1
|
Hsin KT, Lee H, Huang YC, Lin GJ, Lin PY, Lin YCJ, Chen PY. Lignocellulose degradation in bacteria and fungi: cellulosomes and industrial relevance. Front Microbiol 2025; 16:1583746. [PMID: 40351319 PMCID: PMC12063362 DOI: 10.3389/fmicb.2025.1583746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Accepted: 04/08/2025] [Indexed: 05/14/2025] Open
Abstract
Lignocellulose biomass is one of the most abundant resources for sustainable biofuels. However, scaling up the biomass-to-biofuels conversion process for widespread usage is still pending. One of the main bottlenecks is the high cost of enzymes used in key process of biomass degradation. Current research efforts are therefore targeted at creative solutions to improve the feasibility of lignocellulosic-degrading enzymes. One way is to engineer multi-enzyme complexes that mimic the bacterial cellulosomal system, known to increase degradation efficiency up to 50-fold when compared to freely-secreted enzymes. However, these designer cellulosomes are instable and less efficient than wild type cellulosomes. In this review, we aim to extensively analyze the current knowledge on the lignocellulosic-degrading enzymes through three aspects. We start by reviewing and comparing sets of enzymes in bacterial and fungal lignocellulose degradation. Next, we focus on the characteristics of cellulosomes in both systems and their feasibility to be engineered. Finally, we highlight three key strategies to enhance enzymatic lignocellulose degradation efficiency: discovering novel lignocellulolytic species and enzymes, bioengineering enzymes for improved thermostability, and structurally optimizing designer cellulosomes. We anticipate these insights to act as resources for the biomass community looking to elevate the usage of lignocellulose as biofuel.
Collapse
Affiliation(s)
- Kuan-Ting Hsin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Pingtung City, Taiwan
| | - HueyTyng Lee
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Yu-Chun Huang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Bioinformatics Program, Taiwan International Graduate Program, National Taiwan University, Taipei, Taiwan
- Bioinformatics Program, Institute of Statistical Science, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
| | - Guan-Jun Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan
| | - Pei-Yu Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Ying-Chung Jimmy Lin
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan
- Department of Life Science, National Taiwan University, Taipei, Taiwan
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Pao-Yang Chen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
2
|
Maati J, Polak J, Janczarek M, Grąz M, Smaali I, Jarosz-Wilkołazka A. Biochemical characterization of a recombinant laccase from Halalkalibacterium halodurans C-125 and its application in the biotransformation of organic compounds. Biotechnol Lett 2024; 46:1199-1218. [PMID: 39466517 PMCID: PMC11550293 DOI: 10.1007/s10529-024-03532-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 08/20/2024] [Accepted: 09/16/2024] [Indexed: 10/30/2024]
Abstract
OBJECTIVES This study aimed to produce an engineered recombinant laccase from extremophilic Halalkalibacterium halodurans C-125 (Lac-HhC-125) with higher protein yield, into a more active conformation and with properties that meet the fundamental needs of biotechnological application. RESULTS The rLac-HhC125 was partially purified by size exclusion chromatography and concentrated by ultrafiltration (10 kDa) with a yield of 57.6%. Oxidation reactions showed that adding 2 mM CuSO4 to the assay solution led to activating the laccase. To increase its initial activity, the rLac-HhC125 was treated at 50 °C for 20 min before the assays, improving its performance by fourfold using the syringaldazine as a substrate. When treated with EDTA, methanol, ethanol, and DMSO, the rLac-HhC125 maintained more than 80% of its original activity. Interestingly, the acetonitrile induced a twofold activity of the rLac-HhC125. The putative rLac-HhC125 demonstrated a capability of efficient transformation of different organic compounds at pH 6, known as dye precursors, into coloured molecules. CONCLUSION The rLac-HhC125 was active at high temperatures and alkaline pH, exhibited tolerance to organic solvents, and efficiently transformed different hydroxy derivatives into coloured compounds, which indicates that it can be used in various biotechnological processes.
Collapse
Affiliation(s)
- Jihene Maati
- Laboratory of Protein Engineering and Bioactive Molecules (LIP-MB-LR11ES24), National Institute of Applied Sciences and Technology INSAT-BP 676, University of Carthage, 1080, Tunis Cedex, Tunisia
| | - Jolanta Polak
- Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Monika Janczarek
- Department of Industrial and Environmental Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Marcin Grąz
- Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Issam Smaali
- Laboratory of Protein Engineering and Bioactive Molecules (LIP-MB-LR11ES24), National Institute of Applied Sciences and Technology INSAT-BP 676, University of Carthage, 1080, Tunis Cedex, Tunisia
| | - Anna Jarosz-Wilkołazka
- Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland.
| |
Collapse
|
3
|
Edith Ayala-Rodríguez A, Valdés-Rodríguez S, Enrique Olalde-Mathieu V, Arias-Padró M, Reyes-Moreno C, Olalde-Portugal V. Extracellular ligninases production and lignin degradation by Paenibacillus polymyxa. J GEN APPL MICROBIOL 2024; 70:n/a. [PMID: 38104982 DOI: 10.2323/jgam.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Bacteria represent an attractive source for the isolation and identification of potentially useful microorganisms for lignin depolymerization, a process required for the use of agricultural waste. In this work, ten autochthonous bacteria isolated from straw, cow manure, and composts were characterized for potential use in the biodelignification of the waste. A comparison of the ability to degrade lignin and the efficiency of ligninolytic enzymes was performed in bacteria grown in media with lignin as a sole carbon source (LLM, 3.5g/L lignin-alkali) and in complex media supplemented with All-Ban fiber (FLM, 1.5g/L). Bacterial isolates showed different abilities to degrade lignin, they decreased the lignin concentration from 7.6 to 18.6% in LLM and from 11.1 to 44.8% in FLM. They also presented the activity of manganese peroxidase, lignin peroxidases, and laccases with different specific activities. However, strain 26 identified as Paenibacillus polymyxa by sequencing the 16S rRNA showed the highest activity of lignin peroxidase and the ability to degrade efficiently lignocellulose. In addition, P. polymyxa showed the highest potential (desirability ≥ 0.795) related to the best combination of properties to depolymerize lignin from biomass. The results suggest that P. polymyxa has a coordinated lignin degradation system constituted of lignin peroxidase, manganese peroxidase, and laccase enzymes.
Collapse
Affiliation(s)
- Ana Edith Ayala-Rodríguez
- Programa Regional del Noroeste para el Doctorado en Biotecnología, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa
| | - Silvia Valdés-Rodríguez
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional, Unidad Irapuato
| | | | - María Arias-Padró
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional, Unidad Irapuato
| | - Cuauhtémoc Reyes-Moreno
- Programa Regional del Noroeste para el Doctorado en Biotecnología, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa
| | - Víctor Olalde-Portugal
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional, Unidad Irapuato
| |
Collapse
|
4
|
Xu Y, Anker Y, Talawar MP. Degradation of tetracycline, oxytetracycline & ampicillin by purified multiple copper oxidase like laccase from Stentrophomonas sp. YBX1. Braz J Microbiol 2024; 55:1529-1543. [PMID: 38340257 PMCID: PMC11153415 DOI: 10.1007/s42770-024-01247-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 01/02/2024] [Indexed: 02/12/2024] Open
Abstract
Multiple copper oxidase (MCO) like laccase is widely distributed in higher plant, fungi and bacteria. This study identified MCO like laccase producing bacterium isolated from a wastewater treatment plant based on 16S rRNA sequence analysis, and they were further confirmed by phylogenetic reconstruction. Biochemical and gene characterization of MCO like laccase from Stenotrophomonas sp. YBX1 is presented. Purification of MCO like laccase was carried out by ion exchange HQ Trap column and followed by gel filtration spheracryl S-100 column. The purified MCO like laccase from Stenotrophomonas sp. YBX1 shows a total activity of 1252 units and specific activity 391.2 U/mg and protein concentration 0.32 mg/mL. In SDS PAGE, the approximate molecular mass was found at 66 kDa and further confirmed from an MS spectrum of MALDI-TOF. The purified MCO like laccase is capable of degradation of antibiotics such as tetracycline completely, whereas oxytetracycline (78%) and ampicillin (62%) degraded within 96 min without any redox mediators at pH 5 and 30 ºC. Its degradation pathway was based on identification of metabolites by LC-MS spectrum. The enzymatic degradation may be used in advanced treatment of antibiotics containing wastewater.
Collapse
Affiliation(s)
- Yanbin Xu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yaakov Anker
- Department of Chemical Engineering, Ariel University, 40700, Ariel, Israel
| | - Manjunatha P Talawar
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
- Department of Chemical Engineering, Ariel University, 40700, Ariel, Israel.
- Department of Life Science, Garden City University, Bangalore, 580049, India.
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510 006, China.
| |
Collapse
|
5
|
Vandelook S, Bassleer B, Elsacker E, Peeters E. Effects of Orange Peel Extract on Laccase Activity and Gene Expression in Trametes versicolor. J Fungi (Basel) 2024; 10:370. [PMID: 38921357 PMCID: PMC11205045 DOI: 10.3390/jof10060370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/12/2024] [Accepted: 05/16/2024] [Indexed: 06/27/2024] Open
Abstract
The genome of Trametes versicolor encodes multiple laccase isozymes, the expression of which is responsive to various conditions. Here, we set out to investigate the potential of orange peel extract as an inducer of laccase production in this white-rot fungus, in comparison to the previously identified inducing chemical compound, veratryl alcohol. For four geographically distinct T. versicolor strains, a positive correlation has been observed between their oxidative activity and incubation time in liquid cultures. The addition of 20% orange peel extract or 5 mM veratryl alcohol caused a rapid increase in the oxidative potential of T. versicolor M99 after 24 h, with a more pronounced effect observed for the orange peel extract. To elucidate the underlying molecular mechanisms of the induced laccase activity, a transcriptional gene expression analysis was performed for the seven individual laccase genes in T. versicolor, revealing the upregulation of several laccase genes in response to the addition of each inducer. Notably, the gene encoding TvLac5 demonstrated a substantial upregulation in response to the addition of 20% orange peel extract, likely contributing to the observed increase in its oxidative potential. In conclusion, our results demonstrate that orange peels are a promising agro-industrial side stream for implementation as inducing agents in large-scale laccase production with T. versicolor.
Collapse
Affiliation(s)
| | | | | | - Eveline Peeters
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium; (S.V.); (E.E.)
| |
Collapse
|
6
|
Gu J, Qiu Q, Yu Y, Sun X, Tian K, Chang M, Wang Y, Zhang F, Huo H. Bacterial transformation of lignin: key enzymes and high-value products. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:2. [PMID: 38172947 PMCID: PMC10765951 DOI: 10.1186/s13068-023-02447-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024]
Abstract
Lignin, a natural organic polymer that is recyclable and inexpensive, serves as one of the most abundant green resources in nature. With the increasing consumption of fossil fuels and the deterioration of the environment, the development and utilization of renewable resources have attracted considerable attention. Therefore, the effective and comprehensive utilization of lignin has become an important global research topic, with the goal of environmental protection and economic development. This review focused on the bacteria and enzymes that can bio-transform lignin, focusing on the main ways that lignin can be utilized to produce high-value chemical products. Bacillus has demonstrated the most prominent effect on lignin degradation, with 89% lignin degradation by Bacillus cereus. Furthermore, several bacterial enzymes were discussed that can act on lignin, with the main enzymes consisting of dye-decolorizing peroxidases and laccase. Finally, low-molecular-weight lignin compounds were converted into value-added products through specific reaction pathways. These bacteria and enzymes may become potential candidates for efficient lignin degradation in the future, providing a method for lignin high-value conversion. In addition, the bacterial metabolic pathways convert lignin-derived aromatics into intermediates through the "biological funnel", achieving the biosynthesis of value-added products. The utilization of this "biological funnel" of aromatic compounds may address the heterogeneous issue of the aromatic products obtained via lignin depolymerization. This may also simplify the separation of downstream target products and provide avenues for the commercial application of lignin conversion into high-value products.
Collapse
Affiliation(s)
- Jinming Gu
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China
| | - Qing Qiu
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China
| | - Yue Yu
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China
| | - Xuejian Sun
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China
| | - Kejian Tian
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China
| | - Menghan Chang
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China
| | - Yibing Wang
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China
| | - Fenglin Zhang
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China
| | - Hongliang Huo
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China.
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, Changchun, 130117, China.
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Changchun, 130117, China.
| |
Collapse
|
7
|
Diefenbach T, Sumetzberger-Hasinger M, Braunschmid V, Konegger H, Heipieper HJ, Guebitz GM, Lackner M, Ribitsch D, Loibner AP. Laccase-mediated degradation of petroleum hydrocarbons in historically contaminated soil. CHEMOSPHERE 2024; 348:140733. [PMID: 37977536 DOI: 10.1016/j.chemosphere.2023.140733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/05/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
Laccases (EC1.10.3.2) have attracted growing attention in bioremediation research due to their high reactivity and substrate versatility. In this study, three genes for potential novel laccases were identified in an enrichment culture from contaminated field soil and recombinantly expressed in E. coli. Two of them, designated as PlL and BaL, were biochemically characterized regarding their optimal pH and temperature, kinetic parameters, and substrate versatility. In addition, lacasse PlL from Parvibaculum lavamentivorans was tested on historically contaminated soil. Treatment with PlL led to a significantly higher reduction of total petroleum hydrocarbons (83% w/w) compared to the microbial control (74% w/w). Hereby, PlL was especially effective in degrading hydrocarbons > C17. Their residual concentration was by 43% w/w lower than in the microbial treatment. In comparison to the laccase from Myceliophthora thermophila (MtL), PlL treatment was not significantly different for the fraction > C17 but resulted in a 30% (w/w) lower residual concentration for hydrocarbons < C18. In general, PlL can promote the degradation of petroleum hydrocarbons. As a consequence, it can be applied to reduce remediation time by duly achieving remediation target concentrations needed for site closure.
Collapse
Affiliation(s)
- Thore Diefenbach
- Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences (BOKU), Tulln, Austria
| | - Marion Sumetzberger-Hasinger
- Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences (BOKU), Tulln, Austria
| | - Verena Braunschmid
- Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences (BOKU), Tulln, Austria
| | - Hannes Konegger
- Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences (BOKU), Tulln, Austria
| | - Hermann J Heipieper
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Georg M Guebitz
- Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences (BOKU), Tulln, Austria
| | | | - Doris Ribitsch
- Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences (BOKU), Tulln, Austria.
| | - Andreas P Loibner
- Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences (BOKU), Tulln, Austria
| |
Collapse
|
8
|
Li J, Liu Z, Zhao J, Wang G, Xie T. Molecular insights into substrate promiscuity of CotA laccase catalyzing lignin-phenol derivatives. Int J Biol Macromol 2024; 256:128487. [PMID: 38042324 DOI: 10.1016/j.ijbiomac.2023.128487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 12/04/2023]
Abstract
CotA laccases are multicopper oxidases known for promiscuously oxidizing a broad range of substrates. However, studying substrate promiscuity is limited by the complexity of electron transfer (ET) between substrates and laccases. Here, a systematic analysis of factors affecting ET including electron donor acceptor coupling (ΗDA), driving force (ΔG) and reorganization energy (λ) was done. Catalysis rates of syringic acid (SA), syringaldehyde (SAD) and acetosyringone (AS) (kcat(SAD) > kcat(SA) > kcat(AS)) are not entirely dependent on the ability to form phenol radicals indicated by ΔG and λ calculated by Density Functional Theory (SA < SAD ≈ AS). In determined CotA/SA and CotA/SAD structures, SA and SAD bound at 3.9 and 3.7 Å away from T1 Cu coordinating His419 ensuring a similar ΗDA. Abilities of substrate to form phenol radicals could mainly account for difference between kcat(SAD) and kcat(SA). Furthermore, substrate pocket is solvent exposed at the para site of substrate's phenol hydroxyl, which would destabilize binding of AS in the same orientation and position resulting in low kcat. Our results indicated shallow partially covered binding site with propensity of amino acids distribution might help CotA discriminate lignin-phenol derivatives. These findings give new insights for developing specific catalysts for industrial application.
Collapse
Affiliation(s)
- Jiakun Li
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; Key Laboratory of Environmental Microbiology of Sichuan Province, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongchuan Liu
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; Key Laboratory of Environmental Microbiology of Sichuan Province, Chengdu 610041, China
| | - Jianwei Zhao
- Shenzhen HUASUAN Technology Co. Ltd., Shenzhen 518055, China
| | - Ganggang Wang
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; Key Laboratory of Environmental Microbiology of Sichuan Province, Chengdu 610041, China
| | - Tian Xie
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; Key Laboratory of Environmental Microbiology of Sichuan Province, Chengdu 610041, China.
| |
Collapse
|
9
|
Takur KR, Kohli M, Pande K, Malik A, Deshmukh A, Kayal A, Kommoju PR, Kulkarni N. In silico studies disclose the underlying link between binding affinity and redox potential in laccase isoforms. J Biomol Struct Dyn 2023; 41:7265-7276. [PMID: 36102280 DOI: 10.1080/07391102.2022.2120540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/24/2022] [Indexed: 10/14/2022]
Abstract
Laccases are copper-containing enzymes belonging to the family of multicopper oxidases (MCOs). All MCOs use molecular oxygen to oxidize a wide range of organic compounds by radical catalysis. One of the key fundamental properties of laccases is having high or low redox potentials depending on the active site organization. Several experimental studies have been done to rationalize the high and low redox potential laccases (LRPL), however, molecular understanding is still lacking. In this work, we explored the proteomic profile of laccases produced in the fungal cultures, specifically induced with lignocellulosic biomass such as rice straw. This study was undertaken to explain the differences in the high redox and low redox potential values of different laccases using in-silico approaches. Proteomic profiling and structural and sequence analysis revealed a low level of similarity among them. Docking analyses and molecular dynamics simulation analysis revealed that high redox potential laccases (HRPL) are having good binding affinity compared to low or medium redox potential laccases (MRPL). The stability of these complexes was further analyzed based on reactive distances, active site volume comparison and a number of tunnel formations that were observed to be significantly higher for HRPL. Our results indicate that the number of tunnel formations calculated from the simulation's trajectories and available water molecules at the T3 site directly correlates with the laccases' redox potentials. This study will be helpful and provide valuable inputs for the designing of new laccases to improve lignin degradation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | | | | | | | - Apoorva Deshmukh
- Praj Matrix R & D Centre, Division of Praj Industries Ltd, Pune, India
| | | | | | | |
Collapse
|
10
|
Lei L, Zhao L, Hou Y, Yue C, Liu P, Zheng Y, Peng W, Yang J. An Inferred Ancestral CotA Laccase with Improved Expression and Kinetic Efficiency. Int J Mol Sci 2023; 24:10901. [PMID: 37446078 DOI: 10.3390/ijms241310901] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/17/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Laccases are widely used in industrial production due to their broad substrate availability and environmentally friendly nature. However, the pursuit of laccases with superior stability and increased heterogeneous expression to meet industry demands appears to be an ongoing challenge. To address this challenge, we resurrected five ancestral sequences of laccase BsCotA and their homologues. All five variants were successfully expressed in soluble and functional forms with improved expression levels in Escherichia coli. Among the five variants, three exhibited higher catalytic rates, thermal stabilities, and acidic stabilities. Notably, AncCotA2, the best-performing variant, displayed a kcat/KM of 7.5 × 105 M-1·s-1, 5.2-fold higher than that of the wild-type BsCotA, an improved thermo- and acidic stability, and better dye decolorization ability. This study provides a laccase variant with high application potential and presents a new starting point for future enzyme engineering.
Collapse
Affiliation(s)
- Lei Lei
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Lijun Zhao
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yiqia Hou
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Chen Yue
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Pulin Liu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yanli Zheng
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Wenfang Peng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Science, Hubei University, Wuhan 430062, China
| | - Jiangke Yang
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
11
|
Yadav S, Tripathi S, Purchase D, Chandra R. Development of a biofilm-forming bacterial consortium and quorum sensing molecules for the degradation of lignin-containing organic pollutants. ENVIRONMENTAL RESEARCH 2023; 226:115618. [PMID: 36921788 DOI: 10.1016/j.envres.2023.115618] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 02/18/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
The presence of lignin along with other pollutants makes effluent more complex when it is discharged from Pulp and paper mills. The present study investigates the use of biofilm-forming bacteria isolated from pulp paper mill effluent contaminated sites (PPMECSs) for lignin degradation. Isolated biofilm-forming and lignin-degrading bacteria were identified as Bacillus subtilis, Enterobacter cancerogenus, and Bacillus licheniformis by 16S rRNA gene sequencing. Thin liquid chromatography (TLC) analysis showed that the consortium of bacteria produced acyl-homoserine lactone (AHL) as quorum sensing molecules and extracellular polymeric substances (EPS) that protect the bacterial consortium under unfavorable conditions. The potential consortium was able to reduce lignin (900 ppm) by 73% after 8 days of incubation in a minimal salt medium containing kraft lignin and glucose at pH 7.0 and 37 °C as compared to individual strains. The degradation by-products were identified as amides, alcohols, and acids. The major organic pollutants in the effluent were reduced after treatment of the constructed consortium, thus confirming active biotransformation and biodegradation of the lignin. Microscopic examination also indicated the presence of lignin induced biofilm formation. Hence, the constructed biofilm-forming bacterial consortia based on quorum sensing offered a sustainable and effective solution to treat lignin-containing complex pollutants.
Collapse
Affiliation(s)
- Sangeeta Yadav
- Department of Microbiology, Dr. Shakuntala Misra National Rehabilitation University, Lucknow, 226017, Uttar Pradesh, India; Department of Botany, Vaishno Devi Prashikshan Mahavidyalaya, Godahi, Kunda, Pratapgarh, Uttar Pradesh, India.
| | - Sonam Tripathi
- Department of Environmental Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, 226025, Uttar Pradesh, India
| | - Diane Purchase
- Department of Natural Sciences, Faculty of Science and Technology, Middlesex University, The Burroughs, Hendon, London, England, NW4 4BT, UK
| | - Ram Chandra
- Department of Environmental Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, 226025, Uttar Pradesh, India.
| |
Collapse
|
12
|
Tan F, Cheng J, Zhang Y, Jiang X, Liu Y. Genomics analysis and degradation characteristics of lignin by Streptomyces thermocarboxydus strain DF3-3. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:78. [PMID: 35831866 PMCID: PMC9277890 DOI: 10.1186/s13068-022-02175-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 07/01/2022] [Indexed: 11/27/2022]
Abstract
Background Lignocellulose is an important raw material for biomass-to-energy conversion, and it exhibits a complex but inefficient degradation mechanism. Microbial degradation is promising due to its environmental adaptability and biochemical versatility, but the pathways used by microbes for lignin degradation have not been fully studied. Degradation intermediates and complex metabolic pathways require more study. Results A novel actinomycete DF3-3, with the potential for lignin degradation, was screened and isolated. After morphological and molecular identification, DF3-3 was determined to be Streptomyces thermocarboxydus. The degradation of alkali lignin reached 31% within 15 days. Manganese peroxidase and laccase demonstrated their greatest activity levels, 1821.66 UL−1 and 1265.58 UL−1, respectively, on the sixth day. The highest lignin peroxidase activity was 480.33 UL−1 on the fourth day. A total of 19 lignin degradation intermediates were identified by gas chromatography–mass spectrometry (GC–MS), including 9 aromatic compounds. Genome sequencing and annotation identified 107 lignin-degrading enzyme-coding genes containing three core enzymatic systems for lignin depolymerization: laccases, peroxidases and manganese peroxidase. In total, 7 lignin metabolic pathways were predicted. Conclusions Streptomyces thermocarboxydus strain DF3-3 has good lignin degradation ability. Degradation products and genomics analyses of DF3-3 show that it has a relatively complete lignin degradation pathway, including the β-ketoadipate pathway and peripheral reactions, gentisate pathway, anthranilate pathway, homogentisic pathway, and catabolic pathway for resorcinol. Two other pathways, the phenylacetate–CoA pathway and the 2,3-dihydroxyphenylpropionic acid pathway, are predicted based on genome data alone. This study provides the basis for future characterization of potential biotransformation enzyme systems for biomass energy conversion. Supplementary Information The online version contains supplementary material available at 10.1186/s13068-022-02175-1.
Collapse
|
13
|
Microaerobic conditions enhance laccase production from Rheinheimera sp. in an economical medium. Arch Microbiol 2022; 204:562. [PMID: 35980477 DOI: 10.1007/s00203-022-03170-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 05/19/2022] [Accepted: 08/04/2022] [Indexed: 12/06/2022]
Abstract
Statistical optimization of aeration conditions viz. aerobic, microaerobic and anaerobic, was performed using response surface methodology (RSM) utilizing soybean meal as medium to enhance the production of laccase from Rheinheimera sp. Maximum laccase yield (18.48 × 105 U/L) was obtained under microaerobic (static) conditions sustained for 12 h in tandem with 26 h aerobically (150 rpm) grown culture, which was 17.03-fold higher than laccase production in the starting M162 medium under aerobic conditions (150 rpm). The reduction in incubation time from 72 to 38 h and utilization of cost-effective soybean meal as medium, which is easily available from local market, have provided a promising, eco-friendly method of laccase enzyme production. Enhanced expression of laccase gene under microaerobic conditions corresponded to the increased expression of fnr (fumarate nitrate reductase) gene, the oxygen sensing global regulator. The putative FNR-binding site upstream of laccase transcription initiation site was predicted to play an imperative role in Rheinheimera sp. adaptation from aerobic to microaerobic conditions and for enhanced laccase production.
Collapse
|
14
|
Zhang N, Ding M, Yuan Y. Current Advances in Biodegradation of Polyolefins. Microorganisms 2022; 10:1537. [PMID: 36013955 PMCID: PMC9416408 DOI: 10.3390/microorganisms10081537] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/22/2022] [Accepted: 07/27/2022] [Indexed: 11/20/2022] Open
Abstract
Polyolefins, including polyethylene (PE), polypropylene (PP) and polystyrene (PS), are widely used plastics in our daily life. The excessive use of plastics and improper handling methods cause considerable pollution in the environment, as well as waste of energy. The biodegradation of polyolefins seems to be an environmentally friendly and low-energy consumption method for plastics degradation. Many strains that could degrade polyolefins have been isolated from the environment. Some enzymes have also been identified with the function of polyolefin degradation. With the development of synthetic biology and metabolic engineering strategies, engineered strains could be used to degrade plastics. This review summarizes the current advances in polyolefin degradation, including isolated and engineered strains, enzymes and related pathways. Furthermore, a novel strategy for polyolefin degradation by artificial microbial consortia is proposed, which would be helpful for the efficient degradation of polyolefin.
Collapse
Affiliation(s)
- Ni Zhang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (N.Z.); (Y.Y.)
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Mingzhu Ding
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (N.Z.); (Y.Y.)
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Yingjin Yuan
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (N.Z.); (Y.Y.)
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| |
Collapse
|
15
|
Current Progress and Future Perspectives on the Use of Bacillus clausii. Microorganisms 2022; 10:microorganisms10061246. [PMID: 35744764 PMCID: PMC9230978 DOI: 10.3390/microorganisms10061246] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 12/12/2022] Open
Abstract
Bacillus clausii is a probiotic that benefits human health. Its key characteristics include the ability to form spores; the resulting tolerance to heat, acid, and salt ensures safe passage through the human gastrointestinal tract with no loss of cells. Although B. clausii has been widely used for many decades, the beneficial properties of other probiotics, such as Lactobacillus spp. and Bifidobacterium spp., are better disseminated in the literature. In this review, we summarize the physiological, antimicrobial, and immunomodulatory properties of probiotic B. clausii strains. We also describe findings from studies that have investigated B. clausii probiotics from the perspective of quality and safety. We highlight innovative properties based on biochemical investigations of non-probiotic strains of B. clausii, revealing that B. clausii may have further health benefits in other therapeutic areas.
Collapse
|
16
|
Chang F, Wu L, Xiong Z, Yang Y, Xia X, Wu Q, Ge C, Chen H. Light-induced expression of a novel marine laccase in Escherichia coli from Marinomonas profundimaris and its application in synthetic dye decolorization. Protein Expr Purif 2022; 197:106108. [DOI: 10.1016/j.pep.2022.106108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 04/30/2022] [Accepted: 05/02/2022] [Indexed: 11/16/2022]
|
17
|
Tepkasikul P, Santiyanont P, Booncharoen A, Abhisingha M, Mhuantong W, Chantarasakha K, Pitaksutheepong C, Visessanguan W, Tepaamorndech S. The functional starter and its genomic insight for histamine degradation in fish sauce. Food Microbiol 2022; 104:103988. [DOI: 10.1016/j.fm.2022.103988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/03/2021] [Accepted: 01/13/2022] [Indexed: 12/15/2022]
|
18
|
Zhou Y, You S, Zhang J, Wu M, Yan X, Zhang C, Liu Y, Qi W, Su R, He Z. Copper ions binding regulation for the high-efficiency biodegradation of ciprofloxacin and tetracycline-HCl by low-cost permeabilized-cells. BIORESOURCE TECHNOLOGY 2022; 344:126297. [PMID: 34748981 DOI: 10.1016/j.biortech.2021.126297] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
Cu2+ plays a decisive role for the bio-oxidation in the active center of laccase. In the fermentation-purified process, the loss of Cu2+ reduces the activity and the high cost limits the application of laccase. In this study, a fermentation-permeabilization combined process were developed which based on the regulation of Cu2+ binding time to produce the permeabilized-cells containing laccase, in which Cu2+ can enter the cells freely to greatly improve the laccase activity and reduce the immobilization cost by about 19 times. So, the permeabilized-cells is suitable for biodegradation of antibiotic pollution in the environment, which was applied for the biodegradation of ciprofloxacin (CIP) and tetracycline-HCl (TCH) and the degradation efficiency reached 95.42% and 98.73%, respectively, with low ecotoxicity of the degradation products. Finally, the degradation mechanism was analyzed theoretically by molecular docking. Therefore, this study provided a low-cost, eco-friendly, and widely applicable method for organic pollutants removal.
Collapse
Affiliation(s)
- Yu Zhou
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Shengping You
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
| | - Jiaxing Zhang
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Min Wu
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Xiaohui Yan
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Chengyu Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Yuxuan Liu
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Wei Qi
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China; Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, PR China.
| | - Rongxin Su
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China; Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, PR China
| | - Zhimin He
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, PR China
| |
Collapse
|
19
|
Conversion of lignin-derived 3-methoxycatechol to the natural product purpurogallin using bacterial P450 GcoAB and laccase CueO. Appl Microbiol Biotechnol 2021; 106:593-603. [PMID: 34971410 DOI: 10.1007/s00253-021-11738-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/02/2021] [Accepted: 12/11/2021] [Indexed: 01/02/2023]
Abstract
Purpurogallin is a natural benzotropolone extracted from Quercus spp, which has antioxidant, anticancer, and anti-inflammatory properties. Purpurogallin is typically synthesized from pyrogallol using enzymatic or metal catalysts, neither economically feasible nor environmentally friendly. 3-Methoxycatechol (3-MC) is a lignin-derived renewable chemical with the potential to be a substrate for the biosynthesis of purpurogallin. In this study, we designed a pathway to produce purpurogallin from 3-MC. We first characterized four bacterial laccases and identified the laccase CueO from Escherichia coli, which converts pyrogallol to purpurogallin. Then, we used CueO and the P450 GcoAB reported to convert 3-MC to pyrogallol, to construct a method for producing purpurogallin directly from 3-MC. A total of 0.21 ± 0.05 mM purpurogallin was produced from 5 mM 3-MC by whole-cell conversion. This study provides a new method to enable efficient and sustainable synthesis of purpurogallin and offers new insights into lignin valorization. KEY POINTS: • Screening four bacterial laccases for converting pyrogallol to purpurogallin. • Laccase CueO from Escherichia coli presenting the activity for purpurogallin yield. • A novel pathway for converting lignin-derived 3-methoxycatechol to purpurogallin.
Collapse
|
20
|
Martini MC, Berini F, Ausec L, Casciello C, Vacca C, Pistorio M, Lagares A, Mandic-Mulec I, Marinelli F, Del Papa MF. Identification and Characterization of a Novel Plasmid-Encoded Laccase-Like Multicopper Oxidase from Ochrobactrum sp. BF15 Isolated from an On-Farm Bio-Purification System. Food Technol Biotechnol 2021; 59:519-529. [PMID: 35136375 PMCID: PMC8753806 DOI: 10.17113/ftb.59.04.21.7253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 10/20/2021] [Indexed: 11/23/2022] Open
Abstract
RESEARCH BACKGROUND In recent decades, laccases (p-diphenol-dioxygen oxidoreductases; EC 1.10.3.2) have attracted the attention of researchers due to their wide range of biotechnological and industrial applications. Laccases can oxidize a variety of organic and inorganic compounds, making them suitable as biocatalysts in biotechnological processes. Even though the most traditionally used laccases in the industry are of fungal origin, bacterial laccases have shown an enormous potential given their ability to act on several substrates and in multiple conditions. The present study aims to characterize a plasmid-encoded laccase-like multicopper oxidase (LMCO) from Ochrobactrum sp. BF15, a bacterial strain previously isolated from polluted soil. EXPERIMENTAL APPROACH We used in silico profile hidden Markov models to identify novel laccase-like genes in Ochrobactrum sp. BF15. For laccase characterization, we performed heterologous expression in Escherichia coli, purification and activity measurement on typical laccase substrates. RESULTS AND CONCLUSIONS Profile hidden Markov models allowed us to identify a novel LMCO, named Lac80. In silico analysis of Lac80 revealed the presence of three conserved copper oxidase domains characteristic of three-domain laccases. We successfully expressed Lac80 heterologously in E. coli, allowing us to purify the protein for further activity evaluation. Of thirteen typical laccase substrates tested, Lac80 showed lower activity on 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), pyrocatechol, pyrogallol and vanillic acid, and higher activity on 2,6-dimethoxyphenol. NOVELTY AND SCIENTIFIC CONTRIBUTION Our results show Lac80 as a promising laccase for use in industrial applications. The present work shows the relevance of bacterial laccases and highlights the importance of environmental plasmids as valuable sources of new genes encoding enzymes with potential use in biotechnological processes.
Collapse
Affiliation(s)
- María Carla Martini
- IBBM - Institute of Biotechnology and Molecular Biology, CONICET - Department of Biological Sciences, Faculty of Exact Sciences, National University of La Plata, Calles 47 y 115 (1900) La Plata, Argentina
| | - Francesca Berini
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy
| | - Luka Ausec
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Carmine Casciello
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy
| | - Carolina Vacca
- IBBM - Institute of Biotechnology and Molecular Biology, CONICET - Department of Biological Sciences, Faculty of Exact Sciences, National University of La Plata, Calles 47 y 115 (1900) La Plata, Argentina
| | - Mariano Pistorio
- IBBM - Institute of Biotechnology and Molecular Biology, CONICET - Department of Biological Sciences, Faculty of Exact Sciences, National University of La Plata, Calles 47 y 115 (1900) La Plata, Argentina
| | - Antonio Lagares
- IBBM - Institute of Biotechnology and Molecular Biology, CONICET - Department of Biological Sciences, Faculty of Exact Sciences, National University of La Plata, Calles 47 y 115 (1900) La Plata, Argentina
| | - Ines Mandic-Mulec
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Flavia Marinelli
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy
| | - María Florencia Del Papa
- IBBM - Institute of Biotechnology and Molecular Biology, CONICET - Department of Biological Sciences, Faculty of Exact Sciences, National University of La Plata, Calles 47 y 115 (1900) La Plata, Argentina
| |
Collapse
|
21
|
Annadurai Y, Balasubramanian B, Arumugam VA, Liu W, Pushparaj K, Pappusamy M, Kuchi Bhotla H, Meyyazhagan A, Easwaran M, Piramanayagam S. Comprehensive strategies of Lignocellulolytic enzyme production from microbes and their applications in various commercial-scale faculties. NATURAL RESOURCES FOR HUMAN HEALTH 2021; 2:1-31. [DOI: 10.53365/nrfhh/143683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/05/2021] [Indexed: 01/12/2025]
Abstract
Activities of anthropological organisms lead to the production of massive lignocellulosic waste every year and these lignocellulolytic enzymes plays crucial role in developing eco-friendly, sustainable and economical methods for decomposing and pre-treating the biomass to produce biofuels, organic acids, feeds and enzymes. Lignocellulolytic enzymes sustainably hydrolyse the biomass and can be utilized in wide range of applications such as personal care, pharmaceutical, biofuel release, sewage treatment, food and beverage industries. Every year a significant ton of biomass waste is released and insight on these crucial enzymes could establish in all the industries. However, due to the increased demand for compost materials, biomass degradation has resulted in composting processes. Several methods for improving compost amount and quality have been explored, including increasing decomposer inoculums, stimulating microbial activity, and establishing a decomposable environment. All of these prerequisites are met by biotechnological applications. Biotechnological procedures are used to improve the activity of enzymes on biomass. It leads to an adequate supply of compost and base materials for enterprises. In terms of effectiveness and stability during the breakdown process, lignocellulolytic enzymes derived from genetically modified species outperformed naturally derived lignocellulolytic enzymes. It has the potential to increase the quality and output of by-products. This review discussed the development of lignocellulolytic enzyme families and their widespread applications in a variety of industries such as olive oil extraction, carotenoid extraction, waste management, pollution control, second-generation bio-ethanol production, textile and dyeing, pharmaceuticals, pulp and paper, animal feed, food processing industries, detergent, and agricultural industries.
Collapse
|
22
|
Yang C, Ma L, Wang X, Xing Y, Lü X. A Novel Polyphenol Oxidoreductase OhLac from Ochrobactrum sp. J10 for Lignin Degradation. Front Microbiol 2021; 12:694166. [PMID: 34671322 PMCID: PMC8521193 DOI: 10.3389/fmicb.2021.694166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/26/2021] [Indexed: 11/13/2022] Open
Abstract
Identifying the enzymes involved in lignin degradation by bacteria is important in studying lignin valorization to produce renewable chemical products. In this paper, the catalytic oxidation of lignin by a novel multi-copper polyphenol oxidoreductase (OhLac) from the lignin degrader Ochrobactrum sp. J10 was explored. Following its expression, reconstitution, and purification, a recombinant enzyme OhLac was obtained. The OhLac enzyme was characterized kinetically against a range of substrates, including ABTS, guaiacol, and 2,6-DMP. Moreover, the effects of pH, temperature, and Cu2+ on OhLac activity and stability were determined. Gas chromatography-mass spectrometer (GC-MS) results indicated that the β-aryl ether lignin model compound guaiacylglycerol-β-guaiacyl ether (GGE) was oxidized by OhLac to generate guaiacol and vanillic acid. Molecular docking analysis of GGE and OhLac was then used to examine the significant amino residues and hydrogen bonding sites in the substrate–enzyme interaction. Altogether, we were able to investigate the mechanisms involved in lignin degradation. The breakdown of the lignocellulose materials wheat straw, corn stalk, and switchgrass by the recombinant OhLac was observed over 3 days, and the degradation results revealed that OhLac plays a key role in lignin degradation.
Collapse
Affiliation(s)
- Chenxian Yang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China.,College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Lingling Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling, China.,Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Xin Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yuqi Xing
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
23
|
Novel Transaminase and Laccase from Streptomyces spp. Using Combined Identification Approaches. Catalysts 2021. [DOI: 10.3390/catal11080919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Three Streptomyces sp. strains with a multitude of target enzymatic activities confirmed by functional screening, namely BV129, BV286 and BV333, were subjected to genome sequencing aiming at the annotation of genes of interest, in-depth bioinformatics characterization and functional expression of the biocatalysts. A whole-genome shotgun sequencing followed by de novo genome assembly and annotation was performed revealing genomes of 6.4, 9.4 and 7.3 Mbp, respectively. Functional annotation of the proteins of interest resulted in between 2047 and 2763 putative targets. Among the various enzymatic activities that the three Streptomyces strains demonstrated to produce by functional screening, we focused our attention on transaminases (TAs) and laccases due to their high biocatalytic potential. Bioinformatics search allowed the identification of a putative TA from Streptomyces sp. BV333 as a potentially novel broad substrate scope TA and a putative laccase from Streptomyces sp. BV286 as potentially novel blue multicopper oxidase. The two sequences were cloned and overexpressed in Escherichia coli and the two novel enzymes, transaminase Sbv333-TA and laccase Sbv286-LAC, were characterized. Interestingly, both enzymes resulted to be exceptionally thermostable, Sbv333-TA showing a melting temperature (TM = 85 °C) only slightly lower compared to the TM of the most thermostable transaminases described to date (87–88 °C) and Sbv286-LAC being even thermoactivated at temperature >60 °C. Moreover, Sbv333-TA showed a broad substrate scope and remarkably demonstrated to be active in the transamination of β-ketoesters, which are rarely accepted by currently known TAs. On the other hand, Sbv286-LAC showed an improved activity in the presence of the cosolvent acetonitrile. Overall, it was shown that a combination of approaches from standard microbiological and biochemical screens to genome sequencing and analysis is required to afford novel and functional biocatalysts.
Collapse
|
24
|
Genome mining reveals the genes of carboxypeptidase for OTA-detoxification in Bacillus subtilis CW14. Int J Biol Macromol 2021; 186:800-810. [PMID: 34284053 DOI: 10.1016/j.ijbiomac.2021.07.085] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 01/07/2023]
Abstract
Bacillus subtilis CW14, isolated from fresh elk droppings in Beijing Zoo, is a Gram-positive, conferred Generally Recognized as Safe (GRAS) bacterium with the capacity of ochratoxin A (OTA) detoxification. The genome sequence of the CW14 strain showed a size of 4,287,522 bp with 44.06% GC content. It was predicted many putative enzymes involved in degrading mycotoxin by analyzing the signal peptides and the transmembrane regions. Nine extracellular enzymes were predicted relating to OTA detoxification, including four D-Ala-D-Ala carboxypeptidases, two hydrolases, two amidases, and one lactamase. Indeed, two of the carboxypeptidase genes dacA and dacB, expressed in Escherichia coli, were verified contributing to OTA detoxification. DacA and OTA were mixed incubated for 24 h, and the degradation rate reached 71.3%. After purification, the concentration of recombinant DacA protein was 0.5 mg/mL. Bacillus subtilis CW14 and its carboxypeptidases may be used as OTA detoxification agents in food and feed industry production.
Collapse
|
25
|
Trubitsina LI, Abdullatypov AV, Larionova AP, Trubitsin IV, Alferov SV, Ponamoreva ON, Leontievsky AA. Expression of thermophilic two-domain laccase from Catenuloplanes japonicus in Escherichia coli and its activity against triarylmethane and azo dyes. PeerJ 2021; 9:e11646. [PMID: 34221729 PMCID: PMC8236229 DOI: 10.7717/peerj.11646] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/29/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Two-domain laccases are copper-containing oxidases found in bacteria in the beginning of 2000ths. Two-domain laccases are known for their thermal stability, wide substrate specificity and, the most important of all, their resistance to so-called «strong inhibitors» of classical fungal laccases (azides, fluorides). Low redox potential was found to be specific for all the two-domain laccases, due to which these enzymes lost the researchers' interest as potentially applicable for various biotechnological purposes, such as bioremediation. Searching, obtaining and studying the properties of novel two-domain laccases will help to obtain an enzyme with high redox-potential allowing its practical application. METHODS A gene encoding two-domain laccase was identified in Catenuloplanes japonicus genome, cloned and expressed in an Echerichia coli strain. The protein was purified to homogeneity by immobilized metal ion affinity chromatography. Its molecular properties were studied using electrophoresis in native and denaturing conditions. Physico-chemical properties, kinetic characteristics, substrate specificity and decolorization ability of laccase towards triphenylmethane dyes were measured spectrophotometrically. RESULTS A novel two-domain recombinant laccase CjSL appeared to be a multimer with a subunit molecular mass of 37 kDa. It oxidized a wide range of phenolic substrates (ferulic acid, caffeic acid, hydroquinone, catechol, etc.) at alkaline pH, while oxidizing of non phenolic substrates (K4[Fe(CN)6], ABTS) was optimal at acidic pH. The UV-visible absorption spectrum of the purified enzyme was specific for all two-domain laccases with peak of absorption at 600 nm and shoulder at 340 nm. The pH optima of CjSL for oxidation of ABTS and 2, 6-DMP substrates were 3.6 and 9.2 respectively. The temperature optimum was 70 °C. The enzyme was most stable in neutral-alkaline conditions. CjSL retained 53% activity after pre-incubation at 90 °C for 60 min. The enzyme retained 26% activity even after 60 min of boiling. The effects of NaF, NaN3, NaCl, EDTA and 1,10-phenanthroline on enzymatic activity were investigated. Only 1,10-phenanthroline reduced laccase activity under both acidic and alkaline conditions. Laccase was able to decolorize triphenylmethane dyes and azo-dyes. ABTS and syringaldehyde were effective mediators for decolorization. The efficacy of dye decolorization depended on pH of the reaction medium.
Collapse
Affiliation(s)
- Liubov Igorevna Trubitsina
- G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences – A Separate Subdivision of PSCBR RAS (IBPM RAS), Pushchino, Moscow Region, Russian Federation
| | - Azat Vadimovich Abdullatypov
- Institute of Basic Biological Problems of the Russian Academy of Sciences – A Separate Subdivision of PSCBR RAS (IBBP RAS), Pushchino, Moscow Region, Russian Federation
| | - Anna Petrovna Larionova
- G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences – A Separate Subdivision of PSCBR RAS (IBPM RAS), Pushchino, Moscow Region, Russian Federation
- Pushchino State Institute of Natural Sciences, Pushchino, Moscow Region, Russian Federation
| | - Ivan Vasilyevich Trubitsin
- G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences – A Separate Subdivision of PSCBR RAS (IBPM RAS), Pushchino, Moscow Region, Russian Federation
| | | | | | - Alexey Arkadyevich Leontievsky
- G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences – A Separate Subdivision of PSCBR RAS (IBPM RAS), Pushchino, Moscow Region, Russian Federation
- Pushchino State Institute of Natural Sciences, Pushchino, Moscow Region, Russian Federation
| |
Collapse
|
26
|
Ardila-Leal LD, Poutou-Piñales RA, Pedroza-Rodríguez AM, Quevedo-Hidalgo BE. A Brief History of Colour, the Environmental Impact of Synthetic Dyes and Removal by Using Laccases. Molecules 2021; 26:3813. [PMID: 34206669 PMCID: PMC8270347 DOI: 10.3390/molecules26133813] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/12/2021] [Accepted: 06/16/2021] [Indexed: 12/07/2022] Open
Abstract
The history of colour is fascinating from a social and artistic viewpoint because it shows the way; use; and importance acquired. The use of colours date back to the Stone Age (the first news of cave paintings); colour has contributed to the social and symbolic development of civilizations. Colour has been associated with hierarchy; power and leadership in some of them. The advent of synthetic dyes has revolutionized the colour industry; and due to their low cost; their use has spread to different industrial sectors. Although the percentage of coloured wastewater discharged by the textile; food; pharmaceutical; cosmetic; and paper industries; among other productive areas; are unknown; the toxic effect and ecological implications of this discharged into water bodies are harmful. This review briefly shows the social and artistic history surrounding the discovery and use of natural and synthetic dyes. We summarise the environmental impact caused by the discharge of untreated or poorly treated coloured wastewater to water bodies; which has led to physical; chemical and biological treatments to reduce the colour units so as important physicochemical parameters. We also focus on laccase utility (EC 1.10.3.2), for discolouration enzymatic treatment of coloured wastewater, before its discharge into water bodies. Laccases (p-diphenol: oxidoreductase dioxide) are multicopper oxidoreductase enzymes widely distributed in plants, insects, bacteria, and fungi. Fungal laccases have employed for wastewater colour removal due to their high redox potential. This review includes an analysis of the stability of laccases, the factors that influence production at high scales to achieve discolouration of high volumes of contaminated wastewater, the biotechnological impact of laccases, and the degradation routes that some dyes may follow when using the laccase for colour removal.
Collapse
Affiliation(s)
- Leidy D. Ardila-Leal
- Grupo de Biotecnología Ambiental e Industrial (GBAI), Laboratorio de Biotecnología Molecular, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana (PUJ), Bogotá 110-23, DC, Colombia;
| | - Raúl A. Poutou-Piñales
- Grupo de Biotecnología Ambiental e Industrial (GBAI), Laboratorio de Biotecnología Molecular, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana (PUJ), Bogotá 110-23, DC, Colombia;
| | - Aura M. Pedroza-Rodríguez
- Grupo de Biotecnología Ambiental e Industrial (GBAI), Laboratorio de Microbiología Ambiental y de Suelos, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana (PUJ), Bogotá 110-23, DC, Colombia;
| | - Balkys E. Quevedo-Hidalgo
- Grupo de Biotecnología Ambiental e Industrial (GBAI), Laboratorio de Biotecnología Aplicada, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana (PUJ), Bogotá 110-23, DC, Colombia;
| |
Collapse
|
27
|
Li B, Wang Y, Xue L, Lu S. Heterologous Expression and Application of Multicopper Oxidases from Enterococcus spp. for Degradation of Biogenic Amines. Protein Pept Lett 2021; 28:183-194. [PMID: 32543357 DOI: 10.2174/0929866527666200616160859] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Biogenic amines are harmful to human health at a certain extent. As a kind of biogenic amine oxidase, multicopper oxidase can be used to degrade them. Currently, the literature about enzyme from Enterococcus spp. are limited, and recombinant multicopper oxidase might be an effective way to degrade biogenic amines. OBJECTIVE (i) Select and identify strains that can degrade biogenic amines, (ii) overexpress enzyme from Enterococcus spp., (iii) measure gene expression and probe amine-degradation differences among strains (native, E. coli DH5α, and L. delbruckii), and (iv) examine the biochemical properties of recombinant multicopper oxidase, (v) apply the recombinant enzyme into smoked horsemeat sausage. METHODS Reverse transcription PCR and high-performance liquid chromatography were performed to examine gene expression and amine degradation rate. RESULTS The results demonstrated that target enzymes were successfully overexpressed, accompanied by increased amine-degrading activity (P <0.05). Gene from E. faecalis M5B was expressed in L. delbrueckii resulted in degradation rates for phenylethylamine, putrescine, histamine and tyramine of 54%, 52%, 70% and 40%, respectively, significantly higher than achieved by other recombinant strains. CONCLUSION In this work, gene expression levels were higher in recombinant M5B than recombinant M2B, regardless of host. E. coli is more stable to express multicopper oxidase. Besides, the amine-degrading ability was markedly increased in the two recombinant strains. After prolonged incubation, the recombinant enzyme could degrade three amines, and it displayed high alkali resistance and thermostability.
Collapse
Affiliation(s)
- Binbin Li
- College of Food Science, Shihezi University, Shihezi 832000, China
| | - Yuan Wang
- College of Food Science, Shihezi University, Shihezi 832000, China
| | - Linlin Xue
- College of Food Science, Shihezi University, Shihezi 832000, China
| | - Shiling Lu
- College of Food Science, Shihezi University, Shihezi 832000, China
| |
Collapse
|
28
|
Abstract
Emerging pollutants in nature are linked to various acute and chronic detriments in biotic components and subsequently deteriorate the ecosystem with serious hazards. Conventional methods for removing pollutants are not efficient; instead, they end up with the formation of secondary pollutants. Significant destructive impacts of pollutants are perinatal disorders, mortality, respiratory disorders, allergy, cancer, cardiovascular and mental disorders, and other harmful effects. The pollutant substrate can recognize different microbial enzymes at optimum conditions (temperature/pH/contact time/concentration) to efficiently transform them into other rather unharmful products. The most representative enzymes involved in bioremediation include cytochrome P450s, laccases, hydrolases, dehalogenases, dehydrogenases, proteases, and lipases, which have shown promising potential degradation of polymers, aromatic hydrocarbons, halogenated compounds, dyes, detergents, agrochemical compounds, etc. Such bioremediation is favored by various mechanisms such as oxidation, reduction, elimination, and ring-opening. The significant degradation of pollutants can be upgraded utilizing genetically engineered microorganisms that produce many recombinant enzymes through eco-friendly new technology. So far, few microbial enzymes have been exploited, and vast microbial diversity is still unexplored. This review would also be useful for further research to enhance the efficiency of degradation of xenobiotic pollutants, including agrochemical, microplastic, polyhalogenated compounds, and other hydrocarbons.
Collapse
|
29
|
Asemoloye MD, Marchisio MA, Gupta VK, Pecoraro L. Genome-based engineering of ligninolytic enzymes in fungi. Microb Cell Fact 2021; 20:20. [PMID: 33478513 PMCID: PMC7819241 DOI: 10.1186/s12934-021-01510-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/07/2021] [Indexed: 12/23/2022] Open
Abstract
Background Many fungi grow as saprobic organisms and obtain nutrients from a wide range of dead organic materials. Among saprobes, fungal species that grow on wood or in polluted environments have evolved prolific mechanisms for the production of degrading compounds, such as ligninolytic enzymes. These enzymes include arrays of intense redox-potential oxidoreductase, such as laccase, catalase, and peroxidases. The ability to produce ligninolytic enzymes makes a variety of fungal species suitable for application in many industries, including the production of biofuels and antibiotics, bioremediation, and biomedical application as biosensors. However, fungal ligninolytic enzymes are produced naturally in small quantities that may not meet the industrial or market demands. Over the last decade, combined synthetic biology and computational designs have yielded significant results in enhancing the synthesis of natural compounds in fungi. Main body of the abstract In this review, we gave insights into different protein engineering methods, including rational, semi-rational, and directed evolution approaches that have been employed to enhance the production of some important ligninolytic enzymes in fungi. We described the role of metabolic pathway engineering to optimize the synthesis of chemical compounds of interest in various fields. We highlighted synthetic biology novel techniques for biosynthetic gene cluster (BGC) activation in fungo and heterologous reconstruction of BGC in microbial cells. We also discussed in detail some recombinant ligninolytic enzymes that have been successfully enhanced and expressed in different heterologous hosts. Finally, we described recent advance in CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)-Cas (CRISPR associated) protein systems as the most promising biotechnology for large-scale production of ligninolytic enzymes. Short conclusion Aggregation, expression, and regulation of ligninolytic enzymes in fungi require very complex procedures with many interfering factors. Synthetic and computational biology strategies, as explained in this review, are powerful tools that can be combined to solve these puzzles. These integrated strategies can lead to the production of enzymes with special abilities, such as wide substrate specifications, thermo-stability, tolerance to long time storage, and stability in different substrate conditions, such as pH and nutrients.
Collapse
Affiliation(s)
- Michael Dare Asemoloye
- School of Pharmaceutical Science and Technology, Tianjin University, Nankai District, 92 Weijin Road, Tianjin, 300072, China
| | - Mario Andrea Marchisio
- School of Pharmaceutical Science and Technology, Tianjin University, Nankai District, 92 Weijin Road, Tianjin, 300072, China.
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK
| | - Lorenzo Pecoraro
- School of Pharmaceutical Science and Technology, Tianjin University, Nankai District, 92 Weijin Road, Tianjin, 300072, China.
| |
Collapse
|
30
|
Fungal Laccases to Where and Where? Fungal Biol 2021. [DOI: 10.1007/978-3-030-85603-8_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
31
|
Wang X, Zhuo C, Xiao X, Wang X, Docampo-Palacios M, Chen F, Dixon RA. Substrate Specificity of LACCASE8 Facilitates Polymerization of Caffeyl Alcohol for C-Lignin Biosynthesis in the Seed Coat of Cleome hassleriana. THE PLANT CELL 2020; 32:3825-3845. [PMID: 33037146 PMCID: PMC7721330 DOI: 10.1105/tpc.20.00598] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/24/2020] [Accepted: 10/06/2020] [Indexed: 05/02/2023]
Abstract
Catechyl lignin (C-lignin) is a linear homopolymer of caffeyl alcohol found in the seed coats of diverse plant species. Its properties make it a natural source of carbon fibers and high-value chemicals, but the mechanism of in planta polymerization of caffeyl alcohol remains unclear. In the ornamental plant Cleome hassleriana, lignin biosynthesis in the seed coat switches from guaiacyl lignin to C-lignin at ∼12 d after pollination. Here we found that the transcript profile of the laccase gene ChLAC8 parallels the accumulation of C-lignin during seed coat development. Recombinant ChLAC8 oxidizes caffeyl and sinapyl alcohols, generating their corresponding dimers or trimers in vitro, but cannot oxidize coniferyl alcohol. We propose a basis for this substrate preference based on molecular modeling/docking experiments. Suppression of ChLAC8 expression led to significantly reduced C-lignin content in the seed coats of transgenic Cleome plants. Feeding of 13C-caffeyl alcohol to the Arabidopsis (Arabidopsis thaliana) caffeic acid o-methyltransferase mutant resulted in no incorporation of 13C into C-lignin, but expressing ChLAC8 in this genetic background led to appearance of C-lignin with >40% label incorporation. These results indicate that ChLAC8 is required for C-lignin polymerization and determines lignin composition when caffeyl alcohol is available.
Collapse
Affiliation(s)
- Xin Wang
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, Texas 76203
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Chunliu Zhuo
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, Texas 76203
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| | - Xirong Xiao
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, Texas 76203
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| | - Xiaoqiang Wang
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, Texas 76203
| | - Maite Docampo-Palacios
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, Texas 76203
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| | - Fang Chen
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, Texas 76203
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| | - Richard A Dixon
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, Texas 76203
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| |
Collapse
|
32
|
Jeon SJ, Park JH. Refolding, characterization, and dye decolorization ability of a highly thermostable laccase from Geobacillus sp. JS12. Protein Expr Purif 2020; 173:105646. [PMID: 32315700 DOI: 10.1016/j.pep.2020.105646] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/10/2020] [Accepted: 04/11/2020] [Indexed: 11/27/2022]
Abstract
A putative laccase gene (lacG) from Geobacillus sp. JS12 was cloned and expressed as a fusion protein with six histidine residues in Escherichia coli BL21 (DE3) cells, and the protein was primarily found in inclusion bodies. The resulting insoluble proteins were solubilized with 6 M guanidine HCl and refolded using an on-column refolding procedure. Ni-chelation affinity chromatography found the laccase to be a 30 kDa monomeric protein. Spectrophotometry and electron paramagnetic resonance (EPR) analysis indicated LacG as a multi-copper oxidase, with the usual laccase copper sites, Type 1, 2, and 3 Cu(II). The optimum pH for enzymatic activity was 3.0, 6.0, and 6.5 with 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), guaiacol and 2,6-dimethoxyphenol (2,6-DMP) as the substrate, respectively. The recombinant protein displayed high thermostability, with a heat inactivation half-life of approximately 2 h at 95 °C, and an optimum temperature of 80 °C with 2,6-DMP. Catalytic efficiency (kcat/Km) showed that guaiacol and 2,6-DMP were highly oxidized by the enzyme. The enzymatic reaction was significantly enhanced by Co2+ and Mn2+, while activity was strongly inhibited in the presence of Fe2+, Zn2+, and thiol compounds. LacG decolorized 43% of Congo red and 14% of Malachite green, and the addition of ABTS as a redox mediator dramatically increased the dye decolorization efficiency.
Collapse
Affiliation(s)
- Sung-Jong Jeon
- Biomedical Engineering & Biotechnology Major, Division of Applied Bioengineering, Dong-Eui University, Busan, 47340, Republic of Korea; Department of Smart-Biohealth, Dong-Eui University, Busan, 47340, Republic of Korea.
| | - Jong-Hun Park
- Biomedical Engineering & Biotechnology Major, Division of Applied Bioengineering, Dong-Eui University, Busan, 47340, Republic of Korea
| |
Collapse
|
33
|
Janusz G, Pawlik A, Świderska-Burek U, Polak J, Sulej J, Jarosz-Wilkołazka A, Paszczyński A. Laccase Properties, Physiological Functions, and Evolution. Int J Mol Sci 2020; 21:ijms21030966. [PMID: 32024019 PMCID: PMC7036934 DOI: 10.3390/ijms21030966] [Citation(s) in RCA: 319] [Impact Index Per Article: 63.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 01/16/2023] Open
Abstract
Discovered in 1883, laccase is one of the first enzymes ever described. Now, after almost 140 years of research, it seems that this copper-containing protein with a number of unique catalytic properties is widely distributed across all kingdoms of life. Laccase belongs to the superfamily of multicopper oxidases (MCOs)—a group of enzymes comprising many proteins with different substrate specificities and diverse biological functions. The presence of cupredoxin-like domains allows all MCOs to reduce oxygen to water without producing harmful byproducts. This review describes structural characteristics and plausible evolution of laccase in different taxonomic groups. The remarkable catalytic abilities and broad substrate specificity of laccases are described in relation to other copper-containing MCOs. Through an exhaustive analysis of laccase roles in different taxa, we find that this enzyme evolved to serve an important, common, and protective function in living systems.
Collapse
Affiliation(s)
- Grzegorz Janusz
- Department of Biochemistry and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland; (A.P.); (J.P.); (J.S.); (A.J.-W.)
- Correspondence: ; Tel.: +48-81-537-5521
| | - Anna Pawlik
- Department of Biochemistry and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland; (A.P.); (J.P.); (J.S.); (A.J.-W.)
| | - Urszula Świderska-Burek
- Department of Botany, Mycology and Ecology, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland;
| | - Jolanta Polak
- Department of Biochemistry and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland; (A.P.); (J.P.); (J.S.); (A.J.-W.)
| | - Justyna Sulej
- Department of Biochemistry and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland; (A.P.); (J.P.); (J.S.); (A.J.-W.)
| | - Anna Jarosz-Wilkołazka
- Department of Biochemistry and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland; (A.P.); (J.P.); (J.S.); (A.J.-W.)
| | - Andrzej Paszczyński
- Professor Emeritus, School of Food Science, University of Idaho, Moscow, ID 83844, USA;
| |
Collapse
|
34
|
Sadeghian I, Rezaie Z, Rahmatabadi SS, Hemmati S. Biochemical insights into a novel thermo/organo tolerant bilirubin oxidase from Thermosediminibacter oceani and its application in dye decolorization. Process Biochem 2020. [DOI: 10.1016/j.procbio.2019.09.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
35
|
Arregui L, Ayala M, Gómez-Gil X, Gutiérrez-Soto G, Hernández-Luna CE, Herrera de los Santos M, Levin L, Rojo-Domínguez A, Romero-Martínez D, Saparrat MCN, Trujillo-Roldán MA, Valdez-Cruz NA. Laccases: structure, function, and potential application in water bioremediation. Microb Cell Fact 2019; 18:200. [PMID: 31727078 PMCID: PMC6854816 DOI: 10.1186/s12934-019-1248-0] [Citation(s) in RCA: 235] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 10/31/2019] [Indexed: 11/11/2022] Open
Abstract
The global rise in urbanization and industrial activity has led to the production and incorporation of foreign contaminant molecules into ecosystems, distorting them and impacting human and animal health. Physical, chemical, and biological strategies have been adopted to eliminate these contaminants from water bodies under anthropogenic stress. Biotechnological processes involving microorganisms and enzymes have been used for this purpose; specifically, laccases, which are broad spectrum biocatalysts, have been used to degrade several compounds, such as those that can be found in the effluents from industries and hospitals. Laccases have shown high potential in the biotransformation of diverse pollutants using crude enzyme extracts or free enzymes. However, their application in bioremediation and water treatment at a large scale is limited by the complex composition and high salt concentration and pH values of contaminated media that affect protein stability, recovery and recycling. These issues are also associated with operational problems and the necessity of large-scale production of laccase. Hence, more knowledge on the molecular characteristics of water bodies is required to identify and develop new laccases that can be used under complex conditions and to develop novel strategies and processes to achieve their efficient application in treating contaminated water. Recently, stability, efficiency, separation and reuse issues have been overcome by the immobilization of enzymes and development of novel biocatalytic materials. This review provides recent information on laccases from different sources, their structures and biochemical properties, mechanisms of action, and application in the bioremediation and biotransformation of contaminant molecules in water. Moreover, we discuss a series of improvements that have been attempted for better organic solvent tolerance, thermo-tolerance, and operational stability of laccases, as per process requirements.
Collapse
Affiliation(s)
- Leticia Arregui
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana, Unidad Cuajimalpa, Av. Vasco de Quiroga 4871, Col. Santa Fe Cuajimalpa, C.P. 05348 Mexico City, Mexico
| | - Marcela Ayala
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001 Chamilpa, 62210 Cuernavaca, Morelos Mexico
| | - Ximena Gómez-Gil
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP. 70228, Mexico City, CP. 04510 Mexico
| | - Guadalupe Gutiérrez-Soto
- Facultad de Agronomía, Universidad Autónoma de Nuevo León, Francisco Villa, 66059 Colonia Ex hacienda El Canadá, General Escobedo, Nuevo León Mexico
| | - Carlos Eduardo Hernández-Luna
- Laboratorio de Enzimología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Pedro de Alba y Manuel L. Barragán, Cd. Universitaria, 66451 San Nicolás de los Garza, Nuevo León Mexico
| | - Mayra Herrera de los Santos
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP. 70228, Mexico City, CP. 04510 Mexico
| | - Laura Levin
- Laboratorio de Micología Experimental, DBBE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, INMIBO-CONICET, Ciudad Universitaria, Pabellón 2, Piso 4, C1428BGA Ciudad Autónoma de Buenos Aires, Argentina
| | - Arturo Rojo-Domínguez
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana, Unidad Cuajimalpa, Av. Vasco de Quiroga 4871, Col. Santa Fe Cuajimalpa, C.P. 05348 Mexico City, Mexico
| | - Daniel Romero-Martínez
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP. 70228, Mexico City, CP. 04510 Mexico
| | - Mario C. N. Saparrat
- Instituto de Fisiología Vegetal (INFIVE), Universidad Nacional de La Plata (UNLP)-CCT-La Plata-Consejo Nacional de Investigaciones Científicas y técnicas (CONICET), Diag. 113 y 61, 327CC, 1900, La Plata, Argentina
- Instituto de Botánica Spegazzini, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, 53 # 477, 1900, La Plata, Argentina
| | - Mauricio A. Trujillo-Roldán
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP. 70228, Mexico City, CP. 04510 Mexico
| | - Norma A. Valdez-Cruz
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP. 70228, Mexico City, CP. 04510 Mexico
| |
Collapse
|
36
|
Wang J, Yu S, Li X, Feng F, Lu L. High-level expression of Bacillus amyloliquefaciens laccase and construction of its chimeric variant with improved stability by domain substitution. Bioprocess Biosyst Eng 2019; 43:403-411. [DOI: 10.1007/s00449-019-02236-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 10/20/2019] [Indexed: 02/01/2023]
|
37
|
Shafiei M, Afzali F, Karkhane AA, Ebrahimi SM, Haghbeen K, Aminzadeh S. Cohnella sp. A01 laccase: thermostable, detergent resistant, anti-environmental and industrial pollutants enzyme. Heliyon 2019; 5:e02543. [PMID: 31687608 PMCID: PMC6819783 DOI: 10.1016/j.heliyon.2019.e02543] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 06/17/2019] [Accepted: 09/26/2019] [Indexed: 01/30/2023] Open
Abstract
Laccase (EC 1.10.3.2; benzenediol; oxygen oxidoreductases) is a multi-copper oxidase that catalyzes the oxidation of phenols, polyphenols, aromatic amines, and different non-phenolic substrates with concomitant reduction of O2 to H2O. Enzymatic oxidation techniques have the potential of implementation in different areas of industrial fields. In this study, the Cohnella sp. A01 laccase gene was cloned into pET-26 (b+) vector and was transformed to E. coli BL21. Then it was purified using His tag affinity (Ni sepharose resin) chromatography. The estimated molecular weight was approximately 60 kDa using SDS-PAGE. The highest enzyme activity and best pH for 2,6-dimethoxyphenol (DMP) oxidation were recorded as 8 at 90 °C respectively. The calculated half-life and kinetic values including Km, Vmax, turn over number (kcat), and catalytic efficiency (kcat/Km) of the enzyme were 106 min at 90 °C and 686 μM, 10.69 U/ml, 20.3 S−, and 0.029 s−1 μM−1, respectively. The DMP was available as the substrate in all the calculations. Enzyme activity enhanced in the presence of Cu2+, NaCl, SDS, n-hexane, Triton X-100, tween 20, and tween 80, significantly. The binding residues were predicted and mapped upon the modeled tertiary structure of identified laccase. The remaining activity and structural properties of Cohnella sp. A01 laccase in extreme conditions such as high temperatures and presence of metals, detergents, and organic solvents suggest the potential of this enzyme in biotechnological and industrial applications. This process has been patented in Iranian Intellectual Property Centre under License No: 91325.
Collapse
Affiliation(s)
- Masoomeh Shafiei
- Bioprocess Engineering Group, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Iran
| | - Farzaneh Afzali
- Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Iran
| | - Ali Asghar Karkhane
- Bioprocess Engineering Group, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Iran
| | - S Mehdi Ebrahimi
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modarres University, Iran
| | - Kamahldin Haghbeen
- Institute of Agricultural Biotechnology, National Institute of Genetic Engineering and Biotechnology, Iran
| | - Saeed Aminzadeh
- Bioprocess Engineering Group, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Iran
| |
Collapse
|
38
|
Lee S, Kang M, Bae JH, Sohn JH, Sung BH. Bacterial Valorization of Lignin: Strains, Enzymes, Conversion Pathways, Biosensors, and Perspectives. Front Bioeng Biotechnol 2019; 7:209. [PMID: 31552235 PMCID: PMC6733911 DOI: 10.3389/fbioe.2019.00209] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/19/2019] [Indexed: 12/17/2022] Open
Abstract
Lignin, an aromatic polymer found in plants, has been studied for years in many biological fields. Initially, when biofuel was produced from lignocellulosic biomass, lignin was regarded as waste generated by the biorefinery and had to be removed, because of its inhibitory effects on fermentative bacteria. Although it has since proven to be a natural resource for bio-products with considerable potential, its utilization is confined by its complex structure. Hence, the microbial degradation of lignin has attracted researchers' interest to overcome this problem. From this perspective, the studies have primarily focused on fungal systems, such as extracellular peroxidase and laccase from white- and brown-rot fungi. However, recent reports have suggested that bacteria play an increasing role in breaking down lignin. This paper, therefore, reviews the role of bacteria in lignin and lignin-related research. Several reports on bacterial species in soil that can degrade lignin and their enzymes are included. In addition, a cellulolytic anaerobic bacterium capable of solubilizing lignin and carbohydrate simultaneously has recently been identified, even though the enzyme involved has not been discovered yet. The assimilation of lignin-derived small molecules and their conversion to renewable chemicals by bacteria, such as muconic acid and polyhydroxyalkanoates, including genetic modification to enhance their capability was discussed. This review also covers the indirect use of bacteria for lignin degradation, which is concerned with whole-cell biosensors designed to detect the aromatic chemicals released from lignin transformation.
Collapse
Affiliation(s)
- Siseon Lee
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Minsik Kang
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
- Department of Biosystems and Bioengineering, Korea University of Science and Technology, Daejeon, South Korea
| | - Jung-Hoon Bae
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Jung-Hoon Sohn
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
- Department of Biosystems and Bioengineering, Korea University of Science and Technology, Daejeon, South Korea
| | - Bong Hyun Sung
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
- Department of Biosystems and Bioengineering, Korea University of Science and Technology, Daejeon, South Korea
| |
Collapse
|
39
|
Identification and Characterization of New Laccase Biocatalysts from Pseudomonas Species Suitable for Degradation of Synthetic Textile Dyes. Catalysts 2019. [DOI: 10.3390/catal9070629] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Laccases are multicopper-oxidases with variety of biotechnological applications. While predominantly used, fungal laccases have limitations such as narrow pH and temperature range and their production via heterologous protein expression is more complex due to posttranslational modifications. In comparison, bacterial enzymes, including laccases, usually possess higher thermal and pH stability, and are more suitable for expression and genetic manipulations in bacterial expression hosts. Therefore, the aim of this study was to identify, recombinantly express, and characterize novel laccases from Pseudomonas spp. A combination of approaches including DNA sequence analysis, N-terminal protein sequencing, and genome sequencing data analysis for laccase amplification, cloning, and overexpression have been used. Four active recombinant laccases were obtained, one each from P. putida KT2440 and P. putida CA-3, and two from P. putida F6. The new laccases exhibited broad temperature and pH range and high thermal stability, as well as the potential to degrade selection of synthetic textile dyes. The best performing laccase was CopA from P. putida F6 which degraded five out of seven tested dyes, including Amido Black 10B, Brom Cresol Purple, Evans Blue, Reactive Black 5, and Remazol Brilliant Blue. This work highlighted species of Pseudomonas genus as still being good sources of biocatalytically relevant enzymes.
Collapse
|
40
|
Góralczyk-Bińkowska A, Jasińska A, Długoński J. CHARACTERISTICS AND USE OF MULTICOPPER OXIDASES ENZYMES. ADVANCEMENTS OF MICROBIOLOGY 2019. [DOI: 10.21307/pm-2019.58.1.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
41
|
Aptitude of Oxidative Enzymes for Treatment of Wastewater Pollutants: A Laccase Perspective. Molecules 2019; 24:molecules24112064. [PMID: 31151229 PMCID: PMC6600482 DOI: 10.3390/molecules24112064] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/19/2019] [Accepted: 04/27/2019] [Indexed: 01/28/2023] Open
Abstract
Natural water sources are very often contaminated by municipal wastewater discharges which contain either of xenobiotic pollutants and their sometimes more toxic degradation products, or both, which frustrates the universal millenium development goal of provision of the relatively scarce pristine freshwater to water-scarce and -stressed communities, in order to augment their socioeconomic well-being. Seeing that both regulatory measures, as regards the discharge limits of wastewater, and the query for efficient treatment methods remain unanswered, partially, the prospects of enzymatic treatment of wastewater is advisable. Therefore, a reconsideration was assigned to the possible capacity of oxidative enzymes and the respective challenges encountered during their applications in wastewater treatment, and ultimately, the prospects of laccase, a polyphenol oxidase that oxidizes aromatic and inorganic substrates with electron-donating groups in treatment aromatic contaminants of wastewater, in real wastewater situations, since it is assumed to be a vehicle for a greener community. Furthermore, the importance of laccase-driven catalysis toward maintaining mass-energy balance, hence minimizing environmental waste, was comprehensibly elucidated, as well the strategic positioning of laccase in a model wastewater treatment facility for effective treatment of wastewater contaminants.
Collapse
|
42
|
Highly efficient and selective production of FFCA from CotA-TJ102 laccase-catalyzed oxidation of 5-HMF. Int J Biol Macromol 2019; 128:132-139. [DOI: 10.1016/j.ijbiomac.2019.01.104] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/21/2019] [Accepted: 01/21/2019] [Indexed: 11/19/2022]
|
43
|
Production of polyextremotolerant laccase by Achromobacter xylosoxidans HWN16 and Citrobacter freundii LLJ16. ACTA ACUST UNITED AC 2019; 22:e00337. [PMID: 31016143 PMCID: PMC6468157 DOI: 10.1016/j.btre.2019.e00337] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 04/05/2019] [Accepted: 04/05/2019] [Indexed: 01/06/2023]
Abstract
The biochemical properties of two proteobacteria laccases were assessed. Polyextremotolerant qualities of the laccases were identified. Multiple laccase-encoding genes were observed in laccase-producing strains. Their implication in biotechnological applications was deliberated.
Given the upwelling of a variety of potential applications laccases could participate in, it would be fitting to equally make available laccases that are well suited for the aforementioned. Therefore historian understanding of the catalytic and physicochemical properties is desirable. Owing to this, the biochemical properties of the crude laccases from Achromobacter xylosoxidans HWN16 (Hb9c) and Citrobacter freundii LLJ 16 (Ie1c) were assessed. Furthermore, a hint of the molecular basis for their production from respective organisms was presented. Results showed that both laccases were tolerant, and sometimes had their activities improved by the set of parameters tested. They were active at broad range of temperature (0–90 °C), pH (3–11), and were equally thermo- and pH-stable. Their activities were either improved, or left unabated by cations, detergents, and chloride (5–40%), however, the highlight of the study was their augmented activity, when they were incubated with certain concentrations of fluoride (2–20%), a potent inhibitor. They were depicted to have multiple homologous laccase encoding genes, on molecular evaluation, which may be responsible the conferral of these remarkable qualities they possess. Therefore, the laccases might be beneficial, if employed in formulations for a wide range of environmental and biotechnological applications. Moreover, the molecular machinery of their production be exploited for economical benefits in the immediate future.
Collapse
|
44
|
Potocki S, Delgado P, Dudek D, Janicka-Kłos A, Kozłowski H, Rowińska-Żyrek M. Pneumococcal HxxHxH triad – Copper(II) interactions – How important is the ‘x’? Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.01.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
45
|
Gupta V, Balda S, Gupta N, Capalash N, Sharma P. Functional substitution of domain 3 (T1 copper center) of a novel laccase with Cu ions. Int J Biol Macromol 2019; 123:1052-1061. [DOI: 10.1016/j.ijbiomac.2018.11.174] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 09/23/2018] [Accepted: 11/18/2018] [Indexed: 10/27/2022]
|
46
|
Unuofin JO, Okoh AI, Nwodo UU. Utilization of agroindustrial wastes for the production of laccase by Achromobacter xylosoxidans HWN16 and Bordetella bronchiseptica HSO16. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 231:222-231. [PMID: 30342335 DOI: 10.1016/j.jenvman.2018.10.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/18/2018] [Accepted: 10/06/2018] [Indexed: 06/08/2023]
Abstract
Agroindustrial residual lignocellulosic biomaterial provides an economical and renewable natural bioresource for the large-scale, gainful biofuel production, as well as the production of fine bulk chemicals, which may include industrial biocatalysts. To this end, the laccase-inducing aptitude of some agroindustrial, lignocellulosic residues were appraised in submerged fermentation batch culture of two woodland betaproteobacteria (Hb9c; Achromobacter xylosoxidans HWN16, Hb16c; Bordetella bronchiseptica HSO16). Significant fermentation factors for laccase production were identified following a one-variable-at-a-time: OVAT screening method, levels of significant factors were optimized using response surface methodology: RSM. Mandarin peelings: MP and wheat bran: WB were suitable substrates for laccase production in Hb9c; 29.4 U/mL and Hb16c; 28.2 U/mL, respectively. However, the numerical optimization of significant factors for laccase production in both isolates presented an overall maximum laccase output encountered throughout the study (Hb9c; 169.39 U/mL, Hb16c; 45.22 U/mL), albeit the simulated conditions of the statistical model were outside the design space of the algorithm such as pH 5, 0.5 g MP, 100 rpm, 0.25 g NaNO3 for Hb9c and pH 3, 2.5 g WB, 50 rpm, 0.05 g yeast extract for Hb16c. Furthermore, a record 17.5 and 15.54 fold increase in laccase turnover depicts the astuteness of the statistical method in the valorization of these lignocellulosic residues for enhanced laccase production, hence, the incorporation of these outcomes at industrial scales might yield tremendous outputs.
Collapse
Affiliation(s)
- John O Unuofin
- SA-MRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Private Bag X1314, Alice, 5700, South Africa; Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314, Alice, 5700, South Africa.
| | - Anthony I Okoh
- SA-MRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Private Bag X1314, Alice, 5700, South Africa; Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314, Alice, 5700, South Africa
| | - Uchechukwu U Nwodo
- SA-MRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Private Bag X1314, Alice, 5700, South Africa; Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314, Alice, 5700, South Africa
| |
Collapse
|
47
|
Extracellular Fungal Peroxidases and Laccases for Waste Treatment: Recent Improvement. RECENT ADVANCEMENT IN WHITE BIOTECHNOLOGY THROUGH FUNGI 2019. [DOI: 10.1007/978-3-030-25506-0_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
48
|
Molecular cloning, expression and characterization of poxa1b gene from Pleurotus ostreatus. Mol Biol Rep 2018; 46:981-990. [DOI: 10.1007/s11033-018-4555-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 12/04/2018] [Indexed: 10/27/2022]
|
49
|
Das R, Li G, Mai B, An T. Spore cells from BPA degrading bacteria Bacillus sp. GZB displaying high laccase activity and stability for BPA degradation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 640-641:798-806. [PMID: 29879666 DOI: 10.1016/j.scitotenv.2018.05.379] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/30/2018] [Accepted: 05/30/2018] [Indexed: 05/14/2023]
Abstract
Laccase has been applied extensively as a biocatalyst to remove different organic pollutants. This study characterized a spore-laccase from the bisphenol A (BPA)-degrading strain Bacillus sp. GZB. The spore-laccase was encoded with 513 amino acids, containing spore coat protein A (CotA). It showed optimal activity at 70 °C and pH = 7.2 in presence of 2, 6-dimethoxyphenol. At 60 °C, optimal activity was also seen at pH = 3.0 and pH = 6.8 with 2, 2'-azino-bis (3-ethylbenzothiazoline-6-sulfonate) and syringaldazine, respectively. The spore-laccase was stable at high temperature, at acidic to alkaline pH values, and in the presence of different organic solvents. Spore-laccase activity was increased by introducing Cu2+, Mg2+, and Na+, but was strongly inhibited by Fe2+, Ag+, l-cysteine, dithiothreitol, and NaN3. The cotA gene was cloned and expressed in E. coli BL21 (DE3); the purified protein was estimated as having a molecular weight of ~63 kDa. Different synthetic dyes and BPA were effectively decolorized or degraded both by the spore laccase and recombinant laccase. When BPA oxidation was catalyzed using laccase, there was an initial formation of phenoxy radicals and further oxidation or CC bond cleavage of the radicals produced different organic acids. Detailed reaction pathways were developed based on nine identified intermediates. The acute toxicity decreased gradually during BPA degradation by laccase. This study is the first report about a genus of Bacillus that can produce a highly active and stable laccase to degrade BPA.
Collapse
Affiliation(s)
- Ranjit Das
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Guiying Li
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Taicheng An
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
50
|
Luo C, Li Y, Liao H, Yang Y. De novo transcriptome assembly of the bamboo snout beetle Cyrtotrachelus buqueti reveals ability to degrade lignocellulose of bamboo feedstock. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:292. [PMID: 30386429 PMCID: PMC6204003 DOI: 10.1186/s13068-018-1291-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 10/15/2018] [Indexed: 05/27/2023]
Abstract
BACKGROUND The bamboo weevil Cyrtotrachelus buqueti, which is considered a pest species, damages bamboo shoots via its piercing-sucking mode of feeding. C. buqueti is well known for its ability to transform bamboo shoot biomass into nutrients and energy for growth, development and reproduction with high specificity and efficacy of bioconversion. Woody bamboo is a perennial grass that is a potential feedstock for lignocellulosic biomass because of its high growth rate and lignocellulose content. To verify our hypothesis that C. buqueti efficiently degrades bamboo lignocellulose, we assessed the bamboo lignocellulose-degrading ability of this insect through RNA sequencing for identifying a potential route for utilisation of bamboo biomass. RESULTS Analysis of carbohydrate-active enzyme (CAZyme) family genes in the developmental transcriptome of C. buqueti revealed 1082 unigenes, including 55 glycoside hydrolases (GH) families containing 309 GHs, 51 glycosyltransferases (GT) families containing 329 GTs, 8 carbohydrate esterases (CE) families containing 174 CEs, 6 polysaccharide lyases (PL) families containing 11 PLs, 8 auxiliary activities (AA) families containing 131 enzymes with AAs and 17 carbohydrate-binding modules (CBM) families containing 128 CBMs. We used weighted gene co-expression network analysis to analyse developmental RNA sequencing data, and 19 unique modules were identified in the analysis. Of these modules, the expression of MEyellow module genes was unique and the module included numerous CAZyme family genes. CAZyme genes in this module were divided into two groups depending on whether gene expression was higher in the adult/larval stages or in the egg/pupal stages. Enzyme assays revealed that cellulase activity was highest in the midgut whereas lignin-degrading enzyme activity was highest in the hindgut, consistent with findings from intestinal gene expression studies. We also analysed the expression of CAZyme genes in the transcriptome of C. buqueti from two cities and found that several genes were also assigned to CAZyme families. The insect had genes and enzymes associated with lignocellulose degradation, the expression of which differed with developmental stage and intestinal region. CONCLUSION Cyrtotrachelus buqueti exhibits lignocellulose degradation-related enzymes and genes, most notably CAZyme family genes. CAZyme family genes showed differences in expression at different developmental stages, with adults being more effective at cellulose degradation and larvae at lignin degradation, as well as at different regions of the intestine, with the midgut being more cellulolytic than the hindgut. This degradative system could be utilised for the bioconversion of bamboo lignocellulosic biomass.
Collapse
Affiliation(s)
- Chaobing Luo
- Bamboo Diseases and Pests Control and Resources Development Key Laboratory of Sichuan Province, College of Life Science, Leshan Normal University, No. 778, Riverside Road, Central District, Leshan, 614000 China
| | - Yuanqiu Li
- Bamboo Diseases and Pests Control and Resources Development Key Laboratory of Sichuan Province, College of Life Science, Leshan Normal University, No. 778, Riverside Road, Central District, Leshan, 614000 China
- College of Food and Biological Engineering, Xihua University, Chengdu, China
| | - Hong Liao
- Bamboo Diseases and Pests Control and Resources Development Key Laboratory of Sichuan Province, College of Life Science, Leshan Normal University, No. 778, Riverside Road, Central District, Leshan, 614000 China
| | - Yaojun Yang
- Bamboo Diseases and Pests Control and Resources Development Key Laboratory of Sichuan Province, College of Life Science, Leshan Normal University, No. 778, Riverside Road, Central District, Leshan, 614000 China
| |
Collapse
|