1
|
Taylor JRA, Astbury M, Childers EC, Contractor K, Lin X, Mencarelli J, Prohroff EJ, Tapia K. Time-dependent Changes in Shrimp Armor and Escape Kinematics under Ocean Acidification and Warming. Integr Comp Biol 2024; 64:322-335. [PMID: 38719513 DOI: 10.1093/icb/icae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/11/2024] [Accepted: 04/20/2024] [Indexed: 09/18/2024] Open
Abstract
Pandalid shrimp use morphological and behavioral defenses against their numerous fish and invertebrate predators. Their rapid tail-flip escape and rigid exoskeleton armor may be sensitive to changes in ocean temperature and carbon chemistry in ways that alter their efficacy and impact mortality. Here we tested the hypothesis that ocean warming and acidification conditions affect the antipredator defenses of Pandalus gurneyi. To test this hypothesis, we exposed shrimp to a combination of pH (8.0, 7.7, 7.5) and temperature (13°C, 17°C) treatments and assessed their tail-flip escape and exoskeleton armor after short-term (2 weeks) and medium-term (3 months) exposure. Results revealed complex effects on escape kinematics, with changes in different variables explained by either pH, temperature, and/or their interaction; decreased pH, for instance, primarily explains reduced acceleration while cold temperature explains increased flexion duration. Carapace mineral content (Ca and Mg) was unaffected, but warmer temperatures primarily drove enhanced mechanical properties (increased hardness and stiffness). No effects were observed in the stiffness and strength of the rostrum. Furthermore, most of the observed effects were temporary, as they occurred after short-term exposure (2 weeks), but disappeared after longer exposure (3 months). This demonstrates that P. gurneyi defenses are affected by short-term exposure to temperature and pH variations; however, they can acclimate to these conditions over time. Nonetheless, changes in the tail-flip escape kinematics may be disadvantageous when trying to flee predators and the enhanced exoskeleton armor could make them more resistant to predation during short periods of environmental change.
Collapse
Affiliation(s)
- Jennifer R A Taylor
- Scripps Institution of Oceanography, Marine Biology Research Division, University of California, San Diego, La Jolla, CA 92093, USA
- Program in Materials Science and Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mia Astbury
- Scripps Institution of Oceanography, Marine Biology Research Division, University of California, San Diego, La Jolla, CA 92093, USA
| | - Elizabeth C Childers
- Scripps Institution of Oceanography, Marine Biology Research Division, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kanisha Contractor
- Scripps Institution of Oceanography, Marine Biology Research Division, University of California, San Diego, La Jolla, CA 92093, USA
| | - Xinyu Lin
- Scripps Institution of Oceanography, Marine Biology Research Division, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jenna Mencarelli
- Scripps Institution of Oceanography, Marine Biology Research Division, University of California, San Diego, La Jolla, CA 92093, USA
| | - Elisa J Prohroff
- Scripps Institution of Oceanography, Marine Biology Research Division, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kendra Tapia
- Scripps Institution of Oceanography, Marine Biology Research Division, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
2
|
Ocampo EH, Nuñez JD, Ribeiro PD, Pérez García M, Bas CC, Luppi TA. Disparate response of decapods to low pH: A meta-analysis of life history, physiology and behavior traits across life stages and environments. MARINE POLLUTION BULLETIN 2024; 202:116293. [PMID: 38537497 DOI: 10.1016/j.marpolbul.2024.116293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 05/08/2024]
Abstract
We employed a meta-analysis to determine if the presumed resilience of decapods to ocean acidification extends to all biological aspects, environments, and life stages. Most response categories appeared unaffected by acidification. However, certain fitness-related traits (growth, survival, and, to some extent, calcification) were impacted. Acid-base balance and stress response scaled positively with reductions in pH, which maintains homeostasis, possibly at the cost of other processes. Juveniles were the only stage impacted by acidification, which is believed to reduce recruitment. We observed few differences in responses to acidification among decapods inhabiting contrasting environments. Our meta-analysis shows decapods as a group slightly to moderately sensitive to low pH, with impacts on some biological aspects rather than on all specific life stages or habitats. Although extreme pH scenarios may not occur in the open ocean, coastal and estuarine areas might experience lower pH levels in the near to medium future, posing potential challenges for decapods.
Collapse
Affiliation(s)
- Emiliano H Ocampo
- Instituto de Investigaciones Marinas y Costeras (IIMYC), FCEyN, Universidad Nacional de Mar del Plata, Provincia de Buenos Aires, Argentina, Funes 3350 (4 level) Zoology-Invertebrates Laboratory, Mar del Plata 7600, Argentina
| | - Jesus D Nuñez
- Instituto de Investigaciones Marinas y Costeras (IIMYC), FCEyN, Universidad Nacional de Mar del Plata, Provincia de Buenos Aires, Argentina, Funes 3350 (4 level) Zoology-Invertebrates Laboratory, Mar del Plata 7600, Argentina
| | - Pablo D Ribeiro
- Instituto de Investigaciones Marinas y Costeras (IIMYC), FCEyN, Universidad Nacional de Mar del Plata, Provincia de Buenos Aires, Argentina, Funes 3350 (4 level) Zoology-Invertebrates Laboratory, Mar del Plata 7600, Argentina
| | - Macarena Pérez García
- Instituto de Investigaciones Marinas y Costeras (IIMYC), FCEyN, Universidad Nacional de Mar del Plata, Provincia de Buenos Aires, Argentina, Funes 3350 (4 level) Zoology-Invertebrates Laboratory, Mar del Plata 7600, Argentina.
| | - Claudia C Bas
- Instituto de Investigaciones Marinas y Costeras (IIMYC), FCEyN, Universidad Nacional de Mar del Plata, Provincia de Buenos Aires, Argentina, Funes 3350 (4 level) Zoology-Invertebrates Laboratory, Mar del Plata 7600, Argentina
| | - Tomas A Luppi
- Instituto de Investigaciones Marinas y Costeras (IIMYC), FCEyN, Universidad Nacional de Mar del Plata, Provincia de Buenos Aires, Argentina, Funes 3350 (4 level) Zoology-Invertebrates Laboratory, Mar del Plata 7600, Argentina
| |
Collapse
|
3
|
Kim L, Kim SA, An YJ. Microfibers from cigarette butts can induce exoskeletal alteration in whiteleg shrimp (Penaeus vannamei). MARINE POLLUTION BULLETIN 2023; 197:115734. [PMID: 37922758 DOI: 10.1016/j.marpolbul.2023.115734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/07/2023]
Abstract
Cigarette butts (CB) are a source of microfibers (MFs) in aquatic environments, posing a risk to the health of aquatic organisms. Research has been focused on examining the toxicity of CBs on ecological receptors, including invertebrates. More focus has been on death, growth, or movement inhibition of but less on exoskeletal effects in malacostracans. We evaluated the alteration in the carapace structure of whiteleg shrimp (Penaeus vannamei Boone, 1931) caused by MFs derived from CBs (CB-MF). Exposure to CB-MF damaged the gills, the main organs adsorbing calcium in shrimps to generate a hard carapace, disturbing calcium uptake via respiration. Rapid ecdysis caused on CB-MF exposure reduced the environmental adaptation capacity of crustaceans in the absence of normal pigments in the chromatophore of the carapace. These findings indicate that MFs released from CBs released into the aquatic environment can adversely affect exoskeletal alteration within the overall ecosystem.
Collapse
Affiliation(s)
- Lia Kim
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Sang A Kim
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Youn-Joo An
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
4
|
Weerathunga V, Hung CC, Dupont S, Hsieh HH, Piyawardhana N, Yuan FL, Kao KJ, Huang KC, Huang WJ. Ocean acidification increases inorganic carbon over organic carbon in shrimp's exoskeleton. MARINE POLLUTION BULLETIN 2023; 192:115050. [PMID: 37216880 DOI: 10.1016/j.marpolbul.2023.115050] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/29/2023] [Accepted: 05/07/2023] [Indexed: 05/24/2023]
Abstract
Ocean acidification (OA) may either increase or have a neutral effect on the calcification in shrimp's exoskeleton. However, investigations on changes in the carbon composition of shrimp's exoskeletons under OA are lacking. We exposed juvenile Pacific white shrimps to target pHs of 8.0, 7.9, and 7.6 for 100 days to evaluate changes in carapace thickness, total carbon (TC), particulate organic carbon (POC), particulate inorganic carbon (PIC), calcium, and magnesium concentrations in their exoskeletons. The PIC: POC ratio of shrimp in pH 7.6 treatment was significantly higher by 175 % as compared to pH 8.0 treatment. Thickness and Ca% in pH 7.6 treatment were significantly higher as compared to pH 8.0 treatment (90 % and 65 %, respectively). This is the first direct evidence of an increased PIC: POC ratio in shrimp exoskeletons under OA. In the future, such changes in carbon composition may affect the shrimp population, ecosystem functions, and regional carbon cycle.
Collapse
Affiliation(s)
- Veran Weerathunga
- Department of Oceanography, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Chin-Chang Hung
- Department of Oceanography, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Sam Dupont
- Department of Biological and Environmental Sciences, University of Gothenburg, Fiskebäckskil 45178, Sweden; Radioecology Laboratory, International Atomic Energy Agency (IAEA), Marine Laboratories, 98000, Principality of Monaco
| | - Hsueh-Han Hsieh
- Department of Oceanography, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Nathangi Piyawardhana
- Department of Oceanography, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Fei-Ling Yuan
- Department of Oceanography, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Kai-Jung Kao
- Department of Oceanography, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Kuei-Chen Huang
- Department of Oceanography, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Wei-Jen Huang
- Department of Oceanography, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.
| |
Collapse
|
5
|
Soorya Y, Zou E. How Does Carbon Dioxide-Induced Acidification Affect Postecdysial Exoskeletal Mineralization in the Blue Crab (Callinectes sapidus)? ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:2950-2954. [PMID: 36039966 DOI: 10.1002/etc.5474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/16/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Carbon dioxide (CO2 ) enrichment in seawater because of increased use of fossil fuels can possibly cause detrimental effects on the physiological processes of marine life, especially shell builders, due to CO2 -induced ocean acidification. We investigated, for the first time, specifically the effect of CO2 enrichment on postecdysial shell mineralization in Crustacea using the blue crab, Callinectes sapidus, as the model crustacean. It was hypothesized that CO2 enrichment of seawater would adversely affect exoskeletal mineralization in the blue crab. We used two groups of postecdysial crabs, with one group exposed to seawater at a pH of 8.20 and the other group treated with CO2 -acidified seawater with a pH of 7.80-7.90. After a period of 7 days, samples of exoskeleton and hemolymph were collected from the survivors. Enrichment was found to significantly increase exoskeletal magnesium content by 104% relative to control, whereas a statistically nonsignificant elevation of 31% in exoskeletal calcium was registered. Because CO2 treatment did not change the content of magnesium and calcium in the hemolymph, we postulate that increased exoskeletal mineralization in postecdysial blue crabs must stem from an increased influx of bicarbonate ions from the medium through the gill, to the hemolymph, and across the epidermis. In addition, the observed significant increase in the mass of exoskeleton following CO2 treatment must be at least partly accounted for by enhanced postmolt carbonate salt deposition to the shell. Environ Toxicol Chem 2022;41:2950-2954. © 2022 SETAC.
Collapse
Affiliation(s)
- Yusra Soorya
- Department of Chemistry and Physical Sciences, Nicholls State University, Thibodaux, Louisiana, USA
| | - Enmin Zou
- Department of Biological Sciences, Nicholls State University, Thibodaux, Louisiana, USA
| |
Collapse
|
6
|
Low water pH depressed growth and early development of giant freshwater prawn Macrobrachium rosenbergii larvae. Heliyon 2022; 8:e09989. [PMID: 35874068 PMCID: PMC9305370 DOI: 10.1016/j.heliyon.2022.e09989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/12/2022] [Accepted: 07/13/2022] [Indexed: 11/24/2022] Open
Abstract
Macrobrachium rosenbergii is one of the shellfish species with high aquaculture value due to its increasing market demand. However, the comparatively low production volume compared to demand coupled with the rapid decline of the natural environment, consequently, drives the potential depletion of the wild population. The decrease in water pH related to anthropogenic pollution is one of the most critical factors affecting the early life performances of M. rosenbergii. Therefore, this study was designed to examine the effect of low water pH on feeding, growth and development of M. rosenbergii early life stages. Experimental water pH was set as neutral (7.7 ± 0.4); mild-acidic (6.4 ± 0.5) and acidic (5.4 ± 0.2) with triplication at a stocking density of 2 larvae/L for 30 days. As expected, M. rosenbergii larvae were highly sensitive to acidic pH with no larvae survived beyond 48 h of exposure. Feeding, survival and growth of larvae were adversely affected by mild-acidic pH exposure as compared to neutral pH. Larvae exposed to mild-acidic water pH experienced a prolonged larval period and only metamorphosed to the post-larval stage at day-30. Whilst under neutral water pH, larval that metamorphosed to post-larval was first observed on day-23. The negative impact of decreased pH, even in mild-acidic pH exposure, on the feeding, survival, growth and development of M. rosenbergii larvae highlights the urgency of periodic pH monitoring during M. rosenbergii larviculture.
Collapse
|
7
|
Siegel KR, Kaur M, Grigal AC, Metzler RA, Dickinson GH. Meta-analysis suggests negative, but pCO 2-specific, effects of ocean acidification on the structural and functional properties of crustacean biomaterials. Ecol Evol 2022; 12:e8922. [PMID: 35784075 PMCID: PMC9165209 DOI: 10.1002/ece3.8922] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/23/2022] [Accepted: 04/25/2022] [Indexed: 12/02/2022] Open
Abstract
Crustaceans comprise an ecologically and morphologically diverse taxonomic group. They are typically considered resilient to many environmental perturbations found in marine and coastal environments, due to effective physiological regulation of ions and hemolymph pH, and a robust exoskeleton. Ocean acidification can affect the ability of marine calcifying organisms to build and maintain mineralized tissue and poses a threat for all marine calcifying taxa. Currently, there is no consensus on how ocean acidification will alter the ecologically relevant exoskeletal properties of crustaceans. Here, we present a systematic review and meta-analysis on the effects of ocean acidification on the crustacean exoskeleton, assessing both exoskeletal ion content (calcium and magnesium) and functional properties (biomechanical resistance and cuticle thickness). Our results suggest that the effect of ocean acidification on crustacean exoskeletal properties varies based upon seawater pCO2 and species identity, with significant levels of heterogeneity for all analyses. Calcium and magnesium content was significantly lower in animals held at pCO2 levels of 1500-1999 µatm as compared with those under ambient pCO2. At lower pCO2 levels, however, statistically significant relationships between changes in calcium and magnesium content within the same experiment were observed as follows: a negative relationship between calcium and magnesium content at pCO2 of 500-999 µatm and a positive relationship at 1000-1499 µatm. Exoskeleton biomechanics, such as resistance to deformation (microhardness) and shell strength, also significantly decreased under pCO2 regimes of 500-999 µatm and 1500-1999 µatm, indicating functional exoskeletal change coincident with decreases in calcification. Overall, these results suggest that the crustacean exoskeleton can be susceptible to ocean acidification at the biomechanical level, potentially predicated by changes in ion content, when exposed to high influxes of CO2. Future studies need to accommodate the high variability of crustacean responses to ocean acidification, and ecologically relevant ranges of pCO2 conditions, when designing experiments with conservation-level endpoints.
Collapse
Affiliation(s)
- Kyle R. Siegel
- Department of BiologyThe College of New JerseyEwingNew JerseyUSA
| | - Muskanjot Kaur
- Department of BiologyThe College of New JerseyEwingNew JerseyUSA
| | - A. Calvin Grigal
- Department of BiologyThe College of New JerseyEwingNew JerseyUSA
| | - Rebecca A. Metzler
- Department of Physics and AstronomyColgate UniversityHamiltonNew YorkUSA
| | | |
Collapse
|
8
|
The effects of low pH on the taste and amino acid composition of tiger shrimp. Sci Rep 2021; 11:21180. [PMID: 34707152 PMCID: PMC8551290 DOI: 10.1038/s41598-021-00612-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 10/14/2021] [Indexed: 11/08/2022] Open
Abstract
Recent research has revealed that shrimp sensory quality may be affected by ocean acidification but we do not exactly know why. Here we conducted controlled pH exposure experiments on adult tiger shrimp, which were kept in 1000-L tanks continuously supplied with coastal seawater. We compared survival rate, carapace properties and flesh sensory properties and amino acid composition of shrimp exposed to pH 7.5 and pH 8.0 treatments for 28 days. Shrimp reared at pH 7.5 had a lower amino acid content (17.6% w/w) than those reared at pH 8.0 (19.5% w/w). Interestingly, the amino acids responsible for the umami taste, i.e. glutamate and aspartic acid, were present at significantly lower levels in the pH 7.5 than the pH 8.0 shrimp, and the pH 7.5 shrimp were also rated as less desirable in a blind quality test by 40 volunteer assessors. These results indicate that tiger shrimp may become less palatable in the future due to a lower production of some amino acids. Finally, tiger shrimp also had a lower survival rate over 28 days at pH 7.5 than at pH 8.0 (73% vs. 81%) suggesting that ocean acidification may affect both the quality and quantity of future shrimp resources.
Collapse
|
9
|
Kavanat Beerahassan R, Dileep N, Pillai D. Changes in the proximate and elemental composition of Alitropus typus (Crustacea: Flabellifera: Aegidae) exposed to lethal dose of bacterial consortium. J Parasit Dis 2021; 45:859-868. [PMID: 34475669 PMCID: PMC8368488 DOI: 10.1007/s12639-021-01374-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 03/01/2021] [Indexed: 10/21/2022] Open
Abstract
Alitropus typus is a crustacean parasite, which is increasingly becoming a menace to aquafarmers. In our previous study, a novel microbial consortium comprising of three exoskeleton degrading bacterial strains (Stenotrophomonas maltophilia, Bacillus altitudinis and Klebsiella pneumoniae) had shown promising results as a biocontrol agent for A. typus. The present investigation reports the changes in proximate and elemental composition associated with the application of microbial consortium on the isopod A. typus. Proximate analysis showed an increased level of protein, lipid, and moisture in treated isopod at 48 h compared with untreated isopod. However, ash and chitin concentrations were lower in treated isopod. The elements in the mid-tergite of untreated isopod was compared with the treated isopod at 48 h using scanning electron microscopy and energy dispersive x-ray spectroscopy (SEM-EDAX). The following elements were analyzed in the mid-tergite segment of untreated isopod: C, O, Na, Mg, Al, Si, P, S, Cl, K, Ca and Fe. The results showed that the concentration of calcium had decreased significantly in the treated isopod at 48 h (4.28 ± 0.11%) when compared to the untreated isopod (10.01 ± 0.32%), indicating that the bound form of calcium carbonate in the exoskeleton had been precipitated by microbial action. The concentration of carbon and phosphorous was higher in the treated isopods at 48 h compared to the untreated ones. The data suggests that treatment with microbial consortium is not only an effective but also an environmentally safe alternative for the control of A. typus.
Collapse
Affiliation(s)
- Rajeena Kavanat Beerahassan
- Department of Aquatic Animal Health Management, Kerala University of Fisheries and Ocean Studies, Panangad, Cochin, Kerala 682 506 India
- School of Ocean Science and Technology, Kerala University of Fisheries and Ocean Studies, Panangad, Cochin, Kerala 682 506 India
| | - Namitha Dileep
- Department of Aquaculture, Kerala University of Fisheries and Ocean Studies, Panangad, Cochin, Kerala 682 506 India
| | - Devika Pillai
- Department of Aquatic Animal Health Management, Kerala University of Fisheries and Ocean Studies, Panangad, Cochin, Kerala 682 506 India
| |
Collapse
|
10
|
Ning P, Lane D, Ghosh Biswas R, Soong R, Schmidig D, Frei T, De Castro P, Kovacevic I, Graf S, Wegner S, Busse F, Kuehn T, Struppe J, Fey M, Stronks HJ, Monette M, Simpson MJ, Simpson AJ. Comprehensive Multiphase NMR Probehead with Reduced Radiofrequency Heating Improves the Analysis of Living Organisms and Heat-Sensitive Samples. Anal Chem 2021; 93:10326-10333. [PMID: 34259008 DOI: 10.1021/acs.analchem.1c01932] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Comprehensive multiphase (CMP) NMR, first described in 2012, combines all of the hardware components necessary to analyze all phases (solid, gel, and solution) in samples in their natural state. In combination with spectral editing experiments, it can fully differentiate phases and study the transfer of chemical species across and between phases, providing unprecedented molecular-level information in unaltered natural systems. However, many natural samples, such as swollen soils, plants, and small organisms, contain water, salts, and ionic compounds, making them electrically lossy and susceptible to RF heating, especially when using high-strength RF fields required to select the solid domains. While dedicated reduced-heating probes have been developed for solid-state NMR, to date, all CMP-NMR probes have been based on solenoid designs, which can lead to problematic sample heating. Here, a new prototype CMP probe was developed, incorporating a loop gap resonator (LGR) for decoupling. Temperature increases are monitored in salt solutions analogous to those in small aquatic organisms and then tested in vivo on Hyalella azteca (freshwater shrimp). In the standard CMP probe (solenoid), 80% of organisms died within 4 h under high-power decoupling, while in the LGR design, all organisms survived the entire test period of 12 h. The LGR design reduced heating by a factor of ∼3, which allowed 100 kHz decoupling to be applied to salty samples with generally ≤10 °C sample heating. In addition to expanding the potential for in vivo research, the ability to apply uncompromised high-power decoupling could be beneficial for multiphase samples containing true crystalline solids that require the strongest possible decoupling fields for optimal detection.
Collapse
Affiliation(s)
- Paris Ning
- Environmental NMR Centre, University of Toronto, Toronto, Ontario M1C 1A4, Canada
| | - Daniel Lane
- Environmental NMR Centre, University of Toronto, Toronto, Ontario M1C 1A4, Canada
| | | | - Ronald Soong
- Environmental NMR Centre, University of Toronto, Toronto, Ontario M1C 1A4, Canada
| | - Daniel Schmidig
- Bruker BioSpin AG, Industriestrasse 26, 8117 Fällanden, Switzerland
| | - Thomas Frei
- Bruker BioSpin AG, Industriestrasse 26, 8117 Fällanden, Switzerland
| | - Peter De Castro
- Bruker BioSpin AG, Industriestrasse 26, 8117 Fällanden, Switzerland
| | - Ivan Kovacevic
- Bruker BioSpin AG, Industriestrasse 26, 8117 Fällanden, Switzerland
| | - Stephan Graf
- Bruker BioSpin AG, Industriestrasse 26, 8117 Fällanden, Switzerland
| | - Sebastian Wegner
- Bruker BioSpin GmbH, Silberstreifen 4, 76287 Rheinstetten, Germany
| | - Falko Busse
- Bruker BioSpin GmbH, Silberstreifen 4, 76287 Rheinstetten, Germany
| | - Till Kuehn
- Bruker BioSpin AG, Industriestrasse 26, 8117 Fällanden, Switzerland
| | - Jochem Struppe
- Bruker BioSpin Corp., 15 Fortune Drive, Billerica, Massachusetts 01821-3991, United States
| | - Michael Fey
- Bruker BioSpin Corp., 15 Fortune Drive, Billerica, Massachusetts 01821-3991, United States
| | - Henry J Stronks
- Bruker Ltd., 2800 High Point Drive, Milton, Ontario L9T 6P4, Canada
| | - Martine Monette
- Bruker Ltd., 2800 High Point Drive, Milton, Ontario L9T 6P4, Canada
| | - Myrna J Simpson
- Environmental NMR Centre, University of Toronto, Toronto, Ontario M1C 1A4, Canada
| | - André J Simpson
- Environmental NMR Centre, University of Toronto, Toronto, Ontario M1C 1A4, Canada
| |
Collapse
|
11
|
Dickinson GH, Bejerano S, Salvador T, Makdisi C, Patel S, Long WC, Swiney KM, Foy RJ, Steffel BV, Smith KE, Aronson RB. Ocean acidification alters properties of the exoskeleton in adult Tanner crabs, Chionoecetes bairdi. J Exp Biol 2021; 224:jeb.232819. [DOI: 10.1242/jeb.232819] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/24/2020] [Indexed: 12/11/2022]
Abstract
ABSTRACT
Ocean acidification can affect the ability of calcifying organisms to build and maintain mineralized tissue. In decapod crustaceans, the exoskeleton is a multilayered structure composed of chitin, protein and mineral, predominately magnesian calcite or amorphous calcium carbonate (ACC). We investigated the effects of acidification on the exoskeleton of mature (post-terminal-molt) female southern Tanner crabs, Chionoecetes bairdi. Crabs were exposed to one of three pH levels – 8.1, 7.8 or 7.5 – for 2 years. Reduced pH led to a suite of body region-specific effects on the exoskeleton. Microhardness of the claw was 38% lower in crabs at pH 7.5 compared with those at pH 8.1, but carapace microhardness was unaffected by pH. In contrast, reduced pH altered elemental content in the carapace (reduced calcium, increased magnesium), but not the claw. Diminished structural integrity and thinning of the exoskeleton were observed at reduced pH in both body regions; internal erosion of the carapace was present in most crabs at pH 7.5, and the claws of these crabs showed substantial external erosion, with tooth-like denticles nearly or completely worn away. Using infrared spectroscopy, we observed a shift in the phase of calcium carbonate present in the carapace of pH 7.5 crabs: a mix of ACC and calcite was found in the carapace of crabs at pH 8.1, whereas the bulk of calcium carbonate had transformed to calcite in pH 7.5 crabs. With limited capacity for repair, the exoskeleton of long-lived crabs that undergo a terminal molt, such as C. bairdi, may be especially susceptible to ocean acidification.
Collapse
Affiliation(s)
- Gary H. Dickinson
- Department of Biology, The College of New Jersey, 2000 Pennington Rd, Ewing, NJ 08628, USA
| | - Shai Bejerano
- Department of Biology, The College of New Jersey, 2000 Pennington Rd, Ewing, NJ 08628, USA
| | - Trina Salvador
- Department of Biology, The College of New Jersey, 2000 Pennington Rd, Ewing, NJ 08628, USA
| | - Christine Makdisi
- Department of Biology, The College of New Jersey, 2000 Pennington Rd, Ewing, NJ 08628, USA
| | - Shrey Patel
- Department of Biology, The College of New Jersey, 2000 Pennington Rd, Ewing, NJ 08628, USA
| | - W. Christopher Long
- NOAA, National Marine Fisheries Service, Alaska Fisheries Science Center, Resource Assessment and Conservation Engineering Division, Kodiak Laboratory, 301 Research Ct, Kodiak, AK 99615, USA
| | - Katherine M. Swiney
- NOAA, National Marine Fisheries Service, Alaska Fisheries Science Center, Resource Assessment and Conservation Engineering Division, Kodiak Laboratory, 301 Research Ct, Kodiak, AK 99615, USA
| | - Robert J. Foy
- NOAA, National Marine Fisheries Service, Alaska Fisheries Science Center, Resource Assessment and Conservation Engineering Division, Kodiak Laboratory, 301 Research Ct, Kodiak, AK 99615, USA
| | - Brittan V. Steffel
- Department of Ocean Engineering and Marine Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA
| | - Kathryn E. Smith
- The Marine Biological Association, The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK
| | - Richard B. Aronson
- Department of Ocean Engineering and Marine Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA
| |
Collapse
|
12
|
McLuckie C, Moltschaniwskyj N, Gaston T, Taylor MD. Effects of reduced pH on an estuarine penaeid shrimp (Metapenaeus macleayi). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115929. [PMID: 33162210 DOI: 10.1016/j.envpol.2020.115929] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 10/09/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
Acid sulfate soils are a major problem in modified coastal floodplains and are thought to have substantial impacts on estuarine species. In New South Wales, Australia, acid sulfate soils occur in every estuary and are thought to impact important fisheries species, such as Eastern School Prawn (Metapenaeus macleayi). These fisheries have experienced declining productivity over the last ten years and increasing occurrence of catchment-derived stressors in estuaries contribute to this problem. We evaluated the effect of pH 4-7.5 on School Prawn survival at two salinities (27 and 14.5), pH 5, 6 and 7.5 on the predation escape response (PER) speed at two salinities (27 and 14.5), and pH 4 and 7.5 on respiration rates. While mortality appeared to be greater in the high salinity treatment, there was no significant relationship between proportional survival and pH for either salinity treatment. Respiration was significantly slower under acidic conditions and the average PER was almost twice as fast at pH 7.5 compared to pH 5 (p < 0.05), indicating prawns may fall prey to predation more easily in acidic conditions. These findings confirm the hypothesised impacts of acidic water on penaeid prawns. Given that the conditions simulated in these experiments reflect those encountered in estuaries, acidic runoff may be contributing to bottlenecks for estuarine species and impacting fisheries productivity.
Collapse
Affiliation(s)
- Catherine McLuckie
- School of Environmental and Life Sciences, University of Newcastle, University Drive, Callaghan, New South Wales, 2308, Australia.
| | - Natalie Moltschaniwskyj
- School of Environmental and Life Sciences, University of Newcastle, University Drive, Callaghan, New South Wales, 2308, Australia; Port Stephens Fisheries Institute, New South Wales Department of Primary Industries, Locked Bag 1, Nelson Bay, New South Wales, 2315, Australia
| | - Troy Gaston
- Port Stephens Fisheries Institute, New South Wales Department of Primary Industries, Locked Bag 1, Nelson Bay, New South Wales, 2315, Australia
| | - Matthew D Taylor
- School of Environmental and Life Sciences, University of Newcastle, University Drive, Callaghan, New South Wales, 2308, Australia; Port Stephens Fisheries Institute, New South Wales Department of Primary Industries, Locked Bag 1, Nelson Bay, New South Wales, 2315, Australia
| |
Collapse
|
13
|
Muralisankar T, Kalaivani P, Thangal SH, Santhanam P. Growth, biochemical, antioxidants, metabolic enzymes and hemocytes population of the shrimp Litopenaeus vannamei exposed to acidified seawater. Comp Biochem Physiol C Toxicol Pharmacol 2021; 239:108843. [PMID: 32781296 DOI: 10.1016/j.cbpc.2020.108843] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 12/13/2022]
Abstract
Acidification in the marine environment has become a global issue that creates serious threats to marine organisms. In the present study, we evaluated the effect of CO2 driven acidification on the shrimp Litopenaeus vannamei post-larvae (PL). L. vannamei PL were exposed to six different CO2 driven acidified seawater, such as 8.2 (control), pH 7.8 (IPCC-predicted ocean pH by 2100), 7.6, 7.4, 7.2 and 7.0 with corresponding pCO2 level of 380.66, 557.53, 878.55, 1355.48, 2129.46, and 3312.12 μatm for seven weeks. At the end of the acidification experiment, results revealed that the survival, growth, feed index, biochemical constituents, chitin, minerals (Na, K, and Ca), and hemocyte populations of shrimps were found to be significantly decreased in CO2 driven acidified seawater which indicates the negative impacts of acidified seawater on these parameters in L. vannamei. Further, the level of antioxidants, lipid peroxidation, and metabolic enzymes were significantly higher in the muscle of shrimps exposed to acidified seawater suggests that the L. vannamei under oxidative stress and metabolic stress. Among the various acidified seawater tested, pH 7.6 to 7.0 produced a significantly adverse effect on shrimps. Hence, the present study concluded that the elevated level of seawater acidification can produce harmful effects on the biology and physiology of the commercially important shrimp L. vannamei PL.
Collapse
Affiliation(s)
- T Muralisankar
- Aquatic Ecology Laboratory, Department of Zoology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India.
| | - P Kalaivani
- Aquatic Ecology Laboratory, Department of Zoology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - S H Thangal
- Aquatic Ecology Laboratory, Department of Zoology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - P Santhanam
- Marine Planktonology and Aquaculture Laboratory, Department of Marine Science, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| |
Collapse
|
14
|
Zheng X, Lei S, Zhao S, Ye G, Ma R, Liu L, Xie Y, Shi X, Chen J. Temperature elevation and acidification damage microstructure of abalone via expression change of crystal induction genes. MARINE ENVIRONMENTAL RESEARCH 2020; 162:105114. [PMID: 32892151 DOI: 10.1016/j.marenvres.2020.105114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 08/07/2020] [Accepted: 08/11/2020] [Indexed: 06/11/2023]
Abstract
Ocean warming and acidification caused by global climate change interferes with the shell growth of mollusks. In abalone Haliotis discus hannai, the microstructural changes in the shell under stress are unclear, and the effect of thermal stress on biomineralization is unknown. The lack of gene information has also hampered the study of abalone biomineralization mechanisms. In this study, the microstructure of reconstructed shell in H. discus hannai was observed to determine the effects of thermal and acidification stress on shell growth. Three nacre protein genes, Hdh-AP7, Hdh-AP24, and Hdh-perlustrin, were characterized, and their expression pattern during shell repair was measured under thermal and acidification stress and compared with those of two known biomineralization-related genes, Hdh-AP-1 and Hdh-defensin. The stress resulted in aragonite plates with corroded or irregular microstructures. The gene expression of two nacre proteins (Hdh-AP7 and Hdh-AP24), which directly induce crystal formation, were more sensitive to thermal stress than to acidification, but the expression of the regulatory nacre protein (Hdh-perlustrin) and the two known genes (Hdh-AP-1 and Hdh-defensin), which are also related to immunity, showed an interlinked, complex pattern change. We concluded that high temperature and acidification damages the shell microstructure by disturbing the expression pattern of biomineralization-related genes.
Collapse
Affiliation(s)
- Xiangnan Zheng
- Fujian Engineering and Technology Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fujian, Fuzhou, 350108, China; Fuzhou Industrial Technology Innovation Center for High Value Utilization of Marine Products, Fuzhou University, Fujian, Fuzhou, 350108, China
| | - Shanshan Lei
- Fujian Engineering and Technology Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fujian, Fuzhou, 350108, China; Fuzhou Industrial Technology Innovation Center for High Value Utilization of Marine Products, Fuzhou University, Fujian, Fuzhou, 350108, China
| | - Shuxian Zhao
- Fujian Engineering and Technology Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fujian, Fuzhou, 350108, China; Fuzhou Industrial Technology Innovation Center for High Value Utilization of Marine Products, Fuzhou University, Fujian, Fuzhou, 350108, China
| | - Ganping Ye
- Fujian Engineering and Technology Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fujian, Fuzhou, 350108, China; Fuzhou Industrial Technology Innovation Center for High Value Utilization of Marine Products, Fuzhou University, Fujian, Fuzhou, 350108, China
| | - Ruijuan Ma
- Fujian Engineering and Technology Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fujian, Fuzhou, 350108, China; Fuzhou Industrial Technology Innovation Center for High Value Utilization of Marine Products, Fuzhou University, Fujian, Fuzhou, 350108, China
| | - Lemian Liu
- Fujian Engineering and Technology Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fujian, Fuzhou, 350108, China; Fuzhou Industrial Technology Innovation Center for High Value Utilization of Marine Products, Fuzhou University, Fujian, Fuzhou, 350108, China
| | - Youping Xie
- Fujian Engineering and Technology Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fujian, Fuzhou, 350108, China; Fuzhou Industrial Technology Innovation Center for High Value Utilization of Marine Products, Fuzhou University, Fujian, Fuzhou, 350108, China
| | - Xinguo Shi
- Fujian Engineering and Technology Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fujian, Fuzhou, 350108, China; Fuzhou Industrial Technology Innovation Center for High Value Utilization of Marine Products, Fuzhou University, Fujian, Fuzhou, 350108, China.
| | - Jianfeng Chen
- Fujian Engineering and Technology Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fujian, Fuzhou, 350108, China; Fuzhou Industrial Technology Innovation Center for High Value Utilization of Marine Products, Fuzhou University, Fujian, Fuzhou, 350108, China.
| |
Collapse
|
15
|
Zheng X, Zhao S, Lei S, Ma R, Liu L, Xie Y, Shi X, Chen J. Cloning and characterization of a novel Lustrin A gene from Haliotis discus hannai. Comp Biochem Physiol B Biochem Mol Biol 2020; 240:110385. [DOI: 10.1016/j.cbpb.2019.110385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/02/2019] [Accepted: 11/05/2019] [Indexed: 10/25/2022]
|
16
|
Turra A, Ragagnin MN, McCarthy ID, Fernandez WS. The effect of ocean acidification on the intertidal hermit crab Pagurus criniticornis is not modulated by cheliped amputation and sex. MARINE ENVIRONMENTAL RESEARCH 2020; 153:104794. [PMID: 31582297 DOI: 10.1016/j.marenvres.2019.104794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 09/23/2019] [Accepted: 09/27/2019] [Indexed: 06/10/2023]
Abstract
Impacts of the interactive effects of ocean acidification (OA) with other anthropogenic environmental stressors on marine biodiversity are receiving increasing attention in recent years. However, little is known about how organismal responses to OA may be influenced by common phenomena such as autotomy and sexual dimorphism. This study evaluated the long-term (120 days) combined effects of OA (pH 7.7), experimental cheliped amputation and sex on physiological stress (mortality, growth, number of molts, cheliped regeneration and startle response) and energy budget (lipid and calcium contents) in the intertidal sexually-dimorphic hermit crab Pagurus criniticornis. Crabs exposed to OA reduced survivorship (46%), molting frequency (36%) and lipid content (42%). Autotomised crabs and males molted more frequently (39% and 32%, respectively). Males presented higher regeneration (33%) and lower lipid content (24%). The few synergistic effects recorded did not indicate any clear pattern among treatments however, (1) a stronger reduction in lipid content was recorded in non-autotomised crabs exposed to low pH; (2) calcium content was higher in males than females only for autotomised crabs under control pH; and (3) autotomised females showed a proportionally slower activity recovery than autotomised males. Although our results suggest an effect of long-term exposure to low pH on the physiological stress and energy budget of Pagurus criniticornis, the physiological repertoire and plasticity associated with limb regeneration and the maintenance of dimorphism in secondary sexual characters may provide resilience to long-term exposure to OA.
Collapse
Affiliation(s)
- Alexander Turra
- Oceanographic Institute, University of São Paulo, São Paulo, 05508-120, SP, Brazil.
| | - Marilia N Ragagnin
- Oceanographic Institute, University of São Paulo, São Paulo, 05508-120, SP, Brazil
| | - Ian D McCarthy
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey, LL59 5AB, United Kingdom
| | | |
Collapse
|
17
|
No compromise between metabolism and behavior of decorator crabs in reduced pH conditions. Sci Rep 2019; 9:6262. [PMID: 31000765 PMCID: PMC6472338 DOI: 10.1038/s41598-019-42696-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 04/02/2019] [Indexed: 11/09/2022] Open
Abstract
Many marine calcifiers experience metabolic costs when exposed to experimental ocean acidification conditions, potentially limiting the energy available to support regulatory processes and behaviors. Decorator crabs expend energy on decoration camouflage and may face acute trade-offs under environmental stress. We hypothesized that under reduced pH conditions, decorator crabs will be energy limited and allocate energy towards growth and calcification at the expense of decoration behavior. Decorator crabs, Pelia tumida, were exposed to ambient (8.01) and reduced (7.74) pH conditions for five weeks. Half of the animals in each treatment were given sponge to decorate with. Animals were analyzed for changes in body mass, exoskeleton mineral content (Ca and Mg), organic content (a proxy for metabolism), and decoration behavior (sponge mass and percent cover). Overall, decorator crabs showed no signs of energy limitation under reduced pH conditions. Exoskeleton mineral content, body mass, and organic content of crabs remained the same across pH and decoration treatments, with no effect of reduced pH on decoration behavior. Despite being a relatively inactive, osmoconforming species, Pelia tumida is able to maintain multiple regulatory processes and behavior when exposed to environmental pH stress, which underscores the complexity of responses within Crustacea to ocean acidification conditions.
Collapse
|
18
|
Lopes AR, Borges FO, Figueiredo C, Sampaio E, Diniz M, Rosa R, Grilo TF. Transgenerational exposure to ocean acidification induces biochemical distress in a keystone amphipod species (Gammarus locusta). ENVIRONMENTAL RESEARCH 2019; 170:168-177. [PMID: 30583126 DOI: 10.1016/j.envres.2018.12.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 12/14/2018] [Accepted: 12/18/2018] [Indexed: 06/09/2023]
Abstract
Atmospheric carbon dioxide (CO2) levels are increasing at the fastest rate ever recorded, causing higher CO2 dissolution in the ocean, leading to a process known as ocean acidification (OA). Unless anthropogenic CO2 emissions are reduced, they are expected to reach ~900 ppm by the century's end, resulting in a 0.13-0.42 drop in the seawater pH levels. Since the transgenerational effects of high CO2 in marine organisms are still poorly understood at lower levels of biological organization (namely at the biochemical level), here we reared a key ecological relevant marine amphipod, Gammarus locusta, under control and high CO2 conditions for two generations. We measured several stress-related biochemical endpoints: i) oxidative damage [lipid peroxidation (LPO) and DNA damage]; ii) protein repair and removal mechanisms [heat shock proteins (HSPs) and ubiquitin (Ub)]; as well as iii) antioxidant responses [superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione s-transferase (GST)] and total antioxidant capacity (TAC). The present results support the premise that exposure to high CO2 is expected to decrease survival rates in this species and cause within- and transgenerational oxidative damage. More specifically, the predicted upsurge of reactive oxygen and nitrogen species seemed to overwhelm the stimulated amphipod antioxidant machinery, which proved insufficient in circumventing protein damage within the parents. Additionally, negative effects of OA are potentially being inherited by the offspring, since the oxidative stress imposed in the parent's proteome appears to be restricting DNA repair mechanisms efficiency within the offspring's. Thus, we argue that a transgenerational exposure of G. locusta could further increase vulnerability to OA and may endanger the fitness and sustainability of natural populations.
Collapse
Affiliation(s)
- Ana Rita Lopes
- MARE - Marine and Environmental Sciences Centre, Laboratório Marítimo da Guia, Faculdade de Ciências da Universidade de Lisboa, Avenida Nossa Senhora do Cabo 939, 2750-374 Cascais, Portugal; UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2829-516 Caparica, Portugal.
| | - Francisco Oliveira Borges
- MARE - Marine and Environmental Sciences Centre, Laboratório Marítimo da Guia, Faculdade de Ciências da Universidade de Lisboa, Avenida Nossa Senhora do Cabo 939, 2750-374 Cascais, Portugal
| | - Cátia Figueiredo
- MARE - Marine and Environmental Sciences Centre, Laboratório Marítimo da Guia, Faculdade de Ciências da Universidade de Lisboa, Avenida Nossa Senhora do Cabo 939, 2750-374 Cascais, Portugal
| | - Eduardo Sampaio
- MARE - Marine and Environmental Sciences Centre, Laboratório Marítimo da Guia, Faculdade de Ciências da Universidade de Lisboa, Avenida Nossa Senhora do Cabo 939, 2750-374 Cascais, Portugal
| | - Mário Diniz
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2829-516 Caparica, Portugal
| | - Rui Rosa
- MARE - Marine and Environmental Sciences Centre, Laboratório Marítimo da Guia, Faculdade de Ciências da Universidade de Lisboa, Avenida Nossa Senhora do Cabo 939, 2750-374 Cascais, Portugal
| | - Tiago Fernandes Grilo
- MARE - Marine and Environmental Sciences Centre, Laboratório Marítimo da Guia, Faculdade de Ciências da Universidade de Lisboa, Avenida Nossa Senhora do Cabo 939, 2750-374 Cascais, Portugal
| |
Collapse
|
19
|
Huang W, Li H, Cheng C, Ren C, Chen T, Jiang X, Cheng K, Luo P, Hu C. Analysis of the transcriptome data in Litopenaeus vannamei reveals the immune basis and predicts the hub regulation-genes in response to high-pH stress. PLoS One 2018; 13:e0207771. [PMID: 30517152 PMCID: PMC6281221 DOI: 10.1371/journal.pone.0207771] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 11/06/2018] [Indexed: 11/18/2022] Open
Abstract
Soil salinization erodes the farmlands and poses a serious threat to human life, reuse of the saline-alkali lands as cultivated resources becomes increasingly prominent. Pacific white shrimp (Litopenaeus vannamei) is an important farmed aquatic species for the development and utilization of the saline-alkali areas. However, little is known about the adaptation mechanism of this species in terms of high-pH stress. In the present study, a transcriptome analysis on the gill tissues of L. vannamei in response to high-pH stress (pH 9.3 ± 0.1) was conducted. After analyzing, the cyclic nucleotide gated channel-Ca2+ (CNGC-Ca2+) and patched 1 (Ptc1) were detected as the majority annotated components in the cAMP signaling pathway (KO04024), indicating that the CNGC-Ca2+ and Ptc1 might be the candidate components for transducing and maintaining the high-pH stress signals, respectively. The immunoglobulin superfamily (IgSF), heat shock protein (HSP), glutathione s-transferase (GST), prophenoloxidase/phenoloxidase (proPO/PO), superoxide dismutase (SOD), anti-lipopolysaccharide factor (ALF) and lipoprotein were discovered as the major transcribed immune factors in response to high-pH stress. To further detect hub regulation-genes, protein-protein interaction (PPI) networks were constructed; the genes/proteins "Polymerase (RNA) II (DNA directed) polypeptide A" (POLR2A), "Histone acetyltransferase p300" (EP300) and "Heat shock 70kDa protein 8" (HSPA8) were suggested as the top three hub regulation-genes in response to acute high-pH stress; the genes/proteins "Heat shock 70kDa protein 4" (HSPA4), "FBJ murine osteosarcoma viral oncogene homolog" (FOS) and "Nucleoporin 54kDa" (NUP54) were proposed as the top three hub regulation-genes involved in adapting endurance high-pH stress; the protein-interactions of "EP300-HSPA8" and "HSPA4-NUP54" were detected as the most important biological interactions in response to the high-pH stress; and the HSP70 family genes might play essential roles in the adaptation of the high-pH stress environment in L. vannamei. These findings provide the first insight into the molecular and immune basis of L. vannamei in terms of high-pH environments, and the construction of a PPI network might improve our understanding in revealing the hub regulation-genes in response to abiotic stress in shrimp species and might be beneficial for further studies.
Collapse
Affiliation(s)
- Wen Huang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou, China
| | - Hongmei Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chuhang Cheng
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chunhua Ren
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou, China
| | - Ting Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou, China
| | - Xiao Jiang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou, China
| | | | - Peng Luo
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- * E-mail: (CH); (PL)
| | - Chaoqun Hu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- * E-mail: (CH); (PL)
| |
Collapse
|
20
|
Ragagnin MN, McCarthy ID, Fernandez WS, Tschiptschin AP, Turra A. Vulnerability of juvenile hermit crabs to reduced seawater pH and shading. MARINE ENVIRONMENTAL RESEARCH 2018; 142:130-140. [PMID: 30316461 DOI: 10.1016/j.marenvres.2018.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 10/04/2018] [Accepted: 10/04/2018] [Indexed: 06/08/2023]
Abstract
Multiple simultaneous stressors induced by anthropogenic activities may amplify their impacts on marine organisms. The effects of ocean acidification, in combination with other anthropogenic impacts (apart from temperature) are poorly understood, especially in coastal regions. In these areas, shading caused by infrastructure development, such as harbor construction, may potentially interact with CO2-induced pH reduction and affect invertebrate populations. Here, we evaluated the effects of reduced pH (7.6) and shading (24h in darkness) on mortality, growth, calcification and displacement behavior to live predator (danger signal) and dead gastropod (resource availability signal) odors using juveniles of the hermit crab Pagurus criniticornis collected in Araçá Bay (São Paulo state, Southeastern Brazil). After a 98 day experimental period, both stressors had a significant interaction effect on mortality, and an additive effect on total growth. No difference in calcification was recorded among treatments, indicating that individuals were able to maintain calcification under reduced pH conditions. When exposed to odor of live predators, crab responses were only affected by shading. However, an interactive effect between both stressors was observed in response to gastropod odor, leading to reduced displacement behavior. This study shows how local disturbance impacts may enhance the effects of global environmental change on intertidal crustacean populations.
Collapse
Affiliation(s)
- Marilia Nagata Ragagnin
- Instituto Oceanográfico, Universidade de São Paulo, Praça do Oceanográfico, 191, 05508-120, São Paulo, SP, Brazil.
| | - Ian Donald McCarthy
- School of Ocean Sciences, Bangor University, Askew St, Menai Bridge LL59 5AB, Anglesey, United Kingdom.
| | - Wellington Silva Fernandez
- Instituto Oceanográfico, Universidade de São Paulo, Praça do Oceanográfico, 191, 05508-120, São Paulo, SP, Brazil.
| | - André Paulo Tschiptschin
- Departamento de Engenharia Metalúrgica e de Materiais, Escola Politécnica, Universidade de São Paulo, Av. Professor Mello Moraes, 2463, 05508-030, São Paulo, SP, Brazil.
| | - Alexander Turra
- Instituto Oceanográfico, Universidade de São Paulo, Praça do Oceanográfico, 191, 05508-120, São Paulo, SP, Brazil.
| |
Collapse
|
21
|
Christianson C, Goldberg NN, Deheyn DD, Cai S, Tolley MT. Translucent soft robots driven by frameless fluid electrode dielectric elastomer actuators. Sci Robot 2018; 3:3/17/eaat1893. [DOI: 10.1126/scirobotics.aat1893] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 04/11/2018] [Indexed: 01/01/2023]
|
22
|
Hammill E, Johnson E, Atwood TB, Harianto J, Hinchliffe C, Calosi P, Byrne M. Ocean acidification alters zooplankton communities and increases top-down pressure of a cubozoan predator. GLOBAL CHANGE BIOLOGY 2018; 24:e128-e138. [PMID: 28850765 DOI: 10.1111/gcb.13849] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 07/14/2017] [Indexed: 06/07/2023]
Abstract
The composition of local ecological communities is determined by the members of the regional community that are able to survive the abiotic and biotic conditions of a local ecosystem. Anthropogenic activities since the industrial revolution have increased atmospheric CO2 concentrations, which have in turn decreased ocean pH and altered carbonate ion concentrations: so called ocean acidification (OA). Single-species experiments have shown how OA can dramatically affect zooplankton development, physiology and skeletal mineralization status, potentially reducing their defensive function and altering their predatory and antipredatory behaviors. This means that increased OA may indirectly alter the biotic conditions by modifying trophic interactions. We investigated how OA affects the impact of a cubozoan predator on their zooplankton prey, predominantly Copepoda, Pleocyemata, Dendrobranchiata, and Amphipoda. Experimental conditions were set at either current (pCO2 370 μatm) or end-of-the-century OA (pCO2 1,100 μatm) scenarios, crossed in an orthogonal experimental design with the presence/absence of the cubozoan predator Carybdea rastoni. The combined effects of exposure to OA and predation by C. rastoni caused greater shifts in community structure, and greater reductions in the abundance of key taxa than would be predicted from combining the effect of each stressor in isolation. Specifically, we show that in the combined presence of OA and a cubozoan predator, populations of the most abundant member of the zooplankton community (calanoid copepods) were reduced 27% more than it would be predicted based on the effects of these stressors in isolation, suggesting that OA increases the susceptibility of plankton to predation. Our results indicate that the ecological consequences of OA may be greater than predicted from single-species experiments, and highlight the need to understand future marine global change from a community perspective.
Collapse
Affiliation(s)
- Edd Hammill
- Department of Watershed Sciences and the Ecology Center, Utah State University, Logan, UT, USA
- School of Life Sciences, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Ellery Johnson
- School of Life Sciences, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Trisha B Atwood
- Department of Watershed Sciences and the Ecology Center, Utah State University, Logan, UT, USA
| | - Januar Harianto
- Schools of Medical and Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Charles Hinchliffe
- School of Life Sciences, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Piero Calosi
- Département de Biologie Chimie et Géographie, Université du Québec à Rimouski, Rimouski, Québec, Canada
| | - Maria Byrne
- Schools of Medical and Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
23
|
Automated culture of aquatic model organisms: shrimp larvae husbandry for the needs of research and aquaculture. Animal 2017; 12:155-163. [PMID: 28462769 DOI: 10.1017/s1751731117000908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Modern research makes frequent use of animal models, that is, organisms raised and bred experimentally in order to help the understanding of biological and chemical processes affecting organisms or whole environments. The development of flexible, reprogrammable and modular systems that may help the automatic production of 'not-easy-to-keep' species is important for scientific purposes and for such aquaculture needs as the production of alive foods, the culture of small larvae and the test of new culture procedures. For this reason, we planned and built a programmable experimental system adaptable to the culture of various aquatic organisms, at different developmental stages. The system is based on culture cylinders contained into operational tanks connected to water conditioning tanks. A programmable central processor unit controls the operations, that is, water changes, temperature, light irradiance, the opening and closure of valves for the discharge of unused foods, water circulation and filtration and disinfection systems, according to the information received by various probes. Various devices may be set to modify water circulation and water changes to fulfil the needs of given organisms, to avoid damage of delicate structures, improve feeding performances and reduce the risk of movements over the water surface. The results obtained indicate that the system is effective in the production of shrimp larvae, being able to produce Hippolyte inermis post-larvae with low mortality as compared with the standard operation procedures followed by human operators. Therefore, the patented prototype described in the present study is a possible solution to automate and simplify the rearing of small invertebrates in the laboratory and in production plants.
Collapse
|
24
|
deVries MS, Webb SJ, Tu J, Cory E, Morgan V, Sah RL, Deheyn DD, Taylor JRA. Stress physiology and weapon integrity of intertidal mantis shrimp under future ocean conditions. Sci Rep 2016; 6:38637. [PMID: 27974830 PMCID: PMC5156921 DOI: 10.1038/srep38637] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 11/01/2016] [Indexed: 11/25/2022] Open
Abstract
Calcified marine organisms typically experience increased oxidative stress and changes in mineralization in response to ocean acidification and warming conditions. These effects could hinder the potency of animal weapons, such as the mantis shrimp’s raptorial appendage. The mechanical properties of this calcified weapon enable extremely powerful punches to be delivered to prey and aggressors. We examined oxidative stress and exoskeleton structure, mineral content, and mechanical properties of the raptorial appendage and the carapace under long-term ocean acidification and warming conditions. The predatory appendage had significantly higher % Mg under ocean acidification conditions, while oxidative stress levels as well as the % Ca and mechanical properties of the appendage remained unchanged. Thus, mantis shrimp tolerate expanded ranges of pH and temperature without experiencing oxidative stress or functional changes to their weapons. Our findings suggest that these powerful predators will not be hindered under future ocean conditions.
Collapse
Affiliation(s)
- Maya S deVries
- Scripps Institution of Oceanography, Marine Biology Research Division, University of California at San Diego, La Jolla, CA 92093 USA
| | - Summer J Webb
- Scripps Institution of Oceanography, Marine Biology Research Division, University of California at San Diego, La Jolla, CA 92093 USA
| | - Jenny Tu
- Scripps Institution of Oceanography, Marine Biology Research Division, University of California at San Diego, La Jolla, CA 92093 USA
| | - Esther Cory
- Department of Bioengineering, University of California at San Diego, La Jolla, CA 92093, USA
| | - Victoria Morgan
- Scripps Institution of Oceanography, Marine Biology Research Division, University of California at San Diego, La Jolla, CA 92093 USA
| | - Robert L Sah
- Department of Bioengineering, University of California at San Diego, La Jolla, CA 92093, USA
| | - Dimitri D Deheyn
- Scripps Institution of Oceanography, Marine Biology Research Division, University of California at San Diego, La Jolla, CA 92093 USA
| | - Jennifer R A Taylor
- Scripps Institution of Oceanography, Marine Biology Research Division, University of California at San Diego, La Jolla, CA 92093 USA
| |
Collapse
|
25
|
Zhan Y, Hu W, Zhang W, Liu M, Duan L, Huang X, Chang Y, Li C. The impact of CO 2-driven ocean acidification on early development and calcification in the sea urchin Strongylocentrotus intermedius. MARINE POLLUTION BULLETIN 2016; 112:291-302. [PMID: 27522173 DOI: 10.1016/j.marpolbul.2016.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 07/21/2016] [Accepted: 08/02/2016] [Indexed: 06/06/2023]
Abstract
The impact of CO2-driven ocean acidification(OA) on early development and calcification in the sea urchin Strongylocentrotus intermedius cultured in northern Yellow Sea was investigated by comparing fertilization success, early cleavage rate, hatching rate of blastulae, larvae survival rate at 70h post-fertilization, larval morphology and calcification under present natural seawater condition (pH=8.00±0.03) and three laboratory-controlled acidified conditions (OA1, △pH=-0.3units; OA2, △pH=-0.4units; OA3, △pH=-0.5units) projected by IPCC for 2100. Results showed that pH decline had no effect on the overall fertilization, however, with decreased pH, delayed early embryonic cleavage, reduced hatching rate of blastulae and four-armed larvae survival rate at 70h post-fertilization, impaired larval symmetry, shortened larval spicules, and corrosion spicule structure were observed in all OA-treated groups as compared to control, which indicated that CO2-driven OA affected early development and calcification in S. intermedius negatively.
Collapse
Affiliation(s)
- Yaoyao Zhan
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, Liaoning 116023, China
| | - Wanbin Hu
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, Liaoning 116023, China
| | - Weijie Zhang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, Liaoning 116023, China
| | - Minbo Liu
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, Liaoning 116023, China
| | - Lizhu Duan
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, Liaoning 116023, China
| | - Xianya Huang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, Liaoning 116023, China
| | - Yaqing Chang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, Liaoning 116023, China.
| | - Cong Li
- College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning 116044, China
| |
Collapse
|
26
|
Bain PA, Gregg AL, Kumar A. De novo assembly and analysis of changes in the protein-coding transcriptome of the freshwater shrimp Paratya australiensis (Decapoda: Atyidae) in response to acid sulfate drainage water. BMC Genomics 2016; 17:890. [PMID: 27821072 PMCID: PMC5100079 DOI: 10.1186/s12864-016-3208-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 10/25/2016] [Indexed: 12/29/2022] Open
Abstract
Background The atyid shrimp Paratya australiensis occurs in surface freshwater habitats throughout eastern Australia and has been used to study the ecotoxicology of contaminants such as pesticides and metals. The acidification of surface water that can occur after acid sulfate material in soils and sediments is oxidised and subsequently re-wetted is a serious environmental issue in coastal regions and inland riverine floodplains worldwide. Solubilisation of soil-associated minerals can result in high waterborne concentrations of mineral salts and dissolved metals, which together with low pH represent a potential threat to aquatic ecosystems in affected regions. The aims of the present study were to gain insight into stress responses induced by exposure to acid drainage water (ADW) in P. australiensis by determining changes in the abundance of protein-coding transcripts and to generate a comprehensive transcriptomic resource to facilitate further research into gene regulation or protein structure and function in this species. Adult P. australiensis were exposed for 24 h to undiluted ADW, 50 % ADW diluted in river water, or to river water as control, and high-throughput mRNA sequencing (RNA-Seq) conducted on whole-body tissues. A reference transcriptome was generated using de novo assembly and putative protein-coding regions were identified and annotated. Changes in transcript abundance in response to ADW exposure were determined by aligning reads to the reference transcriptome and quantifying coverage. Results A high proportion of arthropod benchmarking universal single-copy orthologues were present in the reference transcriptome. Functions associated with cuticle biosynthesis and oxidative stress were significantly enriched in the lists of transcripts exhibiting differential abundance in either direction after exposure to 50 % or 100 % ADW. Transcripts involved in osmoregulation exhibited decreased abundance following exposure to ADW. The transcriptome contained full-length coding sequences for numerous proteins known to be involved in environmental response pathways, including two putative metallothioneins, four glutathione peroxidases and 19 nuclear receptors. Conclusions The results of the present study provide insight into stress response pathways induced in crustaceans by short-term exposure to multiple stressors present in ADW such as low pH, high salinity and dissolved metals, and represent a resource for future toxicogenomics and protein functional studies in P. australiensis. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3208-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Peter A Bain
- Commonwealth Scientific and Industrial Research Organisation, Waite Road, Urrbrae, 5064, Australia. .,Commonwealth Scientific and Industrial Research Organisation, Private Mail Bag 2, Glen Osmond, 5064, Australia.
| | - Adrienne L Gregg
- Commonwealth Scientific and Industrial Research Organisation, Waite Road, Urrbrae, 5064, Australia
| | - Anupama Kumar
- Commonwealth Scientific and Industrial Research Organisation, Waite Road, Urrbrae, 5064, Australia
| |
Collapse
|
27
|
Holzinger A, Allen MC, Deheyn DD. Hyperspectral imaging of snow algae and green algae from aeroterrestrial habitats. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 162:412-420. [PMID: 27442511 DOI: 10.1016/j.jphotobiol.2016.07.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/01/2016] [Accepted: 07/03/2016] [Indexed: 10/21/2022]
Abstract
Snow algae and green algae living in aeroterrestrial habitats are ideal objects to study adaptation to high light irradiation. Here, we used a detailed description of the spectral properties as a proxy for photo-acclimation/protection in snow algae (Chlamydomonas nivalis, Chlainomonas sp. and Chloromonas sp.) and charophyte green algae (Zygnema sp., Zygogonium ericetorum and Klebsormidium crenulatum). The hyperspectral microscopic mapping and imaging technique allowed us to acquire total absorption spectra of these microalgae in the waveband of 400-900nm. Particularly in Chlamydomonas nivalis and Chlainomonas sp., a high absorbance between 400-550nm was observed, due to naturally occurring secondary carotenoids; in Chloromonas sp. and in the charopyhte algae this high absorbance was missing, the latter being close relatives to land plants. To investigate if cellular water loss has an influence on the spectral properties, the cells were plasmolysed in sorbitol or desiccated at ambient air. While in snow algae, these treatments did hardly change the spectral properties, in the charopyhte algae the condensation of the cytoplasm and plastids increased the absorbance in the lower waveband of 400-500nm. These changes might be ecologically relevant and photoprotective, as aeroterrestrial algae are naturally exposed to occasional water limitation, leading to desiccation, which are conditions usually occurring together with higher irradiation.
Collapse
Affiliation(s)
- Andreas Holzinger
- Institute of Botany, Functional Plant Biology, University of Innsbruck, Sternwartestrasse 15, 6020 Innsbruck, Austria.
| | - Michael C Allen
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0202, USA
| | - Dimitri D Deheyn
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0202, USA.
| |
Collapse
|