1
|
Li CY, Chen LW, Tsai MC, Chou YY, Lin PX, Chang YM, Hwu WL, Chien YH, Lin JL, Chen HA, Lee NC, Su PH, Hsieh TC, Klinkhammer H, Wang YC, Huang YT, Krawitz PM, Lin SH, Huang LLH, Chiang PM, Shih MH, Chen PC. Homozygous variant in translocase of outer mitochondrial membrane 7 leads to metabolic reprogramming and microcephalic osteodysplastic dwarfism with moyamoya disease. EBioMedicine 2024; 110:105476. [PMID: 39615461 DOI: 10.1016/j.ebiom.2024.105476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 12/15/2024] Open
Abstract
BACKGROUND Impaired mitochondrial protein import machinery leads to phenotypically heterogeneous diseases. Here, we report a recurrent homozygous missense variant in the gene that encodes the translocase of outer mitochondrial membrane 7 (TOMM7) in nine patients with microcephaly, short stature, facial dysmorphia, atrophic macular scarring, and moyamoya disease from seven unrelated families. METHODS To prove the causality of the TOMM7 variant, mitochondrial morphology, proteomics, and respiration were investigated in CRISPR/Cas9-edited iPSCs-derived endothelial cells. Cerebrovascular defects and mitochondrial respiration were also examined in CRISPR/Cas9-edited zebrafish. FINDINGS iPSC-derived endothelial cells with homozygous TOMM7 p.P29L showed increased TOM7 stability, enlarged mitochondria, increased senescence, and defective tube formation. In addition, proteomic analysis revealed a reduced abundance of mitochondrial proteins involved in ATP synthesis or coordinating TCA cycle and gluconeogenesis. Moreover, mitochondrial respiration was slightly decreased while ATP production from glycolysis was significantly increased. Furthermore, deletion of tomm7 in zebrafish caused craniofacial and cerebrovascular defects that recapitulated human phenotypes. Notably, homozygous iPSCs differentially expressed genes involved in glycolysis and response to hypoxia. Finally, the metabolic imbalance was evidenced by decreased oxygen consumption, increased level of hexokinase 2, and enhanced glycolysis in endothelial cells derived from the patient's iPSCs. INTERPRETATION These results revealed the essential role of TOMM7 in balancing cellular sources of energy production at both proteomic and transcriptomic levels and provided the molecular mechanisms through which TOMM7 p.P29L variant leads to an autosomal recessive microcephalic osteodysplastic dwarfism with moyamoya disease. FUNDING This work is supported by National Science and Technology Council grants and National Cheng Kung University Hospital.
Collapse
Affiliation(s)
- Chia-Yi Li
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Li-Wen Chen
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Meng-Che Tsai
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Genomic Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yen-Yin Chou
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Genomic Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Xuan Lin
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Ming Chang
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wuh-Liang Hwu
- Precision Medical Center, China Medical University Hospital, Taichung City, Taiwan; Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Yin-Hsiu Chien
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan; Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Ju-Li Lin
- Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Hui-An Chen
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Ni-Chung Lee
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan; Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Pen-Hua Su
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan; School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Tzung-Chien Hsieh
- Institute for Genomic Statistics and Bioinformatics, Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Hannah Klinkhammer
- Institute for Genomic Statistics and Bioinformatics, Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany; Institute for Medical Biometry, Informatics and Epidemiology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Yi-Chieh Wang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Ting Huang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Peter M Krawitz
- Institute for Genomic Statistics and Bioinformatics, Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Sheng-Hsiang Lin
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Research Center of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Lynn L H Huang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Po-Min Chiang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Research Center of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Min-Hsiu Shih
- Department of Ophthalmology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Peng-Chieh Chen
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Research Center of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
2
|
Florido MHC, Ziats NP. Endothelial dysfunction and cardiovascular diseases: The role of human induced pluripotent stem cells and tissue engineering. J Biomed Mater Res A 2024; 112:1286-1304. [PMID: 38230548 DOI: 10.1002/jbm.a.37669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/07/2023] [Accepted: 01/02/2024] [Indexed: 01/18/2024]
Abstract
Cardiovascular disease (CVD) remains to be the leading cause of death globally today and therefore the need for the development of novel therapies has become increasingly important in the cardiovascular field. The mechanism(s) behind the pathophysiology of CVD have been laboriously investigated in both stem cell and bioengineering laboratories. Scientific breakthroughs have paved the way to better mimic cell types of interest in recent years, with the ability to generate any cell type from reprogrammed human pluripotent stem cells. Mimicking the native extracellular matrix using both organic and inorganic biomaterials has allowed full organs to be recapitulated in vitro. In this paper, we will review techniques from both stem cell biology and bioengineering which have been fruitfully combined and have fueled advances in the cardiovascular disease field. We will provide a brief introduction to CVD, reviewing some of the recent studies as related to the role of endothelial cells and endothelial cell dysfunction. Recent advances and the techniques widely used in both bioengineering and stem cell biology will be discussed, providing a broad overview of the collaboration between these two fields and their overall impact on tissue engineering in the cardiovascular devices and implications for treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Mary H C Florido
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
- Harvard Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Nicholas P Ziats
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
- Departments of Biomedical Engineering and Anatomy, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
3
|
Xu X, Liao L, Tian W. Strategies of Prevascularization in Tissue Engineering and Regeneration of Craniofacial Tissues. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:464-475. [PMID: 34191620 DOI: 10.1089/ten.teb.2021.0004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Craniofacial tissue defects caused by trauma, developmental malformation, or surgery are critical issues of high incidence, which are harmful to physical and psychological health. Transplantation of engineered tissues or biomaterials is a potential method to repair defects and regenerate the craniofacial tissues. Revascularization is essential to ensure the survival and regeneration of the grafts. Since microvessels play a critical role in blood circulation and substance exchange, the pre-establishment of the microvascular network in transplants provides a technical basis for the successful regeneration of the tissue defect. In this study, we reviewed the recent development of strategies and applications of prevascularization in tissue engineering and regeneration of craniofacial tissues. We focused on the cellular foundation of the in vitro prevascularized microvascular network, the cell source for prevascularization, and the strategies of prevascularization. Several key strategies, including coculture, microspheres, three-dimensional printing and microfluidics, and microscale technology, were summarized and the feasibility of these technologies in the clinical repair of craniofacial defects was discussed.
Collapse
Affiliation(s)
- Xun Xu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Li Liao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Weidong Tian
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Chen PC, Hsueh YW, Lee YH, Tsai HW, Tsai KJ, Chiang PM. FGF primes angioblast formation by inducing ETV2 and LMO2 via FGFR1/BRAF/MEK/ERK. Cell Mol Life Sci 2021; 78:2199-2212. [PMID: 32910224 PMCID: PMC11073248 DOI: 10.1007/s00018-020-03630-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 07/28/2020] [Accepted: 08/24/2020] [Indexed: 02/07/2023]
Abstract
It is critical to specify a signal that directly drives the transition that occurs between cell states. However, such inferences are often confounded by indirect intercellular communications or secondary transcriptomic changes due to primary transcription factors. Although FGF is known for its importance during mesoderm-to-endothelium differentiation, its specific role and signaling mechanisms are still unclear due to the confounding factors referenced above. Here, we attempted to minimize the secondary artifacts by manipulating FGF and its downstream mediators with a short incubation time before sampling and protein-synthesis blockage in a low-density angioblastic/endothelial differentiation system. In less than 8 h, FGF started the conversion of KDRlow/PDGFRAlow nascent mesoderm into KDRhigh/PDGFRAlow angioblasts, and the priming by FGF was necessary to endow endothelial formation 72 h later. Further, the angioblastic conversion was mediated by the FGFR1/BRAF/MEK/ERK pathway in mesodermal cells. Finally, two transcription factors, ETV2 and LMO2, were the early direct functional responders downstream of the FGF pathway, and ETV2 alone was enough to complement the absence of FGF. FGF's selective role in mediating the first-step, angioblastic conversion from mesoderm-to-endothelium thus allows for refined control over acquiring and manipulating angioblasts. The noise-minimized differentiation/analysis platform presented here is well-suited for studies on the signaling switches of other mesodermal-lineage fates as well.
Collapse
Affiliation(s)
- Peng-Chieh Chen
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No. 35, Xiaodong Rd., Tainan, 70457, Taiwan
- Research Center of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ya-Wen Hsueh
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No. 35, Xiaodong Rd., Tainan, 70457, Taiwan
- Research Center of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Hsuan Lee
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Hung-Wen Tsai
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kuen-Jer Tsai
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No. 35, Xiaodong Rd., Tainan, 70457, Taiwan
- Research Center of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Po-Min Chiang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No. 35, Xiaodong Rd., Tainan, 70457, Taiwan.
- Research Center of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
5
|
Huang CY, Li LH, Hsu WT, Cheng YC, Nicholson MW, Liu CL, Ting CY, Ko HW, Syu SH, Wen CH, Yan Z, Huang HP, Su HL, Chiang PM, Shen CN, Chen HF, Yen BLJ, Lu HE, Hwang SM, Chiou SH, Ho HN, Wu JY, Kamp TJ, Wu JC, Hsieh PCH. Copy number variant hotspots in Han Taiwanese population induced pluripotent stem cell lines - lessons from establishing the Taiwan human disease iPSC Consortium Bank. J Biomed Sci 2020; 27:92. [PMID: 32887585 PMCID: PMC7487458 DOI: 10.1186/s12929-020-00682-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 08/24/2020] [Indexed: 11/15/2022] Open
Abstract
Background The Taiwan Human Disease iPSC Service Consortium was established to accelerate Taiwan’s growing stem cell research initiatives and provide a platform for researchers interested in utilizing induced pluripotent stem cell (iPSC) technology. The consortium has generated and characterized 83 iPSC lines: 11 normal and 72 disease iPSC lines covering 21 different diseases, several of which are of high incidence in Taiwan. Whether there are any reprogramming-induced recurrent copy number variant (CNV) hotspots in iPSCs is still largely unknown. Methods We performed genome-wide copy number variant screening of 83 Han Taiwanese iPSC lines and compared them with 1093 control subjects using an Affymetrix genome-wide human SNP array. Results In the iPSCs, we identified ten specific CNV loci and seven “polymorphic” CNV regions that are associated with the reprogramming process. Additionally, we established several differentiation protocols for our iPSC lines. We demonstrated that our iPSC-derived cardiomyocytes respond to pharmacological agents and were successfully engrafted into the mouse myocardium demonstrating their potential application in cell therapy. Conclusions The CNV hotspots induced by cell reprogramming have successfully been identified in the current study. This finding may be used as a reference index for evaluating iPSC quality for future clinical applications. Our aim was to establish a national iPSC resource center generating iPSCs, made available to researchers, to benefit the stem cell community in Taiwan and throughout the world.
Collapse
Affiliation(s)
- Ching-Ying Huang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan
| | - Ling-Hui Li
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan
| | - Wan-Tseng Hsu
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - Yu-Che Cheng
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan
| | | | - Chun-Lin Liu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan
| | - Chien-Yu Ting
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan
| | - Hui-Wen Ko
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, 300, Taiwan
| | - Shih-Han Syu
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, 300, Taiwan
| | - Cheng-Hao Wen
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, 300, Taiwan
| | - Zhuge Yan
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Hsiang-Po Huang
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - Hong-Lin Su
- Department of Life Sciences, National Chung-Hsing University, Taichung, 402, Taiwan
| | - Po-Min Chiang
- Institute of Clinical Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Chia-Ning Shen
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Hsin-Fu Chen
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - B Lin Ju Yen
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, 350, Taiwan
| | - Huai-En Lu
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, 300, Taiwan
| | - Shiaw-Min Hwang
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, 300, Taiwan
| | - Shih-Hwa Chiou
- Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei, 112, Taiwan
| | - Hong-Nerng Ho
- Department of Obstetrics and Gynecology, College of Medicine and the Hospital, National Taiwan University, Taipei, Taiwan
| | - Jer-Yuarn Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan
| | - Timothy J Kamp
- Stem Cell and Regenerative Medicine Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Patrick C H Hsieh
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan.
| |
Collapse
|
6
|
Wanjare M, Kawamura M, Hu C, Alcazar C, Wang H, Woo YJ, Huang NF. Vascularization of Engineered Spatially Patterned Myocardial Tissue Derived From Human Pluripotent Stem Cells in vivo. Front Bioeng Biotechnol 2019; 7:208. [PMID: 31552234 PMCID: PMC6733921 DOI: 10.3389/fbioe.2019.00208] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 08/19/2019] [Indexed: 12/28/2022] Open
Abstract
Tissue engineering approaches to regenerate myocardial tissue after disease or injury is promising. Integration with the host vasculature is critical to the survival and therapeutic efficacy of engineered myocardial tissues. To create more physiologically oriented engineered myocardial tissue with organized cellular arrangements and endothelial interactions, randomly oriented or parallel-aligned microfibrous polycaprolactone scaffolds were seeded with human pluripotent stem cell-derived cardiomyocytes (iCMs) and/or endothelial cells (iECs). The resultant engineered myocardial tissues were assessed in a subcutaneous transplantation model and in a myocardial injury model to evaluate the effect of scaffold anisotropy and endothelial interactions on vascular integration of the engineered myocardial tissue. Here we demonstrated that engineered myocardial tissue composed of randomly oriented scaffolds seeded with iECs promoted the survival of iECs for up to 14 days. However, engineered myocardial tissue composed of aligned scaffolds preferentially guided the organization of host capillaries along the direction of the microfibers. In a myocardial injury model, epicardially transplanted engineered myocardial tissues composed of randomly oriented scaffolds seeded with iCMs augmented microvessel formation leading to a significantly higher arteriole density after 4 weeks, compared to engineered tissues derived from aligned scaffolds. These findings that the scaffold microtopography imparts differential effect on revascularization, in which randomly oriented scaffolds promote pro-survival and pro-angiogenic effects, and aligned scaffolds direct the formation of anisotropic vessels. These findings suggest a dominant role of scaffold topography over endothelial co-culture in modulating cellular survival, vascularization, and microvessel architecture.
Collapse
Affiliation(s)
- Maureen Wanjare
- Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States.,Stanford Cardiovascular Institute, Stanford University, Stanford, CA, United States
| | - Masashi Kawamura
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, United States
| | - Caroline Hu
- Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States
| | - Cynthia Alcazar
- Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States
| | - Hanjay Wang
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, United States
| | - Y Joseph Woo
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, United States.,Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, United States.,Department of Bioengineering, Stanford University, Stanford, CA, United States
| | - Ngan F Huang
- Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States.,Stanford Cardiovascular Institute, Stanford University, Stanford, CA, United States.,Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, United States
| |
Collapse
|
7
|
Arora S, Yim EKF, Toh YC. Environmental Specification of Pluripotent Stem Cell Derived Endothelial Cells Toward Arterial and Venous Subtypes. Front Bioeng Biotechnol 2019; 7:143. [PMID: 31259171 PMCID: PMC6587665 DOI: 10.3389/fbioe.2019.00143] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 05/28/2019] [Indexed: 12/25/2022] Open
Abstract
Endothelial cells (ECs) are required for a multitude of cardiovascular clinical applications, such as revascularization of ischemic tissues or endothelialization of tissue engineered grafts. Patient derived primary ECs are limited in number, have donor variabilities and their in vitro phenotypes and functions can deteriorate over time. This necessitates the exploration of alternative EC sources. Although there has been a recent surge in the use of pluripotent stem cell derived endothelial cells (PSC-ECs) for various cardiovascular clinical applications, current differentiation protocols yield a heterogeneous EC population, where their specification into arterial or venous subtypes is undefined. Since arterial and venous ECs are phenotypically and functionally different, inappropriate matching of exogenous ECs to host sites can potentially affect clinical efficacy, as exemplified by venous graft mismatch when placed into an arterial environment. Therefore, there is a need to design and employ environmental cues that can effectively modulate PSC-ECs into a more homogeneous arterial or venous phenotype for better adaptation to the host environment, which will in turn contribute to better application efficacy. In this review, we will first give an overview of the developmental and functional differences between arterial and venous ECs. This provides the foundation for our subsequent discussion on the different bioengineering strategies that have been investigated to varying extent in providing biochemical and biophysical environmental cues to mature PSC-ECs into arterial or venous subtypes. The ability to efficiently leverage on a combination of biochemical and biophysical environmental cues to modulate intrinsic arterio-venous specification programs in ECs will greatly facilitate future translational applications of PSC-ECs. Since the development and maintenance of arterial and venous ECs in vivo occur in disparate physio-chemical microenvironments, it is conceivable that the application of these environmental factors in customized combinations or magnitudes can be used to selectively mature PSC-ECs into an arterial or venous subtype.
Collapse
Affiliation(s)
- Seep Arora
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore.,Singapore Institute for Neurotechnology (SINAPSE), National University of Singapore, Singapore, Singapore
| | - Evelyn K F Yim
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Yi-Chin Toh
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore.,Singapore Institute for Neurotechnology (SINAPSE), National University of Singapore, Singapore, Singapore.,Biomedical Institute for Global Health Research and Technology (BIGHEART), National University of Singapore, Singapore, Singapore.,NUS Tissue Engineering Program, National University of Singapore, Singapore, Singapore
| |
Collapse
|
8
|
Approach for differentiating trophoblast cell lineage from human induced pluripotent stem cells with retinoic acid in the absence of bone morphogenetic protein 4. Placenta 2018; 71:24-30. [DOI: 10.1016/j.placenta.2018.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 10/03/2018] [Accepted: 10/10/2018] [Indexed: 11/22/2022]
|
9
|
Global phenotypic characterisation of human platelet lysate expanded MSCs by high-throughput flow cytometry. Sci Rep 2018; 8:3907. [PMID: 29500387 PMCID: PMC5834600 DOI: 10.1038/s41598-018-22326-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 02/21/2018] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) are a promising cell source to develop cell therapy for many diseases. Human platelet lysate (PLT) is increasingly used as an alternative to foetal calf serum (FCS) for clinical-scale MSC production. To date, the global surface protein expression of PLT-expended MSCs (MSC-PLT) is not known. To investigate this, paired MSC-PLT and MSC-FCS were analysed in parallel using high-throughput flow cytometry for the expression of 356 cell surface proteins. MSC-PLT showed differential surface protein expression compared to their MSC-FCS counterpart. Higher percentage of positive cells was observed in MSC-PLT for 48 surface proteins, of which 13 were significantly enriched on MSC-PLT. This finding was validated using multiparameter flow cytometry and further confirmed by quantitative staining intensity analysis. The enriched surface proteins are relevant to increased proliferation and migration capacity, as well as enhanced chondrogenic and osteogenic differentiation properties. In silico network analysis revealed that these enriched surface proteins are involved in three distinct networks that are associated with inflammatory responses, carbohydrate metabolism and cellular motility. This is the first study reporting differential cell surface protein expression between MSC-PLT and MSC-FSC. Further studies are required to uncover the impact of those enriched proteins on biological functions of MSC-PLT.
Collapse
|
10
|
Cao Y, Gong Y, Liu L, Zhou Y, Fang X, Zhang C, Li Y, Li J. The use of human umbilical vein endothelial cells (HUVECs) as an in vitro model to assess the toxicity of nanoparticles to endothelium: a review. J Appl Toxicol 2017; 37:1359-1369. [PMID: 28383141 DOI: 10.1002/jat.3470] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 02/23/2017] [Indexed: 12/30/2022]
Abstract
With the rapid development of nanotechnologies, nanoparticles (NPs) are increasingly produced and used in many commercial products, which could lead to the contact of human blood vessels with NPs. Thus, it is necessary to understand the adverse effects of NPs to relevant cells lining human blood vessels, especially endothelial cells (ECs) that cover the lumen of blood vessels. Human umbilical vein endothelial cells (HUVECs) are among one of the most popular models used for ECs in vitro. In the present review, we discussed studies that have used HUVECs as a model to investigate the EC-NP interactions, the toxic effects of NPs on ECs and the mechanisms. The results of these studies indicated that NPs could be internalized into HUVECs by the endocytosis pathway as well as transported across HUVECs by exocytosis and paracellular pathways. Exposure of HUVECs to NPs could induce cytotoxicity, genotoxicity, eNOS uncoupling and endothelial activation, which could be explained by NP-induced oxidative stress, inflammatory response and dysfunction of organelles. In addition, some studies have also evaluated the influences of microenvironment (e.g. the presence of proteins and excessive nutrients), the physiological and/or pathological stimuli related to the diversity of ECs (e.g. shear stress, cyclic stretch and inflammatory stimuli), and the physicochemical properties of NPs on the responses of ECs to NP exposure. In conclusion, it has been suggested that HUVECs could be considered as a relatively reliable and simple in vitro model for ECs to predict and evaluate the toxicity of NPs to endothelium. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Yi Cao
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
| | - Yu Gong
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Liangliang Liu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
| | - Yiwei Zhou
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
| | - Xin Fang
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
| | - Cao Zhang
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Yining Li
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Juan Li
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| |
Collapse
|
11
|
Lin Y, Gil CH, Yoder MC. Differentiation, Evaluation, and Application of Human Induced Pluripotent Stem Cell-Derived Endothelial Cells. Arterioscler Thromb Vasc Biol 2017; 37:2014-2025. [PMID: 29025705 DOI: 10.1161/atvbaha.117.309962] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 09/26/2017] [Indexed: 12/13/2022]
Abstract
The emergence of induced pluripotent stem cell (iPSC) technology paves the way to generate large numbers of patient-specific endothelial cells (ECs) that can be potentially delivered for regenerative medicine in patients with cardiovascular disease. In the last decade, numerous protocols that differentiate EC from iPSC have been developed by many groups. In this review, we will discuss several common strategies that have been optimized for human iPSC-EC differentiation and subsequent studies that have evaluated the potential of human iPSC-EC as a cell therapy or as a tool in disease modeling. In addition, we will emphasize the importance of using in vivo vessel-forming ability and in vitro clonogenic colony-forming potential as a gold standard with which to evaluate the quality of human iPSC-EC derived from various protocols.
Collapse
Affiliation(s)
- Yang Lin
- From the Department of Pediatrics, Herman B. Wells Center for Pediatric Research (Y.L., C.-H.G., M.C.Y.) and Department of Biochemistry and Molecular Biology (Y.L., M.C.Y.), Indiana University School of Medicine, Indianapolis
| | - Chang-Hyun Gil
- From the Department of Pediatrics, Herman B. Wells Center for Pediatric Research (Y.L., C.-H.G., M.C.Y.) and Department of Biochemistry and Molecular Biology (Y.L., M.C.Y.), Indiana University School of Medicine, Indianapolis
| | - Mervin C Yoder
- From the Department of Pediatrics, Herman B. Wells Center for Pediatric Research (Y.L., C.-H.G., M.C.Y.) and Department of Biochemistry and Molecular Biology (Y.L., M.C.Y.), Indiana University School of Medicine, Indianapolis.
| |
Collapse
|
12
|
Kim JJ, Hou L, Yang G, Mezak NP, Wanjare M, Joubert LM, Huang NF. Microfibrous Scaffolds Enhance Endothelial Differentiation and Organization of Induced Pluripotent Stem Cells. Cell Mol Bioeng 2017; 10:417-432. [PMID: 28936269 DOI: 10.1007/s12195-017-0502-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION Human induced pluripotent stem cells (iPSCs) are a promising source of endothelial cells (iPSC-ECs) for engineering three-dimensional (3D) vascularized cardiac tissues. To mimic cardiac microvasculature, in which capillaries are oriented in parallel, we hypothesized that endothelial differentiation of iPSCs within topographically aligned 3D scaffolds would be a facile one-step approach to generate iPSC-ECs as well as induce aligned vascular organization. METHODS Human iPSCs underwent endothelial differentiation within electrospun 3D polycaprolactone (PCL) scaffolds having either randomly oriented or parallel-aligned microfibers. Using transcriptional, protein, and endothelial functional assays, endothelial differentiation was compared between conventional two-dimensional (2D) films and 3D scaffolds having either randomly oriented or aligned microfibers. Furthermore, the role of parallel-aligned microfiber patterning on the organization of vessel-like networks was assessed. RESULTS The cells in both the randomly oriented and aligned 3D scaffolds demonstrated an 11-fold upregulation in gene expression of the endothelial phenotypic marker, CD31, compared to cells on 2D films. This upregulation corresponded to >3-fold increase in CD31 protein expression in 3D scaffolds, compared to 2D films. Concomitantly, other endothelial phenotypic markers including CD144 and endothelial nitric oxide synthase also showed significant transcriptional upregulation in 3D scaffolds by >7-fold, compared to 2D films. Nitric oxide production, which is characteristic of endothelial function, was produced 4-fold more abundantly in 3D scaffolds, compared to on 2D PCL films. Within aligned scaffolds, the iPSC-ECs displayed parallel-aligned vascular-like networks with 70% longer branch length, compared to cells in randomly oriented scaffolds, suggesting that fiber topography modulates vascular network-like formation and patterning. CONCLUSION Together, these results demonstrate that 3D scaffold structure promotes endothelial differentiation, compared to 2D substrates, and that aligned topographical patterning induces anisotropic vascular network organization.
Collapse
Affiliation(s)
- Joseph J Kim
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA.,Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Luqia Hou
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA.,Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Guang Yang
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA.,Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Nicholas P Mezak
- Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Maureen Wanjare
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA.,Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Lydia M Joubert
- Cell Sciences Imaging Facility, Stanford University Medical School, Stanford, CA, USA
| | - Ngan F Huang
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA.,Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA.,Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| |
Collapse
|
13
|
Carcamo-Orive I, Huang NF, Quertermous T, Knowles JW. Induced Pluripotent Stem Cell-Derived Endothelial Cells in Insulin Resistance and Metabolic Syndrome. Arterioscler Thromb Vasc Biol 2017; 37:2038-2042. [PMID: 28729365 DOI: 10.1161/atvbaha.117.309291] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 07/10/2017] [Indexed: 02/06/2023]
Abstract
Insulin resistance leads to a number of metabolic and cellular abnormalities including endothelial dysfunction that increase the risk of vascular disease. Although it has been particularly challenging to study the genetic determinants that predispose to abnormal function of the endothelium in insulin-resistant states, the possibility of deriving endothelial cells from induced pluripotent stem cells generated from individuals with detailed clinical phenotyping, including accurate measurements of insulin resistance accompanied by multilevel omic data (eg, genetic and genomic characterization), has opened new avenues to study this relationship. Unfortunately, several technical barriers have hampered these efforts. In the present review, we summarize the current status of induced pluripotent stem cell-derived endothelial cells for modeling endothelial dysfunction associated with insulin resistance and discuss the challenges to overcoming these limitations.
Collapse
Affiliation(s)
- Ivan Carcamo-Orive
- From the Department of Medicine and Cardiovascular Institute (I.C.-O., T.Q., J.W.K.) and Department of Cardiothoracic Surgery and Cardiovascular Institute (N.F.H.), Stanford University School of Medicine, CA; and Veterans Affairs Palo Alto Health Care System, CA (N.F.H.).
| | - Ngan F Huang
- From the Department of Medicine and Cardiovascular Institute (I.C.-O., T.Q., J.W.K.) and Department of Cardiothoracic Surgery and Cardiovascular Institute (N.F.H.), Stanford University School of Medicine, CA; and Veterans Affairs Palo Alto Health Care System, CA (N.F.H.)
| | - Thomas Quertermous
- From the Department of Medicine and Cardiovascular Institute (I.C.-O., T.Q., J.W.K.) and Department of Cardiothoracic Surgery and Cardiovascular Institute (N.F.H.), Stanford University School of Medicine, CA; and Veterans Affairs Palo Alto Health Care System, CA (N.F.H.)
| | - Joshua W Knowles
- From the Department of Medicine and Cardiovascular Institute (I.C.-O., T.Q., J.W.K.) and Department of Cardiothoracic Surgery and Cardiovascular Institute (N.F.H.), Stanford University School of Medicine, CA; and Veterans Affairs Palo Alto Health Care System, CA (N.F.H.)
| |
Collapse
|
14
|
Smith Q, Chan XY, Carmo AM, Trempel M, Saunders M, Gerecht S. Compliant substratum guides endothelial commitment from human pluripotent stem cells. SCIENCE ADVANCES 2017; 3:e1602883. [PMID: 28580421 PMCID: PMC5451190 DOI: 10.1126/sciadv.1602883] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 04/10/2017] [Indexed: 05/24/2023]
Abstract
The role of mechanical regulation in driving human induced pluripotent stem cell (hiPSC) differentiation has been minimally explored. Although endothelial cell (EC) fate from hiPSCs has been demonstrated using small molecules to drive mesoderm induction, the effects of substrate stiffness with regard to EC differentiation efficiency have yet to be elucidated. We hypothesized that substrate compliance can modulate mesoderm differentiation kinetics from hiPSCs and affect downstream EC commitment. To this end, we used polydimethylsiloxane (PDMS)-a transparent, biocompatible elastomeric material-as a substrate to study EC commitment of hiPSCs using a stepwise differentiation scheme. Using physiologically stiff (1.7 MPa) and soft (3 kPa) PDMS substrates, compared to polystyrene plates (3 GPa), we demonstrate that mechanical priming during mesoderm induction activates the Yes-associated protein and drives Wnt/β-catenin signaling. When mesoderm differentiation was induced on compliant PDMS substrates in both serum and serum-free E6 medium, mesodermal genetic signatures (T, KDR, MESP-1, GATA-2, and SNAIL-1) were enhanced. Furthermore, examination of EC fate following stiffness priming revealed that compliant substrates robustly improve EC commitment through VECad, CD31, vWF, and eNOS marker expression. Overall, we show that substrate compliance guides EC fate by enhancing mesoderm induction through Wnt activation without the addition of small molecules. These findings are the first to show that the mechanical context of the differentiation niche can be as potent as chemical cues in driving EC identity from hiPSCs.
Collapse
Affiliation(s)
- Quinton Smith
- Department of Chemical and Biomolecular Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Xin Yi Chan
- Department of Chemical and Biomolecular Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Ana Maria Carmo
- Department of Chemical and Biomolecular Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Michelle Trempel
- Department of Chemical and Biomolecular Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Michael Saunders
- Department of Chemical and Biomolecular Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Sharon Gerecht
- Department of Chemical and Biomolecular Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
15
|
Lee YH, Hsueh YW, Peng YH, Chang KC, Tsai KJ, Sun HS, Su IJ, Chiang PM. Low-cell-number, single-tube amplification (STA) of total RNA revealed transcriptome changes from pluripotency to endothelium. BMC Biol 2017; 15:22. [PMID: 28327113 PMCID: PMC5360049 DOI: 10.1186/s12915-017-0359-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 02/15/2017] [Indexed: 12/24/2022] Open
Abstract
Background In addition to messenger RNA (mRNA), noncoding RNAs (ncRNAs) are essential components in cellular machineries for translation and splicing. Besides their housekeeping functions, ncRNAs are involved in cell type-specific regulation of translation, mRNA stability, genome structure, and accessibility. To have a comprehensive understanding of the identities and functions of different cell types, a method to comprehensively quantify both mRNA and ncRNA in a sensitive manner is highly desirable. Methods Here we tried to develop a system capable of concurrently profiling both mRNA and ncRNA by polyadenylating RNA in samples before reverse transcription. The sensitivity of the system was maximized by avoiding purification from cell lysis to amplified cDNA and by optimizing the buffer conditions. The single-tube amplification (STA) system was applied to single to 100 cells of 293T cells, human pluripotent stem cells (hPSCs) and their differentiated endothelial progenies to validate its quantitative power and sensitivity by qPCR and high-throughput sequencing. Results Using microRNA (miRNA) as an example, we showed that complementary DNA (cDNA) from ncRNAs could be amplified and specifically detected from a few cells within a single tube. The sensitivity of the system was maximized by avoiding purification from cell lysis to amplified cDNA and by optimizing the buffer conditions. With 100 human embryonic stem cells (hESCs) and their differentiated endothelial cells as input for high-throughput sequencing, the single-tube amplification (STA) system revealed both well-known and other miRNAs selectively enriched in each cell type. The selective enrichment of the miRNAs was further verified by qPCR with 293FT cells and a human induced pluripotent stem cell (hiPSC) line. In addition, the detection of other non-miRNA transcripts indicated that the STA target was not limited to miRNA, but extended to other ncRNAs and mRNAs as well. Finally, the STA system was capable of detecting miRNA and mRNA expression down to single cells, albeit with some loss of sensitivity and power. Conclusions Overall, STA offered a simple and sensitive way to concurrently quantify both mRNA and ncRNA expression in low-cell-number samples for both qPCR and high-throughput sequencing. Electronic supplementary material The online version of this article (doi:10.1186/s12915-017-0359-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yi-Hsuan Lee
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Ya-Wen Hsueh
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No. 35, Xiaodong Rd, Tainan, 70457, Taiwan
| | - Yao-Hung Peng
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No. 35, Xiaodong Rd, Tainan, 70457, Taiwan
| | - Kung-Chao Chang
- Department of Pathology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kuen-Jer Tsai
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No. 35, Xiaodong Rd, Tainan, 70457, Taiwan
| | - H Sunny Sun
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ih-Jen Su
- Division of Infectious Diseases, National Health Research Institutes, Tainan, Taiwan
| | - Po-Min Chiang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No. 35, Xiaodong Rd, Tainan, 70457, Taiwan.
| |
Collapse
|
16
|
Zhang F, Wang L, Li Y, Liu W, Duan F, Huang R, Chen X, Chang SCN, Du Y, Na J. Optimizing mesoderm progenitor selection and three-dimensional microniche culture allows highly efficient endothelial differentiation and ischemic tissue repair from human pluripotent stem cells. Stem Cell Res Ther 2017; 8:6. [PMID: 28114972 PMCID: PMC5259899 DOI: 10.1186/s13287-016-0455-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 11/05/2016] [Accepted: 12/10/2016] [Indexed: 12/19/2022] Open
Abstract
Background Generation of large quantities of endothelial cells is highly desirable for vascular research, for the treatment of ischemia diseases, and for tissue regeneration. To achieve this goal, we developed a simple, chemically defined culture system to efficiently and rapidly differentiate endothelial cells from human pluripotent stem cells by going through an MESP1 mesoderm progenitor stage. Methods Mesp1 is a key transcription factor that regulates the development of early cardiovascular tissue. Using an MESP1-mTomato knock-in reporter human embryonic stem cell line, we compared the gene expression profiles of MESP1+ and MESP1− cells and identified new signaling pathways that may promote endothelial differentiation. We also used a 3D scaffold to mimic the in vivo microenvironment to further improve the efficiency of endothelial cell generation. Finally, we performed cell transplantation into a critical limb ischemia mouse model to test the repairing potential of endothelial-primed MESP1+ cells. Results MESP1+ mesoderm progenitors, but not MESP1− cells, have strong endothelial differentiation potential. Global gene expression analysis revealed that transcription factors essential for early endothelial differentiation were enriched in MESP1+ cells. Interestingly, MESP1 cells highly expressed Sphingosine-1-phosphate (S1P) receptor and the addition of S1P significantly increased the endothelial differentiation efficiency. Upon seeding in a novel 3D microniche and priming with VEGF and bFGF, MESP1+ cells markedly upregulated genes related to vessel development and regeneration. 3D microniches also enabled long-term endothelial differentiation and proliferation from MESP1+ cells with minimal medium supplements. Finally, we showed that transplanting a small number of endothelial-primed MESP1+ cells in 3D microniches was sufficient to mediate rapid repair of a mouse model of critical limb ischemia. Conclusions Our study demonstrates that combining MESP1+ mesoderm progenitor cells with tissue-engineered 3D microniche and a chemically defined endothelial induction medium is a promising route to maximizing the production of endothelial cells in vitro and augment their regenerative power in vivo. Electronic supplementary material The online version of this article (doi:10.1186/s13287-016-0455-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fengzhi Zhang
- Center for Stem Cell Biology and Regenerative Medicine, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Lin Wang
- Center for Stem Cell Biology and Regenerative Medicine, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Yaqian Li
- Department of Biomedical Engineering, School of Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing, 100084, China
| | - Wei Liu
- Department of Biomedical Engineering, School of Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing, 100084, China
| | - Fuyu Duan
- Center for Stem Cell Biology and Regenerative Medicine, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Rujin Huang
- Center for Stem Cell Biology and Regenerative Medicine, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Xi Chen
- Center for Stem Cell Biology and Regenerative Medicine, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Sophia Chia-Ning Chang
- Department of Plastic Surgery, Beijing Tsinghua Changgung Hospital, Beijing, 102218, China.,School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Yanan Du
- Department of Biomedical Engineering, School of Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing, 100084, China
| | - Jie Na
- Center for Stem Cell Biology and Regenerative Medicine, School of Medicine, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
17
|
Orlova VV, Chuva de Sousa Lopes S, Valdimarsdottir G. BMP-SMAD signaling: From pluripotent stem cells to cardiovascular commitment. Cytokine Growth Factor Rev 2016; 27:55-63. [DOI: 10.1016/j.cytogfr.2015.11.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 11/13/2015] [Indexed: 02/07/2023]
|
18
|
Yan MS, Marsden PA. Epigenetics in the Vascular Endothelium: Looking From a Different Perspective in the Epigenomics Era. Arterioscler Thromb Vasc Biol 2015; 35:2297-306. [PMID: 26404488 DOI: 10.1161/atvbaha.115.305043] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 09/14/2015] [Indexed: 01/11/2023]
Abstract
Cardiovascular diseases are commonly thought to be complex, non-Mendelian diseases that are influenced by genetic and environmental factors. A growing body of evidence suggests that epigenetic pathways play a key role in vascular biology and might be involved in defining and transducing cardiovascular disease inheritability. In this review, we argue the importance of epigenetics in vascular biology, especially from the perspective of endothelial cell phenotype. We highlight and discuss the role of epigenetic modifications across the transcriptional unit of protein-coding genes, especially the role of intragenic chromatin modifications, which are underappreciated and not well characterized in the current era of genome-wide studies. Importantly, we describe the practical application of epigenetics in cardiovascular disease therapeutics.
Collapse
Affiliation(s)
- Matthew S Yan
- From the Department of Medical Biophysics (M.S.Y., P.A.M.) and Department of Medicine, Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael's Hospital (M.S.Y., P.A.M.), University of Toronto, Toronto, Ontario, Canada
| | - Philip A Marsden
- From the Department of Medical Biophysics (M.S.Y., P.A.M.) and Department of Medicine, Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael's Hospital (M.S.Y., P.A.M.), University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|