1
|
Tlak Gajger I, Abou-Shaara HF, Smodiš Škerl MI. Strategies to Mitigate the Adverse Impacts of Viral Infections on Honey Bee ( Apis mellifera L.) Colonies. INSECTS 2025; 16:509. [PMID: 40429222 DOI: 10.3390/insects16050509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2025] [Revised: 05/07/2025] [Accepted: 05/08/2025] [Indexed: 05/29/2025]
Abstract
Honey bees (Apis mellifera) play a crucial role in global food production through the pollination of various crops. These vital insects are susceptible to a range of viral pathogens that can disrupt their normal behavior and physiology, ultimately affecting colony dynamics and survival. There are diverse viruses that infect honey bees at different life stages, with a year-round prevalence. There are multiple pathways through which viruses can be transmitted among colonies. Notably, there is also a lack of commercial treatments against viral infections in bees, but some promising strategies exist to mitigate their negative effects, including vector control, and the implementation of good beekeeping practices and biosecurity measures. While methods for treating infected colonies have garnered attention, they receive less focus compared to aspects like transmission methods and seasonal prevalence of viruses. This article aims to review the aforementioned strategies in light of the available literature. It presents succinct and practical approaches categorized based on their potential direct or indirect effects on viruses, providing beekeepers and researchers with an overview of both fully established and still-developing methods. Controlling the ectoparasitic Varroa destructor mite population, which significantly impacts viral prevalence and virulence in bees, is crucial for reducing infections. Practical approaches such as selectively breeding honey bee populations resistant to viruses and ensuring proper nutrition are important strategies. Moreover, genetic methods have also been proposed and tested. The article not only emphasizes these methods but also discusses knowledge gaps and suggests future solutions to improve the health and productivity of honey bee colonies.
Collapse
Affiliation(s)
- Ivana Tlak Gajger
- Department of Biology and Pathology of Bees and Fish, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia
| | - Hossam F Abou-Shaara
- Department of Plant Protection, Faculty of Agriculture, Damanhour University, Damanhour 22516, Egypt
| | | |
Collapse
|
2
|
Haran R, Sathyaseelan C, Sumathi E, Sathiya Priya S, Gayathri M, Prathiksha R, Shandeep G, Jayakanthan M. Unveiling the molecular basis of hygienic behavior in Apis cerana indica through antennal proteomics. Biochimie 2025; 234:110-119. [PMID: 40339734 DOI: 10.1016/j.biochi.2025.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 03/17/2025] [Accepted: 05/05/2025] [Indexed: 05/10/2025]
Abstract
Hygienic behavior in honey bees, particularly Apis cerana indica, is essential for the health of the colony as it helps reduce the impact of diseases and parasites. Despite its importance, the underlying molecular mechanisms remain inadequately characterized. Using a label-free quantitative proteomics method, this study investigates the antennal proteome associated with hygienic behavior. We employed Principal Component Analysis, Partial Least Squares Discriminant Analysis, and RT-qPCR to identify significant proteins that are involved in this behavior. Our analysis identified 408 proteins in colonies demonstrating high hygienic behavior and 419 proteins in those with low hygienic behavior, with 219 proteins showing significant differences in abundance. Notably, several odorant-binding proteins were upregulated in high-hygiene colonies. Furthermore, pathway enrichment analysis revealed that RNA transport and various signaling pathways are involved in this behavioral trait. The protein-protein interaction analysis illustrated substantial clustering among the odorant-binding proteins, underscoring their critical role in the mechanisms underlying hygienic behavior. This research enhances our understanding of the molecular basis of hygienic behavior in Apis cerana indica, positioning odorant-binding proteins as potential biomarkers for further studies that aim at improving colony health and resilience against pests and diseases.
Collapse
Affiliation(s)
- Ramkumar Haran
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, 641 003, Tamil Nadu, India.
| | - Chakkarai Sathyaseelan
- Department of Plant Molecular Biology and Bioinformatics, Tamil Nadu Agricultural University, Coimbatore, 641 003, Tamil Nadu, India
| | - Ettiappan Sumathi
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, 641 003, Tamil Nadu, India.
| | - Sundaravadivel Sathiya Priya
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, 641 003, Tamil Nadu, India
| | - Muthusamy Gayathri
- Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, 641 003, Tamil Nadu, India
| | - Ravichandran Prathiksha
- Department of Plant Molecular Biology and Bioinformatics, Tamil Nadu Agricultural University, Coimbatore, 641 003, Tamil Nadu, India
| | - Ganeshan Shandeep
- Department of Nematology, Tamil Nadu Agricultural University, Coimbatore, 641 003, Tamil Nadu, India
| | - Mannu Jayakanthan
- Department of Plant Molecular Biology and Bioinformatics, Tamil Nadu Agricultural University, Coimbatore, 641 003, Tamil Nadu, India
| |
Collapse
|
3
|
Šotek M, Přidal A, Urban T, Knoll A. Genetic Diversity in Candidate Single-Nucleotide Polymorphisms Associated with Resistance in Honeybees in the Czech Republic Using the Novel SNaPshot Genotyping Panel. Genes (Basel) 2025; 16:301. [PMID: 40149452 PMCID: PMC11942514 DOI: 10.3390/genes16030301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/23/2025] [Accepted: 02/27/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: The increasing pressure from pathogens and parasites on Apis mellifera populations is resulting in significant colony losses. It is desirable to identify resistance-associated single-nucleotide polymorphisms (SNPs) and their variability for the purpose of breeding resilient honeybee lines. This study examined the genetic diversity of 13 SNPs previously studied for associations with various resistance-providing traits, including six linked to Varroa-specific hygiene, five linked to suppressed mite reproduction, one linked to immune response, and one linked to chalkbrood resistance. Methods: Genotyping was performed using a novel SNaPshot genotyping panel designed for this study. The sample pool consisted of 308 honeybee samples in total, covering all 77 administrative districts of the Czech Republic. Results: All examined loci were polymorphic. The frequency of positive alleles in our population is medium to low, depending on the specific SNP. An analysis of genotype frequencies revealed that most loci exhibited the Hardy-Weinberg equilibrium. A comparison of the allele and genotype frequencies of the same locus between samples from hives and samples from flowers revealed no significant differences. The genetic diversity, as indicated by the heterozygosity values, ranged from 0.05 to 0.50. The fixation index (F) was, on average, close to zero, indicating minimal influence of inbreeding or non-random mating on the genetic structure of the analyzed samples. Conclusions: The obtained results provide further insights into the genetic variation of SNPs associated with the immune response and resistance to pathogens in honeybee populations in the Czech Republic. This research provides a valuable foundation for future studies of honeybee diversity and breeding.
Collapse
Affiliation(s)
- Martin Šotek
- Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic;
| | - Antonín Přidal
- Department of Animal Breeding, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic
| | - Tomáš Urban
- Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic;
| | - Aleš Knoll
- Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic;
| |
Collapse
|
4
|
Noël A, Dumas C, Rottier E, Beslay D, Costagliola G, Ginies C, Nicolè F, Conte YL, Mondet F. Identification of five volatile organic compounds that trigger hygienic and recapping behaviours in the honey bee (Apis mellifera). Int J Parasitol 2025:S0020-7519(25)00020-7. [PMID: 39900171 DOI: 10.1016/j.ijpara.2025.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/11/2024] [Accepted: 01/29/2025] [Indexed: 02/05/2025]
Abstract
Varroa destructor, the main parasite of the honey bee (Apis mellifera), is having a devastating effect on beekeeping worldwide. The development of resistance traits in some colonies, linked with Varroa-sensitive hygiene (VSH) and recapping (REC) behaviours, provide an ideal avenue for long-term sustainable control of the parasite. The most important step in these behaviours is the detection of parasitized brood cells. Several semiochemicals released from Varroa-infested brood cells, targeted by VSH behaviour, trigger this behaviour. Most of these compounds are not very volatile. In the current work, we focus on the study of volatile organic compound (VOC) emissions from Varroa-infested cells. This study describes the emission of nine VOCs characteristic of Varroa parasitism, of which five could be identified and triggered hygienic and recapping behaviours. These five compounds were also tested with compounds already described in the literature, in relation to the volatile nature of the compounds. Using solutions containing 1-15 compounds, we looked at the cleaning and recapping behaviours of the workers. Behavioural results highlight the importance of the VOCs found in this study in the detection, opening and recapping of brood cells, while low volatile compounds seem to play a particularly key role in the sacrifice of pupae. Similar to the Varroa parasitization-specific (VPS) compounds, including the tetracosyl acetate alone, the cleaning of brood cells triggered by one of the compounds identified in this study, n-tetradecane, appears to be linked to the colony's ability to carry out VSH behaviour. This study opens new perspectives in the understanding of resistance behaviour of honey bees against their main parasite Varroa destructor.
Collapse
Affiliation(s)
- Amélie Noël
- INRAE, UR 406 Abeilles et Environnement 84914 Avignon, France
| | - Charlène Dumas
- INRAE, UR 406 Abeilles et Environnement 84914 Avignon, France
| | - Emilien Rottier
- INRAE, UR 406 Abeilles et Environnement 84914 Avignon, France
| | | | - Guy Costagliola
- INRAE, UR 1115 Plantes et Systèmes de culture Horticoles 84914 Avignon, France
| | - Christian Ginies
- INRAE, UMR 408 Sécurité et Qualité des Produits d'Origine Végétale 84914 Avignon, France
| | - Florence Nicolè
- Université de Lyon, UJM-Saint-Etienne, CNRS, LBVpam 42100 Saint-Étienne, France
| | - Yves Le Conte
- INRAE, UR 406 Abeilles et Environnement 84914 Avignon, France
| | - Fanny Mondet
- INRAE, UR 406 Abeilles et Environnement 84914 Avignon, France.
| |
Collapse
|
5
|
Eynard SE, Mondet F, Basso B, Bouchez O, Le Conte Y, Dainat B, Decourtye A, Genestout L, Guichard M, Guillaume F, Labarthe E, Locke B, Mahla R, de Miranda J, Neuditschko M, Phocas F, Canale‐Tabet K, Vignal A, Servin B. Sequence-Based Multi Ancestry Association Study Reveals the Polygenic Architecture of Varroa destructor Resistance in the Honeybee Apis mellifera. Mol Ecol 2025; 34:e17637. [PMID: 39737798 PMCID: PMC11754705 DOI: 10.1111/mec.17637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/15/2024] [Accepted: 10/28/2024] [Indexed: 01/01/2025]
Abstract
Honeybees, Apis mellifera, have experienced the full impacts of globalisation, including the recent invasion by the parasitic mite Varroa destructor, now one of the main causes of colony losses worldwide. The strong selection pressure it exerts has led some colonies to develop defence strategies conferring some degree of resistance to the parasite. Assuming these traits are partly heritable, selective breeding of naturally resistant bees could be a sustainable strategy for fighting infestations. To characterise the genetic determinism of varroa resistance, we conducted the largest genome wide association study performed to date on whole genome sequencing of more than 1500 colonies on multiple phenotypes linked to varroa resistance of honeybees. To take into account some genetic diversity of honeybees, colonies belonging to different ancestries representing the main honeybee subspecies in Western Europe were included and analysed both as separate populations and combined in a meta-analysis. The results show that varroa resistance is substantially heritable and polygenic: while 60 significant associations were identified, none explain a substantial part of the trait genetic variance. Overall our study highlights that genomic selection for varroa resistance is promising but that it will not be based on managing a few strong effect mutations and rather use approaches that leverage the genome wide diversity of honeybee populations. From a broader perspective, these results point the way towards understanding the genetic adaptation of eusocial insects to parasite load.
Collapse
Affiliation(s)
- Sonia E. Eynard
- GenPhySEUniversité de Toulouse, INRAE, ENVTCastanet‐TolosanFrance
- LABOGENA DNAPalaiseauFrance
- UMT PrADEAvignonFrance
| | - Fanny Mondet
- UMT PrADEAvignonFrance
- INRAE, UR 406 Abeilles et EnvironnementAvignonFrance
| | - Benjamin Basso
- UMT PrADEAvignonFrance
- INRAE, UR 406 Abeilles et EnvironnementAvignonFrance
- ITSAPAvignonFrance
| | | | - Yves Le Conte
- UMT PrADEAvignonFrance
- INRAE, UR 406 Abeilles et EnvironnementAvignonFrance
| | | | | | | | - Matthieu Guichard
- Agroscope Swiss Bee Research CentreBernSwitzerland
- Animal GenoPhenomics, AgroscopePosieuxSwitzerland
| | | | - Emmanuelle Labarthe
- GenPhySEUniversité de Toulouse, INRAE, ENVTCastanet‐TolosanFrance
- UMT PrADEAvignonFrance
| | - Barbara Locke
- Department of EcologySwedish University of Agricultural SciencesUppsalaSweden
| | | | - Joachim de Miranda
- Department of EcologySwedish University of Agricultural SciencesUppsalaSweden
| | | | - Florence Phocas
- UMT PrADEAvignonFrance
- INRAE, AgroParisTech, GABIUniversité Paris‐SaclayJouy‐en‐JosasFrance
| | - Kamila Canale‐Tabet
- GenPhySEUniversité de Toulouse, INRAE, ENVTCastanet‐TolosanFrance
- UMT PrADEAvignonFrance
| | - Alain Vignal
- GenPhySEUniversité de Toulouse, INRAE, ENVTCastanet‐TolosanFrance
- UMT PrADEAvignonFrance
| | - Bertrand Servin
- GenPhySEUniversité de Toulouse, INRAE, ENVTCastanet‐TolosanFrance
- UMT PrADEAvignonFrance
| |
Collapse
|
6
|
Zhao Q, Wang X, Mustafa A, Wang Y, Wang H, Chi X, Xu B, Liu Z. Varroa Volatiles Offer Chemical Cues to Honey Bees for Initial Parasitic Recognition. Biomolecules 2025; 15:66. [PMID: 39858461 PMCID: PMC11764367 DOI: 10.3390/biom15010066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/07/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025] Open
Abstract
Olfaction mediated by the antennae is a vital sensory modality for arthropods and could be applied as a tool in pest control. The ectoparasitic mite Varroa destructor poses a significant threat to the health of the honey bee Apis mellifera worldwide and has garnered global attention. To better understand the chemical ecology of this host-parasite relationship, we collected and characterized the volatile organic compounds (VOCs) from V. destructor and used electroantennography (EAG) to record the responses of honey bee (A. c. cerana and A. m. ligustica) antennae to the different VOCs. Fifteen VOCs were detected from V. destructor using gas chromatography-mass spectrometry (GC-MS), which mainly contained ethyl palmitate, followed by isoamyl alcohol, nonanal, and ethyl oleate. The EAGs for ethyl palmitate were higher at the lowest stimulus loading (5 μg/μL in liquid paraffin) in A. c. cerana compared to A. m. ligustica, suggesting that A. c. cerana may have acute sensitivity to low concentrations of some VOCs from V. destructor. After exposure to ethyl palmitate for 1 h, the relative expression levels of AcerCSP1 and AcerOBP21 in A. c. cerana significantly increased, as well as the level of AmelCSP1 in A. m. ligustica, while AmelOBP8 showed no significant changes. The results indicate that the EAG response was influenced by the VOC composition and concentration. A. c. cerana tended to be more responsive than A. m. ligustica to the VOCs of V. destructor. Our findings offer a deeper understanding of how bees recognize V. destructor, potentially using ethyl palmitate as a chemical cue.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Zhenguo Liu
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key Laboratory of Animal Nutrition and Efficient Feeding, College of Animal Science and Technology, Shandong Agricultural University, Tai’an 271018, China
| |
Collapse
|
7
|
Haran R, Sathyaseelan C, Sumathi E, Mannu J. Hydrophobic forces at play: insights into AmelOBP4 and brood volatile interactions in Apis mellifera hygienic behavior. J Biomol Struct Dyn 2024:1-15. [PMID: 39552385 DOI: 10.1080/07391102.2024.2429019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 04/15/2024] [Indexed: 11/19/2024]
Abstract
Understanding the intricate processes underlying olfaction necessitates unraveling the complexities of odorant binding protein's interactions with volatile compounds triggering hygienic behavior in Apis mellifera, This study delves into the intricate processes of olfaction by focusing on the interactions between Apis mellifera Odorant Binding Protein 4 (AmelOBP4) and volatile compounds associated with hygienic behavior, employing a comprehensive computational approach. Molecular docking analyses reveal detailed binding interactions, emphasizing the significance of hydrophobic interactions and specific amino acid residues in stabilizing AmelOBP4-volatile complexes, notably with 2-nonacosanone (-8.4 kcal/mol) and hexacosyl acetate (-8.4 kcal/mol). Molecular dynamics simulations demonstrate sustained stability and principal component analysis affirms structural integrity through restricted global motions. Binding free energy calculations underscore robust interactions, with per-residue free energy decomposition identifying key amino acids contributing significantly to binding affinity. These findings illuminate the pivotal role of hydrophobic interactions and specific residues (Phe 60, Leu 83, Ile 116, Leu 126, and Leu 130) in modulating AmelOBP4-volatile interactions, providing foundational insights into volatile-based applications and potential olfactory response modulation, contributing to our understanding of olfactory processes.
Collapse
Affiliation(s)
- Ramkumar Haran
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, India
| | - Chakkarai Sathyaseelan
- Department of Plant Molecular Biology and Bioinformatics, Tamil Nadu Agricultural University, Coimbatore, India
| | - Ettiappan Sumathi
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, India
| | - Jayakanthan Mannu
- Department of Plant Molecular Biology and Bioinformatics, Tamil Nadu Agricultural University, Coimbatore, India
| |
Collapse
|
8
|
DeLory TJ, Romiguier J, Rueppell O, Kapheim KM. Recombination Rate Variation in Social Insects: An Adaptive Perspective. Annu Rev Genet 2024; 58:159-181. [PMID: 38985963 DOI: 10.1146/annurev-genet-111523-102550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Social insects have the highest rates of meiotic recombination among Metazoa, but there is considerable variation within the Hymenoptera. We synthesize the literature to investigate several hypotheses for these elevated recombination rates. We reexamine the long-standing Red Queen hypothesis, considering how social aspects of immunity could lead to increases in recombination. We examine the possibility of positive feedback between gene duplication and recombination rate in the context of caste specialization. We introduce a novel hypothesis that recombination rate may be driven up by direct selection on recombination activity in response to increases in lifespan. Finally, we find that the role of population size in recombination rate evolution remains opaque, despite the long-standing popularity of this hypothesis. Moreover, our review emphasizes how the varied life histories of social insect species provide an effective framework for advancing a broader understanding of adaptively driven variation in recombination rates.
Collapse
Affiliation(s)
- Timothy J DeLory
- Department of Biology, Utah State University, Logan, Utah, USA; ,
| | - Jonathan Romiguier
- Institut des Sciences de l'Evolution de Montpellier (ISEM), CNRS, IRD, EPHE, Université de Montpellier, Montpellier, France;
| | - Olav Rueppell
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada;
| | - Karen M Kapheim
- Department of Biology, Utah State University, Logan, Utah, USA; ,
| |
Collapse
|
9
|
Scaramella N, Glinwood R, Locke B. Unique brood ester profile in a Varroa destructor resistant population of European honey bee (Apis mellifera). Sci Rep 2024; 14:25531. [PMID: 39462055 PMCID: PMC11513966 DOI: 10.1038/s41598-024-76399-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Varroa destructor is one of the greatest threats to Apis mellifera worldwide and if left untreated will kill a colony in less than three years. A Varroa-resistant population from Gotland, Sweden, has managed to survive for 25 years with little to no Varroa treatment by reducing the mite's reproductive success. The underlying mechanisms of this trait is currently not known, though previous research indicates that it is the honey bee brood, and not adult bee influence, that contributes to this phenotype. As the mite's own reproduction is synchronized with the brood's development though the interception of brood pheromones, it is possible that a change in pheromone profile would disrupt the mite's reproductive timing. To investigate this, we characterized the brood ester pheromone (BEP) profile of our resistant Gotland population compared to a non-resistant control. This was done by extracting and analyzing key cuticular compounds of the BEP using gas chromatography. A significant difference was found immediately after brood capping, indicating a divergence in their pheromonal production at this time point. This is an important step to understanding the mechanisms of the Gotland population's Varroa-resistance and contributes to our global understanding of Varroa destructor infestation and survival.
Collapse
Affiliation(s)
- Nicholas Scaramella
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | - Robert Glinwood
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Barbara Locke
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
10
|
Li X, Yang X, You F, Miao C, Li M, Wang K, Niu Q, Ji T, Wang Z, Lin Z. Differences between uncapping and removal behaviors in Apis cerana from the perspective of long non-coding RNAs. BMC Genomics 2024; 25:912. [PMID: 39350014 PMCID: PMC11440941 DOI: 10.1186/s12864-024-10817-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Hygienic behavior, a specialized form of immune response evolved in social insects, plays a crucial role in safeguarding colonies from disease spread. In honeybee colonies, such behavior typically entails the dual steps of uncapping and removal of unhealthy and deceased brood. Although in recent years, numerous studies have examined the development of hygienic behavior, the mechanisms underlying the division in the performance of uncapping and removal have yet to be sufficiently elucidated. In this regard, long non-coding RNAs (lncRNAs) have been evidenced to be engaged in regulating the physiological activities of honeybees; however, whether lncRNAs are likewise involved in the uncapping and removal tasks has not been clarified. RESULTS In this study, the strong hygienic Apis cerana worker bees were used and the processes of uncapping and removal behaviors in three colonies were assayed with freeze-killed brood in the field. We then sequenced the antennal RNAs of honeybees to identify differentially expressed lncRNAs and performed lncRNA-mRNA association analysis to establish the differences between uncapping and removal. We detected 1,323 differentially expressed lncRNAs in the antennae, and the findings of lncRNA-mRNA association analyses revealed that the target genes of differentially expressed lncRNAs between uncapping and removal worker bees were predominantly linked to response to stimulus, receptor activity, and synapse. Notably, among the lncRNAs enriched in cellular response to stimulus, XR_001766094.2 was exclusively expressed in the uncapping worker bees. Based on these findings, we hypothesize that XR_001766094.2 plays a key role in distinguishing uncapping from removal behaviors by responding to external stimulus, thereby suggesting that the division of hygienic behaviors is governed by differential thresholds of responsiveness to environmental cues. CONCLUSION We characterized differences in the uncapping and removal behaviors of worker bees from a perspective of lncRNAs. Uncapping bees may be equipped with a more rapid stimulatory response and more acute olfactory sensitivity, contributing to the rapid hygienic behavior in honeybee colonies. Our results thus establish a foundation for potential lncRNA-mediated gene expression regulation in hygienic behavior.
Collapse
Affiliation(s)
- Xiao Li
- Apicultural Research Institute, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Xiaoxiao Yang
- Apicultural Research Institute, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Fangdong You
- Yunnan Animal Husbandry Station, Kunming, 650225, China
| | - Chunhui Miao
- Institute of Sericulture and Apiculture, Yunnan Academy of Agricultural Sciences, Mengzi, 661101, China
| | - Meng Li
- Apicultural Research Institute, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Kang Wang
- Apicultural Research Institute, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Qingsheng Niu
- Apiculture Science Institute of Jilin Province, Jilin, 132108, China
| | - Ting Ji
- Apicultural Research Institute, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Zhi Wang
- Apiculture Science Institute of Jilin Province, Jilin, 132108, China.
| | - Zheguang Lin
- Apicultural Research Institute, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
11
|
Ricardo PC, Arias MC, de Souza Araujo N. Decoding bee cleptoparasitism through comparative transcriptomics of Coelioxoides waltheriae and its host Tetrapedia diversipes. Sci Rep 2024; 14:12361. [PMID: 38811580 PMCID: PMC11137135 DOI: 10.1038/s41598-024-56261-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 03/04/2024] [Indexed: 05/31/2024] Open
Abstract
Cleptoparasitism, also known as brood parasitism, is a widespread strategy among bee species in which the parasite lays eggs into the nests of the host species. Even though this behavior has significant ecological implications for the dynamics of several species, little is known about the molecular pathways associated with cleptoparasitism. To shed some light on this issue, we used gene expression data to perform a comparative analysis between two solitary neotropical bees: Coelioxoides waltheriae, an obligate parasite, and their specific host Tetrapedia diversipes. We found that ortholog genes involved in signal transduction, sensory perception, learning, and memory formation were differentially expressed between the cleptoparasite and the host. We hypothesize that these genes and their associated molecular pathways are engaged in cleptoparasitism-related processes and, hence, are appealing subjects for further investigation into functional and evolutionary aspects of cleptoparasitism in bees.
Collapse
Affiliation(s)
- Paulo Cseri Ricardo
- Departamento de Genética e Biologia Evolutiva - Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil.
| | - Maria Cristina Arias
- Departamento de Genética e Biologia Evolutiva - Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | | |
Collapse
|
12
|
Lin Z, Shen S, Wang K, Ji T. Biotic and abiotic stresses on honeybee health. Integr Zool 2024; 19:442-457. [PMID: 37427560 DOI: 10.1111/1749-4877.12752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Honeybees are the most critical pollinators providing key ecosystem services that underpin crop production and sustainable agriculture. Amidst a backdrop of rapid global change, this eusocial insect encounters a succession of stressors during nesting, foraging, and pollination. Ectoparasitic mites, together with vectored viruses, have been recognized as central biotic threats to honeybee health, while the spread of invasive giant hornets and small hive beetles also increasingly threatens colonies worldwide. Cocktails of agrochemicals, including acaricides used for mite treatment, and other pollutants of the environment have been widely documented to affect bee health in various ways. Additionally, expanding urbanization, climate change, and agricultural intensification often result in the destruction or fragmentation of flower-rich bee habitats. The anthropogenic pressures exerted by beekeeping management practices affect the natural selection and evolution of honeybees, and colony translocations facilitate alien species invasion and disease transmission. In this review, the multiple biotic and abiotic threats and their interactions that potentially undermine bee colony health are discussed, while taking into consideration the sensitivity, large foraging area, dense network among related nestmates, and social behaviors of honeybees.
Collapse
Affiliation(s)
- Zheguang Lin
- Apicultural Research Institute, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Siyi Shen
- Apicultural Research Institute, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Kang Wang
- Apicultural Research Institute, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Ting Ji
- Apicultural Research Institute, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
13
|
Diego S, Nolberto A, Pablo AJ, Ricardo C, Nelson Z, Marisol V. Nursing Honeybee Behavior and Sensorial-Related Genes Are Altered by Deformed Wing Virus Variant A. INSECTS 2024; 15:80. [PMID: 38392500 PMCID: PMC10889485 DOI: 10.3390/insects15020080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/08/2024] [Accepted: 01/16/2024] [Indexed: 02/24/2024]
Abstract
Insect behavior is coordinated mainly by smell through the diverse odor-binding proteins (OBP) that allow them to identify and recognize their environment. Sensory information collected through smell is then analyzed and interpreted in the brain, allowing for correct insect functioning. The behavior of honeybees (Apis mellifera L.) can be affected by different pathogens, such as deformed wing virus (DWV). In particular, the DWV variant A (DWV-A) is capable of altering olfactory sensitivity and reducing the gene expression of different OBPs, including those associated with nursing behavior. The DWV is also capable of replicating itself in the sensory lobes of the brain, further compromising the processing of sensory information. This study evaluated the behavioral response of nurse honeybees exposed to a pheromone compound and the alterations in the gene expression of the pre- and post-synaptic neuronal genes neuroxins-1 and neurogilin-1 in the bee heads and OBP proteins in the antennae of nurse bees inoculated with DWV-A. The behavioral response of nurse bees exposed to the larval pheromone compound benzyl alcohol was analyzed using a Y-tube olfactometer. The viral load, the gene expression of OBP5 and OBP11 in antennae, and neuroxins-1 and neurogilin-1 in the bee heads were analyzed via qPCR. High viral loads significantly reduced the ability of 10- and 15-day-old nurse honeybees to choose the correct pheromone compound. Also, the gene expression of OBP5, OBP11, neuroxin-1, and neurogilin-1 in nurse honeybees decreased when they were highly infected with DWV-A. These results suggest that a DWV-A infection can disturb information processing and cause nursing honeybees to reduce their activity inside the hive, altering internal cohesion.
Collapse
Affiliation(s)
- Silva Diego
- Laboratorios de Virología y Patologías en Abejas, Facultad de Agronomía, Universidad de Concepción, Av. Vicente Méndez 595, Chillán 3780000, Chile
| | - Arismendi Nolberto
- Centro de Investigación Austral Biotech, Facultad de Ciencias, Universidad Santo Tomás, Av. Picarte 1130-1160, Valdivia 5090000, Chile
| | - Alveal Juan Pablo
- Laboratorio de Ecología Química, Instituto de Investigaciones Agropecuarias, INIA Quilamapu, Av. Vicente Méndez 515, Chillán 3780000, Chile
| | - Ceballos Ricardo
- Laboratorio de Ecología Química, Instituto de Investigaciones Agropecuarias, INIA Quilamapu, Av. Vicente Méndez 515, Chillán 3780000, Chile
| | - Zapata Nelson
- Laboratorio de Fitoquímica, Facultad de Agronomía, Universidad de Concepción, Av. Vicente Méndez 595, Chillán 3780000, Chile
| | - Vargas Marisol
- Laboratorios de Virología y Patologías en Abejas, Facultad de Agronomía, Universidad de Concepción, Av. Vicente Méndez 595, Chillán 3780000, Chile
| |
Collapse
|
14
|
Doublet V, Oddie MAY, Mondet F, Forsgren E, Dahle B, Furuseth-Hansen E, Williams GR, De Smet L, Natsopoulou ME, Murray TE, Semberg E, Yañez O, de Graaf DC, Le Conte Y, Neumann P, Rimstad E, Paxton RJ, de Miranda JR. Shift in virus composition in honeybees ( Apis mellifera) following worldwide invasion by the parasitic mite and virus vector Varroa destructor. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231529. [PMID: 38204792 PMCID: PMC10776227 DOI: 10.1098/rsos.231529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024]
Abstract
Invasive vectors can induce dramatic changes in disease epidemiology. While viral emergence following geographical range expansion of a vector is well known, the influence a vector can have at the level of the host's pathobiome is less well understood. Taking advantage of the formerly heterogeneous spatial distribution of the ectoparasitic mite Varroa destructor that acts as potent virus vector among honeybees Apis mellifera, we investigated the impact of its recent global spread on the viral community of honeybees in a retrospective study of historical samples. We hypothesized that the vector has had an effect on the epidemiology of several bee viruses, potentially altering their transmissibility and/or virulence, and consequently their prevalence, abundance, or both. To test this, we quantified the prevalence and loads of 14 viruses from honeybee samples collected in mite-free and mite-infested populations in four independent geographical regions. The presence of the mite dramatically increased the prevalence and load of deformed wing virus, a cause of unsustainably high colony losses. In addition, several other viruses became more prevalent or were found at higher load in mite-infested areas, including viruses not known to be actively varroa-transmitted, but which may increase opportunistically in varroa-parasitized bees.
Collapse
Affiliation(s)
- Vincent Doublet
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
- Institute for Biology, Martin Luther University Halle-Wittenberg, Halle (Saale) 061200, Germany
| | - Melissa A. Y. Oddie
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala 750 07, Sweden
- Norwegian Beekeepers Association, Kløfta 2040, Norway
| | - Fanny Mondet
- INRAE, UR 406 Abeilles et Environnement, Avignon 84914, France
| | - Eva Forsgren
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala 750 07, Sweden
| | - Bjørn Dahle
- Norwegian Beekeepers Association, Kløfta 2040, Norway
| | - Elisabeth Furuseth-Hansen
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, Ås 1432, Norway
| | - Geoffrey R. Williams
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern 3097, Switzerland
- Entomology & Plant Pathology, Auburn University, Auburn, AL 36832, USA
| | - Lina De Smet
- Department of Biochemistry and Microbiology, Ghent University, Ghent 9000, Belgium
| | - Myrsini E. Natsopoulou
- Institute for Biology, Martin Luther University Halle-Wittenberg, Halle (Saale) 061200, Germany
| | - Tomás E. Murray
- Institute for Biology, Martin Luther University Halle-Wittenberg, Halle (Saale) 061200, Germany
| | - Emilia Semberg
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala 750 07, Sweden
| | - Orlando Yañez
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern 3097, Switzerland
| | - Dirk C. de Graaf
- Department of Biochemistry and Microbiology, Ghent University, Ghent 9000, Belgium
| | - Yves Le Conte
- INRAE, UR 406 Abeilles et Environnement, Avignon 84914, France
| | - Peter Neumann
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern 3097, Switzerland
| | - Espen Rimstad
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, Ås 1432, Norway
| | - Robert J. Paxton
- Institute for Biology, Martin Luther University Halle-Wittenberg, Halle (Saale) 061200, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103, Germany
| | - Joachim R. de Miranda
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala 750 07, Sweden
| |
Collapse
|
15
|
Durand T, Bonjour-Dalmon A, Dubois E. Viral Co-Infections and Antiviral Immunity in Honey Bees. Viruses 2023; 15:1217. [PMID: 37243302 PMCID: PMC10220773 DOI: 10.3390/v15051217] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Over the past few decades, honey bees have been facing an increasing number of stressors. Beyond individual stress factors, the synergies between them have been identified as a key factor in the observed increase in colony mortality. However, these interactions are numerous and complex and call for further research. Here, in line with our need for a systemic understanding of the threats that they pose to bee health, we review the interactions between honey bee viruses. As viruses are obligate parasites, the interactions between them not only depend on the viruses themselves but also on the immune responses of honey bees. Thus, we first summarise our current knowledge of the antiviral immunity of honey bees. We then review the interactions between specific pathogenic viruses and their interactions with their host. Finally, we draw hypotheses from the current literature and suggest directions for future research.
Collapse
Affiliation(s)
- Tristan Durand
- National Research Institute for Agriculture Food and Environement, INRAE, UR 406 Abeilles et Environnement, Site Agroparc, 84914 Avignon, France;
- French Agency for Food, Environmental and Occupational Health Safety, ANSES, 06902 Sophia Antipolis, France
| | - Anne Bonjour-Dalmon
- National Research Institute for Agriculture Food and Environement, INRAE, UR 406 Abeilles et Environnement, Site Agroparc, 84914 Avignon, France;
| | - Eric Dubois
- French Agency for Food, Environmental and Occupational Health Safety, ANSES, 06902 Sophia Antipolis, France
| |
Collapse
|
16
|
Gebremedhn H, Claeys Bouuaert D, Asperges M, Amssalu B, De Smet L, de Graaf DC. Expression of Molecular Markers of Resilience against Varroa destructor and Bee Viruses in Ethiopian Honey Bees ( Apis mellifera simensis) Focussing on Olfactory Sensing and the RNA Interference Machinery. INSECTS 2023; 14:insects14050436. [PMID: 37233064 DOI: 10.3390/insects14050436] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/26/2023] [Accepted: 05/01/2023] [Indexed: 05/27/2023]
Abstract
Varroa destructor mites and the viruses it vectors are two major factors leading to high losses of honey bees (Apis mellifera) colonies worldwide. However, honey bees in some African countries show resilience to varroa infestation and/or virus infections, although little is known about the mechanisms underlying this resilience. In this study, we investigated the expression profiles of some key molecular markers involved in olfactory sensing and RNA interference, as these processes may contribute to the bees' resilience to varroa infestation and virus infection, respectively. We found significantly higher gene expression of the odorant binding protein, OBP14, in the antennae of Ethiopian bees compared to Belgian bees. This result suggests the potential of OBP14 as a molecular marker of resilience to mite infestation. Scanning electron microscopy showed no significant differences in the antennal sensilla occurrence and distribution, suggesting that resilience arises from molecular processes rather than morphological adaptations. In addition, seven RNAi genes were upregulated in the Ethiopian honey bees and three of them-Dicer-Drosha, Argonaute 2, and TRBP2-were positively correlated with the viral load. We can conclude that the antiviral immune response was triggered when bees were experiencing severe viral infection and that this might contribute to the bees' resilience to viruses.
Collapse
Affiliation(s)
- Haftom Gebremedhn
- Laboratory of Molecular Entomology and Bee Pathology, Ghent University, 9000 Ghent, Belgium
- Tigray Agricultural Research Institute, Mekelle P.O. Box 492, Ethiopia
| | - David Claeys Bouuaert
- Laboratory of Molecular Entomology and Bee Pathology, Ghent University, 9000 Ghent, Belgium
| | - Michel Asperges
- Centrum Voor Milieukunde, University of Hasselt, 3590 Diepenbeek, Belgium
| | | | - Lina De Smet
- Laboratory of Molecular Entomology and Bee Pathology, Ghent University, 9000 Ghent, Belgium
| | - Dirk C de Graaf
- Laboratory of Molecular Entomology and Bee Pathology, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
17
|
Pineaux M, Grateau S, Lirand T, Aupinel P, Richard FJ. Honeybee queen exposure to a widely used fungicide disrupts reproduction and colony dynamic. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121131. [PMID: 36709033 DOI: 10.1016/j.envpol.2023.121131] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/07/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Pollinators have to cope with a wide range of stressful, not necessarily lethal factors limiting their performance and the ecological services they provide. Among these stressors are pesticides, chemicals that are originally designed to target crop-harming organisms but that also disrupt various functions in pollinators, including flight, communication, orientation and memory. Although all these functions are crucial for reproductive individuals when searching for mates or nesting places, it remains poorly understood how pesticides affect reproduction in pollinators. In this study, we investigated how a widely used fungicide, boscalid, affects reproduction in honey bees (Apis mellifera), an eusocial insect in which a single individual, the queen, fulfills the reproductive functions of the whole colony. Boscalid is a succinate dehydrogenase inhibitor (SDHI) fungicide mainly used on rapeseed flowers to target mitochondrial respiration in fungi but it is also suspected to disrupt foraging-linked functions in bees. We found that immature queen exposure to sublethal, field relevant doses of boscalid disrupted reproduction, as indicated by a dramatic increase in queen mortality during and shortly after the nuptial flights period and a decreased number of spermatozoa stored in the spermatheca of surviving queens. However, we did not observe a decreased paternity frequency in exposed queens that successfully established a colony. Queen exposure to boscalid had detrimental consequences on the colonies they later established regarding brood production, Varroa destructor infection and pollen storage but not nectar storage and population size. These perturbations at the colony-level correspond to nutritional stress conditions, and may have resulted from queen reduced energy provisioning to the eggs. Accordingly, we found that exposed queens had decreased gene expression levels of vitellogenin, a protein involved in egg-yolk formation. Overall, our results indicate that boscalid decreases honey bee queen reproductive quality, thus supporting the need to include reproduction in the traits measured during pesticide risk assessment procedures.
Collapse
Affiliation(s)
- Maxime Pineaux
- Unité Expérimentale d'Entomologie, INRAe, Le Magneraud, Surgères, France; Université de Poitiers, Laboratoire Ecologie et Biologie des Interactions UMR CNRS 7267, Equipe Ecologie Evolution Symbiose, France.
| | - Stéphane Grateau
- Unité Expérimentale d'Entomologie, INRAe, Le Magneraud, Surgères, France
| | - Tiffany Lirand
- Université de Poitiers, Laboratoire Ecologie et Biologie des Interactions UMR CNRS 7267, Equipe Ecologie Evolution Symbiose, France
| | - Pierrick Aupinel
- Unité Expérimentale d'Entomologie, INRAe, Le Magneraud, Surgères, France
| | - Freddie-Jeanne Richard
- Université de Poitiers, Laboratoire Ecologie et Biologie des Interactions UMR CNRS 7267, Equipe Ecologie Evolution Symbiose, France.
| |
Collapse
|
18
|
Morfin N, Harpur BA, De la Mora A, Guzman-Novoa E. Breeding honey bees ( Apis mellifera L.) for low and high Varroa destructor population growth: Gene expression of bees performing grooming behavior. FRONTIERS IN INSECT SCIENCE 2023; 3:951447. [PMID: 38469529 PMCID: PMC10926520 DOI: 10.3389/finsc.2023.951447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 02/03/2023] [Indexed: 03/13/2024]
Abstract
Introduction Social organisms, including honey bees (Apis mellifera L.), have defense mechanisms to control the multiplication and transmission of parasites and pathogens within their colonies. Self-grooming, a mechanism of behavioral immunity, seems to contribute to restrain the population growth of the ectoparasitic mite Varroa destructor in honey bee colonies. Because V. destructor is the most damaging parasite of honey bees, breeding them for resistance against the mite is a high priority of the beekeeping industry. Methods A bidirectional breeding program to select honey bee colonies with low and high V. destructor population growth (LVG and HVG, respectively) was conducted. Having high and low lines of bees allowed the study of genetic mechanisms underlying self-grooming behavior between the extreme genotypes. Worker bees were classified into two categories: 'light groomers' and 'intense groomers'. The brains of bees from the different categories (LVG-intense, LVG-light, HVG-intense, and HVG-light) were used for gene expression and viral quantification analyses. Differentially expressed genes (DEGs) associated with the LVG and HVG lines were identified. Results Four odorant-binding proteins and a gustatory receptor were identified as differentially expressed genes. A functional enrichment analysis showed 19 enriched pathways from a list of 219 down-regulated DEGs in HVG bees, including the Kyoto Encyclopedia of Genes and Genomes (KEGG) term of oxidative phosphorylation. Additionally, bees from the LVG line showed lower levels of Apis rhabdovirus 1 and 2, Varroa destructor virus -1 (VDV-1/DWV-B), and Deformed wing virus-A (DWV-A) compared to bees of the HVG line. The difference in expression of odorant-binding protein genes and a gustatory receptor between bee lines suggests a possible link between them and the perception of irritants to trigger rapid self-grooming instances that require the activation of energy metabolic pathways. Discussion These results provide new insights on the molecular mechanisms involved in honey bee grooming behavior. Differences in viral levels in the brains of LVG and HVG bees showed the importance of investigating the pathogenicity and potential impacts of neurotropic viruses on behavioral immunity. The results of this study advance the understanding of a trait used for selective breeding, self-grooming, and the potential of using genomic assisted selection to improve breeding programs.
Collapse
Affiliation(s)
- Nuria Morfin
- British Columbia Technology Transfer Program, British Columbia Honey Producers Association, Victoria, BC, Canada
- Department of Biochemistry & Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
| | - Brock A. Harpur
- Department of Entomology, Purdue University, West Lafayette, IN, United States
| | - Alvaro De la Mora
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| | | |
Collapse
|
19
|
Kunc M, Dobeš P, Ward R, Lee S, Čegan R, Dostálková S, Holušová K, Hurychová J, Eliáš S, Pinďáková E, Čukanová E, Prodělalová J, Petřivalský M, Danihlík J, Havlík J, Hobza R, Kavanagh K, Hyršl P. Omics-based analysis of honey bee (Apis mellifera) response to Varroa sp. parasitisation and associated factors reveals changes impairing winter bee generation. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 152:103877. [PMID: 36403678 DOI: 10.1016/j.ibmb.2022.103877] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/24/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
The extensive annual loss of honey bees (Apis mellifera L.) represents a global problem affecting agriculture and biodiversity. The parasitic mite Varroa destructor, associated with viral co-infections, plays a key role in this loss. Despite years of intensive research, the complex mechanisms of Varroa - honey bee interaction are still not fully defined. Therefore, this study employed a unique combination of transcriptomic, proteomic, metabolomic, and functional analyses to reveal new details about the effect of Varroa mites and naturally associated factors, including viruses, on honey bees. We focused on the differences between Varroa parasitised and unparasitised ten-day-old worker bees collected before overwintering from the same set of colonies reared without anti-mite treatment. Supplementary comparison to honey bees collected from colonies with standard anti-Varroa treatment can provide further insights into the effect of a pyrethroid flumethrin. Analysis of the honey bees exposed to mite parasitisation revealed alterations in the transcriptome and proteome related to immunity, oxidative stress, olfactory recognition, metabolism of sphingolipids, and RNA regulatory mechanisms. The immune response and sphingolipid metabolism were strongly activated, whereas olfactory recognition and oxidative stress pathways were inhibited in Varroa parasitised honey bees compared to unparasitised ones. Moreover, metabolomic analysis confirmed the depletion of nutrients and energy stores, resulting in a generally disrupted metabolism in the parasitised workers. The combined omics-based analysis conducted on strictly parasitised bees revealed the key molecular components and mechanisms underlying the detrimental effects of Varroa sp. and its associated pathogens. This study provides the theoretical basis and interlinked datasets for further research on honey bee response to biological threats and the development of efficient control strategies against Varroa mites.
Collapse
Affiliation(s)
- Martin Kunc
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Pavel Dobeš
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
| | - Rachel Ward
- Department of Biology, Maynooth University, W23 F2K8 Maynooth, Co. Kildare, Ireland
| | - Saetbyeol Lee
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague, Czech Republic
| | - Radim Čegan
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00, Brno, Czech Republic
| | - Silvie Dostálková
- Department of Biochemistry, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Kateřina Holušová
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 779 00, Olomouc, Czech Republic
| | - Jana Hurychová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Sara Eliáš
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Eliška Pinďáková
- Department of Biochemistry, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Eliška Čukanová
- Department of Infectious Disease and Preventive Medicine, Veterinary Research Institute, Hudcova 296/70, 621 00, Brno, Czech Republic
| | - Jana Prodělalová
- Department of Infectious Disease and Preventive Medicine, Veterinary Research Institute, Hudcova 296/70, 621 00, Brno, Czech Republic
| | - Marek Petřivalský
- Department of Biochemistry, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Jiří Danihlík
- Department of Biochemistry, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Jaroslav Havlík
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague, Czech Republic
| | - Roman Hobza
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00, Brno, Czech Republic
| | - Kevin Kavanagh
- Department of Biology, Maynooth University, W23 F2K8 Maynooth, Co. Kildare, Ireland
| | - Pavel Hyršl
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| |
Collapse
|
20
|
Paxton RJ, Schäfer MO, Nazzi F, Zanni V, Annoscia D, Marroni F, Bigot D, Laws-Quinn ER, Panziera D, Jenkins C, Shafiey H. Epidemiology of a major honey bee pathogen, deformed wing virus: potential worldwide replacement of genotype A by genotype B. Int J Parasitol Parasites Wildl 2022; 18:157-171. [PMID: 35592272 PMCID: PMC9112108 DOI: 10.1016/j.ijppaw.2022.04.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/16/2022] [Accepted: 04/29/2022] [Indexed: 01/10/2023]
Abstract
The western honey bee (Apis mellifera) is of major economic and ecological importance, with elevated rates of colony losses in temperate regions over the last two decades thought to be largely caused by the exotic ectoparasitic mite Varroa destructor and deformed wing virus (DWV), which the mite transmits. DWV currently exists as two main genotypes: the formerly widespread DWV-A and the more recently described and rapidly expanding DWV-B. It is an excellent system to understand viral evolution and the replacement of one viral variant by another. Here we synthesise published results on the distribution and prevalence of DWV-A and -B over the period 2008-2021 and present novel data for Germany, Italy and the UK to suggest that (i) DWV-B has rapidly expanded worldwide since its first description in 2004 and (ii) that it is potentially replacing DWV-A. Both genotypes are also found in wild bee species. Based on a simple mathematical model, we suggest that interference between viral genotypes when co-infecting the same host is key to understanding their epidemiology. We finally discuss the consequences of genotype replacement for beekeeping and for wild pollinator species.
Collapse
Affiliation(s)
- Robert J. Paxton
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120, Halle (Saale), Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103, Leipzig, Germany
| | - Marc O. Schäfer
- Institute of Infectology Medicine, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald, Insel Riems, Germany
| | - Francesco Nazzi
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università degli Studi di Udine, Via delle Scienze 206, 33100, Udine, Italy
| | - Virginia Zanni
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università degli Studi di Udine, Via delle Scienze 206, 33100, Udine, Italy
| | - Desiderato Annoscia
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università degli Studi di Udine, Via delle Scienze 206, 33100, Udine, Italy
| | - Fabio Marroni
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università degli Studi di Udine, Via delle Scienze 206, 33100, Udine, Italy
| | - Diane Bigot
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120, Halle (Saale), Germany
| | - Eoin R. Laws-Quinn
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120, Halle (Saale), Germany
| | - Delphine Panziera
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120, Halle (Saale), Germany
| | - Christina Jenkins
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120, Halle (Saale), Germany
| | - Hassan Shafiey
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120, Halle (Saale), Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103, Leipzig, Germany
| |
Collapse
|
21
|
Penn HJ, Simone-Finstrom MD, Chen Y, Healy KB. Honey Bee Genetic Stock Determines Deformed Wing Virus Symptom Severity but not Viral Load or Dissemination Following Pupal Exposure. Front Genet 2022; 13:909392. [PMID: 35719388 PMCID: PMC9204523 DOI: 10.3389/fgene.2022.909392] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/22/2022] [Indexed: 12/15/2022] Open
Abstract
Honey bees exposed to Varroa mites incur substantial physical damage in addition to potential exposure to vectored viruses such as Deformed wing virus (DWV) that exists as three master variants (DWV-A, DWV-B, and DWV-C) and recombinants. Although mite-resistant bees have been primarily bred to mitigate the impacts of Varroa mites, mite resistance may be associated with increased tolerance or resistance to the vectored viruses. The goal of our study is to determine if five honey bee stocks (Carniolan, Italian, Pol-Line, Russian, and Saskatraz) differ in their resistance or tolerance to DWV based on prior breeding for mite resistance. We injected white-eyed pupae with a sublethal dose (105) of DWV or exposed them to mites and then evaluated DWV levels and dissemination and morphological symptoms upon adult emergence. While we found no evidence of DWV resistance across stocks (i.e., similar rates of viral replication and dissemination), we observed that some stocks exhibited reduced symptom severity suggestive of differential tolerance. However, DWV tolerance was not consistent across mite-resistant stocks as Russian bees were most tolerant, while Pol-Line exhibited the most severe symptoms. DWV variants A and B exhibited differential dissemination patterns that interacted significantly with the treatment group but not bee stock. Furthermore, elevated DWV-B levels reduced adult emergence time, while both DWV variants were associated with symptom likelihood and severity. These data indicate that the genetic differences underlying bee resistance to Varroa mites are not necessarily correlated with DWV tolerance and may interact differentially with DWV variants, highlighting the need for further work on mechanisms of tolerance and bee stock-specific physiological interactions with pathogen variants.
Collapse
Affiliation(s)
- Hannah J. Penn
- United States Department of Agriculture, Agricultural Research Service, Sugarcane Research Unit, Houma, LA, United States
| | - Michael D. Simone-Finstrom
- United States Department of Agriculture, Agricultural Research Service, Honey Bee Breeding, Genetics and Physiology Research Unit, Baton Rouge, LA, United States
| | - Yanping Chen
- United States Department of Agriculture, Agricultural Research Service, Bee Research Laboratory, Beltsville, MD, United States
| | - Kristen B. Healy
- Department of Entomology, Louisiana State University and AgCenter, Baton Rouge, LA, United States
| |
Collapse
|
22
|
Lester PJ, Felden A, Baty JW, Bulgarella M, Haywood J, Mortensen AN, Remnant EJ, Smeele ZE. Viral communities in the parasite Varroa destructor and in colonies of their honey bee host (Apis mellifera) in New Zealand. Sci Rep 2022; 12:8809. [PMID: 35614309 PMCID: PMC9133037 DOI: 10.1038/s41598-022-12888-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/11/2022] [Indexed: 11/11/2022] Open
Abstract
The parasitic mite Varroa destructor is a leading cause of mortality for Western honey bee (Apis mellifera) colonies around the globe. We sought to confirm the presence and likely introduction of only one V. destructor haplotype in New Zealand, and describe the viral community within both V. destructor mites and the bees that they parasitise. A 1232 bp fragment from mitochondrial gene regions suggests the likely introduction of only one V. destructor haplotype to New Zealand. Seventeen viruses were found in bees. The most prevalent and abundant was the Deformed wing virus A (DWV-A) strain, which explained 95.0% of the variation in the viral community of bees. Black queen cell virus, Sacbrood virus, and Varroa destructor virus 2 (VDV-2) played secondary roles. DWV-B and the Israeli acute paralysis virus appeared absent from New Zealand. Ten viruses were observed in V. destructor, with > 99.9% of viral reads from DWV-A and VDV-2. Substantially more variation in viral loads was observed in bees compared to mites. Where high levels of VDV-2 occurred in mites, reduced DWV-A occurred in both the mites and the bees co-occurring within the same hive. Where there were high loads of DWV-A in mites, there were typically high viral loads in bees.
Collapse
Affiliation(s)
- Philip J Lester
- Centre for Biodiversity and Restoration Ecology, School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, 6012, New Zealand.
| | - Antoine Felden
- Centre for Biodiversity and Restoration Ecology, School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, 6012, New Zealand
| | - James W Baty
- Centre for Biodiversity and Restoration Ecology, School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, 6012, New Zealand
| | - Mariana Bulgarella
- Centre for Biodiversity and Restoration Ecology, School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, 6012, New Zealand
| | - John Haywood
- School of Mathematics and Statistics, Victoria University of Wellington, PO Box 600, Wellington, 6012, New Zealand
| | - Ashley N Mortensen
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 3230, Waikato Mail Centre, Hamilton, 3240, New Zealand
| | - Emily J Remnant
- Behaviour, Ecology and Evolution Laboratory, School of Life and Environmental Sciences, University of Sydney, Science Road, Sydney, NSW, 2006, Australia
| | - Zoe E Smeele
- Centre for Biodiversity and Restoration Ecology, School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, 6012, New Zealand
| |
Collapse
|
23
|
Silva D, Ceballos R, Arismendi N, Dalmon A, Vargas M. Variant A of the Deformed Wings Virus Alters the Olfactory Sensitivity and the Expression of Odorant Binding Proteins on Antennas of Apis mellifera. INSECTS 2021; 12:insects12100895. [PMID: 34680665 PMCID: PMC8541218 DOI: 10.3390/insects12100895] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/07/2021] [Accepted: 09/23/2021] [Indexed: 01/24/2023]
Abstract
Simple Summary Honey bees, Apis melllifera, are the most commonly managed bee in the world for pollination services. However, worldwide continuous colony losses have been reported for almost a decade. One factor of these losses is associated to pathogens being the virus one of the most important problems in honey bee health. One of the known viruses that affect the honey bee population is deformed wing virus (DWV). DWV causes physical malformation and behavioral disturbances, but also, this virus can be found in the antenna affecting the anatomical integrity of infected areas, which could compromise normal antennal functioning associated to aroma perception. Thus, we evaluate olfactory sensitivity and the expression of antenna-specific odorant-binding proteins (OBP) genes in honey bees inoculated with variant A of the DWV. We performed olfactory sensitivity analysis using the essential oils Eucalyptus globulus and Mentha piperita, but also, and molecular analysis of gene expression of nine OBPs. We found that the high level of replication of DWV-A in the antennae decreased the olfactory sensitivity and led to a down-regulation of some OBPs in middle- and forager-age worker bees. Thus, DWV-A infection in adults of honey bees could compromise volatile compound recognition inside the hive and outside the hive. Abstract Insects have a highly sensitive sense of smell, allowing them to perform complex behaviors, such as foraging and peer recognition. Their sense of smell is based on the recognition of ligands and is mainly coordinated by odorant-binding proteins (OBPs). In Apis mellifera, behavior can be affected by different pathogens, including deformed wing virus (DWV) and its variants. In particular, it has been shown that variant A of DWV (DWV-A) is capable of altering the ultra-cellular structure associated with olfactory activity. In this study was evaluated olfactory sensitivity and the expression of OBP genes in honey bees inoculated with DWV-A. Electroantennographic analyses (EAG) were carried out to determine the olfactory sensitivity to the essential oils Eucalyptus globulus and Mentha piperita. The expression of nine antenna-specific OBP genes and DWV-A load in inoculated bees was also quantified by qPCR. We observed an inverse relationship between viral load and olfactory sensitivity and the expression of some OBP proteins. Thus, high viral loads reduced olfactory sensitivity to essential oils and the gene expression of the OBP2, OBP5, OBP11, and OBP12 proteins on the antennas of middle- and forager-age bees. These results suggest that DWV-A could have negative effects on the processes of aroma perception by worker bees, affecting their performance in tasks carried out in and outside the colony.
Collapse
Affiliation(s)
- Diego Silva
- Laboratorios de Virología y Patologías en Abejas, Facultad de Agronomía, Universidad de Concepción, Av. Vicente Méndez 595, Chillán 3780000, Chile;
| | - Ricardo Ceballos
- Laboratorio de Ecología Química, Instituto de Investigaciones Agropecuarias, INIA Quilamapu, Av. Vicente Méndez 515, Chillán 3780000, Chile;
| | - Nolberto Arismendi
- Centro de Investigación Austral Biotech, Facultad de Ciencias, Universidad Santo Tomás, Av. Picarte 1130–1160, Valdivia 5090000, Chile;
| | - Anne Dalmon
- Unité de Recherche Abeilles et Environnement, INRAE, F-84000 Avignon, France;
| | - Marisol Vargas
- Laboratorios de Virología y Patologías en Abejas, Facultad de Agronomía, Universidad de Concepción, Av. Vicente Méndez 595, Chillán 3780000, Chile;
- Correspondence:
| |
Collapse
|
24
|
Grindrod I, Martin SJ. Parallel evolution of Varroa resistance in honey bees: a common mechanism across continents? Proc Biol Sci 2021; 288:20211375. [PMID: 34344183 PMCID: PMC8334839 DOI: 10.1098/rspb.2021.1375] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 07/12/2021] [Indexed: 12/17/2022] Open
Abstract
The near-globally distributed ecto-parasitic mite of the Apis mellifera honeybee, Varroa destructor, has formed a lethal association with Deformed wing virus, a once rare and benign RNA virus. In concert, the two have killed millions of wild and managed colonies, particularly across the Northern Hemisphere, forcing the need for regular acaricide application to ensure colony survival. However, despite the short association (in evolutionary terms), a small but increasing number of A. mellifera populations across the globe have been surviving many years without any mite control methods. This long-term survival, or Varroa resistance, is consistently associated with the same suite of traits (recapping, brood removal and reduced mite reproduction) irrespective of location. Here we conduct an analysis of data extracted from 60 papers to illustrate how these traits connect together to explain decades of mite resistance data. We have potentially a unified understanding of natural Varroa resistance that will help the global industry achieve widespread miticide-free beekeeping and indicate how different honeybee populations across four continents have resolved a recent threat using the same suite of behaviours.
Collapse
Affiliation(s)
- Isobel Grindrod
- School of Environment and Life Sciences, University of Salford, Manchester M5 4WT, UK
| | - Stephen J. Martin
- School of Environment and Life Sciences, University of Salford, Manchester M5 4WT, UK
| |
Collapse
|
25
|
Mondet F, Blanchard S, Barthes N, Beslay D, Bordier C, Costagliola G, Hervé MR, Lapeyre B, Kim SH, Basso B, Mercer AR, Le Conte Y. Chemical detection triggers honey bee defense against a destructive parasitic threat. Nat Chem Biol 2021; 17:524-530. [PMID: 33495646 DOI: 10.1038/s41589-020-00720-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 12/07/2020] [Indexed: 01/29/2023]
Abstract
Invasive species events related to globalization are increasing, resulting in parasitic outbreaks. Understanding of host defense mechanisms is needed to predict and mitigate against the consequences of parasite invasion. Using the honey bee Apis mellifera and the mite Varroa destructor, as a host-parasite model, we provide a comprehensive study of a mechanism of parasite detection that triggers a behavioral defense associated with social immunity. Six Varroa-parasitization-specific (VPS) compounds are identified that (1) trigger Varroa-sensitive hygiene (VSH, bees' key defense against Varroa sp.), (2) enable the selective recognition of a parasitized brood and (3) induce responses that mimic intrinsic VSH activity in bee colonies. We also show that individuals engaged in VSH exhibit a unique ability to discriminate VPS compounds from healthy brood signals. These findings enhance our understanding of a critical mechanism of host defense against parasites, and have the potential to apply the integration of pest management in the beekeeping sector.
Collapse
Affiliation(s)
- Fanny Mondet
- INRAE, National Research Institute for Agriculture Food and Environment, UR 406 Abeilles et Environnement, Avignon, France. .,Department of Zoology, University of Otago, Dunedin, New Zealand.
| | - Solene Blanchard
- INRAE, National Research Institute for Agriculture Food and Environment, UR 406 Abeilles et Environnement, Avignon, France.,UMT PrADE, Avignon, France
| | - Nicolas Barthes
- CEFE, Univ. Montpellier, CNRS, EPHE, IRD, Univ. Paul Valéry Montpellier 3, Montpellier, France
| | - Dominique Beslay
- INRAE, National Research Institute for Agriculture Food and Environment, UR 406 Abeilles et Environnement, Avignon, France.,UMT PrADE, Avignon, France
| | - Celia Bordier
- INRAE, National Research Institute for Agriculture Food and Environment, UR 406 Abeilles et Environnement, Avignon, France.,UMT PrADE, Avignon, France
| | - Guy Costagliola
- INRAE, UR1115 Plantes et Systèmes de Culture Horticoles, Avignon, France
| | - Maxime R Hervé
- National Research Institute for Agriculture, Food, and Environment, IGEPP, University of Rennes, Rennes, France
| | - Benoit Lapeyre
- CEFE, Univ. Montpellier, CNRS, EPHE, IRD, Univ. Paul Valéry Montpellier 3, Montpellier, France
| | - Seo Hyun Kim
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Benjamin Basso
- INRAE, National Research Institute for Agriculture Food and Environment, UR 406 Abeilles et Environnement, Avignon, France.,UMT PrADE, Avignon, France.,ITSAP, Avignon, France
| | - Alison R Mercer
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Yves Le Conte
- INRAE, National Research Institute for Agriculture Food and Environment, UR 406 Abeilles et Environnement, Avignon, France.,UMT PrADE, Avignon, France
| |
Collapse
|
26
|
Lin Z, Xu H, Su X, Ke Y, Wang W, Li Y, Zhuang M, Chen H, Liu Y, Wang K, Chen G, Ji T. Investigation of circular RNAs in an ectoparasitic mite Varroa destructor (Acarina: Varroidae) of the honey bee. Parasitol Res 2021; 120:715-723. [PMID: 33452589 DOI: 10.1007/s00436-020-07018-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 12/09/2020] [Indexed: 01/19/2023]
Abstract
Circular RNAs (circRNAs) are a large class of non-protein-coding transcripts that are involved in a diverse spectrum of regulatory mechanisms across a broad range of biological processes. To date, however, few studies on circRNAs have investigated their role in the biology of invertebrate parasites. The ectoparasitic mite Varroa destructor is perceived as the principal biotic threat towards global honey bee health. This parasite cannot be sustainably controlled partially due to the lack of knowledge about its basic molecular biology. In this paper, we unveil the circRNA profile of V. destructor for the first time and report the sources, distribution, and features of the identified circRNAs. Exonic, intronic, exon-intron, and intergenic circRNAs were discovered and exon-intron circRNAs were the most abundant within the largest spliced length. Three hundred and eighty-six (8.3%) circRNAs were predicted to possess translational potential. Eleven circRNAs, derived from six parental genes, exhibited strong bonds with miRNAs as sponges, suggesting an efficient post-transcriptional regulation. GO term and KEGG pathway enrichment analyses of the parental genes of the identified circRNAs showed that these non-coding RNAs were mainly engaged in protein processing, signal transduction, and various metabolism processes. To our knowledge, this is the first catalog of a circRNA profile of parasitiformes species, which reveals the prevalence of circRNAs in the parasite and provides biological insights for future genetic studies on this ubiquitous parasitic mite.
Collapse
Affiliation(s)
- Zheguang Lin
- Apicultural Research Institute, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Hao Xu
- Apicultural Research Institute, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Xiaoling Su
- Jinhua Academy of Agricultural Sciences, Jinhua, 321017, China
| | - Yalu Ke
- Wuzhong Animal Health Supervision Institute, Suzhou, 215100, China
| | - Wei Wang
- Wuzhong Animal Health Supervision Institute, Suzhou, 215100, China
| | - Yujiao Li
- Shandong Apiculture Breeding of Improved Varieties and Extension Center, Taian, 271000, China
| | - Mingliang Zhuang
- Apicultural Science Institute of Jilin Province, Jilin, 132108, China
| | - Heng Chen
- Apicultural Research Institute, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Yibing Liu
- Apicultural Research Institute, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Kang Wang
- Apicultural Research Institute, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Guohong Chen
- Apicultural Research Institute, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Ting Ji
- Apicultural Research Institute, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
27
|
Barrs KR, Ani MO, Eversman KK, Rowell JT, Wagoner KM, Rueppell O. Time-accuracy trade-off and task partitioning of hygienic behavior among honey bee (Apis mellifera) workers. Behav Ecol Sociobiol 2021. [DOI: 10.1007/s00265-020-02940-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Kaskinova MD, Gaifullina LR, Saltykova ES, Poskryakov AV, Nikolenko AG. Genetic markers for the resistance of honey bee to Varroa destructor. Vavilovskii Zhurnal Genet Selektsii 2020; 24:853-860. [PMID: 35087998 PMCID: PMC8763714 DOI: 10.18699/vj20.683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/10/2020] [Accepted: 06/23/2020] [Indexed: 11/19/2022] Open
Abstract
In the mid-20th century, the first case of infection of European bees Apis mellifera L. with the ectoparasite mite Varroa destructor was recorded. The original host of this mite is the Asian bee Apis cerana. The mite V. destructor was widespread throughout Europe, North and South America, and Australia remained the only continent free from this parasite. Without acaricide treatment any honeybee colony dies within 1–4 years. The use of synthetic acaricides has not justified itself – they make beekeeping products unsuitable and mites develop resistance to them, which forces the use of even greater concentrations that can be toxic to the bees. Therefore, the only safe measure to combat the mite is the use of biological control methods. One of these methods is the selection of bee colonies with natural mite resistance. In this article we summarize publications devoted to the search for genetic markers associated with resistance to V. destructor. The first part discusses the basic mechanisms of bee resistance (Varroa sensitive hygienic behavior and grooming) and methods for their assessment. The second part focuses on research aimed at searching for loci and candidate genes associated with resistance to varroosis by mapping quantitative traits loci and genome-wide association studies. The third part summarizes studies of the transcriptome profile of Varroa resistant bees. The last part discusses the most likely candidate genes – potential markers for breeding Varroa resistant bees. Resistance to the mite is manifested in a variety of phenotypes and is under polygenic control. The establishing of gene pathways involved in resistance to Varroa will help create a methodological basis for the selection of Varroa resistant honeybee colonies.
Collapse
Affiliation(s)
- M. D. Kaskinova
- Institute of Biochemistry and Genetics – Subdivision of the Ufa Federal Research Center of the Russian Academy of Sciences
| | - L. R. Gaifullina
- Institute of Biochemistry and Genetics – Subdivision of the Ufa Federal Research Center of the Russian Academy of Sciences
| | - E. S. Saltykova
- Institute of Biochemistry and Genetics – Subdivision of the Ufa Federal Research Center of the Russian Academy of Sciences
| | - A. V. Poskryakov
- Institute of Biochemistry and Genetics – Subdivision of the Ufa Federal Research Center of the Russian Academy of Sciences
| | - A. G. Nikolenko
- Institute of Biochemistry and Genetics – Subdivision of the Ufa Federal Research Center of the Russian Academy of Sciences
| |
Collapse
|
29
|
Le Conte Y, Meixner MD, Brandt A, Carreck NL, Costa C, Mondet F, Büchler R. Geographical Distribution and Selection of European Honey Bees Resistant to Varroa destructor. INSECTS 2020; 11:E873. [PMID: 33302465 PMCID: PMC7764010 DOI: 10.3390/insects11120873] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/26/2020] [Accepted: 12/03/2020] [Indexed: 01/12/2023]
Abstract
Developing resistance to the varroa mite in honey bees is a major goal for apicultural science and practice, the development of selection strategies and the availability of resistant stock. Here we present an extended literature review and survey of resistant populations and selection programs in the EU and elsewhere, including expert interviews. We illustrate the practical experiences of scientists, beekeepers, and breeders in search of resistant bees. We describe numerous resistant populations surviving without acaricide treatments, most of which developed under natural infestation pressure. Their common characteristics: reduced brood development; limited mite population growth; and low mite reproduction, may cause conflict with the interests of commercial beekeeping. Since environmental factors affect varroa mite resistance, particular honey bee strains must be evaluated under different local conditions and colony management. The resistance traits of grooming, hygienic behavior and mite reproduction, together with simple testing of mite population development and colony survival, are significant in recent selection programs. Advanced breeding techniques and genetic and physiological selection tools will be essential in the future. Despite huge demand, there is no well-established market for resistant stock in Europe. Moreover, reliable experience or experimental evidence regarding the resistance of stocks under different environmental and management conditions is still lacking.
Collapse
Affiliation(s)
- Yves Le Conte
- INRAE, Abeilles et Environnement, 84914 Avignon, France;
| | - Marina D. Meixner
- Landesbetrieb Landwirtschaft Hessen, Bee Institute, Erlenstrasse 9, 35274 Kirchhain, Germany; (M.D.M.); (A.B.); (R.B.)
| | - Annely Brandt
- Landesbetrieb Landwirtschaft Hessen, Bee Institute, Erlenstrasse 9, 35274 Kirchhain, Germany; (M.D.M.); (A.B.); (R.B.)
| | - Norman L. Carreck
- Carreck Consultancy Ltd., Woodside Cottage, Dragons Lane, Shipley RH13 8GD, West Sussex, UK;
- Laboratory of Apiculture and Social Insects, University of Sussex, Falmer, Brighton BN1 9QG, East Sussex, UK
| | - Cecilia Costa
- CREA Research Centre for Agriculture and Environment, via di Saliceto 80, 40128 Bologna, Italy;
| | - Fanny Mondet
- INRAE, Abeilles et Environnement, 84914 Avignon, France;
| | - Ralph Büchler
- Landesbetrieb Landwirtschaft Hessen, Bee Institute, Erlenstrasse 9, 35274 Kirchhain, Germany; (M.D.M.); (A.B.); (R.B.)
| |
Collapse
|
30
|
Varroa destructor: how does it harm Apis mellifera honey bees and what can be done about it? Emerg Top Life Sci 2020; 4:45-57. [PMID: 32537655 PMCID: PMC7326341 DOI: 10.1042/etls20190125] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/27/2020] [Accepted: 05/27/2020] [Indexed: 12/23/2022]
Abstract
Since its migration from the Asian honey bee (Apis cerana) to the European honey bee (Apis mellifera), the ectoparasitic mite Varroa destructor has emerged as a major issue for beekeeping worldwide. Due to a short history of coevolution, the host–parasite relationship between A. mellifera and V. destructor is unbalanced, with honey bees suffering infestation effects at the individual, colony and population levels. Several control solutions have been developed to tackle the colony and production losses due to Varroa, but the burden caused by the mite in combination with other biotic and abiotic factors continues to increase, weakening the beekeeping industry. In this synthetic review, we highlight the main advances made between 2015 and 2020 on V. destructor biology and its impact on the health of the honey bee, A. mellifera. We also describe the main control solutions that are currently available to fight the mite and place a special focus on new methodological developments, which point to integrated pest management strategies for the control of Varroa in honey bee colonies.
Collapse
|
31
|
Anti-Varroa Efficiency of Coumaphos and Its Influence on Oxidative Stress and Survival of Honey Bees. ACTA VET-BEOGRAD 2020. [DOI: 10.2478/acve-2020-0027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Abstract
Apart from the efficiency of coumaphos against Varroa mites, its impact on the oxidative status and survival of the honey bee (Apis mellifera) was assessed. The research was conducted on hives from the same apiary, equalised regarding the number of bees, brood area and food storage. Based on Varroa infestation the hives were allotted to two groups: non-infested (N) and infested (I). Both groups were either treated (T) – NT and IT, or untreated (U) – NU and IU. The treatment of infested bees was controlled with a follow-up treatment with amitraz. The efficiency of coumaphos was 96-97%. This organophosphate had a negligible effect on bee survival, but it significantly affected their oxidative status: superoxide dismutase (SOD), catalase (CAT) and glutathione S-transferase (GST) activities, and the concentrations of malonyl dialdehyde (MDA). Coumaphos significantly (p˂0.0001) decreased SOD activity in non-infested bees, but increased it in those infested. By contrast, both CAT and GST activities, as well as MDA concentrations significantly increased (from p˂0.05 to p˂0.0001) after treatment in all groups, with the exception of IT, where it declined. Coumaphos in non-infested hives caused oxidative stress per se, not unlike varroa in infested colonies. However, in infested colonies it decreased oxidative stress, owing to its efficacy against Varroa mites and contributed to the recovery of bee colonies. In spite of its certain downsides, coumaphos remains an effective anti-varroa substance, but should be used with precaution, not to add to the effects of environmental factors which may cause red-ox misbalance.
Collapse
|
32
|
Individual-Level Comparisons of Honey Bee (Hymenoptera: Apoidea) Hygienic Behavior Towards Brood Infested with Varroa destructor (Parasitiformes: Varroidae) or Tropilaelaps mercedesae (Mesostigmata: Laelapidae). INSECTS 2020; 11:insects11080510. [PMID: 32784569 PMCID: PMC7469190 DOI: 10.3390/insects11080510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/29/2020] [Accepted: 08/04/2020] [Indexed: 11/16/2022]
Abstract
The mites Varroa destructor Anderson and Trueman and Tropilaelaps mercedesae Anderson and Morgan are both serious threats to the Apis mellifera beekeeping industry. A trait frequently used in selection programs for V. destructor resistance is hygienic behavior, the selective removal of diseased/damaged brood. Here, we measured the level of association of the expression of hygienic behavior against both mites in A. mellifera, by observing whether the same individual bees would carry out the opening and removal of brood infested by the two parasites. The groups of bees showing these behaviors on cells artificially infested by either parasite showed a large overlap, making it appear likely that the two traits are at least closely coupled. Therefore, breeding for V. destructor resistance based on hygienic behavior could prepare A. mellifera populations for dealing with Tropilaelaps sp. mites, and vice versa. Using the same bioassay, we also compared the hygienic behavior of A. mellifera towards T. mercedesae to that of the Asiatic honey bee, Apis cerana. A. cerana workers eliminated a greater proportion of infested cells, which may in part explain the resistance of this bee to Tropilaelaps and the observation that Tropilaelaps reproduction on brood of this species is extremely rare.
Collapse
|
33
|
Wu J, Elsheikha HM, Tu Y, Getachew A, Zhou H, Zhou C, Xu S. Significant transcriptional changes in mature daughter Varroa destructor mites during infestation of different developmental stages of honeybees. PEST MANAGEMENT SCIENCE 2020; 76:2736-2745. [PMID: 32187435 DOI: 10.1002/ps.5821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/03/2020] [Accepted: 03/18/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Varroa destructor is considered a major cause of honeybee (Apis mellifera) colony losses worldwide. Although V. destructor mites exhibit preference behavior for certain honeybee lifecycle stages, the mechanism underlying host finding and preference remains largely unknown. RESULTS By using a de novo transcriptome assembly strategy, we sequenced the mature daughter V. destructor mite transcriptome during infestation of different stages of honeybees (brood cells, newly emerged bees and adult bees). A total of 132 779 unigenes were obtained with an average length of 2745 bp and N50 of 5706 bp. About 63.1% of the transcriptome could be annotated based on sequence homology to the predatory mite Metaseiulus occidentalis proteins. Expression analysis revealed that mature daughter mites had distinct transcriptome profiles after infestation of different honeybee stages, and that the majority of the differentially expressed genes (DEGs) of mite infesting adult honeybees were down-regulated compared to that infesting the sealed brood cells. Gene ontology and KEGG pathway enrichment analyses showed that a large number of DEGs were involved in cellular process and metabolic process, suggesting that Varroa mites undergo metabolic adjustment to accommodate the cellular, molecular and/or immune response of the honeybees. Interestingly, in adult honeybees, some mite DEGs involved in neurotransmitter biosynthesis and transport were identified and their levels of expression were validated by quantitative polymerase chain reaction (qPCR). CONCLUSION These results provide evidence for transcriptional reprogramming in mature daughter Varroa mites during infestation of honeybees, which may be relevant to understanding the mechanism underpinning adaptation and preference behavior of these mites for honeybees. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jiangli Wu
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - Yangyang Tu
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Awraris Getachew
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Huaiyu Zhou
- Department of Pathogenic Biology, Shandong University School of Basic Medicine, Jinan, P. R. China
| | - Chunxue Zhou
- Department of Pathogenic Biology, Shandong University School of Basic Medicine, Jinan, P. R. China
| | - Shufa Xu
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| |
Collapse
|
34
|
Jain R, Brockmann A. Sex-specific molecular specialization and activity rhythm-dependent gene expression in honey bee antennae. J Exp Biol 2020; 223:jeb217406. [PMID: 32393545 DOI: 10.1242/jeb.217406] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 05/05/2020] [Indexed: 12/17/2022]
Abstract
We performed an RNA-seq-based comparison of gene expression levels in the antennae of honey bee drones and time-trained foragers (workers) collected at different times of the day and different activity states. Interestingly, olfaction-related genes [i.e. odorant receptor (Or) genes, odorant binding protein (Obp) genes, carboxyl esterase (CEst) genes, etc.] showed stable gene expression differences between drone and worker antennae. Drone antennae showed higher expression of 24 Or genes, of which 21 belong to the clade X which comprises the receptor for the major queen pheromone compound 9-ODA. This high number of drone-biased Or genes suggests that more than previously thought play a role in sex-pheromone communication. In addition, we found higher expression levels for many non-olfaction-related genes including nitric oxide synthase (NOS), and the potassium channel Shaw In contrast, workers showed higher expression of 67 Or genes, which belong to different Or clades that are involved in pheromone communication as well as the perception of cuticular hydrocarbons and floral scents. Further, drone antennae showed higher expression of genes involved in energy metabolism, whereas worker antennae showed higher expression of genes involved in neuronal communication, consistent with earlier reports on peripheral olfactory plasticity. Finally, drones that perform mating flight in the afternoon (innate) and foragers that are trained to forage in the afternoon (adapted) showed similar daily changes in the expression of two major clock genes, period and cryptochrome2 Most of the other genes showing changes with time or onset of daily flight activity were specific to drones and foragers.
Collapse
Affiliation(s)
- Rikesh Jain
- National Centre for Biological Sciences - Tata Institute of Fundamental Research, Bangalore-560056, Karnataka, India
- SASTRA University, Thirumalaisamudram, Thanjavur-613401, Tamil Nadu, India
| | - Axel Brockmann
- National Centre for Biological Sciences - Tata Institute of Fundamental Research, Bangalore-560056, Karnataka, India
| |
Collapse
|
35
|
Cini A, Bordoni A, Cappa F, Petrocelli I, Pitzalis M, Iovinella I, Dani FR, Turillazzi S, Cervo R. Increased immunocompetence and network centrality of allogroomer workers suggest a link between individual and social immunity in honeybees. Sci Rep 2020; 10:8928. [PMID: 32488140 PMCID: PMC7265547 DOI: 10.1038/s41598-020-65780-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 04/24/2020] [Indexed: 01/11/2023] Open
Abstract
The significant risk of disease transmission has selected for effective immune-defense strategies in insect societies. Division of labour, with individuals specialized in immunity-related tasks, strongly contributes to prevent the spread of diseases. A trade-off, however, may exist between phenotypic specialization to increase task efficiency and maintenance of plasticity to cope with variable colony demands. We investigated the extent of phenotypic specialization associated with a specific task by using allogrooming in the honeybee, Apis mellifera, where worker behaviour might lower ectoparasites load. We adopted an integrated approach to characterize the behavioural and physiological phenotype of allogroomers, by analyzing their behavior (both at individual and social network level), their immunocompetence (bacterial clearance tests) and their chemosensory specialization (proteomics of olfactory organs). We found that allogroomers have higher immune capacity compared to control bees, while they do not differ in chemosensory proteomic profiles. Behaviourally, they do not show differences in the tasks performed (other than allogrooming), while they clearly differ in connectivity within the colonial social network, having a higher centrality than control bees. This demonstrates the presence of an immune-specific physiological and social behavioural specialization in individuals involved in a social immunity related task, thus linking individual to social immunity, and it shows how phenotypes may be specialized in the task performed while maintaining an overall plasticity.
Collapse
Affiliation(s)
- Alessandro Cini
- Dipartimento di Biologia, Università di Firenze, Via Madonna del Piano 6, 50019, Sesto Fiorentino, Firenze, Italy.
- Centre for Biodiversity and Environment Research, University College London, Gower Street, London, WC1E 6BT, UK.
| | - Adele Bordoni
- Dipartimento di Biologia, Università di Firenze, Via Madonna del Piano 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Federico Cappa
- Dipartimento di Biologia, Università di Firenze, Via Madonna del Piano 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Iacopo Petrocelli
- Dipartimento di Biologia, Università di Firenze, Via Madonna del Piano 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Martina Pitzalis
- Dipartimento di Biologia, Università di Firenze, Via Madonna del Piano 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Immacolata Iovinella
- Dipartimento di Biologia, Università di Firenze, Via Madonna del Piano 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Francesca Romana Dani
- Dipartimento di Biologia, Università di Firenze, Via Madonna del Piano 6, 50019, Sesto Fiorentino, Firenze, Italy
- CISM, Mass Spectrometry Centre, Università di Firenze, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Stefano Turillazzi
- Dipartimento di Biologia, Università di Firenze, Via Madonna del Piano 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Rita Cervo
- Dipartimento di Biologia, Università di Firenze, Via Madonna del Piano 6, 50019, Sesto Fiorentino, Firenze, Italy
| |
Collapse
|
36
|
Mondet F, Beaurepaire A, McAfee A, Locke B, Alaux C, Blanchard S, Danka B, Le Conte Y. Honey bee survival mechanisms against the parasite Varroa destructor: a systematic review of phenotypic and genomic research efforts. Int J Parasitol 2020; 50:433-447. [PMID: 32380096 DOI: 10.1016/j.ijpara.2020.03.005] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/12/2020] [Accepted: 03/24/2020] [Indexed: 11/22/2022]
Abstract
The ectoparasitic mite Varroa destructor is the most significant pathological threat to the western honey bee, Apis mellifera, leading to the death of most colonies if left untreated. An alternative approach to chemical treatments is to selectively enhance heritable honey bee traits of resistance or tolerance to the mite through breeding programs, or select for naturally surviving untreated colonies. We conducted a literature review of all studies documenting traits of A. mellifera populations either selectively bred or naturally selected for resistance and tolerance to mite parasitism. This allowed us to conduct an analysis of the diversity, distribution and importance of the traits in different honey bee populations that can survive V. destructor globally. In a second analysis, we investigated the genetic bases of these different phenotypes by comparing 'omics studies (genomics, transcriptomics, and proteomics) of A. mellifera resistance and tolerance to the parasite. Altogether, this review provides a detailed overview of the current state of the research projects and breeding efforts against the most devastating parasite of A. mellifera. By highlighting the most promising traits of Varroa-surviving bees and our current knowledge on their genetic bases, this work will help direct future research efforts and selection programs to control this pest. Additionally, by comparing the diverse populations of honey bees that exhibit those traits, this review highlights the consequences of anthropogenic and natural selection in the interactions between hosts and parasites.
Collapse
Affiliation(s)
- Fanny Mondet
- INRAE, Abeilles et Environnement, 84914 Avignon, France.
| | - Alexis Beaurepaire
- INRAE, Abeilles et Environnement, 84914 Avignon, France; Institute of Bee Health, University of Bern, 3003 Bern, Switzerland
| | - Alison McAfee
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Barbara Locke
- Department of Ecology, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
| | - Cédric Alaux
- INRAE, Abeilles et Environnement, 84914 Avignon, France
| | | | - Bob Danka
- USDA, ARS Honey Bee Breeding, Genetics and Physiology Laboratory, Baton Rouge, LA, USA
| | - Yves Le Conte
- INRAE, Abeilles et Environnement, 84914 Avignon, France
| |
Collapse
|
37
|
Varroa destructor: A Complex Parasite, Crippling Honey Bees Worldwide. Trends Parasitol 2020; 36:592-606. [PMID: 32456963 DOI: 10.1016/j.pt.2020.04.004] [Citation(s) in RCA: 196] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/24/2020] [Accepted: 04/09/2020] [Indexed: 11/20/2022]
Abstract
The parasitic mite, Varroa destructor, has shaken the beekeeping and pollination industries since its spread from its native host, the Asian honey bee (Apis cerana), to the naïve European honey bee (Apis mellifera) used commercially for pollination and honey production around the globe. Varroa is the greatest threat to honey bee health. Worrying observations include increasing acaricide resistance in the varroa population and sinking economic treatment thresholds, suggesting that the mites or their vectored viruses are becoming more virulent. Highly infested weak colonies facilitate mite dispersal and disease transmission to stronger and healthier colonies. Here, we review recent developments in the biology, pathology, and management of varroa, and integrate older knowledge that is less well known.
Collapse
|
38
|
Beaurepaire A, Piot N, Doublet V, Antunez K, Campbell E, Chantawannakul P, Chejanovsky N, Gajda A, Heerman M, Panziera D, Smagghe G, Yañez O, de Miranda JR, Dalmon A. Diversity and Global Distribution of Viruses of the Western Honey Bee, Apis mellifera. INSECTS 2020; 11:E239. [PMID: 32290327 PMCID: PMC7240362 DOI: 10.3390/insects11040239] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 12/31/2022]
Abstract
In the past centuries, viruses have benefited from globalization to spread across the globe, infecting new host species and populations. A growing number of viruses have been documented in the western honey bee, Apis mellifera. Several of these contribute significantly to honey bee colony losses. This review synthetizes the knowledge of the diversity and distribution of honey-bee-infecting viruses, including recent data from high-throughput sequencing (HTS). After presenting the diversity of viruses and their corresponding symptoms, we surveyed the scientific literature for the prevalence of these pathogens across the globe. The geographical distribution shows that the most prevalent viruses (deformed wing virus, sacbrood virus, black queen cell virus and acute paralysis complex) are also the most widely distributed. We discuss the ecological drivers that influence the distribution of these pathogens in worldwide honey bee populations. Besides the natural transmission routes and the resulting temporal dynamics, global trade contributes to their dissemination. As recent evidence shows that these viruses are often multihost pathogens, their spread is a risk for both the beekeeping industry and the pollination services provided by managed and wild pollinators.
Collapse
Affiliation(s)
- Alexis Beaurepaire
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, 3003 Bern, Switzerland;
- Agroscope, Swiss Bee Research Center, 3003 Bern, Switzerland
- UR Abeilles et Environnement, INRAE, 84914 Avignon, France;
| | - Niels Piot
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (N.P.); (G.S.)
| | - Vincent Doublet
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, 86069 Ulm, Germany;
| | - Karina Antunez
- Department of Microbiology, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo 11600, Uruguay;
| | - Ewan Campbell
- Centre for Genome Enabled Biology and Medicine, University of Aberdeen, Aberdeen AB24 3FX, UK;
| | - Panuwan Chantawannakul
- Environmental Science Research Center (ESRC), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
- Bee Protection Laboratory (BeeP), Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nor Chejanovsky
- Entomology Department, Institute of Plant Protection, The Volcani Center, Rishon Lezion, Tel Aviv 5025001, Israel;
| | - Anna Gajda
- Laboratory of Bee Diseases, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-787 Warsaw, Poland;
| | | | - Delphine Panziera
- Institute of Biology, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany;
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
| | - Guy Smagghe
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (N.P.); (G.S.)
| | - Orlando Yañez
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, 3003 Bern, Switzerland;
- Agroscope, Swiss Bee Research Center, 3003 Bern, Switzerland
| | - Joachim R. de Miranda
- Department of Ecology, Swedish University of Agricultural Sciences, 750-07 Uppsala, Sweden;
| | - Anne Dalmon
- UR Abeilles et Environnement, INRAE, 84914 Avignon, France;
| |
Collapse
|
39
|
Yañez O, Chávez-Galarza J, Tellgren-Roth C, Pinto MA, Neumann P, de Miranda JR. The honeybee (Apis mellifera) developmental state shapes the genetic composition of the deformed wing virus-A quasispecies during serial transmission. Sci Rep 2020; 10:5956. [PMID: 32249797 PMCID: PMC7136270 DOI: 10.1038/s41598-020-62673-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 03/17/2020] [Indexed: 11/23/2022] Open
Abstract
The main biological threat to the western honeybee (Apis mellifera) is the parasitic mite Varroa destructor, largely because it vectors lethal epidemics of honeybee viruses that, in the absence of this mite, are relatively innocuous. The severe pathology is a direct consequence of excessive virus titres caused by this novel transmission route. However, little is known about how the virus adapts genetically during transmission and whether this influences the pathology. Here, we show that upon injection into honeybee pupae, the deformed wing virus type-A (DWV-A) quasispecies undergoes a rapid, extensive expansion of its sequence space, followed by strong negative selection towards a uniform, common shape by the time the pupae have completed their development, with no difference between symptomatic and asymptomatic adults in either DWV titre or genetic composition. This suggests that the physiological and molecular environment during pupal development has a strong, conservative influence on shaping the DWV-A quasispecies in emerging adults. There was furthermore no evidence of any progressive adaptation of the DWV-A quasispecies to serial intra-abdominal injection, simulating mite transmission, despite the generation of ample variation immediately following each transmission, suggesting that the virus either had already adapted to transmission by injection, or was unaffected by it.
Collapse
Affiliation(s)
- Orlando Yañez
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, CH-3000, Switzerland
| | - Julio Chávez-Galarza
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Sta. Apolónia, 5300-253, Bragança, Portugal
- Instituto Nacional de Innovación Agraria (INIA), Av. La Molina, 1981, Lima, Perú
| | | | - M Alice Pinto
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Sta. Apolónia, 5300-253, Bragança, Portugal
| | - Peter Neumann
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, CH-3000, Switzerland
| | - Joachim R de Miranda
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, 750 07, Sweden.
| |
Collapse
|
40
|
van Alphen JJM, Fernhout BJ. Natural selection, selective breeding, and the evolution of resistance of honeybees ( Apis mellifera) against Varroa. ZOOLOGICAL LETTERS 2020; 6:6. [PMID: 32467772 PMCID: PMC7236208 DOI: 10.1186/s40851-020-00158-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 04/03/2020] [Indexed: 05/21/2023]
Abstract
We examine evidence for natural selection resulting in Apis mellifera becoming tolerant or resistant to Varroa mites in different bee populations. We discuss traits implicated in Varroa resistance and how they can be measured. We show that some of the measurements used are ambiguous, as they measure a combination of traits. In addition to behavioural traits, such as removal of infested pupae, grooming to remove mites from bees or larval odours, small colony size, frequent swarming, and smaller brood cell size may also help to reduce reproductive rates of Varroa. Finally, bees may be tolerant of high Varroa infections when they are resistant or tolerant to viruses implicated in colony collapse. We provide evidence that honeybees are an extremely outbreeding species. Mating structure is important for how natural selection operates. Evidence for successful natural selection of resistance traits against Varroa comes from South Africa and from Africanized honeybees in South America. Initially, Varroa was present in high densities and killed about 30% of the colonies, but soon after its spread, numbers per hive decreased and colonies survived without treatment. This shows that natural selection can result in resistance in large panmictic populations when a large proportion of the population survives the initial Varroa invasion. Natural selection in Europe and North America has not resulted in large-scale resistance. Upon arrival of Varroa, the frequency of traits to counter mites and associated viruses in European honey bees was low. This forced beekeepers to protect bees by chemical treatment, hampering natural selection. In a Swedish experiment on natural selection in an isolated mating population, only 7% of the colonies survived, resulting in strong inbreeding. Other experiments with untreated, surviving colonies failed because outbreeding counteracted the effects of selection. If loss of genetic variation is prevented, colony level selection in closed mating populations can proceed more easily, as natural selection is not counteracted by the dispersal of resistance genes. In large panmictic populations, selective breeding can be used to increase the level of resistance to a threshold level at which natural selection can be expected to take over.
Collapse
Affiliation(s)
- Jacques J. M. van Alphen
- Naturalis Biodiversity Centre, 2333 CR Leiden, The Netherlands
- Arista Bee Research Foundation, Nachtegaal 2, 5831 WL Boxmeer, The Netherlands
| | - Bart Jan Fernhout
- Arista Bee Research Foundation, Nachtegaal 2, 5831 WL Boxmeer, The Netherlands
| |
Collapse
|
41
|
López-Uribe MM, Ricigliano VA, Simone-Finstrom M. Defining Pollinator Health: A Holistic Approach Based on Ecological, Genetic, and Physiological Factors. Annu Rev Anim Biosci 2019; 8:269-294. [PMID: 31618045 DOI: 10.1146/annurev-animal-020518-115045] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Evidence for global bee population declines has catalyzed a rapidly evolving area of research that aims to identify the causal factors and to effectively assess the status of pollinator populations. The term pollinator health emerged through efforts to understand causes of bee decline and colony losses, but it lacks a formal definition. In this review, we propose a definition for pollinator health and synthesize the available literature on the application of standardized biomarkers to assess health at the individual, colony, and population levels. We focus on biomarkers in honey bees, a model species, but extrapolate the potential application of these approaches to monitor the health status of wild bee populations. Biomarker-guided health measures can inform beekeeper management decisions, wild bee conservation efforts, and environmental policies. We conclude by addressing challenges to pollinator health from a One Health perspective that emphasizes the interplay between environmental quality and human, animal, and bee health.
Collapse
Affiliation(s)
- Margarita M López-Uribe
- Department of Entomology, Center for Pollinator Research, Pennsylvania State University, University Park, Pennsylvania 16802, USA;
| | - Vincent A Ricigliano
- Honey Bee Breeding, Genetics and Physiology Research, USDA-ARS, Baton Rouge, Louisiana 70820, USA; ,
| | - Michael Simone-Finstrom
- Honey Bee Breeding, Genetics and Physiology Research, USDA-ARS, Baton Rouge, Louisiana 70820, USA; ,
| |
Collapse
|
42
|
Viral infections alter antennal epithelium ultrastructure in honey bees. J Invertebr Pathol 2019; 168:107252. [PMID: 31585118 DOI: 10.1016/j.jip.2019.107252] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 09/02/2019] [Accepted: 09/29/2019] [Indexed: 11/22/2022]
Abstract
Varroa destructor and its associated viruses, in particular deformed wing virus (DWV), have been identified as probable causes of honey bee (Apis mellif era L.) colony losses. Evidence suggests that elevated DWV titres in bees could compromise sensory and communication abilities resulting in negative consequences for hygienic behaviour. As antennae play a central role in this behaviour, we compared antennal ultrastructure in DWV-symptomatic and asymptomatic bees. The results show that virus capsids accumulate in the basal regions of the antennal epithelium, close to the haemolymph. No virus particles were detected at the level of sensory sensilla, such as pore plates, nor within the sensory cell dendrites associated with these sensilla. However, membranous structures appeared to be more prevalent in supporting cells surrounding the dendrites of DWV-symptomatic bees. Para-crystalline arrays containing large numbers of virus particles were detected in the antennae of DWV-symptomatic bees but not in asymptomatic bees.
Collapse
|
43
|
Wu F, Ma C, Han B, Meng L, Hu H, Fang Y, Feng M, Zhang X, Rueppell O, Li J. Behavioural, physiological and molecular changes in alloparental caregivers may be responsible for selection response for female reproductive investment in honey bees. Mol Ecol 2019; 28:4212-4227. [DOI: 10.1111/mec.15207] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 07/31/2019] [Accepted: 07/31/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Fan Wu
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology Ministry of Agriculture Chinese Academy of Agricultural Science Beijing China
| | - Chuan Ma
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology Ministry of Agriculture Chinese Academy of Agricultural Science Beijing China
| | - Bin Han
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology Ministry of Agriculture Chinese Academy of Agricultural Science Beijing China
| | - Lifeng Meng
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology Ministry of Agriculture Chinese Academy of Agricultural Science Beijing China
| | - Han Hu
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology Ministry of Agriculture Chinese Academy of Agricultural Science Beijing China
| | - Yu Fang
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology Ministry of Agriculture Chinese Academy of Agricultural Science Beijing China
| | - Mao Feng
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology Ministry of Agriculture Chinese Academy of Agricultural Science Beijing China
| | - Xufeng Zhang
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology Ministry of Agriculture Chinese Academy of Agricultural Science Beijing China
| | - Olav Rueppell
- Department of Biology University of North Carolina at Greensboro Greensboro NC USA
| | - Jianke Li
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology Ministry of Agriculture Chinese Academy of Agricultural Science Beijing China
| |
Collapse
|
44
|
Wagoner K, Spivak M, Hefetz A, Reams T, Rueppell O. Stock-specific chemical brood signals are induced by Varroa and Deformed Wing Virus, and elicit hygienic response in the honey bee. Sci Rep 2019; 9:8753. [PMID: 31217481 PMCID: PMC6584651 DOI: 10.1038/s41598-019-45008-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 05/24/2019] [Indexed: 01/23/2023] Open
Abstract
The health of the honey bee Apis mellifera is challenged by the ectoparasitic mite Varroa destructor, and the numerous harmful pathogens it vectors. Existing pesticide-based Varroa controls are not sustainable. In contrast, one promising approach for improved honey bee health is the breeding of hygienic bees, capable of detecting and removing brood that is parasitized or diseased. In three experiments we find evidence to support the hypothesis that stock-specific chemical brood signals are induced by Varroa and Deformed Wing Virus, and elicit hygienic response in the honey bee. By collecting, analyzing, and running bioassays involving mite-infested and control brood extracts from three honey bee breeding stocks we: 1) found evidence that a transferrable chemical signal for hygienic behavior is present in Varroa-infested brood extracts, 2) identified ten stock-specific hydrocarbons as candidates of hygienic signaling, and 3) found that two of these hydrocarbons linked to Varroa and DWV were also elevated in brood targeted for hygienic behavior. These findings expand our understanding of honey bee chemical communication, and facilitate the development of improved hygienic selection tools to breed honey bees with greater resistance to Varroa and associated pathogens.
Collapse
Affiliation(s)
- K Wagoner
- Biology Department, University of North Carolina at Greensboro, Greensboro, USA.
| | - M Spivak
- Department of Entomology, University of Minnesota, Minneapolis, USA
| | - A Hefetz
- George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
| | - T Reams
- Department of Entomology, Texas A&M University, College Station, USA
| | - O Rueppell
- Biology Department, University of North Carolina at Greensboro, Greensboro, USA
| |
Collapse
|
45
|
Honey bee predisposition of resistance to ubiquitous mite infestations. Sci Rep 2019; 9:7794. [PMID: 31127129 PMCID: PMC6534585 DOI: 10.1038/s41598-019-44254-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 05/07/2019] [Indexed: 11/18/2022] Open
Abstract
Host-parasite co-evolution history is lacking when parasites switch to novel hosts. This was the case for Western honey bees (Apis mellifera) when the ectoparasitic mite, Varroa destructor, switched hosts from Eastern honey bees (Apis cerana). This mite has since become the most severe biological threat to A. mellifera worldwide. However, some A. mellifera populations are known to survive infestations, largely by suppressing mite population growth. One known mechanism is suppressed mite reproduction (SMR), but the underlying genetics are poorly understood. Here, we take advantage of haploid drones, originating from one queen from the Netherlands that developed Varroa-resistance, whole exome sequencing and elastic-net regression to identify genetic variants associated with SMR in resistant honeybees. An eight variants model predicted 88% of the phenotypes correctly and identified six risk and two protective variants. Reproducing and non-reproducing mites could not be distinguished using DNA microsatellites, which is in agreement with the hypothesis that it is not the parasite but the host that adapted itself. Our results suggest that the brood pheromone-dependent mite oogenesis is disrupted in resistant hosts. The identified genetic markers have a considerable potential to contribute to a sustainable global apiculture.
Collapse
|
46
|
Wagoner KM, Spivak M, Rueppell O. Brood Affects Hygienic Behavior in the Honey Bee (Hymenoptera: Apidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2018; 111:2520-2530. [PMID: 30212863 DOI: 10.1093/jee/toy266] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Indexed: 06/08/2023]
Abstract
Despite receiving much attention, the ectoparasitic mite Varroa destructor (Anderson and Trueman) and the pathogens it vectors remain critical threats to the health of the honey bee Apis mellifera (Linnaeus) (Hymenoptera: Apidae). One promising intervention approach is the breeding of hygienic honey bees, which have an improved ability to detect and remove unhealthy brood from the colony, and are thus more resistant to Varroa. While much hygienic behavior-related research has focused on enhanced adult honey bee olfaction, less attention has been paid to the olfactory signals that originate inside the brood cell, triggering hygienic removal. Here, we hypothesized that selection for hygienic behavior in honey bees has influenced brood signaling, predicting that: 1) in a common social environment, removal rates differ among brood with different selective breeding histories, and 2) the removal rates of brood positively correlate to the hygiene level of the brood's colony of origin. To test these predictions, we cross-fostered brood subjected to control, wound, or Varroa treatment in unselected (UNS), Minnesota Hygienic (HYG), and Varroa-Sensitive Hygienic (VSH) colonies, and monitored individual brood cells for hygienic removal. Results confirmed both predictions, as brood from hygienic colonies was more likely to be removed than brood from UNS colonies, regardless of where the brood was fostered. These findings suggest that hygiene-related brood signals complement previously identified characteristics of hygienic adults, constituting an important mechanism of social immunity in honey bees. Thus, selective breeding for honey bee hygienic behavior may be improved through the utilization of field assays containing compounds related to larval signaling.
Collapse
Affiliation(s)
- Kaira M Wagoner
- Department of Biology, University of North Carolina at Greensboro, Eberhart Building, Greensboro, NC
| | - Marla Spivak
- Department of Entomology, University of Minnesota, Hodson Hall, St. Paul, MN
| | - Olav Rueppell
- Department of Biology, University of North Carolina at Greensboro, Eberhart Building, Greensboro, NC
| |
Collapse
|
47
|
Calla B, MacLean M, Liao LH, Dhanjal I, Tittiger C, Blomquist GJ, Berenbaum MR. Functional characterization of CYP4G11-a highly conserved enzyme in the western honey bee Apis mellifera. INSECT MOLECULAR BIOLOGY 2018; 27:661-674. [PMID: 29896786 DOI: 10.1111/imb.12516] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Determining the functionality of CYP4G11, the only CYP4G in the genome of the western honey bee Apis mellifera, can provide insight into its reduced CYP4 inventory. Toward this objective, CYP4G11 transcripts were quantified, and CYP4G11 was expressed as a fusion protein with housefly CPR in Sf9 cells. Transcript levels varied with age, task, and tissue type in a manner consistent with the need for cuticular hydrocarbon production to prevent desiccation or with comb wax production. Young larvae, with minimal need for desiccation protection, expressed CYP4G11 at very low levels. Higher levels were observed in nurses, and even higher levels in wax producers and foragers, the latter of which risk desiccation upon leaving the hive. Recombinant CYP4G11 readily converted octadecanal to n-heptadecane in a time-dependent manner, demonstrating its functions as an oxidative decarbonylase. CYP4G11 expression levels are high in antennae; heterologously expressed CYP4G11 converted tetradecanal to n-tridecane, demonstrating that it metabolizes shorter-chain aldehydes. Together, these findings confirm the involvement of CYP4G11 in cuticular hydrocarbon production and suggest a possible role in clearing pheromonal and phytochemical compounds from antennae. This possible dual functionality of CYP4G11, i.e., cuticular hydrocarbon and comb wax production and antennal odorant clearance, may explain how honey bees function with a reduced CYP4G inventory.
Collapse
Affiliation(s)
- B Calla
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - M MacLean
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, USA
| | - L-H Liao
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - I Dhanjal
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, USA
| | - C Tittiger
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, USA
| | - G J Blomquist
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, USA
| | - M R Berenbaum
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
48
|
Bauer D, Wegener J, Bienefeld K. Recognition of mite-infested brood by honeybee (Apis mellifera) workers may involve thermal sensing. J Therm Biol 2018; 74:311-316. [PMID: 29801643 DOI: 10.1016/j.jtherbio.2018.04.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 02/22/2018] [Accepted: 04/24/2018] [Indexed: 01/25/2023]
Abstract
Hygienic behavior, i.e. the removal of diseased or damaged brood by worker honey bees (Apis mellifera), is seen as one of the principal behavioral elements of this species' social immunity. Identification of the stimuli that trigger it would be helpful in searching for biochemical and molecular markers of this important breeding trait. While many studies at the genomic, transcriptomic, and behavioral level have pointed to the implication of chemical cues, we here hypothesized that thermal cues are alternatively/additionally involved. To test this hypothesis, we first measured whether infestation by the mite Varroa destructor (a condition known to induce hygienic behavior) leads to a thermal gradient between affected and unaffected brood. We found that infested brood cells were between 0.03 and 0.19 °C warmer than uninfested controls. Next, we tested whether artificially heating an area of a brood comb would increase the removal of infested or uninfested brood as compared to an unheated control area, and found that this was not the case. Finally, we investigated whether the heating of individual brood cells, as opposed to comb areas, would influence brood removal from cells adjacent to the heated one. This was the case for uninfested, though not for infested cells. We conclude that infestation by V. destructor leads to a heating of brood cells that should be perceivable by bees, and that small-scale temperature gradients can influence brood removal. This makes it appear possible that thermal cues play a role in triggering hygienic behavior of honey bees directed at varroa-infested larvae/pupae, although our results are insufficient to prove such an involvement.
Collapse
Affiliation(s)
- Daniel Bauer
- Bee Research Institute, F.-Engels-Straße 32, 16540 Hohen Neuendorf, Germany.
| | - Jakob Wegener
- Bee Research Institute, F.-Engels-Straße 32, 16540 Hohen Neuendorf, Germany.
| | - Kaspar Bienefeld
- Bee Research Institute, F.-Engels-Straße 32, 16540 Hohen Neuendorf, Germany.
| |
Collapse
|
49
|
Lawhorn CM, Schomaker R, Rowell JT, Rueppell O. Simple Comparative Analyses of Differentially Expressed Gene Lists May Overestimate Gene Overlap. J Comput Biol 2018; 25:606-612. [PMID: 29658777 DOI: 10.1089/cmb.2017.0262] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Comparing the overlap between sets of differentially expressed genes (DEGs) within or between transcriptome studies is regularly used to infer similarities between biological processes. Significant overlap between two sets of DEGs is usually determined by a simple test. The number of potentially overlapping genes is compared to the number of genes that actually occur in both lists, treating every gene as equal. However, gene expression is controlled by transcription factors that bind to a variable number of transcription factor binding sites, leading to variation among genes in general variability of their expression. Neglecting this variability could therefore lead to inflated estimates of significant overlap between DEG lists. With computer simulations, we demonstrate that such biases arise from variation in the control of gene expression. Significant overlap commonly arises between two lists of DEGs that are randomly generated, assuming that the control of gene expression is variable among genes but consistent between corresponding experiments. More overlap is observed when transcription factors are specific to their binding sites and when the number of genes is considerably higher than the number of different transcription factors. In contrast, overlap between two DEG lists is always lower than expected when the genetic architecture of expression is independent between the two experiments. Thus, the current methods for determining significant overlap between DEGs are potentially confounding biologically meaningful overlap with overlap that arises due to variability in control of expression among genes, and more sophisticated approaches are needed.
Collapse
Affiliation(s)
- Chelsea M Lawhorn
- 1 Department of Mathematics, Winthrop University , Rock Hill, South Carolina
| | - Rachel Schomaker
- 2 Department of Biology, Florida Southern College , Lakeland, Florida
| | - Jonathan T Rowell
- 3 Department of Mathematics and Statistics, University of North Carolina at Greensboro , Greensboro, North Carolina
| | - Olav Rueppell
- 4 Department of Biology, University of North Carolina at Greensboro , Greensboro, North Carolina
| |
Collapse
|
50
|
McAfee A, Chapman A, Iovinella I, Gallagher-Kurtzke Y, Collins TF, Higo H, Madilao LL, Pelosi P, Foster LJ. A death pheromone, oleic acid, triggers hygienic behavior in honey bees (Apis mellifera L.). Sci Rep 2018; 8:5719. [PMID: 29632403 PMCID: PMC5890279 DOI: 10.1038/s41598-018-24054-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/20/2018] [Indexed: 11/09/2022] Open
Abstract
Eusocial insects live in teeming societies with thousands of their kin. In this crowded environment, workers combat disease by removing or burying their dead or diseased nestmates. For honey bees, we found that hygienic brood-removal behavior is triggered by two odorants - β-ocimene and oleic acid - which are released from brood upon freeze-killing. β-ocimene is a co-opted pheromone that normally signals larval food-begging, whereas oleic acid is a conserved necromone across arthropod taxa. Interestingly, the odorant blend can induce hygienic behavior more consistently than either odorant alone. We suggest that the volatile β-ocimene flags hygienic workers' attention, while oleic acid is the death cue, triggering removal. Bees with high hygienicity detect and remove brood with these odorants faster than bees with low hygienicity, and both molecules are strong ligands for hygienic behavior-associated odorant binding proteins (OBP16 and OBP18). Odorants that induce low levels of hygienic behavior, however, are weak ligands for these OBPs. We are therefore beginning to paint a picture of the molecular mechanism behind this complex behavior, using odorants associated with freeze-killed brood as a model.
Collapse
Affiliation(s)
- Alison McAfee
- Department of Biochemistry & Molecular Biology and Michael Smith Laboratories, University of British Columbia, 2125 East Mall, Vancouver, British Columbia, Canada
| | - Abigail Chapman
- Department of Biochemistry & Molecular Biology and Michael Smith Laboratories, University of British Columbia, 2125 East Mall, Vancouver, British Columbia, Canada
| | - Immacolata Iovinella
- Dipartimento di Biologia Università degli Studi di Firenze Via Madonna del Piano 6, 50019, Sesto Fiorentino, Italy
| | - Ylonna Gallagher-Kurtzke
- Department of Biochemistry & Molecular Biology and Michael Smith Laboratories, University of British Columbia, 2125 East Mall, Vancouver, British Columbia, Canada
| | - Troy F Collins
- Department of Biochemistry & Molecular Biology and Michael Smith Laboratories, University of British Columbia, 2125 East Mall, Vancouver, British Columbia, Canada
| | - Heather Higo
- Department of Biochemistry & Molecular Biology and Michael Smith Laboratories, University of British Columbia, 2125 East Mall, Vancouver, British Columbia, Canada
| | - Lufiani L Madilao
- Wine Research Center, Food, Nutrition and Health Building, University of British Columbia, 2205 East Mall, Vancouver, British Columbia, Canada
| | - Paolo Pelosi
- Austrian Institute of Technology GmbH, Biosensor Technologies, 24 Konrad-Lorenzstrasse, Tulln, Austria
| | - Leonard J Foster
- Department of Biochemistry & Molecular Biology and Michael Smith Laboratories, University of British Columbia, 2125 East Mall, Vancouver, British Columbia, Canada.
| |
Collapse
|