1
|
Subramanian N, Leong LM, Salemi Mokri Boukani P, Storace DA. Recent odor experience selectively modulates olfactory sensitivity across the glomerular output in the mouse olfactory bulb. Chem Senses 2025; 50:bjae045. [PMID: 39786438 PMCID: PMC11753175 DOI: 10.1093/chemse/bjae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Indexed: 01/12/2025] Open
Abstract
Although animals can reliably locate and recognize odorants embedded in complex environments, the neural circuits for accomplishing these tasks remain incompletely understood. Adaptation is likely to be important as it could allow neurons in a brain area to adjust to the broader sensory environment. Adaptive processes must be flexible enough to allow the brain to make dynamic adjustments, while maintaining sufficient stability so that organisms do not forget important olfactory associations. Processing within the mouse olfactory bulb is likely involved in generating adaptation, although there are conflicting models of how it transforms the glomerular output of the mouse olfactory bulb. Here we performed 2-photon Ca2+ imaging from mitral/tufted glomeruli in awake mice to determine the time course of recovery from adaptation, and whether it acts broadly or selectively across the glomerular population. Individual glomerular responses, as well as the overall population odor representation were similar across imaging sessions. However, odor-concentration pairings presented with interstimulus intervals upwards of 30-s evoked heterogeneous adaptation that was concentration-dependent. We demonstrate that this form of adaptation is unrelated to variations in respiration, and olfactory receptor neuron glomerular measurements indicate that it is unlikely to be inherited from the periphery. Our results indicate that the olfactory bulb output can reliably transmit stable odor representations, but recent odor experiences can selectively shape neural responsiveness for upwards of 30 seconds. We propose that neural circuits that allow for non-uniform adaptation across mitral/tufted glomeruli could be important for making dynamic adjustments in complex odor environments.
Collapse
Affiliation(s)
- Narayan Subramanian
- Department of Biological Science, Florida State University, Tallahassee, FL, United States
| | - Lee Min Leong
- Department of Biological Science, Florida State University, Tallahassee, FL, United States
| | - Paria Salemi Mokri Boukani
- Department of Biological Science, Florida State University, Tallahassee, FL, United States
- Program in Neuroscience, Florida State University, Tallahassee, FL, United States
| | - Douglas A Storace
- Department of Biological Science, Florida State University, Tallahassee, FL, United States
- Program in Neuroscience, Florida State University, Tallahassee, FL, United States
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, United States
| |
Collapse
|
2
|
Xia P, Abarbanel HDI. Model of the HVC neural network as a song motor in zebra finch. Front Comput Neurosci 2024; 18:1417558. [PMID: 39635339 PMCID: PMC11614668 DOI: 10.3389/fncom.2024.1417558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 10/24/2024] [Indexed: 12/07/2024] Open
Abstract
The nucleus HVC within the avian song system produces crystalized instructions which lead to precise, learned vocalization in zebra finches (Taeniopygia guttata). This paper proposes a model of the HVC neural network based on the physiological properties of individual HVC neurons, their synaptic interactions calibrated by experimental measurements, as well as the synaptic signal into this region which triggers song production. This neural network model comprises of two major neural populations in this area: neurons projecting to the nucleus RA and interneurons. Each single neuron model of HVCRA is constructed with conductance-based ion currents of fast Na+ and K+ and a leak channel, while the interneuron model includes extra transient Ca2+ current and hyperpolarization-activated inward current. The synaptic dynamics is formed with simulated delivered neurotransmitter pulses from presynaptic cells and neurotransmitter receptor opening rates of postsynaptic neurons. We show that this network model qualitatively exhibits observed electrophysiological behaviors of neurons independent or in the network, as well as the importance of bidirectional interactions between the HVCRA neuron and the HVCI neuron. We also simulate the pulse input from A11 neuron group to HVC. This signal successfully suppresses the interneuron, which leads to sequential firing of projection neurons that matches measured burst onset, duration, and spike quantities during the zebra finch motif. The result provides a biophysically based model characterizing the dynamics and functions of the HVC neural network as a song motor, and offers a reference for synaptic coupling strength in the avian brain.
Collapse
|
3
|
Subramanian N, Leong LM, Boukani PSM, Storace DA. Recent odor experience selectively modulates olfactory sensitivity across the glomerular output in the mouse olfactory bulb. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.21.604478. [PMID: 39386559 PMCID: PMC11463640 DOI: 10.1101/2024.07.21.604478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Although animals can reliably locate and recognize odorants embedded in complex environments, the neural circuits for accomplishing these tasks remain incompletely understood. Adaptation is likely to be important as it could allow neurons in a brain area to adjust to the broader sensory environment. Adaptive processes must be flexible enough to allow the brain to make dynamic adjustments, while maintaining sufficient stability so that organisms do not forget important olfactory associations. Processing within the mouse olfactory bulb is likely involved in generating adaptation, although there are conflicting models of how it transforms the glomerular output of the mouse olfactory bulb. Here we performed 2-photon Ca2+ imaging from mitral/tufted glomeruli in awake mice to determine the time course of recovery from adaptation, and whether it acts broadly or selectively across the glomerular population. Individual glomerular responses, as well as the overall population odor representation was similar across imaging sessions. However, odor-concentration pairings presented with interstimulus intervals upwards of 30-s evoked heterogeneous adaptation that was concentration-dependent. We demonstrate that this form of adaptation is unrelated to variations in respiration, and olfactory receptor neuron glomerular measurements indicate that it is unlikely to be inherited from the periphery. Our results indicate that the olfactory bulb output can reliably transmit stable odor representations, but recent odor experiences can selectively shape neural responsiveness for upwards of 30 seconds. We propose that neural circuits that allow for non-uniform adaptation across mitral/tufted glomerular could be important for making dynamic adjustments in complex odor environments.
Collapse
Affiliation(s)
| | - Lee Min Leong
- Department of Biological Science, Florida State University, Tallahassee, FL
| | - Paria Salemi Mokri Boukani
- Department of Biological Science, Florida State University, Tallahassee, FL
- Program in Neuroscience, Florida State University, Tallahassee, FL
| | - Douglas A. Storace
- Department of Biological Science, Florida State University, Tallahassee, FL
- Program in Neuroscience, Florida State University, Tallahassee, FL
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL
| |
Collapse
|
4
|
Leong LM, Storace DA. Imaging different cell populations in the mouse olfactory bulb using the genetically encoded voltage indicator ArcLight. NEUROPHOTONICS 2024; 11:033402. [PMID: 38288247 PMCID: PMC10823906 DOI: 10.1117/1.nph.11.3.033402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/30/2023] [Accepted: 12/14/2023] [Indexed: 01/31/2024]
Abstract
Genetically encoded voltage indicators (GEVIs) are protein-based optical sensors that allow for measurements from genetically defined populations of neurons. Although in vivo imaging in the mammalian brain with early generation GEVIs was difficult due to poor membrane expression and low signal-to-noise ratio, newer and more sensitive GEVIs have begun to make them useful for answering fundamental questions in neuroscience. We discuss principles of imaging using GEVIs and genetically encoded calcium indicators, both useful tools for in vivo imaging of neuronal activity, and review some of the recent mechanistic advances that have led to GEVI improvements. We provide an overview of the mouse olfactory bulb (OB) and discuss recent studies using the GEVI ArcLight to study different cell types within the bulb using both widefield and two-photon microscopy. Specific emphasis is placed on using GEVIs to begin to study the principles of concentration coding in the OB, how to interpret the optical signals from population measurements in the in vivo brain, and future developments that will push the field forward.
Collapse
Affiliation(s)
- Lee Min Leong
- Florida State University, Department of Biological Science, Tallahassee, Florida, United States
| | - Douglas A. Storace
- Florida State University, Department of Biological Science, Tallahassee, Florida, United States
- Florida State University, Program in Neuroscience, Tallahassee, Florida, United States
- Florida State University, Institute of Molecular Biophysics, Tallahassee, Florida, United States
| |
Collapse
|
5
|
Aseyev N, Ivanova V, Balaban P, Nikitin E. Current Practice in Using Voltage Imaging to Record Fast Neuronal Activity: Successful Examples from Invertebrate to Mammalian Studies. BIOSENSORS 2023; 13:648. [PMID: 37367013 DOI: 10.3390/bios13060648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023]
Abstract
The optical imaging of neuronal activity with potentiometric probes has been credited with being able to address key questions in neuroscience via the simultaneous recording of many neurons. This technique, which was pioneered 50 years ago, has allowed researchers to study the dynamics of neural activity, from tiny subthreshold synaptic events in the axon and dendrites at the subcellular level to the fluctuation of field potentials and how they spread across large areas of the brain. Initially, synthetic voltage-sensitive dyes (VSDs) were applied directly to brain tissue via staining, but recent advances in transgenic methods now allow the expression of genetically encoded voltage indicators (GEVIs), specifically in selected neuron types. However, voltage imaging is technically difficult and limited by several methodological constraints that determine its applicability in a given type of experiment. The prevalence of this method is far from being comparable to patch clamp voltage recording or similar routine methods in neuroscience research. There are more than twice as many studies on VSDs as there are on GEVIs. As can be seen from the majority of the papers, most of them are either methodological ones or reviews. However, potentiometric imaging is able to address key questions in neuroscience by recording most or many neurons simultaneously, thus providing unique information that cannot be obtained via other methods. Different types of optical voltage indicators have their advantages and limitations, which we focus on in detail. Here, we summarize the experience of the scientific community in the application of voltage imaging and try to evaluate the contribution of this method to neuroscience research.
Collapse
Affiliation(s)
- Nikolay Aseyev
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova 5A, Moscow 117485, Russia
| | - Violetta Ivanova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova 5A, Moscow 117485, Russia
| | - Pavel Balaban
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova 5A, Moscow 117485, Russia
| | - Evgeny Nikitin
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova 5A, Moscow 117485, Russia
| |
Collapse
|
6
|
Nikolaev DM, Mironov VN, Shtyrov AA, Kvashnin ID, Mereshchenko AS, Vasin AV, Panov MS, Ryazantsev MN. Fluorescence Imaging of Cell Membrane Potential: From Relative Changes to Absolute Values. Int J Mol Sci 2023; 24:2435. [PMID: 36768759 PMCID: PMC9916766 DOI: 10.3390/ijms24032435] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
Membrane potential is a fundamental property of biological cells. Changes in membrane potential characterize a vast number of vital biological processes, such as the activity of neurons and cardiomyocytes, tumorogenesis, cell-cycle progression, etc. A common strategy to record membrane potential changes that occur in the process of interest is to utilize organic dyes or genetically-encoded voltage indicators with voltage-dependent fluorescence. Sensors are introduced into target cells, and alterations of fluorescence intensity are recorded with optical methods. Techniques that allow recording relative changes of membrane potential and do not take into account fluorescence alterations due to factors other than membrane voltage are already widely used in modern biological and biomedical studies. Such techniques have been reviewed previously in many works. However, in order to investigate a number of processes, especially long-term processes, the measured signal must be corrected to exclude the contribution from voltage-independent factors or even absolute values of cell membrane potential have to be evaluated. Techniques that enable such measurements are the subject of this review.
Collapse
Affiliation(s)
- Dmitrii M. Nikolaev
- Institute of Biomedical Systems and Biotechnologies, Peter the Great Saint Petersburg Polytechnic University, 29 Polytechnicheskaya str., 195251 Saint Petersburg, Russia
- Nanotechnology Research and Education Centre RAS, Saint Petersburg Academic University, 8/3 Khlopina str., 194021 Saint Petersburg, Russia
| | - Vladimir N. Mironov
- Nanotechnology Research and Education Centre RAS, Saint Petersburg Academic University, 8/3 Khlopina str., 194021 Saint Petersburg, Russia
| | - Andrey A. Shtyrov
- Institute of Biomedical Systems and Biotechnologies, Peter the Great Saint Petersburg Polytechnic University, 29 Polytechnicheskaya str., 195251 Saint Petersburg, Russia
- Nanotechnology Research and Education Centre RAS, Saint Petersburg Academic University, 8/3 Khlopina str., 194021 Saint Petersburg, Russia
| | - Iaroslav D. Kvashnin
- Nanotechnology Research and Education Centre RAS, Saint Petersburg Academic University, 8/3 Khlopina str., 194021 Saint Petersburg, Russia
| | - Andrey S. Mereshchenko
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii pr, 198504 Saint Petersburg, Russia
| | - Andrey V. Vasin
- Institute of Biomedical Systems and Biotechnologies, Peter the Great Saint Petersburg Polytechnic University, 29 Polytechnicheskaya str., 195251 Saint Petersburg, Russia
| | - Maxim S. Panov
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii pr, 198504 Saint Petersburg, Russia
- Center for Biophysical Studies, Saint Petersburg State Chemical Pharmaceutical University, 14 Professor Popov str., lit. A, 197022 Saint Petersburg, Russia
| | - Mikhail N. Ryazantsev
- Nanotechnology Research and Education Centre RAS, Saint Petersburg Academic University, 8/3 Khlopina str., 194021 Saint Petersburg, Russia
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii pr, 198504 Saint Petersburg, Russia
| |
Collapse
|
7
|
Sepehri Rad M, Cohen LB, Baker BJ. Conserved Amino Acids Residing Outside the Voltage Field Can Shift the Voltage Sensitivity and Increase the Signal Speed and Size of Ciona Based GEVIs. Front Cell Dev Biol 2022; 10:868143. [PMID: 35784472 PMCID: PMC9243531 DOI: 10.3389/fcell.2022.868143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/13/2022] [Indexed: 11/19/2022] Open
Abstract
To identify potential regions of the voltage-sensing domain that could shift the voltage sensitivity of Ciona intestinalis based Genetically Encoded Voltage Indicators (GEVIs), we aligned the amino acid sequences of voltage-gated sodium channels from different organisms. Conserved polar residues were identified at multiple transmembrane/loop junctions in the voltage sensing domain. Similar conservation of polar amino acids was found in the voltage-sensing domain of the voltage-sensing phosphatase gene family. These conserved residues were mutated to nonpolar or oppositely charged amino acids in a GEVI that utilizes the voltage sensing domain of the voltage sensing phosphatase from Ciona fused to the fluorescent protein, super ecliptic pHluorin (A227D). Different mutations shifted the voltage sensitivity to more positive or more negative membrane potentials. Double mutants were then created by selecting constructs that shifted the optical signal to a more physiologically relevant voltage range. Introduction of these mutations into previously developed GEVIs resulted in Plos6-v2 which improved the dynamic range to 40% ΔF/F/100 mV, a 25% increase over the parent, ArcLight. The onset time constant of Plos6-v2 is also 50% faster than ArcLight. Thus, Plos6-v2 appears to be the GEVI of choice.
Collapse
Affiliation(s)
- Masoud Sepehri Rad
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- Department of Neuroscience, University of Wisconsin, Madison, WI, United States
| | - Lawrence B. Cohen
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, United States
- *Correspondence: Lawrence B. Cohen, ; Bradley J. Baker,
| | - Bradley J. Baker
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, South Korea
- *Correspondence: Lawrence B. Cohen, ; Bradley J. Baker,
| |
Collapse
|
8
|
Voltage imaging in the olfactory bulb using transgenic mouse lines expressing the genetically encoded voltage indicator ArcLight. Sci Rep 2022; 12:1875. [PMID: 35115567 PMCID: PMC8813909 DOI: 10.1038/s41598-021-04482-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/09/2021] [Indexed: 01/06/2023] Open
Abstract
Genetically encoded voltage indicators (GEVIs) allow optical recordings of membrane potential changes in defined cell populations. Transgenic reporter animals that facilitate precise and repeatable targeting with high expression levels would further the use of GEVIs in the in vivo mammalian brain. However, the literature on developing and applying transgenic mouse lines as vehicles for GEVI expression is limited. Here we report the first in vivo experiments using a transgenic reporter mouse for the GEVI ArcLight, which utilizes a Cre/tTA dependent expression system (TIGRE 1.0). We developed two mouse lines with ArcLight expression restricted to either olfactory receptor neurons, or a subpopulation of interneurons located in the granule and glomerular layers in the olfactory bulb. The ArcLight expression in these lines was sufficient for in vivo imaging of odorant responses in single trials using epifluorescence and 2-photon imaging. The voltage responses were odor-specific and concentration-dependent, which supported earlier studies about perceptual transformations carried out by the bulb that used calcium sensors of neural activity. This study demonstrates that the ArcLight transgenic line is a flexible genetic tool that can be used to record the neuronal electrical activity of different cell types with a signal-to-noise ratio that is comparable to previous reports using viral transduction.
Collapse
|
9
|
Beacher NJ, Washington KA, Werner CT, Zhang Y, Barbera G, Li Y, Lin DT. Circuit Investigation of Social Interaction and Substance Use Disorder Using Miniscopes. Front Neural Circuits 2021; 15:762441. [PMID: 34675782 PMCID: PMC8523886 DOI: 10.3389/fncir.2021.762441] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 09/16/2021] [Indexed: 12/02/2022] Open
Abstract
Substance use disorder (SUD) is comorbid with devastating health issues, social withdrawal, and isolation. Successful clinical treatments for SUD have used social interventions. Neurons can encode drug cues, and drug cues can trigger relapse. It is important to study how the activity in circuits and embedded cell types that encode drug cues develop in SUD. Exploring shared neurobiology between social interaction (SI) and SUD may explain why humans with access to social treatments still experience relapse. However, circuitry remains poorly characterized due to technical challenges in studying the complicated nature of SI and SUD. To understand the neural correlates of SI and SUD, it is important to: (1) identify cell types and circuits associated with SI and SUD, (2) record and manipulate neural activity encoding drug and social rewards over time, (3) monitor unrestrained animal behavior that allows reliable drug self-administration (SA) and SI. Miniaturized fluorescence microscopes (miniscopes) are ideally suited to meet these requirements. They can be used with gradient index (GRIN) lenses to image from deep brain structures implicated in SUD. Miniscopes can be combined with genetically encoded reporters to extract cell-type specific information. In this mini-review, we explore how miniscopes can be leveraged to uncover neural components of SI and SUD and advance potential therapeutic interventions.
Collapse
Affiliation(s)
- Nicholas J. Beacher
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States
| | - Kayden A. Washington
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States
| | - Craig T. Werner
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States
- Department of Pharmacology and Physiology, Oklahoma State University Center for Health Sciences, Tulsa, OK, United States
| | - Yan Zhang
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States
| | - Giovanni Barbera
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States
| | - Yun Li
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, United States
| | - Da-Ting Lin
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States
| |
Collapse
|
10
|
Retinal Inputs to the Thalamus Are Selectively Gated by Arousal. Curr Biol 2020; 30:3923-3934.e9. [PMID: 32795442 DOI: 10.1016/j.cub.2020.07.065] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 06/12/2020] [Accepted: 07/21/2020] [Indexed: 12/14/2022]
Abstract
The brain can flexibly filter out sensory information in a manner that depends on behavioral state. In the visual thalamus and cortex, arousal and locomotion are associated with changes in the magnitude of responses to visual stimuli. Here, we asked whether such modulation of visual responses might already occur at an earlier stage in this visual pathway. We measured neural activity of retinal axons using wide-field and two-photon calcium imaging in awake mouse thalamus across arousal states associated with different pupil sizes. Surprisingly, visual responses to drifting gratings in retinal axonal boutons were robustly modulated by arousal level in a manner that varied across stimulus dimensions and across functionally distinct subsets of boutons. At low and intermediate spatial frequencies, the majority of boutons were suppressed by arousal. In contrast, at high spatial frequencies, boutons tuned to regions of visual space ahead of the mouse showed enhancement of responses. Arousal-related modulation also varied with a bouton's preference for luminance changes and direction or axis of motion, with greater response suppression in boutons tuned to luminance decrements versus increments, and in boutons preferring motion along directions or axes of optic flow. Together, our results suggest that differential modulation of distinct visual information channels by arousal state occurs at very early stages of visual processing, before the information is transmitted to neurons in visual thalamus. Such early filtering may provide an efficient means of optimizing central visual processing and perception across behavioral contexts.
Collapse
|
11
|
Oltmanns S, Abben FS, Ender A, Aimon S, Kovacs R, Sigrist SJ, Storace DA, Geiger JRP, Raccuglia D. NOSA, an Analytical Toolbox for Multicellular Optical Electrophysiology. Front Neurosci 2020; 14:712. [PMID: 32765213 PMCID: PMC7381214 DOI: 10.3389/fnins.2020.00712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/12/2020] [Indexed: 11/23/2022] Open
Abstract
Understanding how neural networks generate activity patterns and communicate with each other requires monitoring the electrical activity from many neurons simultaneously. Perfectly suited tools for addressing this challenge are genetically encoded voltage indicators (GEVIs) because they can be targeted to specific cell types and optically report the electrical activity of individual, or populations of neurons. However, analyzing and interpreting the data from voltage imaging experiments is challenging because high recording speeds and properties of current GEVIs yield only low signal-to-noise ratios, making it necessary to apply specific analytical tools. Here, we present NOSA (Neuro-Optical Signal Analysis), a novel open source software designed for analyzing voltage imaging data and identifying temporal interactions between electrical activity patterns of different origin. In this work, we explain the challenges that arise during voltage imaging experiments and provide hands-on analytical solutions. We demonstrate how NOSA's baseline fitting, filtering algorithms and movement correction can compensate for shifts in baseline fluorescence and extract electrical patterns from low signal-to-noise recordings. NOSA allows to efficiently identify oscillatory frequencies in electrical patterns, quantify neuronal response parameters and moreover provides an option for analyzing simultaneously recorded optical and electrical data derived from patch-clamp or other electrode-based recordings. To identify temporal relations between electrical activity patterns we implemented different options to perform cross correlation analysis, demonstrating their utility during voltage imaging in Drosophila and mice. All features combined, NOSA will facilitate the first steps into using GEVIs and help to realize their full potential for revealing cell-type specific connectivity and functional interactions.
Collapse
Affiliation(s)
- Sebastian Oltmanns
- Institute of Neurophysiology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Frauke Sophie Abben
- Institute of Neurophysiology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Anatoli Ender
- German Center for Neurodegenerative Diseases, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Sophie Aimon
- School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Richard Kovacs
- Institute of Neurophysiology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Stephan J. Sigrist
- German Center for Neurodegenerative Diseases, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Institute of Biology/Genetics, Freie Universität Berlin, Berlin, Germany
- NeuroCure, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Douglas A. Storace
- Department of Biological Science, Florida State University, Tallahassee, FL, United States
| | - Jörg R. P. Geiger
- Institute of Neurophysiology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Davide Raccuglia
- Institute of Neurophysiology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
12
|
Rhee JK, Leong LM, Mukim MSI, Kang BE, Lee S, Bilbao-Broch L, Baker BJ. Biophysical Parameters of GEVIs: Considerations for Imaging Voltage. Biophys J 2020; 119:1-8. [PMID: 32521239 PMCID: PMC7335909 DOI: 10.1016/j.bpj.2020.05.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 04/17/2020] [Accepted: 05/20/2020] [Indexed: 11/29/2022] Open
Abstract
Genetically encoded voltage indicators (GEVIs) continue to evolve, resulting in many different probes with varying strengths and weaknesses. Developers of new GEVIs tend to highlight their positive features. A recent article from an independent laboratory has compared the signal/noise ratios of a number of GEVIs. Such a comparison can be helpful to investigators eager to try to image the voltage of excitable cells. In this perspective, we will present examples of how the biophysical features of GEVIs affect the imaging of excitable cells in an effort to assist researchers when considering probes for their specific needs.
Collapse
Affiliation(s)
- Jun Kyu Rhee
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea; Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Republic of Korea
| | - Lee Min Leong
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea; Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Republic of Korea
| | - Md Sofequl Islam Mukim
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea; Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Republic of Korea
| | - Bok Eum Kang
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Sungmoo Lee
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Laura Bilbao-Broch
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea; Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Republic of Korea
| | - Bradley J Baker
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea; Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Republic of Korea.
| |
Collapse
|
13
|
Bando Y, Sakamoto M, Kim S, Ayzenshtat I, Yuste R. Comparative Evaluation of Genetically Encoded Voltage Indicators. Cell Rep 2020; 26:802-813.e4. [PMID: 30650368 PMCID: PMC7075032 DOI: 10.1016/j.celrep.2018.12.088] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 09/24/2018] [Accepted: 12/19/2018] [Indexed: 01/02/2023] Open
Abstract
Imaging voltage using fluorescent-based sensors could be an ideal technique to probe neural circuits with high spatiotemporal resolution. However, due to insufficient signal-to-noise ratio (SNR), imaging membrane potential in mammalian preparations is still challenging. In recent years, many genetically encoded voltage indicators (GEVIs) have been developed. To compare them and guide decisions on which GEVI to use, we have characterized side by side the performance of eight GEVIs that represent different families of molecular constructs. We tested GEVIs in vitro with 1-photon imaging and in vivo with 1-photon wide-field imaging and 2-photon imaging. We find that QuasAr2 exhibited the best performance in vitro, whereas only ArcLight-MT could be used to reliably detect electrical activity in vivo with 2-photon excitation. No single GEVI was ideal for every experiment. These results provide a guide for choosing optimal GEVIs for specific applications.
Collapse
Affiliation(s)
- Yuki Bando
- NeuroTechnology Center, Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| | - Masayuki Sakamoto
- NeuroTechnology Center, Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| | - Samuel Kim
- NeuroTechnology Center, Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Inbal Ayzenshtat
- NeuroTechnology Center, Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Rafael Yuste
- NeuroTechnology Center, Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| |
Collapse
|
14
|
Abstract
As a "holy grail" of neuroscience, optical imaging of membrane potential could enable high resolution measurements of spiking and synaptic activity in neuronal populations. This has been partly achieved using organic voltage-sensitive dyes in vitro, or in invertebrate preparations yet unspecific staining has prevented single-cell resolution measurements from mammalian preparations in vivo. The development of genetically encoded voltage indicators (GEVIs) and chemogenetic sensors has enabled targeting voltage indicators to plasma membranes and selective neuronal populations. Here, we review recent advances in the design and use of genetic voltage indicators and discuss advantages and disadvantages of three classes of them. Although genetic voltage indicators could revolutionize neuroscience, there are still significant challenges, particularly two-photon performance. To overcome them may require cross-disciplinary collaborations, team effort, and sustained support by large-scale research initiatives.
Collapse
Affiliation(s)
- Yuki Bando
- Neurotechnology Center, Department Biological Sciences, Columbia University, 550 W 120th Street, New York, NY, 10027, USA
- Present address: Department Organ and Tissue Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Christiane Grimm
- Neurotechnology Center, Department Biological Sciences, Columbia University, 550 W 120th Street, New York, NY, 10027, USA
| | - Victor H Cornejo
- Neurotechnology Center, Department Biological Sciences, Columbia University, 550 W 120th Street, New York, NY, 10027, USA
| | - Rafael Yuste
- Neurotechnology Center, Department Biological Sciences, Columbia University, 550 W 120th Street, New York, NY, 10027, USA.
| |
Collapse
|
15
|
Storace DA, Cohen LB, Choi Y. Using Genetically Encoded Voltage Indicators (GEVIs) to Study the Input-Output Transformation of the Mammalian Olfactory Bulb. Front Cell Neurosci 2019; 13:342. [PMID: 31417362 PMCID: PMC6684792 DOI: 10.3389/fncel.2019.00342] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/11/2019] [Indexed: 12/19/2022] Open
Abstract
Genetically encoded voltage indicators (GEVIs) are fluorescent protein reporters of membrane potential. These tools can, in principle, be used to monitor the neural activity of genetically distinct cell types in the brain. Although introduced in 1997, they have been a challenge to use to study intact neural circuits due to a combination of small signal-to-noise ratio, slow kinetics, and poor membrane expression. New strategies have yielded novel GEVIs such as ArcLight, which have improved properties. Here, we compare the in vivo properties of ArcLight with Genetically Encoded Calcium Indicators (GECIs) in the mouse olfactory bulb. We show how voltage imaging can be combined with organic calcium sensitive dyes to measure the input-output transformation of the olfactory bulb. Finally, we demonstrate that ArcLight can be targeted to olfactory bulb interneurons. The olfactory bulb contributes substantially to the perception of the concentration invariance of odor recognition.
Collapse
Affiliation(s)
- Douglas A Storace
- Department of Biological Science, Florida State University, Tallahassee, FL, United States.,Department of Cellular and Molecular Physiology, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Lawrence B Cohen
- Department of Cellular and Molecular Physiology, Yale School of Medicine, Yale University, New Haven, CT, United States.,Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul, South Korea
| | - Yunsook Choi
- Department of Cellular and Molecular Physiology, Yale School of Medicine, Yale University, New Haven, CT, United States.,Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul, South Korea
| |
Collapse
|
16
|
Panzera LC, Hoppa MB. Genetically Encoded Voltage Indicators Are Illuminating Subcellular Physiology of the Axon. Front Cell Neurosci 2019; 13:52. [PMID: 30881287 PMCID: PMC6406964 DOI: 10.3389/fncel.2019.00052] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/04/2019] [Indexed: 12/13/2022] Open
Abstract
Everything we see and do is regulated by electrical signals in our nerves and muscle. Ion channels are crucial for sensing and generating electrical signals. Two voltage-dependent conductances, Na+ and K+, form the bedrock of the electrical impulse in the brain known as the action potential. Several classes of mammalian neurons express combinations of nearly 100 different varieties of these two voltage-dependent channels and their subunits. Not surprisingly, this variability orchestrates a diversity of action potential shapes and firing patterns that have been studied in detail at neural somata. A remarkably understudied phenomena exists in subcellular compartments of the axon, where action potentials initiate synaptic transmission. Ion channel research was catalyzed by the invention of glass electrodes to measure electrical signals in cell membranes, however, progress in the field of neurobiology has been stymied by the fact that most axons in the mammalian CNS are far too small and delicate for measuring ion channel function with electrodes. These quantitative measurements of membrane voltage can be achieved within the axon using light. A revolution of optical voltage sensors has enabled exploring important questions of how ion channels regulate axon physiology and synaptic transmission. In this review we will consider advantages and disadvantages of different fluorescent voltage indicators and discuss particularly relevant questions that these indicators can elucidate for understanding the crucial relationship between action potentials and synaptic transmission.
Collapse
Affiliation(s)
| | - Michael B. Hoppa
- Department of Biological Sciences, Dartmouth College, Hanover, NH, United States
| |
Collapse
|
17
|
Kannan M, Vasan G, Pieribone VA. Optimizing Strategies for Developing Genetically Encoded Voltage Indicators. Front Cell Neurosci 2019; 13:53. [PMID: 30863283 PMCID: PMC6399427 DOI: 10.3389/fncel.2019.00053] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 02/04/2019] [Indexed: 01/23/2023] Open
Abstract
Genetically encoded optical indicators of neuronal activity enable unambiguous recordings of input-output activity patterns from identified cells in intact circuits. Among them, genetically encoded voltage indicators (GEVIs) offer additional advantages over calcium indicators as they are direct sensors of membrane potential and can adeptly report subthreshold events and hyperpolarization. Here, we outline the major GEVI designs and give an account of properties that need to be carefully optimized during indicator engineering. While designing the ideal GEVI, one should keep in mind aspects such as membrane localization, signal size, signal-to-noise ratio, kinetics and voltage dependence of optical responses. Using ArcLight and derivatives as prototypes, we delineate how a probe should be optimized for the former properties and developed along other areas in a need-based manner. Finally, we present an overview of the GEVI engineering process and lend an insight into their discovery, delivery and diagnosis.
Collapse
Affiliation(s)
- Madhuvanthi Kannan
- The John B. Pierce Laboratory, New Haven, CT, United States.,Department of Cellular and Molecular Physiology, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Ganesh Vasan
- The John B. Pierce Laboratory, New Haven, CT, United States.,Department of Cellular and Molecular Physiology, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Vincent A Pieribone
- The John B. Pierce Laboratory, New Haven, CT, United States.,Department of Cellular and Molecular Physiology, Yale School of Medicine, Yale University, New Haven, CT, United States.,Department of Neuroscience, Yale School of Medicine, Yale University, New Haven, CT, United States
| |
Collapse
|
18
|
Nakajima R, Baker BJ. Mapping of excitatory and inhibitory postsynaptic potentials of neuronal populations in hippocampal slices using the GEVI, ArcLight. JOURNAL OF PHYSICS D: APPLIED PHYSICS 2018; 51:504003. [PMID: 30739956 PMCID: PMC6366634 DOI: 10.1088/1361-6463/aae2e3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
To understand the circuitry of the brain, it is essential to clarify the functional connectivity among distinct neuronal populations. For this purpose, neuronal activity imaging using genetically-encoded calcium sensors such as GCaMP has been a powerful approach due to its cell-type specificity. However, calcium (Ca2+) is an indirect measure of neuronal activity. A more direct approach would be to use genetically encoded voltage indicators (GEVIs) to observe subthreshold, synaptic activities. The GEVI, ArcLight, which exhibits large fluorescence transients in response to voltage, was expressed in excitatory neurons of the mouse CA1 hippocampus. Fluorescent signals in response to the electrical stimulation of the Schaffer collateral axons were observed in brain slice preparations. ArcLight was able to map both excitatory and inhibitory inputs projected to excitatory neurons. In contrast, the Ca2+ signal detected by GCaMP6f, was only associated with excitatory inputs. ArcLight and similar voltage sensing probes are also becoming powerful paradigms for functional connectivity mapping of brain circuitry.
Collapse
Affiliation(s)
- Ryuichi Nakajima
- Center for Functional Connectomics, Korea Institute of Science and Technology, Seongbuk-gu, Seoul, 136-791, Republic of Korea
| | - Bradley J. Baker
- Center for Functional Connectomics, Korea Institute of Science and Technology, Seongbuk-gu, Seoul, 136-791, Republic of Korea
- Department of Neuroscience, University of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
19
|
Kannan M, Vasan G, Huang C, Haziza S, Li JZ, Inan H, Schnitzer MJ, Pieribone VA. Fast, in vivo voltage imaging using a red fluorescent indicator. Nat Methods 2018; 15:1108-1116. [PMID: 30420685 PMCID: PMC6516062 DOI: 10.1038/s41592-018-0188-7] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 09/25/2018] [Indexed: 11/09/2022]
Abstract
Genetically encoded voltage indicators (GEVIs) are emerging optical tools for acquiring brain-wide cell-type-specific functional data at unparalleled temporal resolution. To broaden the application of GEVIs in high-speed multispectral imaging, we used a high-throughput strategy to develop voltage-activated red neuronal activity monitor (VARNAM), a fusion of the fast Acetabularia opsin and the bright red fluorophore mRuby3. Imageable under the modest illumination intensities required by bright green probes (<50 mW mm-2), VARNAM is readily usable in vivo. VARNAM can be combined with blue-shifted optical tools to enable cell-type-specific all-optical electrophysiology and dual-color spike imaging in acute brain slices and live Drosophila. With enhanced sensitivity to subthreshold voltages, VARNAM resolves postsynaptic potentials in slices and cortical and hippocampal rhythms in freely behaving mice. Together, VARNAM lends a new hue to the optical toolbox, opening the door to high-speed in vivo multispectral functional imaging.
Collapse
Affiliation(s)
- Madhuvanthi Kannan
- The John B. Pierce Laboratory, New Haven, CT, USA
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT, USA
- Department of Neuroscience, Yale University, New Haven, CT, USA
| | - Ganesh Vasan
- The John B. Pierce Laboratory, New Haven, CT, USA
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT, USA
- Department of Neuroscience, Yale University, New Haven, CT, USA
| | - Cheng Huang
- James H. Clark Center, Stanford University, Stanford, CA, USA
| | - Simon Haziza
- James H. Clark Center, Stanford University, Stanford, CA, USA
| | - Jin Zhong Li
- James H. Clark Center, Stanford University, Stanford, CA, USA
- CNC Program, Stanford University, Stanford, CA, USA
| | - Hakan Inan
- James H. Clark Center, Stanford University, Stanford, CA, USA
| | - Mark J Schnitzer
- James H. Clark Center, Stanford University, Stanford, CA, USA
- CNC Program, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Vincent A Pieribone
- The John B. Pierce Laboratory, New Haven, CT, USA.
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT, USA.
- Department of Neuroscience, Yale University, New Haven, CT, USA.
| |
Collapse
|
20
|
Kang BE, Lee S, Baker BJ. Optical consequences of a genetically-encoded voltage indicator with a pH sensitive fluorescent protein. Neurosci Res 2018; 146:13-21. [PMID: 30342069 DOI: 10.1016/j.neures.2018.10.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/20/2018] [Accepted: 10/16/2018] [Indexed: 12/31/2022]
Abstract
Genetically-Encoded Voltage Indicators (GEVIs) are capable of converting changes in membrane potential into an optical signal. Here, we focus on recent insights into the mechanism of ArcLight-type probes and the consequences of utilizing a pH-dependent Fluorescent Protein (FP). A negative charge on the exterior of the β-can of the FP combined with a pH-sensitive FP enables voltage-dependent conformational changes to affect the fluorescence of the probe. This hypothesis implies that interaction/dimerization of the FP creates a microenvironment for the probe that is altered via conformational changes. This mechanism explains why a pH sensitive FP with a negative charge on the outside of the β-can is needed, but also suggests that pH could affect the optical signal as well. To better understand the effects of pH on the voltage-dependent signal of ArcLight, the intracellular pH (pHi) was tested at pH 6.8, 7.2, or 7.8. The resting fluorescence of ArcLight gets brighter as the pHi increases, yet only pH 7.8 significantly affected the ΔF/F. ArcLight could also simultaneously report voltage and pH changes during the acidification of a neuron firing multiple action potentials revealing different buffering capacities of the soma versus the processes of the cell.
Collapse
Affiliation(s)
- Bok Eum Kang
- Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Sungmoo Lee
- Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul, Republic of Korea; Program in Nanoscience and Technology, Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University. Suwon, Republic of Korea
| | - Bradley J Baker
- Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea.
| |
Collapse
|
21
|
Yi B, Kang BE, Lee S, Braubach S, Baker BJ. A dimeric fluorescent protein yields a bright, red-shifted GEVI capable of population signals in brain slice. Sci Rep 2018; 8:15199. [PMID: 30315245 PMCID: PMC6185910 DOI: 10.1038/s41598-018-33297-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 09/24/2018] [Indexed: 12/21/2022] Open
Abstract
A bright, red-shifted Genetically Encoded Voltage Indicator (GEVI) was developed using a modified version of the fluorescent protein, tdTomato. Dimerization of the fluorescent domain for ArcLight-type GEVIs has been shown to affect the signal size of the voltage-dependent optical signal. For red-shifted GEVI development, tdTomato was split fusing a single dTomato chromophore to the voltage sensing domain. Optimization of the amino acid length and charge composition of the linker region between the voltage sensing domain and the fluorescent protein resulted in a probe that is an order of magnitude brighter than FlicR1 at a resting potential of -70 mV and exhibits a ten-fold larger change in fluorescence (ΔF) upon 100 mV depolarization of the plasma membrane in HEK 293 cells. Unlike ArcLight, the introduction of charged residues to the exterior of dTomato did not substantially improve the dynamic range of the optical signal. As a result, this new GEVI, Ilmol, yields a 3-fold improvement in the signal-to-noise ratio compared to FlicR1 despite a smaller fractional change in fluorescence of 4% per 100 mV depolarization of the plasma membrane. Ilmol expresses well in neurons resolving action potentials in neuronal cultures and reporting population signals in mouse hippocampal acute brain slice recordings. Ilmol is the brightest red-shifted GEVI to date enabling imaging with 160-fold less light than Archon1 for primary neuron recordings (50 mW/cm2 versus 8 W/cm2) and 600-fold less light than QuasAr2 for mouse brain slice recordings (500 mW/cm2 versus 300 W/cm2). This new GEVI uses a distinct mechanism from other approaches, opening an alternate engineering path to improve sensitivity and speed.
Collapse
Affiliation(s)
- Bumjun Yi
- The Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul, Republic of Korea.,Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Republic of Korea
| | - Bok Eum Kang
- The Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul, Republic of Korea.,Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Republic of Korea
| | - Sungmoo Lee
- The Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul, Republic of Korea.,Department of Transdisciplinary Studies, Graduate school of Convergence Science and Technology, Seoul National University, Suwon, Republic of Korea
| | - Sophie Braubach
- The Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Bradley J Baker
- The Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul, Republic of Korea. .,Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Republic of Korea.
| |
Collapse
|
22
|
Sparsened neuronal activity in an optogenetically activated olfactory glomerulus. Sci Rep 2018; 8:14955. [PMID: 30297851 PMCID: PMC6175855 DOI: 10.1038/s41598-018-33021-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 09/07/2018] [Indexed: 12/04/2022] Open
Abstract
Glomeruli are the functional units of olfactory information processing but little remains known about their individual unit function. This is due to their widespread activation by odor stimuli. We expressed channelrhodopsin-2 in a single olfactory sensory neuron type, and used laser stimulation and simultaneous in vivo calcium imaging to study the responses of a single glomerulus to optogenetic stimulation. Calcium signals in the neuropil of this glomerulus were representative of the sensory input and nearly identical if evoked by intensity-matched odor and laser stimuli. However, significantly fewer glomerular layer interneurons and olfactory bulb output neurons (mitral cells) responded to optogenetic versus odor stimuli, resulting in a small and spatially compact optogenetic glomerular unit response. Temporal features of laser stimuli were represented with high fidelity in the neuropil of the glomerulus and the mitral cells, but not in interneurons. Increases in laser stimulus intensity were encoded by larger signal amplitudes in all compartments of the glomerulus, and by the recruitment of additional interneurons and mitral cells. No spatial expansion of the glomerular unit response was observed in response to stronger input stimuli. Our data are among the first descriptions of input-output transformations in a selectively activated olfactory glomerulus.
Collapse
|
23
|
Deo C, Lavis LD. Synthetic and genetically encoded fluorescent neural activity indicators. Curr Opin Neurobiol 2018; 50:101-108. [DOI: 10.1016/j.conb.2018.01.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/19/2017] [Accepted: 01/10/2018] [Indexed: 10/18/2022]
|
24
|
Platisa J, Pieribone VA. Genetically encoded fluorescent voltage indicators: are we there yet? Curr Opin Neurobiol 2018; 50:146-153. [PMID: 29501950 PMCID: PMC5984684 DOI: 10.1016/j.conb.2018.02.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/04/2018] [Accepted: 02/14/2018] [Indexed: 12/12/2022]
Abstract
In order to understand how brain activity produces adaptive behavior we need large-scale, high-resolution recordings of neuronal activity. Fluorescent genetically encoded voltage indicators (GEVIs) offer the potential for these recordings to be performed chronically from targeted cells in a minimally invasive manner. As the number of GEVIs successfully tested for in vivo use grows, so has the number of open questions regarding the improvements that would facilitate broad adoption of this technology that surpasses mere 'proof of principle' studies. Our aim in this review is not to provide a status check of the current state of the field, as excellent publications covering this topic already exist. Here, we discuss specific questions regarding GEVI development and application that we think are crucial in achieving this goal.
Collapse
Affiliation(s)
- Jelena Platisa
- The John B. Pierce Laboratory, Inc., New Haven, CT 06519, United States; Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510, United States.
| | - Vincent A Pieribone
- The John B. Pierce Laboratory, Inc., New Haven, CT 06519, United States; Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510, United States; Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, United States
| |
Collapse
|
25
|
Liang L, Fratzl A, Goldey G, Ramesh RN, Sugden AU, Morgan JL, Chen C, Andermann ML. A Fine-Scale Functional Logic to Convergence from Retina to Thalamus. Cell 2018; 173:1343-1355.e24. [PMID: 29856953 DOI: 10.1016/j.cell.2018.04.041] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 01/31/2018] [Accepted: 04/27/2018] [Indexed: 11/26/2022]
Abstract
Numerous well-defined classes of retinal ganglion cells innervate the thalamus to guide image-forming vision, yet the rules governing their convergence and divergence remain unknown. Using two-photon calcium imaging in awake mouse thalamus, we observed a functional arrangement of retinal ganglion cell axonal boutons in which coarse-scale retinotopic ordering gives way to fine-scale organization based on shared preferences for other visual features. Specifically, at the ∼6 μm scale, clusters of boutons from different axons often showed similar preferences for either one or multiple features, including axis and direction of motion, spatial frequency, and changes in luminance. Conversely, individual axons could "de-multiplex" information channels by participating in multiple, functionally distinct bouton clusters. Finally, ultrastructural analyses demonstrated that retinal axonal boutons in a local cluster often target the same dendritic domain. These data suggest that functionally specific convergence and divergence of retinal axons may impart diverse, robust, and often novel feature selectivity to visual thalamus.
Collapse
Affiliation(s)
- Liang Liang
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Alex Fratzl
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Laboratory of Synaptic Mechanisms, Brain Mind Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Glenn Goldey
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Rohan N Ramesh
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
| | - Arthur U Sugden
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Josh L Morgan
- Department of Ophthalmology and Visual Sciences, Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chinfei Chen
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA.
| | - Mark L Andermann
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
26
|
Kibat C, Krishnan S, Ramaswamy M, Baker BJ, Jesuthasan S. Imaging voltage in zebrafish as a route to characterizing a vertebrate functional connectome: promises and pitfalls of genetically encoded indicators. J Neurogenet 2017; 30:80-8. [PMID: 27328843 DOI: 10.1080/01677063.2016.1180384] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Neural circuits are non-linear dynamical systems that transform information based on the pattern of input, current state and functional connectivity. To understand how a given stimulus is processed, one would ideally record neural activity across the entire brain of a behaving animal, at cellular or even subcellular resolution, in addition to characterizing anatomical connectivity. Given their transparency and relatively small size, larval zebrafish provide a powerful system for brain-wide monitoring of neural activity. Genetically encoded calcium indicators have been used for this purpose, but cannot directly report hyperpolarization or sub-threshold activity. Voltage indicators, in contrast, have this capability. Here, we test whether two different genetically encoded voltage reporters, ASAP1 and Bongwoori, can be expressed and report activity in the zebrafish brain, using widefield, two-photon and light sheet microscopy. We were unable to express ASAP1 in neurons. Bongwoori, in contrast expressed well, and because of its membrane localization, allowed visualization of axon trajectories in 3D. Bongwoori displayed stimulus-evoked changes in fluorescence, which could be detected in single trials. However, under high laser illumination, puncta on neural membranes underwent spontaneous fluctuations in intensity, suggesting that the probe is susceptible to blinking artefacts. These data indicate that larval zebrafish can be used to image electrical activity in the brain of an intact vertebrate at high resolution, although care is needed in imaging and analysis. Recording activity across the whole brain will benefit from further developments in imaging hardware and indicators.
Collapse
Affiliation(s)
- Caroline Kibat
- a Neural Circuitry and Behaviour Lab , Institute of Molecular and Cell Biology , Singapore , Singapore
| | - Seetha Krishnan
- b NUS Graduate School for Integrative Sciences and Engineering , Singapore , Singapore
| | - Mahathi Ramaswamy
- b NUS Graduate School for Integrative Sciences and Engineering , Singapore , Singapore
| | - Bradley J Baker
- c Center for Functional Connectomics , Korea Institute of Science and Technology , Seoul , South Korea
| | - Suresh Jesuthasan
- a Neural Circuitry and Behaviour Lab , Institute of Molecular and Cell Biology , Singapore , Singapore ;,d Program in Neuroscience and Behavioural Disorders , Duke-NUS Graduate School of Medicine , Singapore , Singapore ;,e Department of Physiology , National University of Singapore , Singapore , Singapore
| |
Collapse
|
27
|
Chapot CA, Behrens C, Rogerson LE, Baden T, Pop S, Berens P, Euler T, Schubert T. Local Signals in Mouse Horizontal Cell Dendrites. Curr Biol 2017; 27:3603-3615.e5. [PMID: 29174891 DOI: 10.1016/j.cub.2017.10.050] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/01/2017] [Accepted: 10/19/2017] [Indexed: 01/07/2023]
Abstract
The mouse retina contains a single type of horizontal cell, a GABAergic interneuron that samples from all cone photoreceptors within reach and modulates their glutamatergic output via parallel feedback mechanisms. Because horizontal cells form an electrically coupled network, they have been implicated in global signal processing, such as large-scale contrast enhancement. Recently, it has been proposed that horizontal cells can also act locally at the level of individual cone photoreceptors. To test this possibility physiologically, we used two-photon microscopy to record light stimulus-evoked Ca2+ signals in cone axon terminals and horizontal cell dendrites as well as glutamate release in the outer plexiform layer. By selectively stimulating the two mouse cone opsins with green and UV light, we assessed whether signals from individual cones remain isolated within horizontal cell dendritic tips or whether they spread across the dendritic arbor. Consistent with the mouse's opsin expression gradient, we found that the Ca2+ signals recorded from dendrites of dorsal horizontal cells were dominated by M-opsin and those of ventral horizontal cells by S-opsin activation. The signals measured in neighboring horizontal cell dendritic tips varied markedly in their chromatic preference, arguing against global processing. Rather, our experimental data and results from biophysically realistic modeling support the idea that horizontal cells can process cone input locally, extending the classical view of horizontal cell function. Pharmacologically removing horizontal cells from the circuitry reduced the sensitivity of the cone signal to low frequencies, suggesting that local horizontal cell feedback shapes the temporal properties of cone output.
Collapse
Affiliation(s)
- Camille A Chapot
- Institute for Ophthalmic Research, University of Tübingen, 72076 Tübingen, Germany; Center for Integrative Neuroscience, University of Tübingen, 72076 Tübingen, Germany; Graduate Training Centre of Neuroscience, University of Tübingen, 72076 Tübingen, Germany
| | - Christian Behrens
- Institute for Ophthalmic Research, University of Tübingen, 72076 Tübingen, Germany; Center for Integrative Neuroscience, University of Tübingen, 72076 Tübingen, Germany; Graduate Training Centre of Neuroscience, University of Tübingen, 72076 Tübingen, Germany; Bernstein Center for Computational Neuroscience, University of Tübingen, 72076 Tübingen, Germany
| | - Luke E Rogerson
- Institute for Ophthalmic Research, University of Tübingen, 72076 Tübingen, Germany; Center for Integrative Neuroscience, University of Tübingen, 72076 Tübingen, Germany; Graduate Training Centre of Neuroscience, University of Tübingen, 72076 Tübingen, Germany; Bernstein Center for Computational Neuroscience, University of Tübingen, 72076 Tübingen, Germany
| | - Tom Baden
- Institute for Ophthalmic Research, University of Tübingen, 72076 Tübingen, Germany; School of Life Sciences, University of Sussex, Brighton BN1 9RH, UK
| | - Sinziana Pop
- Institute for Ophthalmic Research, University of Tübingen, 72076 Tübingen, Germany; Center for Integrative Neuroscience, University of Tübingen, 72076 Tübingen, Germany; Graduate Training Centre of Neuroscience, University of Tübingen, 72076 Tübingen, Germany
| | - Philipp Berens
- Institute for Ophthalmic Research, University of Tübingen, 72076 Tübingen, Germany; Center for Integrative Neuroscience, University of Tübingen, 72076 Tübingen, Germany; Bernstein Center for Computational Neuroscience, University of Tübingen, 72076 Tübingen, Germany
| | - Thomas Euler
- Institute for Ophthalmic Research, University of Tübingen, 72076 Tübingen, Germany; Center for Integrative Neuroscience, University of Tübingen, 72076 Tübingen, Germany; Bernstein Center for Computational Neuroscience, University of Tübingen, 72076 Tübingen, Germany.
| | - Timm Schubert
- Institute for Ophthalmic Research, University of Tübingen, 72076 Tübingen, Germany; Center for Integrative Neuroscience, University of Tübingen, 72076 Tübingen, Germany.
| |
Collapse
|
28
|
Voltage and Calcium Imaging of Brain Activity. Biophys J 2017; 113:2160-2167. [PMID: 29102396 DOI: 10.1016/j.bpj.2017.09.040] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 09/14/2017] [Accepted: 09/21/2017] [Indexed: 01/02/2023] Open
Abstract
Sensors for imaging brain activity have been under development for almost 50 years. The development of some of these tools is relatively mature, whereas qualitative improvements of others are needed and are actively pursued. In particular, genetically encoded voltage indicators are just now starting to be used to answer neurobiological questions and, at the same time, more than 10 laboratories are working to improve them. In this Biophysical Perspective, we attempt to discuss the present state of the art and indicate areas of active development.
Collapse
|
29
|
Jung A, Rajakumar D, Yoon BJ, Baker BJ. Modulating the Voltage-sensitivity of a Genetically Encoded Voltage Indicator. Exp Neurobiol 2017; 26:241-251. [PMID: 29093633 PMCID: PMC5661057 DOI: 10.5607/en.2017.26.5.241] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 08/19/2017] [Accepted: 09/24/2017] [Indexed: 11/19/2022] Open
Abstract
Saturation mutagenesis was performed on a single position in the voltage-sensing domain (VSD) of a genetically encoded voltage indicator (GEVI). The VSD consists of four transmembrane helixes designated S1-S4. The V220 position located near the plasma membrane/extracellular interface had previously been shown to affect the voltage range of the optical signal. Introduction of polar amino acids at this position reduced the voltage-dependent optical signal of the GEVI. Negatively charged amino acids slightly reduced the optical signal by 33 percent while positively charge amino acids at this position reduced the optical signal by 80%. Surprisingly, the range of V220D was similar to that of V220K with shifted optical responses towards negative potentials. In contrast, the V220E mutant mirrored the responses of the V220R mutation suggesting that the length of the side chain plays in role in determining the voltage range of the GEVI. Charged mutations at the 219 position all behaved similarly slightly shifting the optical response to more negative potentials. Charged mutations to the 221 position behaved erratically suggesting interactions with the plasma membrane and/or other amino acids in the VSD. Introduction of bulky amino acids at the V220 position increased the range of the optical response to include hyperpolarizing signals. Combining The V220W mutant with the R217Q mutation resulted in a probe that reduced the depolarizing signal and enhanced the hyperpolarizing signal which may lead to GEVIs that only report neuronal inhibition.
Collapse
Affiliation(s)
- Arong Jung
- The Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul, Korea.,College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Dhanarajan Rajakumar
- The Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul, Korea
| | - Bong-June Yoon
- College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Bradley J Baker
- The Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul, Korea.,Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Korea
| |
Collapse
|
30
|
Urban A, Golgher L, Brunner C, Gdalyahu A, Har-Gil H, Kain D, Montaldo G, Sironi L, Blinder P. Understanding the neurovascular unit at multiple scales: Advantages and limitations of multi-photon and functional ultrasound imaging. Adv Drug Deliv Rev 2017; 119:73-100. [PMID: 28778714 DOI: 10.1016/j.addr.2017.07.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 07/17/2017] [Accepted: 07/22/2017] [Indexed: 02/07/2023]
Abstract
Developing efficient brain imaging technologies by combining a high spatiotemporal resolution and a large penetration depth is a key step for better understanding the neurovascular interface that emerges as a main pathway to neurodegeneration in many pathologies such as dementia. This review focuses on the advances in two complementary techniques: multi-photon laser scanning microscopy (MPLSM) and functional ultrasound imaging (fUSi). MPLSM has become the gold standard for in vivo imaging of cellular dynamics and morphology, together with cerebral blood flow. fUSi is an innovative imaging modality based on Doppler ultrasound, capable of recording vascular brain activity over large scales (i.e., tens of cubic millimeters) at unprecedented spatial and temporal resolution for such volumes (up to 10μm pixel size at 10kHz). By merging these two technologies, researchers may have access to a more detailed view of the various processes taking place at the neurovascular interface. MPLSM and fUSi are also good candidates for addressing the major challenge of real-time delivery, monitoring, and in vivo evaluation of drugs in neuronal tissue.
Collapse
Affiliation(s)
- Alan Urban
- Neuroelectronics Research Flanders, Leuven, Belgium; VIB, Leuven, Belgium and/or IMEC, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium; Neurobiology Dept., Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Lior Golgher
- Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - Clément Brunner
- Neuroelectronics Research Flanders, Leuven, Belgium; VIB, Leuven, Belgium and/or IMEC, Leuven, Belgium
| | - Amos Gdalyahu
- Neurobiology Dept., Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Hagai Har-Gil
- Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - David Kain
- Neurobiology Dept., Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Gabriel Montaldo
- Neuroelectronics Research Flanders, Leuven, Belgium; VIB, Leuven, Belgium and/or IMEC, Leuven, Belgium
| | - Laura Sironi
- Physics Dept., Universita degli Studi di Milano Bicocca, Italy
| | - Pablo Blinder
- Neurobiology Dept., Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel; Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel.
| |
Collapse
|
31
|
Toward Better Genetically Encoded Sensors of Membrane Potential. Trends Neurosci 2017; 39:277-289. [PMID: 27130905 DOI: 10.1016/j.tins.2016.02.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 01/25/2016] [Accepted: 02/22/2016] [Indexed: 11/24/2022]
Abstract
Genetically encoded optical sensors of cell activity are powerful tools that can be targeted to specific cell types. This is especially important in neuroscience because individual brain regions can include a multitude of different cell types. Optical imaging allows for simultaneous recording from numerous neurons or brain regions. Optical signals of membrane potential are useful because membrane potential changes are a direct sign of both synaptic and action potentials. Here we describe recent improvements in the in vitro and in vivo signal size and kinetics of genetically encoded voltage indicators (GEVIs) and discuss their relationship to alternative sensors of neural activity.
Collapse
|
32
|
Chamberland S, Yang HH, Pan MM, Evans SW, Guan S, Chavarha M, Yang Y, Salesse C, Wu H, Wu JC, Clandinin TR, Toth K, Lin MZ, St-Pierre F. Fast two-photon imaging of subcellular voltage dynamics in neuronal tissue with genetically encoded indicators. eLife 2017; 6. [PMID: 28749338 PMCID: PMC5584994 DOI: 10.7554/elife.25690] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 07/21/2017] [Indexed: 12/22/2022] Open
Abstract
Monitoring voltage dynamics in defined neurons deep in the brain is critical for unraveling the function of neuronal circuits but is challenging due to the limited performance of existing tools. In particular, while genetically encoded voltage indicators have shown promise for optical detection of voltage transients, many indicators exhibit low sensitivity when imaged under two-photon illumination. Previous studies thus fell short of visualizing voltage dynamics in individual neurons in single trials. Here, we report ASAP2s, a novel voltage indicator with improved sensitivity. By imaging ASAP2s using random-access multi-photon microscopy, we demonstrate robust single-trial detection of action potentials in organotypic slice cultures. We also show that ASAP2s enables two-photon imaging of graded potentials in organotypic slice cultures and in Drosophila. These results demonstrate that the combination of ASAP2s and fast two-photon imaging methods enables detection of neural electrical activity with subcellular spatial resolution and millisecond-timescale precision. DOI:http://dx.doi.org/10.7554/eLife.25690.001
Collapse
Affiliation(s)
- Simon Chamberland
- Department of Psychiatry and Neuroscience, Quebec Mental Health Institute, Université Laval, Québec, Canada
| | - Helen H Yang
- Department of Neurobiology, Stanford University, Stanford, United States
| | - Michael M Pan
- Department of Bioengineering, Stanford University, Stanford, United States.,Department of Pediatrics, Stanford University, Stanford, United States
| | - Stephen W Evans
- Department of Neurobiology, Stanford University, Stanford, United States.,Department of Bioengineering, Stanford University, Stanford, United States.,Department of Pediatrics, Stanford University, Stanford, United States
| | - Sihui Guan
- Department of Neuroscience, Baylor College of Medicine, Houston, United States
| | - Mariya Chavarha
- Department of Neurobiology, Stanford University, Stanford, United States.,Department of Bioengineering, Stanford University, Stanford, United States.,Department of Pediatrics, Stanford University, Stanford, United States
| | - Ying Yang
- Department of Neurobiology, Stanford University, Stanford, United States.,Department of Bioengineering, Stanford University, Stanford, United States.,Department of Pediatrics, Stanford University, Stanford, United States
| | - Charleen Salesse
- Department of Psychiatry and Neuroscience, Quebec Mental Health Institute, Université Laval, Québec, Canada
| | - Haodi Wu
- Stanford Cardiovascular Institute, Stanford University, Stanford, United States
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University, Stanford, United States
| | - Thomas R Clandinin
- Department of Neurobiology, Stanford University, Stanford, United States
| | - Katalin Toth
- Department of Psychiatry and Neuroscience, Quebec Mental Health Institute, Université Laval, Québec, Canada
| | - Michael Z Lin
- Department of Neurobiology, Stanford University, Stanford, United States.,Department of Bioengineering, Stanford University, Stanford, United States.,Department of Pediatrics, Stanford University, Stanford, United States
| | - François St-Pierre
- Department of Bioengineering, Stanford University, Stanford, United States.,Department of Pediatrics, Stanford University, Stanford, United States.,Department of Neuroscience, Baylor College of Medicine, Houston, United States
| |
Collapse
|
33
|
Measuring the olfactory bulb input-output transformation reveals a contribution to the perception of odorant concentration invariance. Nat Commun 2017; 8:81. [PMID: 28724907 PMCID: PMC5517565 DOI: 10.1038/s41467-017-00036-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 05/01/2017] [Indexed: 11/23/2022] Open
Abstract
Humans and other animals can recognize an odorant as the same over a range of odorant concentrations. It remains unclear whether the olfactory bulb, the brain structure that mediates the first stage of olfactory information processing, participates in generating this perceptual concentration invariance. Olfactory bulb glomeruli are regions of neuropil that contain input and output processes: olfactory receptor neuron nerve terminals (input) and mitral/tufted cell apical dendrites (output). Differences between the input and output of a brain region define the function(s) carried out by that region. Here we compare the activity signals from the input and output across a range of odorant concentrations. The output maps maintain a relatively stable representation of odor identity over the tested concentration range, even though the input maps and signals change markedly. These results provide direct evidence that the mammalian olfactory bulb likely participates in generating the perception of concentration invariance of odor quality. Humans and animals recognize an odorant across a range of odorant concentrations, but where in the olfactory processing pathway this invariance is generated is unclear. By measuring and comparing olfactory bulb outputs to inputs, the authors show that the olfactory bulb participates in generating the perception of odorant concentration invariance.
Collapse
|
34
|
Mesoscale Mapping of Mouse Cortex Reveals Frequency-Dependent Cycling between Distinct Macroscale Functional Modules. J Neurosci 2017; 37:7513-7533. [PMID: 28674167 DOI: 10.1523/jneurosci.3560-16.2017] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 06/13/2017] [Accepted: 06/19/2017] [Indexed: 12/17/2022] Open
Abstract
Connectivity mapping based on resting-state activity in mice has revealed functional motifs of correlated activity. However, the rules by which motifs organize into larger functional modules that lead to hemisphere wide spatial-temporal activity sequences is not clear. We explore cortical activity parcellation in head-fixed, quiet awake GCaMP6 mice from both sexes by using mesoscopic calcium imaging. Spectral decomposition of spontaneous cortical activity revealed the presence of two dominant frequency modes (<1 and ∼3 Hz), each of them associated with a unique spatial signature of cortical macro-parcellation not predicted by classical cytoarchitectonic definitions of cortical areas. Based on assessment of 0.1-1 Hz activity, we define two macro-organizing principles: the first being a rotating polymodal-association pinwheel structure around which activity flows sequentially from visual to barrel then to hindlimb somatosensory; the second principle is correlated activity symmetry planes that exist on many levels within a single domain such as intrahemispheric reflections of sensory and motor cortices. In contrast, higher frequency activity >1 Hz yielded two larger clusters of coactivated areas with an enlarged default mode network-like posterior region. We suggest that the apparent constrained structure for intra-areal cortical activity flow could be exploited in future efforts to normalize activity in diseases of the nervous system.SIGNIFICANCE STATEMENT Increasingly, functional connectivity mapping of spontaneous activity is being used to reveal the organization of the brain. However, because the brain operates across multiple space and time domains a more detailed understanding of this organization is necessary. We used in vivo wide-field calcium imaging of the indicator GCaMP6 in head-fixed, awake mice to characterize the organization of spontaneous cortical activity at different spatiotemporal scales. Correlation analysis defines the presence of two to three superclusters of activity that span traditionally defined functional territories and were frequency dependent. This work helps define the rules for how different cortical areas interact in time and space. We provide a framework necessary for future studies that explore functional reorganization of brain circuits in disease models.
Collapse
|
35
|
Borden PY, Ortiz AD, Waiblinger C, Sederberg AJ, Morrissette AE, Forest CR, Jaeger D, Stanley GB. Genetically expressed voltage sensor ArcLight for imaging large scale cortical activity in the anesthetized and awake mouse. NEUROPHOTONICS 2017; 4:031212. [PMID: 28491905 PMCID: PMC5416966 DOI: 10.1117/1.nph.4.3.031212] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 04/10/2017] [Indexed: 06/07/2023]
Abstract
With the recent breakthrough in genetically expressed voltage indicators (GEVIs), there has been a tremendous demand to determine the capabilities of these sensors in vivo. Novel voltage sensitive fluorescent proteins allow for direct measurement of neuron membrane potential changes through changes in fluorescence. Here, we utilized ArcLight, a recently developed GEVI, and examined the functional characteristics in the widely used mouse somatosensory whisker pathway. We measured the resulting evoked fluorescence using a wide-field microscope and a CCD camera at 200 Hz, which enabled voltage recordings over the entire cortical region with high temporal resolution. We found that ArcLight produced a fluorescent response in the S1 barrel cortex during sensory stimulation at single whisker resolution. During wide-field cortical imaging, we encountered substantial hemodynamic noise that required additional post hoc processing through noise subtraction techniques. Over a period of 28 days, we found clear and consistent ArcLight fluorescence responses to a simple sensory input. Finally, we demonstrated the use of ArcLight to resolve cortical S1 sensory responses in the awake mouse. Taken together, our results demonstrate the feasibility of ArcLight as a measurement tool for mesoscopic, chronic imaging.
Collapse
Affiliation(s)
- Peter Y. Borden
- Georgia Institute of Technology and Emory University, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
| | - Alex D. Ortiz
- Georgia Institute of Technology and Emory University, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
| | - Christian Waiblinger
- Georgia Institute of Technology and Emory University, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
| | - Audrey J. Sederberg
- Georgia Institute of Technology and Emory University, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
| | - Arthur E. Morrissette
- Emory University, Neuroscience Program, Department of Biology, Atlanta, Georgia, United States
| | - Craig R. Forest
- Georgia Institute of Technology and Emory University, School of Mechanical Engineering, Atlanta, Georgia, United States
| | - Dieter Jaeger
- Emory University, Neuroscience Program, Department of Biology, Atlanta, Georgia, United States
| | - Garrett B. Stanley
- Georgia Institute of Technology and Emory University, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
| |
Collapse
|
36
|
Chung J, Sharif F, Jung D, Kim S, Royer S. Micro-drive and headgear for chronic implant and recovery of optoelectronic probes. Sci Rep 2017; 7:2773. [PMID: 28584246 PMCID: PMC5459843 DOI: 10.1038/s41598-017-03340-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 04/26/2017] [Indexed: 01/01/2023] Open
Abstract
Silicon probes are multisite electrodes used for the electrophysiological recording of large neuronal ensembles. Optoelectronic probes (OEPs) are recent upgrades that allow, in parallel, the delivery of local optical stimuli. The procedures to use these delicate electrodes for chronic experiments in mice are still underdeveloped and typically assume one-time uses. Here, we developed a micro-drive, a support for OEPs optical fibers, and a hat enclosure, which fabrications consist in fitting and fastening together plastic parts made with 3D printers. Excluding two parts, all components and electrodes are relatively simple to recover after the experiments, via the loosening of screws. To prevent the plugging of OEPs laser sources from altering the stability of recordings, the OEPs fibers can be transiently anchored to the hat via the tightening of screws. We test the stability of recordings in the mouse hippocampus under three different conditions: acute head-fixed, chronic head-fixed, and chronic freely moving. Drift in spike waveforms is significantly smaller in chronic compared to acute conditions, with the plugging/unplugging of head-stage and fiber connectors not affecting much the recording stability. Overall, these tools generate stable recordings of place cell in chronic conditions, and make the recovery and reuse of electrode packages relatively simple.
Collapse
Affiliation(s)
- Jinho Chung
- Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul, 136-791, Republic of Korea
| | - Farnaz Sharif
- Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul, 136-791, Republic of Korea.,University of Science & Technology, Daejeon, Republic of Korea
| | - Dajung Jung
- Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul, 136-791, Republic of Korea.,Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Soyoun Kim
- Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul, 136-791, Republic of Korea
| | - Sebastien Royer
- Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul, 136-791, Republic of Korea. .,University of Science & Technology, Daejeon, Republic of Korea.
| |
Collapse
|
37
|
Afrashteh N, Inayat S, Mohsenvand M, Mohajerani MH. Optical-flow analysis toolbox for characterization of spatiotemporal dynamics in mesoscale optical imaging of brain activity. Neuroimage 2017; 153:58-74. [PMID: 28351691 DOI: 10.1016/j.neuroimage.2017.03.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 02/10/2017] [Accepted: 03/16/2017] [Indexed: 12/15/2022] Open
Abstract
Wide-field optical imaging techniques constitute powerful tools to investigate mesoscale neuronal activity. The sampled data constitutes a sequence of image frames in which one can investigate the flow of brain activity starting and terminating at source and sink locations respectively. Approaches to the analyses of information flow include qualitative assessment to identify sources and sinks of activity as well as their trajectories, and quantitative measurements based on computing the temporal variation of the intensity of pixels. Furthermore, in a few studies estimates of wave motion have been reported using optical-flow techniques from computer vision. However, a comprehensive toolbox for the quantitative analyses of mesoscale brain activity data is still lacking. We present a graphical-user-interface toolbox based in Matlab® for investigating the spatiotemporal dynamics of mesoscale brain activity using optical-flow analyses. The toolbox includes the implementation of three optical-flow methods namely Horn-Schunck, Combined Local-Global, and Temporospatial algorithms for estimating velocity vector fields of flow of mesoscale brain activity. From the velocity vector fields we determined the locations of sources and sinks as well as the trajectories and temporal velocities of flow of activity. Using simulated data as well as experimentally derived sensory-evoked voltage and calcium imaging data from mice, we compared the efficacy of the three optical-flow methods for determining spatiotemporal dynamics. Our results indicate that the combined local-global method we employed, yields the best results for estimating wave motion. The automated approach permits rapid and effective quantification of mesoscale brain dynamics and may facilitate the study of brain function in response to new experiences or pathology.
Collapse
Affiliation(s)
- Navvab Afrashteh
- Canadian Center for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Canada T1K 3M4
| | - Samsoon Inayat
- Canadian Center for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Canada T1K 3M4
| | - Mostafa Mohsenvand
- Canadian Center for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Canada T1K 3M4
| | - Majid H Mohajerani
- Canadian Center for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Canada T1K 3M4.
| |
Collapse
|
38
|
Platisa J, Vasan G, Yang A, Pieribone VA. Directed Evolution of Key Residues in Fluorescent Protein Inverses the Polarity of Voltage Sensitivity in the Genetically Encoded Indicator ArcLight. ACS Chem Neurosci 2017; 8:513-523. [PMID: 28045247 PMCID: PMC5355904 DOI: 10.1021/acschemneuro.6b00234] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
![]()
Genetically encoded
calcium indicators (GECIs) produce unprecedentedly
large signals that have enabled routine optical recording of single
neuron activity in vivo in rodent brain. Genetically encoded voltage
indicators (GEVIs) offer a more direct measure of neuronal electrical
status, however the signal-to-noise characteristics and signal polarity
of the probes developed to date have precluded routine use in vivo.
We applied directed evolution to target modulable areas of the fluorescent
protein in GEVI ArcLight to create the first GFP-based GEVI (Marina)
that exhibits a ΔF/ΔV with a positive slope relationship. We found that only three rounds
of site-directed mutagenesis produced a family of “brightening”
GEVIs with voltage sensitivities comparable to that seen in the parent
probe ArcLight. This shift in signal polarity is an essential first
step to producing voltage indicators with signal-to-noise characteristics
comparable to GECIs to support widespread use in vivo.
Collapse
Affiliation(s)
- Jelena Platisa
- The John B. Pierce Laboratory, Inc., New Haven, Connecticut 06519, United States
| | - Ganesh Vasan
- The John B. Pierce Laboratory, Inc., New Haven, Connecticut 06519, United States
| | - Amy Yang
- The John B. Pierce Laboratory, Inc., New Haven, Connecticut 06519, United States
| | - Vincent A. Pieribone
- The John B. Pierce Laboratory, Inc., New Haven, Connecticut 06519, United States
| |
Collapse
|
39
|
Ganesana M, Lee ST, Wang Y, Venton BJ. Analytical Techniques in Neuroscience: Recent Advances in Imaging, Separation, and Electrochemical Methods. Anal Chem 2017; 89:314-341. [PMID: 28105819 PMCID: PMC5260807 DOI: 10.1021/acs.analchem.6b04278] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | | | | | - B. Jill Venton
- Department of Chemistry, PO Box 400319, University of Virginia, Charlottesville, VA 22904
| |
Collapse
|
40
|
Genetically Encoded Voltage Indicators: Opportunities and Challenges. J Neurosci 2016; 36:9977-89. [PMID: 27683896 DOI: 10.1523/jneurosci.1095-16.2016] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 07/25/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED A longstanding goal in neuroscience is to understand how spatiotemporal patterns of neuronal electrical activity underlie brain function, from sensory representations to decision making. An emerging technology for monitoring electrical dynamics, voltage imaging using genetically encoded voltage indicators (GEVIs), couples the power of genetics with the advantages of light. Here, we review the properties that determine indicator performance and applicability, discussing both recent progress and technical limitations. We then consider GEVI applications, highlighting studies that have already deployed GEVIs for biological discovery. We also examine which classes of biological questions GEVIs are primed to address and which ones are beyond their current capabilities. As GEVIs are further developed, we anticipate that they will become more broadly used by the neuroscience community to eavesdrop on brain activity with unprecedented spatiotemporal resolution. SIGNIFICANCE STATEMENT Genetically encoded voltage indicators are engineered light-emitting protein sensors that typically report neuronal voltage dynamics as changes in brightness. In this review, we systematically discuss the current state of this emerging method, considering both its advantages and limitations for imaging neural activity. We also present recent applications of this technology and discuss what is feasible now and what we anticipate will become possible with future indicator development. This review will inform neuroscientists of recent progress in the field and help potential users critically evaluate the suitability of genetically encoded voltage indicator imaging to answer their specific biological questions.
Collapse
|
41
|
Nakajima R, Jung A, Yoon BJ, Baker BJ. Optogenetic Monitoring of Synaptic Activity with Genetically Encoded Voltage Indicators. Front Synaptic Neurosci 2016; 8:22. [PMID: 27547183 PMCID: PMC4974255 DOI: 10.3389/fnsyn.2016.00022] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 07/25/2016] [Indexed: 11/13/2022] Open
Abstract
The age of genetically encoded voltage indicators (GEVIs) has matured to the point that changes in membrane potential can now be observed optically in vivo. Improving the signal size and speed of these voltage sensors has been the primary driving forces during this maturation process. As a result, there is a wide range of probes using different voltage detecting mechanisms and fluorescent reporters. As the use of these probes transitions from optically reporting membrane potential in single, cultured cells to imaging populations of cells in slice and/or in vivo, a new challenge emerges—optically resolving the different types of neuronal activity. While improvements in speed and signal size are still needed, optimizing the voltage range and the subcellular expression (i.e., soma only) of the probe are becoming more important. In this review, we will examine the ability of recently developed probes to report synaptic activity in slice and in vivo. The voltage-sensing fluorescent protein (VSFP) family of voltage sensors, ArcLight, ASAP-1, and the rhodopsin family of probes are all good at reporting changes in membrane potential, but all have difficulty distinguishing subthreshold depolarizations from action potentials and detecting neuronal inhibition when imaging populations of cells. Finally, we will offer a few possible ways to improve the optical resolution of the various types of neuronal activities.
Collapse
Affiliation(s)
- Ryuichi Nakajima
- Center for Functional Connectomics, Korea Institute of Science and Technology Seongbuk-gu, Seoul, South Korea
| | - Arong Jung
- Center for Functional Connectomics, Korea Institute of Science and TechnologySeongbuk-gu, Seoul, South Korea; College of Life Sciences and Biotechnology, Korea UniversitySeongbuk-gu, Seoul, South Korea
| | - Bong-June Yoon
- College of Life Sciences and Biotechnology, Korea University Seongbuk-gu, Seoul, South Korea
| | - Bradley J Baker
- Center for Functional Connectomics, Korea Institute of Science and TechnologySeongbuk-gu, Seoul, South Korea; Department of Neuroscience, Korea University of Science and TechnologyDaejeon, South Korea
| |
Collapse
|
42
|
Inagaki S, Nagai T. Current progress in genetically encoded voltage indicators for neural activity recording. Curr Opin Chem Biol 2016; 33:95-100. [PMID: 27322400 DOI: 10.1016/j.cbpa.2016.05.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 05/25/2016] [Accepted: 05/27/2016] [Indexed: 12/28/2022]
Abstract
Genetically Encoded Voltage Indicators (GEVIs) are powerful tools used to investigate neural activity in the brain. The spatiotemporal resolution of GEVIs is on a subcellular and millisecond scale, and is superior to that of the functional magnetic resonance imaging (fMRI) and electroencephalogram (EEG). Further, while patch-clamp techniques record membrane voltage for tens of neurons simultaneously, GEVIs can do so for hundreds of neurons. It is important for neuroscientists to understand the pros and cons of GEVIs and to choose appropriate ones for their specific requirements. Here, we summarize the characteristics of currently available GEVIs based on voltage sensing mechanism and provide a guideline for selecting optimal GEVIs for specific applications.
Collapse
Affiliation(s)
- Shigenori Inagaki
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takeharu Nagai
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan; The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan.
| |
Collapse
|
43
|
Pado, a fluorescent protein with proton channel activity can optically monitor membrane potential, intracellular pH, and map gap junctions. Sci Rep 2016; 6:23865. [PMID: 27040905 PMCID: PMC4878010 DOI: 10.1038/srep23865] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 03/15/2016] [Indexed: 12/03/2022] Open
Abstract
An in silico search strategy was developed to identify potential voltage-sensing domains (VSD) for the development of genetically encoded voltage indicators (GEVIs). Using a conserved charge distribution in the S2 α-helix, a single in silico search yielded most voltage-sensing proteins including voltage-gated potassium channels, voltage-gated calcium channels, voltage-gated sodium channels, voltage-gated proton channels, and voltage-sensing phosphatases from organisms ranging from mammals to bacteria and plants. A GEVI utilizing the VSD from a voltage-gated proton channel identified from that search was able to optically report changes in membrane potential. In addition this sensor was capable of manipulating the internal pH while simultaneously reporting that change optically since it maintains the voltage-gated proton channel activity of the VSD. Biophysical characterization of this GEVI, Pado, demonstrated that the voltage-dependent signal was distinct from the pH-dependent signal and was dependent on the movement of the S4 α-helix. Further investigation into the mechanism of the voltage-dependent optical signal revealed that inhibiting the dimerization of the fluorescent protein greatly reduced the optical signal. Dimerization of the FP thereby enabled the movement of the S4 α-helix to mediate a fluorescent response.
Collapse
|
44
|
Shafeghat N, Heidarinejad M, Murata N, Nakamura H, Inoue T. Optical detection of neuron connectivity by random access two-photon microscopy. J Neurosci Methods 2016; 263:48-56. [PMID: 26851307 DOI: 10.1016/j.jneumeth.2016.01.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 12/24/2015] [Accepted: 01/26/2016] [Indexed: 01/28/2023]
Abstract
BACKGROUND Knowledge about the distribution, strength, and direction of synaptic connections within neuronal networks are crucial for understanding brain function. Electrophysiology using multiple electrodes provides a very high temporal resolution, but does not yield sufficient spatial information for resolving neuronal connection topology. Optical recording techniques using single-cell resolution have provided promise for providing spatial information. Although calcium imaging from hundreds of neurons has provided a novel view of the neural connections within the network, the kinetics of calcium responses are not fast enough to resolve each action potential event with high fidelity. Therefore, it is not possible to detect the direction of neuronal connections. NEW METHOD We took advantage of the fast kinetics and large dynamic range of the DiO/DPA combination of voltage sensitive dye and the fast scan speed of a custom-made random-access two-photon microscope to resolve each action potential event from multiple neurons in culture. RESULTS Long-duration recording up to 100min from cultured hippocampal neurons yielded sufficient numbers of spike events for analyzing synaptic connections. Cross-correlation analysis of neuron pairs clearly distinguished synaptically connected neuron pairs with the connection direction. COMPARISON WITH EXISTING METHOD The long duration recording of action potentials with voltage-sensitive dye utilized in the present study is much longer than in previous studies. Simultaneous optical voltage and calcium measurements revealed that voltage-sensitive dye is able to detect firing events more reliably than calcium indicators. CONCLUSIONS This novel method reveals a new view of the functional structure of neuronal networks.
Collapse
Affiliation(s)
- Nasrin Shafeghat
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Morteza Heidarinejad
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Noboru Murata
- Department of Electrical Engineering and Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Hideki Nakamura
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Takafumi Inoue
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan.
| |
Collapse
|
45
|
Abstract
This review elaborates on the possible applications of nanomaterials in optogenetics and analyses the benefits of nanomaterial-mediated optogenetics.
Collapse
Affiliation(s)
- Kai Huang
- Department of Biomedical Engineering
- National University of Singapore
- Singapore 117576
- Singapore
| | - Qingqing Dou
- Institute of Materials Research and Engineering
- A*STAR (Agency for Science, Technology and Research)
- Singapore 138634
- Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering
- A*STAR (Agency for Science, Technology and Research)
- Singapore 138634
- Singapore
- Department of Materials Science and Engineering
| |
Collapse
|
46
|
Maysinger D, Ji J, Hutter E, Cooper E. Nanoparticle-Based and Bioengineered Probes and Sensors to Detect Physiological and Pathological Biomarkers in Neural Cells. Front Neurosci 2015; 9:480. [PMID: 26733793 PMCID: PMC4683200 DOI: 10.3389/fnins.2015.00480] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 11/30/2015] [Indexed: 01/11/2023] Open
Abstract
Nanotechnology, a rapidly evolving field, provides simple and practical tools to investigate the nervous system in health and disease. Among these tools are nanoparticle-based probes and sensors that detect biochemical and physiological properties of neurons and glia, and generate signals proportionate to physical, chemical, and/or electrical changes in these cells. In this context, quantum dots (QDs), carbon-based structures (C-dots, grapheme, and nanodiamonds) and gold nanoparticles are the most commonly used nanostructures. They can detect and measure enzymatic activities of proteases (metalloproteinases, caspases), ions, metabolites, and other biomolecules under physiological or pathological conditions in neural cells. Here, we provide some examples of nanoparticle-based and genetically engineered probes and sensors that are used to reveal changes in protease activities and calcium ion concentrations. Although significant progress in developing these tools has been made for probing neural cells, several challenges remain. We review many common hurdles in sensor development, while highlighting certain advances. In the end, we propose some future directions and ideas for developing practical tools for neural cell investigations, based on the maxim "Measure what is measurable, and make measurable what is not so" (Galileo Galilei).
Collapse
Affiliation(s)
- Dusica Maysinger
- Department of Pharmacology and Therapeutics, McGill University Montreal, QC, Canada
| | - Jeff Ji
- Department of Pharmacology and Therapeutics, McGill University Montreal, QC, Canada
| | - Eliza Hutter
- Department of Pharmacology and Therapeutics, McGill University Montreal, QC, Canada
| | - Elis Cooper
- Department of Physiology, McGill University Montreal, QC, Canada
| |
Collapse
|
47
|
Developing Fast Fluorescent Protein Voltage Sensors by Optimizing FRET Interactions. PLoS One 2015; 10:e0141585. [PMID: 26587834 PMCID: PMC4654489 DOI: 10.1371/journal.pone.0141585] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 10/09/2015] [Indexed: 12/25/2022] Open
Abstract
FRET (Förster Resonance Energy Transfer)-based protein voltage sensors can be useful for monitoring neuronal activity in vivo because the ratio of signals between the donor and acceptor pair reduces common sources of noise such as heart beat artifacts. We improved the performance of FRET based genetically encoded Fluorescent Protein (FP) voltage sensors by optimizing the location of donor and acceptor FPs flanking the voltage sensitive domain of the Ciona intestinalis voltage sensitive phosphatase. First, we created 39 different “Nabi1” constructs by positioning the donor FP, UKG, at 8 different locations downstream of the voltage-sensing domain and the acceptor FP, mKO, at 6 positions upstream. Several of these combinations resulted in large voltage dependent signals and relatively fast kinetics. Nabi1 probes responded with signal size up to 11% ΔF/F for a 100 mV depolarization and fast response time constants both for signal activation (~2 ms) and signal decay (~3 ms). We improved expression in neuronal cells by replacing the mKO and UKG FRET pair with Clover (donor FP) and mRuby2 (acceptor FP) to create Nabi2 probes. Nabi2 probes also had large signals and relatively fast time constants in HEK293 cells. In primary neuronal culture, a Nabi2 probe was able to differentiate individual action potentials at 45 Hz.
Collapse
|
48
|
Storace D, Rad MS, Han Z, Jin L, Cohen LB, Hughes T, Baker BJ, Sung U. Genetically Encoded Protein Sensors of Membrane Potential. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 859:493-509. [PMID: 26238066 DOI: 10.1007/978-3-319-17641-3_20] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Organic voltage-sensitive dyes offer very high spatial and temporal resolution for imaging neuronal function. However these dyes suffer from the drawbacks of non-specificity of cell staining and low accessibility of the dye to some cell types. Further progress in imaging activity is expected from the development of genetically encoded fluorescent sensors of membrane potential. Cell type specificity of expression of these fluorescent protein (FP) voltage sensors can be obtained via several different mechanisms. One is cell type specificity of infection by individual virus subtypes. A second mechanism is specificity of promoter expression in individual cell types. A third, depends on the offspring of transgenic animals with cell type specific expression of cre recombinase mated with an animal that has the DNA for the FP voltage sensor in all of its cells but its expression is dependent on the recombinase activity. Challenges remain. First, the response time constants of many of the new FP voltage sensors are slower (2-10 ms) than those of organic dyes. This results in a relatively small fractional fluorescence change, ΔF/F, for action potentials. Second, the largest signal presently available is only ~40% for a 100 mV depolarization and many of the new probes have signals that are substantially smaller. Large signals are especially important when attempting to detect fast events because the shorter measurement interval results in a relatively small number of detected photons and therefore a relatively large shot noise (see Chap. 1). Another kind of challenge has occurred when attempts were made to transition from one species to another or from one cell type to another or from cell culture to in vivo measurements.Several laboratories have recently described a number of novel FP voltage sensors. Here we attempt to critically review the current status of these developments in terms of signal size, time course, and in vivo function.
Collapse
Affiliation(s)
- Douglas Storace
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | | | | | | | | | | | | | | |
Collapse
|