systems that allow Yersinia enterocolitica to thrive in various environments is crucial to prevent and control Y. enterocolitica infections. In this study, we showed that RcsB and OmpR have the ability to function differently in modulating a diverse array of physiological processes in Y. enterocolitica. The rcsB mutant stimulated flagella biosynthesis and increased motility, biofilm formation and c-di-GMP production by upregulating flhDC, hmsHFRS and hmsT. However, mutation in ompR exhibited a non-motile phenotype due to the lack of flagella. Biofilm formation was reduced and less c-di-GMP was produced through the downregulation of flhDC, hmsHFRS and hmsT expression when Y. enterocolitica was exposed to low osmolarity conditions. Furthermore, OmpR was identified to be important for Y. enterocolitica to grow in extreme temperature conditions. Importantly, ompR mutations in Y. enterocolitica were more sensitive to polymyxin B and sodium dodecyl sulfate than rcsB mutations. Since motility, biofilm formation and environmental tolerance are critical for bacterial colonization of the host, these findings indicated that OmpR is more critical than RcsB in shaping the pathogenic phenotype of Y. enterocolitica.
Collapse
Affiliation(s)
- Jiao Meng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.,Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jiaqi Bai
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.,Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Junhong Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.,Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Can Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.,Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jingyu Chen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.,Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
13
|
Yuan L, Li X, Du L, Su K, Zhang J, Liu P, He Q, Zhang Z, Peng D, Shen L, Qiu J, Li Y. RcsAB and Fur Coregulate the Iron-Acquisition System via entC in Klebsiella pneumoniae NTUH-K2044 in Response to Iron Availability. Front Cell Infect Microbiol 2020; 10:282. [PMID: 32587833 PMCID: PMC7298118 DOI: 10.3389/fcimb.2020.00282] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 05/12/2020] [Indexed: 01/21/2023] Open
Abstract
The iron acquisition system is an essential virulence factor for human infection and is under tight regulatory control in a variety of pathogens. Ferric-uptake regulator (Fur) is one of Fe2+-responsive transcription factor that maintains iron homeostasis, and the regulator of capsule synthesis (Rcs) is known to regulate exopolysaccharide biosynthesis. We speculate the Rcs may involve in iron-acquisition given the identified regulator box in the upstream of entC that participated in the biosynthesis of enterobactin. To study the coregulation by RcsAB and Fur of entC, we measured the β-galactosidase activity and relative mRNA expression of entC in WT and mutant strains. The RcsAB- and Fur-protected regions were identified by an electrophoretic mobility shift assay (EMSA) and a DNase I footprinting assay. A regulatory cascade was identified with which Fur repressed rcsA expression and reduced RcsAB and entC expression. Our study demonstrated that entC was coregulated by two different transcriptional regulators, namely, RcsAB and Fur, in response to iron availability in Klebsiella pneumoniae.
Collapse
Affiliation(s)
- Lingyue Yuan
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Xuan Li
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Ling Du
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Kewen Su
- Hangzhou Hospital for the Prevention and Treatment of Occupational Disease, Hangzhou, China
| | - Jiaxue Zhang
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Pin Liu
- Nanjing Center for Disease Control and Prevention, Nanjing, China
| | - Qiang He
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Zhongshuang Zhang
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Dan Peng
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Lifei Shen
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Jingfu Qiu
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Yingli Li
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| |
Collapse
|
14
|
Meng J, Xu J, Chen J. The role of osmoregulated periplasmic glucans in the biofilm antibiotic resistance of Yersinia enterocolitica. Microb Pathog 2020; 147:104284. [PMID: 32492459 DOI: 10.1016/j.micpath.2020.104284] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 05/27/2020] [Accepted: 05/27/2020] [Indexed: 12/28/2022]
Abstract
The formation of biofilms by bacteria is of great significance because it involves many physiological changes that serve to protect the cells from various stresses. One of the best-known biofilm-specific properties of bacteria is that bacteria that grow in biofilms are generally more resistant to antibiotics than their planktonic counterparts. In a previous study, osmoregulated periplasmic glucans (OPGs), catalyzed by the opgGH operon, were identified and found to function in Rcs signalling in Yersinia enterocolitica. In this study, the possible contribution of OPGs to antimicrobial resistance of Y. enterocolitica biofilms were investigated, and the results showed that OPGs, especially when overexpressed, conferred a high level of biofilm resistance to two different classes of antibiotics onto Y. enterocolitica. Subsequent analysis revealed that OPGs regulated the biofilm architecture in Y. enterocolitica by promoting the bacteria to form large cell aggregates. Moreover, the opgGH genes in biofilms showed higher expression than in planktonic cultures. OPGs were required to induce the expression of genes related to flagella, extracellular polysaccharide, and c-di-GMP biosynthesis in Y. enterocolitica biofilms and this effect was more significant when OPGs were overproduced. The current investigation showed an extension in the biological role of OPGs in Y. enterocolitica and provided a strong theoretical basis to further study this resistance mechanism at the molecular level to identify new drug targets or disinfectants for the treatment of infections caused by Y. enterocolitica within biofilms.
Collapse
Affiliation(s)
- Jiao Meng
- Beijing Laboratory for Food Quality and Safety, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Jingguo Xu
- Beijing Laboratory for Food Quality and Safety, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Jingyu Chen
- Beijing Laboratory for Food Quality and Safety, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
15
|
Transcriptomic analysis reveals the role of RcsB in suppressing bacterial chemotaxis, flagellar assembly and infection in Yersinia enterocolitica. Curr Genet 2020; 66:971-988. [PMID: 32488337 DOI: 10.1007/s00294-020-01083-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 05/01/2020] [Accepted: 05/01/2020] [Indexed: 12/17/2022]
Abstract
Defining the Rcs (Regulator of Capsule Synthesis) regulon in Enterobacteriaceae has been the major focus of several recent studies. The overall role of the Rcs system in Yersinia enterocolitica is largely unknown. Our previous study showed that RcsB inhibits motility, biofilm formation and c-di-GMP production by negatively regulating flhDC, hmsHFRS and hmsT expression. To identify other cellular functions regulated by the RcsB, gene expression profiles of the wild type and ΔrcsB mutant were compared by RNA-Seq in this study. A total of 132 differentially expressed genes regulated by the RcsB have been identified, of which 114 were upregulated and 18 were downregulated. Further, the results of RNA sequencing were discussed with a focus on the predictive roles of RcsB in the inhibition of bacterial chemotaxis, flagellar assembly and infection. To confirm these predictions, we experimentally verified that the ΔrcsB mutant activated chemotactic behavior and flagella biosynthesis, and exhibited enhanced adhesion and invasion of Y. enterocolitica to Caco-2 cells. Although RcsB largely inhibits these physiological activities, the presence of RcsB is still of great significance for optimizing the survival of Y. enterocolitica as evidenced by our previous report that RcsB confers some level of resistance to the cationic antimicrobial peptide polymyxin B in Y. enterocolitica. Overall, the information provided in this study complements our understanding of Rcs phosphorelay in the regulation of Y. enterocolitica pathogenicity, and, simultaneously, provides clues to additional roles of the Rcs system in other members of family Enterobacteriaceae.
Collapse
|
16
|
Navasa N, Ferrero MÁ, Rodríguez-Aparicio LB, Monteagudo-Mera A, Gutiérrez S, Martínez-Blanco H. The role of RcsA in the adaptation and survival of Escherichia coli K92. FEMS Microbiol Lett 2020; 366:5476499. [PMID: 31089698 DOI: 10.1093/femsle/fnz082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 04/18/2019] [Indexed: 12/26/2022] Open
Abstract
The Rcs phosphorelay is a two-component signal transduction system that senses stressful environmental signals such as desiccation or low temperatures, which serve as natural inducers in bacteria. RcsA is an important coregulator in this system involved in some functions regulated by the Rcs system, including biofilm formation and capsule synthesis. In this sense, we previously showed that RcsA is necessary for colanic acid synthesis in Escherichia coli K92. Here, using an E. coli K92ΔrcsA mutant lacking rcsA gene we further characterize the implications of RcsA on E. coli K92 survival under osmotic and oxidative stressful conditions, and bacterial attachment and biofilm formation on both biotic and abiotic surfaces. Our results show that RcsA protects E. coli K92 against osmotic and, especially, oxidative stress at low temperatures. In addition, RcsA did not interfere in biofilm formation in any surface tested, including polystyrene, stainless steel, silicone, Teflon, aluminum and glass. By contrast, deletion of rcsA increased bacterial attachment to the caco-2 cells monolayer used as biotic surface.
Collapse
Affiliation(s)
- Nicolás Navasa
- Departamento de Biología Molecular, Área de Bioquímica y Biología Molecular, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Miguel Ángel Ferrero
- Departamento de Biología Molecular, Área de Bioquímica y Biología Molecular, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Leandro B Rodríguez-Aparicio
- Departamento de Biología Molecular, Área de Bioquímica y Biología Molecular, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Andrea Monteagudo-Mera
- Departamento de Biología Molecular, Área de Bioquímica y Biología Molecular, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Sergio Gutiérrez
- Departamento de Biología Molecular, Área de Bioquímica y Biología Molecular, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Honorina Martínez-Blanco
- Departamento de Biología Molecular, Área de Bioquímica y Biología Molecular, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| |
Collapse
|
17
|
Meng J, Huang C, Huang X, Liu D, Han B, Chen J. Osmoregulated Periplasmic Glucans Transmit External Signals Through Rcs Phosphorelay Pathway in Yersinia enterocolitica. Front Microbiol 2020; 11:122. [PMID: 32117145 PMCID: PMC7013093 DOI: 10.3389/fmicb.2020.00122] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/20/2020] [Indexed: 01/13/2023] Open
Abstract
Fast response to environmental changes plays a key role in the transmission and pathogenesis of Yersinia enterocolitica. Osmoregulated periplasmic glucans (OPGs) are known to be involved in environmental perception of several Enterobacteriaceae pathogens; however, the biological function of OPGs in Y. enterocolitica is still unclear. In this study, we investigated the role of OPGs in Y. enterocolitica by deleting the opgGH operon encoding enzymes responsible for OPGs biosynthesis. Complete loss of OPGs in the ΔopgGH mutant resulted in decreased motility, c-di-GMP production, biofilm formation and smaller cell size, whereas the overproduction of OPGs through restoration of opgGH expression promoted c-di-GMP/biofilm production and increased antibiotic resistance of Y. enterocolitica. Gene expression analysis revealed that opgGH deletion reduced transcription of flhDC, ftsAZ, hmsT and hmsHFRS genes regulated by the Rcs phosphorelay system, whereas additional deletion of rcs family genes (rcsF, rcsC, or rcsB) reversed this effect and restored motility and c-di-GMP/biofilm production but further reduced cell size. Furthermore, disruption of the Rcs phosphorelay increased the motility and promoted the induction of biofilm and c-di-GMP production regulated by OPGs through upregulating the expression of flhDC, hmsHFRS, and hmsT. However, deletion of genes encoding the EnvZ/OmpR phosphorelay downregulated the flhDC, hmsHFRS and hmsT expression, leading to the decreased motility and prevented the induction of biofilm and c-di-GMP production regulated by OPGs. These results indicated that Rcs phosphorelay had the effect on OPGs-mediated functional responses in Y. enterocolitica. Our findings disclose part of the biological role of OPGs and the underlying molecular mechanisms associated with Rcs system in the regulation of the pathogenic phenotype in Y. enterocolitica.
Collapse
Affiliation(s)
- Jiao Meng
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Can Huang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xiaoning Huang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Dingyu Liu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Beizhong Han
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jingyu Chen
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
18
|
Liu L, Zheng S. Transcriptional regulation of Yersinia pestis biofilm formation. Microb Pathog 2019; 131:212-217. [PMID: 30980880 DOI: 10.1016/j.micpath.2019.04.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 04/08/2019] [Indexed: 01/27/2023]
Abstract
Yersinia pestis, the causative agent of plague, is transmitted primarily by infected fleas in nature. Y. pestis can produce biofilms that block flea's proventriculus and promote flea-borne transmission. Transcriptional regulation of Y. pestis biofilm formation plays an important role in the response to complex changes in environments, including temperature, pH, oxidative stress, and restrictive nutrition conditions, and contributes to Y. pestis growth, reproduction, transmission, and pathogenesis. A set of transcriptional regulators involved in Y. pestis biofilm production simultaneously controls a variety of biological functions and physiological pathways. Interactions between these regulators contribute to the development of Y. pestis gene regulatory networks, which are helpful for a quick response to complex environmental changes and better survival. The roles of crucial factors and regulators involved in response to complex environmental signals and Y. pestis biofilm formation as well as the precise gene regulatory networks are discussed in this review, which will give a better understanding of the complicated mechanisms of transcriptional regulation in Y. pestis biofilm formation.
Collapse
Affiliation(s)
- Lei Liu
- Department of Transfusion, General Hospital of Central Theater Command, Wuhan, 430070, Hubei, China; State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Shangen Zheng
- Department of Transfusion, General Hospital of Central Theater Command, Wuhan, 430070, Hubei, China.
| |
Collapse
|
19
|
Fang H, Liu L, Zhang Y, Yang H, Yan Y, Ding X, Han Y, Zhou D, Yang R. BfvR, an AraC-Family Regulator, Controls Biofilm Formation and pH6 Antigen Production in Opposite Ways in Yersinia pestis Biovar Microtus. Front Cell Infect Microbiol 2018; 8:347. [PMID: 30333962 PMCID: PMC6176095 DOI: 10.3389/fcimb.2018.00347] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 09/11/2018] [Indexed: 11/13/2022] Open
Abstract
Biofilm formation is critical for blocking flea foregut and hence for transmission of Y. pestis by flea biting. In this study, we identified the regulatory role of the AraC-family transcriptional regulator BfvR (YPO1737 in strain CO92) in biofilm formation and virulence of Yersinia pestis biovar Microtus. Crystal violet staining, Caenorhabditis elegans biofilm assay, colony morphology assay, intracellular c-di-GMP concentration determination, and BALB/c mice challenge were employed to reveal that BfvR enhanced Y. pestis biofilm formation while repressed its virulence in mice. Further molecular biological assays demonstrated that BfvR directly stimulated the expression of hmsHFRS, waaAE-coaD, and hmsCDE, which, in turn, affected the production of exopolysaccharide, LPS, and c-di-GMP, respectively. In addition, BfvR directly and indirectly repressed psaABC and psaEF transcription, respectively. We concluded that the modulation of biofilm- and virulence-related genes by BfvR led to increased biofilm formation and reduced virulence of Y. pestis biovar Microtus.
Collapse
Affiliation(s)
- Haihong Fang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.,Division of Biology, Beijing Academy, Beijing, China
| | - Lei Liu
- Department of Blood Transfusion, Wuhan General Hospital of PLA, Wuhan, China
| | - Yiquan Zhang
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Huiying Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yanfeng Yan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiaojuan Ding
- Department of Microbiology, Anhui Medical University, Hefei, China
| | - Yanping Han
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| |
Collapse
|
20
|
Schachterle JK, Stewart RM, Schachterle MB, Calder JT, Kang H, Prince JT, Erickson DL. Yersinia pseudotuberculosis BarA-UvrY Two-Component Regulatory System Represses Biofilms via CsrB. Front Cell Infect Microbiol 2018; 8:323. [PMID: 30280093 PMCID: PMC6153318 DOI: 10.3389/fcimb.2018.00323] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 08/24/2018] [Indexed: 01/07/2023] Open
Abstract
The formation of biofilms by Yersinia pseudotuberculosis (Yptb) and Y. pestis requires the hmsHFRS genes, which direct production of a polysaccharide extracellular matrix (Hms-ECM). Despite possessing identical hmsHFRS sequences, Yptb produces much less Hms-ECM than Y. pestis. The regulatory influences that control Yptb Hms-ECM production and biofilm formation are not fully understood. In this study, negative regulators of biofilm production in Yptb were identified. Inactivation of the BarA/UvrY two-component system or the CsrB regulatory RNA increased binding of Congo Red dye, which correlates with extracellular polysaccharide production. These mutants also produced biofilms that were substantially more cohesive than the wild type strain. Disruption of uvrY was not sufficient for Yptb to cause proventricular blockage during infection of Xenopsylla cheopis fleas. However, this strain was less acutely toxic toward fleas than wild type Yptb. Flow cytometry measurements of lectin binding indicated that Yptb BarA/UvrY/CsrB mutants may produce higher levels of other carbohydrates in addition to poly-GlcNAc Hms-ECM. In an effort to characterize the relevant downstream targets of the BarA/UvrY system, we conducted a proteomic analysis to identify proteins with lower abundance in the csrB::Tn5 mutant strain. Urease subunit proteins were less abundant and urease enzymatic activity was lower, which likely reduced toxicity toward fleas. Loss of CsrB impacted expression of several potential regulatory proteins that may influence biofilms, including the RcsB regulator. Overexpression of CsrB did not alter the Congo-red binding phenotype of an rcsB::Tn5 mutant, suggesting that the effect of CsrB on biofilms may require RcsB. These results underscore the regulatory and compositional differences between Yptb and Y. pestis biofilms. By activating CsrB expression, the Yptb BarA/UvrY two-component system has pleiotropic effects that impact biofilm production and stability.
Collapse
Affiliation(s)
- Jeffrey K Schachterle
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States
| | - Ryan M Stewart
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States
| | - M Brett Schachterle
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States
| | - Joshua T Calder
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States
| | - Huan Kang
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, United States
| | - John T Prince
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, United States
| | - David L Erickson
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States
| |
Collapse
|
21
|
Peng D, Li X, Liu P, Zhou X, Luo M, Su K, Chen S, Zhang Z, He Q, Qiu J, Li Y. Transcriptional regulation of galF by RcsAB affects capsular polysaccharide formation in Klebsiella pneumoniae NTUH-K2044. Microbiol Res 2018; 216:70-78. [PMID: 30269858 DOI: 10.1016/j.micres.2018.08.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 08/22/2018] [Accepted: 08/23/2018] [Indexed: 01/17/2023]
Abstract
RcsAB is an atypical two-component regulatory system that can regulate exopolysaccharide biosynthesis and is involved in the virulence of K. pneumoniae. The gene galF is well known as a gene involved in the biosynthesis of capsular polysaccharide (CPS). The specific DNA identification sequence for transcriptional regulation of RcsAB was found to be present in the promoter region of galF. This study aimed to detect the function of RcsAB in virulence and in biofilm and CPS formation. In addition, the transcriptional regulation of the galF gene in K. pneumoniae was studied. To determine the function of rcsAB gene, the wild-type K. pneumoniae strain NTUH-K2044 and the rcsAB knockout and complemented strains were used. The results showed decreased virulence, biofilm formation, and CPS levels in the rcsAB knockout strain. Complementation of the knockout by introducing an rcsAB fragment on an expression plasmid partially restored the virulence, biofilm, and CPS functions of the knockout strain. It indicated that the rcsAB genes might affect CPS formation and virulence of K. pneumonia. RT-qPCR, EMSA and DNase I footprinting assays were conducted to identify the transcriptional regulation of galF by RcsAB. RcsAB was seen to bind to the galF promoter-proximal region, and the binding site was further identified to be located from -177 bp to -152 bp upstream of the galF promoter. In conclusion, RcsAB could regulate the transcription of the galF gene positively by binding to the galF promoter DNA directly, and then affects the CPS formation of K. pneumonia.
Collapse
Affiliation(s)
- Dan Peng
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Xuan Li
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Pin Liu
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Xipeng Zhou
- Chongqing Tuberculosis Control Institute, Chongqing, China
| | - Mei Luo
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Kewen Su
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Shuai Chen
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Zhongshuang Zhang
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Qiang He
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Jingfu Qiu
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Yingli Li
- School of Public Health and Management, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
22
|
Abstract
RcsB, a response regulator of the FixJ/NarL family, is at the center of a complex network of regulatory inputs and outputs. Cell surface stress is sensed by an outer membrane lipoprotein, RcsF, which regulates interactions of the inner membrane protein IgaA, lifting negative regulation of a phosphorelay. In vivo evidence supports a pathway in which histidine kinase RcsC transfers phosphate to phosphotransfer protein RcsD, resulting in phosphorylation of RcsB. RcsB acts either alone or in combination with RcsA to positively regulate capsule synthesis and synthesis of small RNA (sRNA) RprA as well as other genes, and to negatively regulate motility. RcsB in combination with other FixJ/NarL auxiliary proteins regulates yet other functions, independent of RcsB phosphorylation. Proper expression of Rcs and its targets is critical for success of Escherichia coli commensal strains, for proper development of biofilm, and for virulence in some pathogens. New understanding of how the Rcs phosphorelay works provides insight into the flexibility of the two-component system paradigm.
Collapse
Affiliation(s)
- Erin Wall
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA; emails: , ,
| | - Nadim Majdalani
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA; emails: , ,
| | - Susan Gottesman
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA; emails: , ,
| |
Collapse
|
23
|
Hinnebusch BJ, Jarrett CO, Bland DM. "Fleaing" the Plague: Adaptations of Yersinia pestis to Its Insect Vector That Lead to Transmission. Annu Rev Microbiol 2018; 71:215-232. [PMID: 28886687 DOI: 10.1146/annurev-micro-090816-093521] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Interest in arthropod-borne pathogens focuses primarily on how they cause disease in humans. How they produce a transmissible infection in their arthropod host is just as critical to their life cycle, however. Yersinia pestis adopts a unique life stage in the digestive tract of its flea vector, characterized by rapid formation of a bacterial biofilm that is enveloped in a complex extracellular polymeric substance. Localization and adherence of the biofilm to the flea foregut is essential for transmission. Here, we review the molecular and genetic mechanisms of these processes and present a comparative evaluation and updated model of two related transmission mechanisms.
Collapse
Affiliation(s)
- B Joseph Hinnebusch
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana 59840;
| | - Clayton O Jarrett
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana 59840;
| | - David M Bland
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana 59840;
| |
Collapse
|
24
|
Guo XP, Sun YC. New Insights into the Non-orthodox Two Component Rcs Phosphorelay System. Front Microbiol 2017; 8:2014. [PMID: 29089936 PMCID: PMC5651002 DOI: 10.3389/fmicb.2017.02014] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 09/29/2017] [Indexed: 01/18/2023] Open
Abstract
The Rcs phosphorelay system, a non-orthodox two-component regulatory system, integrates environmental signals, regulates gene expression, and alters the physiological behavior of members of the Enterobacteriaceae family of Gram-negative bacteria. Recent studies of Rcs system focused on protein interactions, functions, and the evolution of Rcs system components and its auxiliary regulatory proteins. Herein we review the latest advances on the Rcs system proteins, and discuss the roles that the Rcs system plays in the environmental adaptation of various Enterobacteriaceae species.
Collapse
Affiliation(s)
- Xiao-Peng Guo
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi-Cheng Sun
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
25
|
A starvation-induced regulator, RovM, acts as a switch for planktonic/biofilm state transition in Yersinia pseudotuberculosis. Sci Rep 2017; 7:639. [PMID: 28377623 PMCID: PMC5428675 DOI: 10.1038/s41598-017-00534-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 02/28/2017] [Indexed: 01/31/2023] Open
Abstract
The transition between the planktonic state and the biofilm-associated state is a key developmental decision for pathogenic bacteria. Biofilm formation by Yersinia pestis is regulated by hmsHFRS genes (β-1, 6-N-acetyl-D-glucosamine synthesis operon) in its flea vector and in vitro. However, the mechanism of biofilm formation in Yersinia pseudotuberculosis remains elusive. In this study, we demonstrate that the LysR-type regulator RovM inversely regulates biofilm formation and motility in Y. pseudotuberculosis by acting as a transcriptional regulator of these two functions. RovM is strongly induced during growth in minimal media but strongly repressed in complex media. On one hand, RovM enhances bacterial motility by activating the expression of FlhDC, the master regulator of flagellar genes, via the recognition of an operator upstream of the flhDC promoter. On the other hand, RovM represses β-GlcNAc production under nutrition-limited conditions, negatively regulating hmsHFRS expression by directly binding to the -35 element of its promoter. Compared to wild-type bacteria, the rovM mutant established denser biofilms and caused more extensive mortality in mice and silkworm larvae. These results indicate that RovM acts as a molecular switch to coordinate the expression of genes involved in biofilm formation and motility in response to the availability of nutrients.
Collapse
|
26
|
Liu L, Fang H, Yang H, Zhang Y, Han Y, Zhou D, Yang R. Reciprocal regulation of Yersinia pestis biofilm formation and virulence by RovM and RovA. Open Biol 2016; 6:rsob.150198. [PMID: 26984293 PMCID: PMC4821237 DOI: 10.1098/rsob.150198] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
RovA is known to enhance Yersinia pestis virulence by directly upregulating the psa loci. This work presents a complex gene regulatory paradigm involving the reciprocal regulatory action of RovM and RovA on the expression of biofilm and virulence genes as well as on their own genes. RovM and RovA enhance and inhibit Y. pestis biofilm production, respectively, whereas RovM represses virulence in mice. RovM directly stimulates the transcription of hmsT, hmsCDE and rovM, while indirectly enhancing hmsHFRS transcription. It also indirectly represses hmsP transcription. By contrast, RovA directly represses hmsT transcription and indirectly inhibits waaAE-coaD transcription, while RovM inhibits psaABC and psaEF transcription by directly repressing rovA transcription. rovM expression is significantly upregulated at 26°C (the temperature of the flea gut) relative to 37°C (the warm-blooded host temperature). We speculate that upregulation of rovM together with downregulation of rovA in the flea gut would promote Y. pestis biofilm formation while inhibiting virulence gene expression, leading to a more transmissible infection of this pathogen in fleas. Once the bacterium shifts to a lifestyle in the warm-blooded hosts, inhibited RovM production accompanied by recovered RovA synthesis would encourage virulence factor production and inhibit biofilm gene expression.
Collapse
Affiliation(s)
- Lei Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, People's Republic of China
| | - Haihong Fang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, People's Republic of China
| | - Huiying Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, People's Republic of China
| | - Yiquan Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, People's Republic of China School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China
| | - Yanping Han
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, People's Republic of China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, People's Republic of China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, People's Republic of China
| |
Collapse
|
27
|
Abstract
The plague bacillus Yersinia pestis is unique among the pathogenic Enterobacteriaceae in utilizing an arthropod-borne transmission route. Transmission by fleabite is a recent evolutionary adaptation that followed the divergence of Y. pestis from the closely related food- and waterborne enteric pathogen Yersinia pseudotuberculosis A combination of population genetics, comparative genomics, and investigations of Yersinia-flea interactions have disclosed the important steps in the evolution and emergence of Y. pestis as a flea-borne pathogen. Only a few genetic changes, representing both gene gain by lateral transfer and gene loss by loss-of-function mutation (pseudogenization), were fundamental to this process. The emergence of Y. pestis fits evolutionary theories that emphasize ecological opportunity in adaptive diversification and rapid emergence of new species.
Collapse
|
28
|
Liu L, Fang H, Yang H, Zhang Y, Han Y, Zhou D, Yang R. CRP Is an Activator of Yersinia pestis Biofilm Formation that Operates via a Mechanism Involving gmhA and waaAE-coaD. Front Microbiol 2016; 7:295. [PMID: 27014218 PMCID: PMC4782182 DOI: 10.3389/fmicb.2016.00295] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 02/23/2016] [Indexed: 01/28/2023] Open
Abstract
gmhA encodes a phosphoheptose isomerase that catalyzes the biosynthesis of heptose, a conserved component of lipopolysaccharide (LPS). GmhA plays an important role in Yersinia pestis biofilm blockage in the flea gut. waaA, waaE, and coaD constitute a three-gene operon waaAE-coaD in Y. pestis. waaA encodes a transferase that is responsible for binding lipid-A to the core oligosaccharide of LPS. WaaA is a key determinant in Y. pestis biofilm formation, and the waaA expression is positively regulated by the two-component regulatory system PhoP/PhoQ. WaaE is involved in LPS modification and is necessary for Y. pestis biofilm production. In this study, the biofilm-related phenotypic assays indicate that the global regulator CRP stimulates Y. pestis biofilm formation in vitro and on nematodes, while it has no regulatory effect on the biosynthesis of the biofilm-signaling molecular 3',5'-cyclic diguanosine monophosphate. Further gene regulation experiments disclose that CRP does not regulate the hms genes at the transcriptional level but directly promotes the gmhA transcription and indirectly activates the waaAE-coaD transcription through directly acting on phoPQ-YPO1632. Thus, it is speculated that CRP-mediated carbon catabolite regulation of Y. pestis biofilm formation depends on the CRP-dependent carbon source metabolic pathways of the biosynthesis, modification, and transportation of biofilm exopolysaccharide.
Collapse
Affiliation(s)
- Lei Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing, China
| | - Haihong Fang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing, China
| | - Huiying Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing, China
| | - Yiquan Zhang
- Department of Biochemistry, School of Medicine, Jiangsu University Zhenjiang, China
| | - Yanping Han
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing, China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing, China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing, China
| |
Collapse
|
29
|
Chen S, Thompson KM, Francis MS. Environmental Regulation of Yersinia Pathophysiology. Front Cell Infect Microbiol 2016; 6:25. [PMID: 26973818 PMCID: PMC4773443 DOI: 10.3389/fcimb.2016.00025] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/15/2016] [Indexed: 12/26/2022] Open
Abstract
Hallmarks of Yersinia pathogenesis include the ability to form biofilms on surfaces, the ability to establish close contact with eukaryotic target cells and the ability to hijack eukaryotic cell signaling and take over control of strategic cellular processes. Many of these virulence traits are already well-described. However, of equal importance is knowledge of both confined and global regulatory networks that collaborate together to dictate spatial and temporal control of virulence gene expression. This review has the purpose to incorporate historical observations with new discoveries to provide molecular insight into how some of these regulatory mechanisms respond rapidly to environmental flux to govern tight control of virulence gene expression by pathogenic Yersinia.
Collapse
Affiliation(s)
- Shiyun Chen
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences Wuhan, China
| | - Karl M Thompson
- Department of Microbiology, College of Medicine, Howard University Washington, DC, USA
| | - Matthew S Francis
- Umeå Centre for Microbial Research, Umeå UniversityUmeå, Sweden; Department of Molecular Biology, Umeå UniversityUmeå, Sweden
| |
Collapse
|
30
|
CRP-Mediated Carbon Catabolite Regulation of Yersinia pestis Biofilm Formation Is Enhanced by the Carbon Storage Regulator Protein, CsrA. PLoS One 2015; 10:e0135481. [PMID: 26305456 PMCID: PMC4549057 DOI: 10.1371/journal.pone.0135481] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 07/22/2015] [Indexed: 01/20/2023] Open
Abstract
The natural transmission of Yersinia pestis is reliant upon biofilm blockage of the flea vector. However, the environmentally-responsive adaptive regulators which facilitate Y. pestis biofilm production in accordance with the flea midgut milieu are not well understood. We seek to establish the impact of available carbon source metabolism and storage upon Y. pestis biofilm production. Our findings demonstrate that Y. pestis biofilm production is subject to carbon catabolite regulation in which the presence of glucose impairs biofilm production; whereas, the sole metabolism of alternate carbon sources promotes robust biofilm formation. This observation is facilitated by the cAMP receptor protein, CRP. In accordance with a stark growth defect, deletion of crp in both CO92 and KIM6+ Y. pestis strains significantly impaired biofilm production when solely utilizing alternate carbon sources. Media supplementation with cAMP, a small-molecule activator of CRP, did not significantly alter Y. pestis biofilm production. Furthermore, CRP did not alter mRNA abundance of previously-characterized hms biofilm synthesis and regulation factors. Therefore, our findings indicate CRP does not confer a direct stimulatory effect, but may indirectly promote Y. pestis biofilm production by facilitating the alternate carbon source expression profile. Additionally, we assessed the impact of the carbon storage regulator protein, CsrA, upon Y. pestis biofilm production. Contrary to what has been described for E. coli, Y. pestis biofilm formation was found to be enhanced by CsrA. Regardless of media composition and available carbon source, deletion of csrA significantly impaired Y. pestis biofilm production. CsrA was found to promote Y. pestis biofilm production independent of glycogen regulation. Loss of csrA did not significantly alter relative hmsH, hmsP, or hmsT mRNA abundance. However, deletion of hmsP in the csrA-deficient mutant enabled excessive biofilm production, suggesting CsrA enables potent Y. pestis biofilm production through cyclic diguanylate regulation.
Collapse
|