1
|
Rodríguez-Agustín A, Ayala-Suárez R, Díez-Fuertes F, Maleno MJ, de Villasante I, Merkel A, Coiras M, Casanova V, Alcamí J, Climent N. Intracellular HIV-1 Tat regulator induces epigenetic changes in the DNA methylation landscape. Front Immunol 2025; 16:1532692. [PMID: 40103825 PMCID: PMC11913862 DOI: 10.3389/fimmu.2025.1532692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/04/2025] [Indexed: 03/20/2025] Open
Abstract
Introduction The HIV regulatory protein Tat enhances viral transcription and also modifies host gene expression, affecting cell functions like cell cycle and apoptosis. Residual expression of Tat protein is detected in blood and other tissues even under antiretroviral treatment. Cohort studies have indicated that, despite virologic suppression, people with HIV (PWH) are at increased risk of comorbidities linked to chronic inflammation, accelerated immune ageing, and cellular senescence, sometimes associated with abnormal genomic methylation patterns. We analysed whether Tat influences DNA methylation and subsequently impacts the transcriptional signature, contributing to inflammation and accelerated ageing. Methods We transfected Jurkat cells with full-length Tat (Tat101), Tat's first exon (Tat72), or an empty vector (TetOFF). We assessed DNA methylation modifications via the Infinium MethylationEPIC array, and we evaluated transcriptomic alterations through RNA-Seq. Methylation levels in gene promoters or body regions were correlated to their expression data, and subsequently, we performed an overrepresentation analysis to identify the biological terms containing differentially methylated and expressed genes. Results Tat101 expression caused significant hyper- and hypomethylation changes at individual CpG sites, resulting in slightly global DNA hypermethylation. Methylation changes at gene promoters and bodies resulted in altered gene expression, specifically regulating gene transcription in 5.1% of differentially expressed genes (DEGs) in Tat101- expressing cells. In contrast, Tat72 had a minimal impact on this epigenetic process. The observed differentially methylated and expressed genes were involved in inflammatory responses, lipid antigen presentation, and apoptosis. Discussion Tat expression in HIV infection may constitute a key epigenetic modelling actor that contributes to HIV pathogenesis and chronic inflammation. Clinical interventions targeting Tat blockade may reduce chronic inflammation and cellular senescence related to HIV infection comorbidities.
Collapse
Affiliation(s)
- Andrea Rodríguez-Agustín
- AIDS and HIV Infection Group, Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomédiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Spain
- Universitat de Barcelona (UB), Barcelona, Spain
| | - Rubén Ayala-Suárez
- AIDS and HIV Infection Group, Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomédiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Spain
| | - Francisco Díez-Fuertes
- AIDS Immunopathology Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - María José Maleno
- AIDS and HIV Infection Group, Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomédiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Spain
| | - Izar de Villasante
- Bioinformatics Unit, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain
| | - Angelika Merkel
- Bioinformatics Unit, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain
| | - Mayte Coiras
- Centro de Investigación Biomédica en Red sobre Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Immunopathology and Viral Reservoir Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Víctor Casanova
- AIDS and HIV Infection Group, Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomédiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Spain
- Universitat de Barcelona (UB), Barcelona, Spain
| | - José Alcamí
- AIDS and HIV Infection Group, Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomédiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Spain
- Universitat de Barcelona (UB), Barcelona, Spain
- AIDS Immunopathology Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Núria Climent
- AIDS and HIV Infection Group, Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomédiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Spain
- Universitat de Barcelona (UB), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
2
|
Arumugam T, Ramphal U, Adimulam T, Chinniah R, Ramsuran V. Deciphering DNA Methylation in HIV Infection. Front Immunol 2021; 12:795121. [PMID: 34925380 PMCID: PMC8674454 DOI: 10.3389/fimmu.2021.795121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/17/2021] [Indexed: 12/13/2022] Open
Abstract
With approximately 38 million people living with HIV/AIDS globally, and a further 1.5 million new global infections per year, it is imperative that we advance our understanding of all factors contributing to HIV infection. While most studies have focused on the influence of host genetic factors on HIV pathogenesis, epigenetic factors are gaining attention. Epigenetics involves alterations in gene expression without altering the DNA sequence. DNA methylation is a critical epigenetic mechanism that influences both viral and host factors. This review has five focal points, which examines (i) fluctuations in the expression of methylation modifying factors upon HIV infection (ii) the effect of DNA methylation on HIV viral genes and (iii) host genome (iv) inferences from other infectious and non-communicable diseases, we provide a list of HIV-associated host genes that are regulated by methylation in other disease models (v) the potential of DNA methylation as an epi-therapeutic strategy and biomarker. DNA methylation has also been shown to serve as a robust therapeutic strategy and precision medicine biomarker against diseases such as cancer and autoimmune conditions. Despite new drugs being discovered for HIV, drug resistance is a problem in high disease burden settings such as Sub-Saharan Africa. Furthermore, genetic therapies that are under investigation are irreversible and may have off target effects. Alternative therapies that are nongenetic are essential. In this review, we discuss the potential role of DNA methylation as a novel therapeutic intervention against HIV.
Collapse
Affiliation(s)
- Thilona Arumugam
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Upasana Ramphal
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Theolan Adimulam
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Romona Chinniah
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Veron Ramsuran
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
3
|
Mantovani N, Defelicibus A, da Silva IT, Cicero MF, Santana LC, Arnold R, de Castro DF, Duro RLS, Nishiyama-Jr MY, Junqueira-de-Azevedo ILM, da Silva BCM, da Silva Duarte AJ, Casseb J, de Barros Tenore S, Hunter J, Diaz RS, Komninakis SCV. Latency-associated DNA methylation patterns among HIV-1 infected individuals with distinct disease progression courses or antiretroviral virologic response. Sci Rep 2021; 11:22993. [PMID: 34837007 PMCID: PMC8626465 DOI: 10.1038/s41598-021-02463-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 11/10/2021] [Indexed: 11/09/2022] Open
Abstract
DNA methylation is one of the epigenetic modifications that configures gene transcription programs. This study describes the DNA methylation profile of HIV-infected individuals with distinct characteristics related to natural and artificial viremia control. Sheared DNA from circulating mononuclear cells was subjected to target enrichment bisulfite sequencing designed to cover CpG-rich genomic regions. Gene expression was assessed through RNA-seq. Hypermethylation in virologic responders was highly distributed closer to Transcription Start Sites (p-value = 0.03). Hyper and hypomethylation levels within TSS adjacencies varied according to disease progression status (Kruskal-Wallis, p < 0.001), and specific differentially methylated regions associated genes were identified for each group. The lower the promoter methylation, the higher the gene expression in subjects undergoing virologic failure (R = - 0.82, p = 0.00068). Among the inversely correlated genes, those supporting glycolysis and its related pathways were hypomethylated and up-regulated in virologic failures. Disease progression heterogeneity was associated with distinct DNA methylation patterns in terms of rates and distribution. Methylation was associated with the expression of genes sustaining intracellular glucose metabolism in subjects undergoing antiretroviral virologic failure. Our findings highlight that DNA methylation is associated with latency, disease progression, and fundamental cellular processes.
Collapse
Affiliation(s)
- Nathalia Mantovani
- Retrovirology Laboratory, Infectious Diseases Division, Federal University of São Paulo (UNIFESP), Rua Pedro de Toledo 669, Vila Clementino, Sao Paulo, SP, 04039-032, Brazil.
| | - Alexandre Defelicibus
- Laboratory of Bioinformatics and Computational Biology, A.C. Camargo Cancer Center, Rua Taguá, 440, São Paulo, SP, 01508-010, Brazil
| | - Israel Tojal da Silva
- Laboratory of Bioinformatics and Computational Biology, A.C. Camargo Cancer Center, Rua Taguá, 440, São Paulo, SP, 01508-010, Brazil
| | - Maira Ferreira Cicero
- Retrovirology Laboratory, Infectious Diseases Division, Federal University of São Paulo (UNIFESP), Rua Pedro de Toledo 669, Vila Clementino, Sao Paulo, SP, 04039-032, Brazil
| | - Luiz Claudio Santana
- Retrovirology Laboratory, Infectious Diseases Division, Federal University of São Paulo (UNIFESP), Rua Pedro de Toledo 669, Vila Clementino, Sao Paulo, SP, 04039-032, Brazil
| | - Rafael Arnold
- Retrovirology Laboratory, Infectious Diseases Division, Federal University of São Paulo (UNIFESP), Rua Pedro de Toledo 669, Vila Clementino, Sao Paulo, SP, 04039-032, Brazil
| | - Daniela Funayama de Castro
- Retrovirology Laboratory, Infectious Diseases Division, Federal University of São Paulo (UNIFESP), Rua Pedro de Toledo 669, Vila Clementino, Sao Paulo, SP, 04039-032, Brazil
| | - Rodrigo Lopes Sanz Duro
- Retrovirology Laboratory, Infectious Diseases Division, Federal University of São Paulo (UNIFESP), Rua Pedro de Toledo 669, Vila Clementino, Sao Paulo, SP, 04039-032, Brazil
| | - Milton Yutaka Nishiyama-Jr
- Laboratório de Toxinologia Aplicada, Instituto Butantan, Avenida Vital Brasil, 1500, São Paulo, SP, 05503-900, Brazil
| | | | - Bosco Christiano Maciel da Silva
- Laboratório de Investigação Médica 56 (LIM/56), Faculdade de Medicina FMUSP, Universidade de São Paulo, Avenida Dr. Enéas Carvalho de Aguiar, 470, São Paulo, SP, 05403-000, Brazil
| | - Alberto José da Silva Duarte
- Laboratório de Investigação Médica 56 (LIM/56), Faculdade de Medicina FMUSP, Universidade de São Paulo, Avenida Dr. Enéas Carvalho de Aguiar, 470, São Paulo, SP, 05403-000, Brazil
| | - Jorge Casseb
- Laboratório de Investigação Médica 56 (LIM/56), Faculdade de Medicina FMUSP, Universidade de São Paulo, Avenida Dr. Enéas Carvalho de Aguiar, 470, São Paulo, SP, 05403-000, Brazil
| | - Simone de Barros Tenore
- Retrovirology Laboratory, Infectious Diseases Division, Federal University of São Paulo (UNIFESP), Rua Pedro de Toledo 669, Vila Clementino, Sao Paulo, SP, 04039-032, Brazil
| | - James Hunter
- Retrovirology Laboratory, Infectious Diseases Division, Federal University of São Paulo (UNIFESP), Rua Pedro de Toledo 669, Vila Clementino, Sao Paulo, SP, 04039-032, Brazil
| | - Ricardo Sobhie Diaz
- Retrovirology Laboratory, Infectious Diseases Division, Federal University of São Paulo (UNIFESP), Rua Pedro de Toledo 669, Vila Clementino, Sao Paulo, SP, 04039-032, Brazil
| | - Shirley Cavalcante Vasconcelos Komninakis
- Retrovirology Laboratory, Infectious Diseases Division, Federal University of São Paulo (UNIFESP), Rua Pedro de Toledo 669, Vila Clementino, Sao Paulo, SP, 04039-032, Brazil
| |
Collapse
|
4
|
Kitsou K, Iliopoulou M, Spoulou V, Lagiou P, Magiorkinis G. Viral Causality of Human Cancer and Potential Roles of Human Endogenous Retroviruses in the Multi-Omics Era: An Evolutionary Epidemiology Review. Front Oncol 2021; 11:687631. [PMID: 34778024 PMCID: PMC8586426 DOI: 10.3389/fonc.2021.687631] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 10/12/2021] [Indexed: 12/20/2022] Open
Abstract
Being responsible for almost 12% of cancers worldwide, viruses are among the oldest known and most prevalent oncogenic agents. The quality of the evidence for the in vivo tumorigenic potential of microorganisms varies, thus accordingly, viruses were classified in 4 evidence-based categories by the International Agency for Research on Cancer in 2009. Since then, our understanding of the role of viruses in cancer has significantly improved, firstly due to the emergence of high throughput sequencing technologies that allowed the “brute-force” recovery of unknown viral genomes. At the same time, multi-omics approaches unravelled novel virus-host interactions in stem-cell biology. We now know that viral elements, either exogenous or endogenous, have multiple sometimes conflicting roles in human pathophysiology and the development of cancer. Here we integrate emerging evidence on viral causality in human cancer from basic mechanisms to clinical studies. We analyze viral tumorigenesis under the scope of deep-in-time human-virus evolutionary relationships and critically comment on the evidence through the eyes of clinical epidemiology, firstly by reviewing recognized oncoviruses and their mechanisms of inducing tumorigenesis, and then by examining the potential role of integrated viruses in our genome in the process of carcinogenesis.
Collapse
Affiliation(s)
- Konstantina Kitsou
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.,Immunobiology and Vaccinology Research Laboratory, First Department of Peadiatrics, "Aghia Sophia" Children's Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Iliopoulou
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Vana Spoulou
- Immunobiology and Vaccinology Research Laboratory, First Department of Peadiatrics, "Aghia Sophia" Children's Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Pagona Lagiou
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Gkikas Magiorkinis
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
5
|
Xu S, Yuan H, Li L, Bai F, Yang K, Zhao L. Identification potential epigenetic biomarkers of a human immunodeficiency virus/tuberculosis co-infection based on weighted gene co-expression network analysis. Microbiol Immunol 2021; 65:422-431. [PMID: 34125446 DOI: 10.1111/1348-0421.12926] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/17/2021] [Accepted: 06/12/2021] [Indexed: 01/14/2023]
Abstract
Tuberculosis (TB) is one of the most common opportunistic infections and a leading cause of death in patients infected with human immunodeficiency virus (HIV). However, conventional diagnostic tools have several limitations. The aim of this study was to screen key DNA methylated cytosine-phosphate-guanine dinucleotide (CpG) islands (CGIs) to identify potential diagnosis biomarkers in HIV mono-infected patients and HIV/TB co-infected patients based on a network analysis. The GSE50835 DNA methylation microarray data were downloaded from the Gene Expression Omnibus (GEO) database. Differentially methylated CpG islands analysis, weighted gene co-expression network analysis (WGCNA), and least absolute shrinkage and selection operator (LASSO) logistic regression were performed in 19 HIV mono-infected patients and 20 HIV/TB co-infected patients. In total, 1950 differentially methylated CpG islands were identified, and weighted co-methylation network construction and module preservation revealed one network module that can distinguish the HIV/TB co-infected patients from the HIV mono-infected patients. Based on the LASSO logistic regression, an eight-methylated CpG island diagnosis model was established that can accurately distinguish HIV/TB co-infected patients from HIV mono-infected patients with a sensitivity of 87.2%, a specificity of 88.7%, and an area under the receiver operating characteristic (ROC) curve (AUC) of 0.948. Alteration in the eight-DNA methylated CpG sites might be involved in the pathology of an HIV/TB co-infection and could be used as potential diagnosis biomarkers in HIV/TB co-infected patients.
Collapse
Affiliation(s)
- Shaohua Xu
- Drug Clinical Trial Center, Gansu Wuwei Tumor Hospital, Wuwei, Gansu, China
| | - Huicheng Yuan
- Drug Clinical Trial Center, Gansu Wuwei Tumor Hospital, Wuwei, Gansu, China
| | - Ling Li
- Drug Clinical Trial Center, Gansu Wuwei Tumor Hospital, Wuwei, Gansu, China
| | - Feng Bai
- Drug Clinical Trial Center, Gansu Wuwei Tumor Hospital, Wuwei, Gansu, China
| | - Kai Yang
- Drug Clinical Trial Center, Gansu Wuwei Tumor Hospital, Wuwei, Gansu, China
| | - Liangcun Zhao
- Drug Clinical Trial Center, Gansu Wuwei Tumor Hospital, Wuwei, Gansu, China
| |
Collapse
|
6
|
Moron-Lopez S, Urrea V, Dalmau J, Lopez M, Puertas MC, Ouchi D, Gómez A, Passaes C, Mothe B, Brander C, Saez-Cirion A, Clotet B, Esteller M, Berdasco M, Martinez-Picado J. The Genome-wide Methylation Profile of CD4+ T Cells From Individuals With Human Immunodeficiency Virus (HIV) Identifies Distinct Patterns Associated With Disease Progression. Clin Infect Dis 2021; 72:e256-e264. [PMID: 32712664 PMCID: PMC8096268 DOI: 10.1093/cid/ciaa1047] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/21/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Human genetic variation-mostly in the human leukocyte antigen (HLA) and C-C chemokine receptor type 5 (CCR5) regions-explains 25% of the variability in progression of human immunodeficiency virus (HIV) infection. However, it is also known that viral infections can modify cellular DNA methylation patterns. Therefore, changes in the methylation of cytosine-guanine (CpG) islands might modulate progression of HIV infection. METHODS In total, 85 samples were analyzed: 21 elite controllers (EC), 21 subjects with HIV before combination antiretroviral therapy (cART) (viremic, 93 325 human immunodeficiency virus type 1 [HIV-1] RNA copies/mL) and under suppressive cART (cART, median of 17 months, <50 HIV-1 RNA copies/mL), and 22 HIV-negative donors (HIVneg). We analyzed the methylation pattern of 485 577 CpG in DNA from peripheral CD4+ T lymphocytes. We selected the most differentially methylated gene (TNF) and analyzed its specific methylation, messenger RNA (mRNA) expression, and plasma protein levels in 5 individuals before and after initiation of cART. RESULTS We observed 129 methylated CpG sites (associated with 43 gene promoters) for which statistically significant differences were recorded in viremic versus HIVneg, 162 CpG sites (55 gene promoters) in viremic versus cART, 441 CpG sites (163 gene promoters) in viremic versus EC, but none in EC versus HIVneg. The TNF promoter region was hypermethylated in viremic versus HIVneg, cART, and EC. Moreover, we observed greater plasma levels of TNF in viremic individuals than in EC, cART, and HIVneg. CONCLUSIONS Our study shows that genome methylation patterns vary depending on HIV infection status and progression profile and that these variations might have an impact on controlling HIV infection in the absence of cART.
Collapse
Affiliation(s)
| | - Victor Urrea
- AIDS Research Institute IrsiCaixa, Badalona, Spain
| | | | - Miguel Lopez
- Cancer Epigenetics Group, Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, Barcelona, Spain.,Epigenetic Therapies Group, Experimental and Clinical Hematology Program, Josep Carreras Leukaemia Research Institute, Badalona, Spain
| | | | - Dan Ouchi
- AIDS Research Institute IrsiCaixa, Badalona, Spain
| | - Antonio Gómez
- Cancer Epigenetics Group, Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, Barcelona, Spain
| | - Caroline Passaes
- Institut Pasteur, Unité HIV, Inflammation et Persistence, Paris, France
| | - Beatriz Mothe
- AIDS Research Institute IrsiCaixa, Badalona, Spain.,Fundació Lluita Contra la Sida, University Hospital "Germans Trias i Pujol," Badalona, Spain.,University of Vic-Central University of Catalonia (UVic-UCC), Barcelona, Spain
| | - Christian Brander
- AIDS Research Institute IrsiCaixa, Badalona, Spain.,University of Vic-Central University of Catalonia (UVic-UCC), Barcelona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Asier Saez-Cirion
- Institut Pasteur, Unité HIV, Inflammation et Persistence, Paris, France
| | - Bonaventura Clotet
- AIDS Research Institute IrsiCaixa, Badalona, Spain.,Fundació Lluita Contra la Sida, University Hospital "Germans Trias i Pujol," Badalona, Spain.,University of Vic-Central University of Catalonia (UVic-UCC), Barcelona, Spain
| | - Manel Esteller
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.,Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain.,Centro de Investigación Biomédica en Red Cancer (CIBERONC), Madrid, Spain.,Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Badalona, Spain
| | - Maria Berdasco
- Cancer Epigenetics Group, Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, Barcelona, Spain.,Epigenetic Therapies Group, Experimental and Clinical Hematology Program, Josep Carreras Leukaemia Research Institute, Badalona, Spain
| | - Javier Martinez-Picado
- AIDS Research Institute IrsiCaixa, Badalona, Spain.,University of Vic-Central University of Catalonia (UVic-UCC), Barcelona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|
7
|
Svensson JP. Targeting Epigenetics to Cure HIV-1: Lessons From (and for) Cancer Treatment. Front Cell Infect Microbiol 2021; 11:668637. [PMID: 34026665 PMCID: PMC8137950 DOI: 10.3389/fcimb.2021.668637] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/21/2021] [Indexed: 11/17/2022] Open
Abstract
The Human Immunodeficiency Virus type 1 (HIV-1) integrates in the host genome as a provirus resulting in a long-lived reservoir of infected CD4 cells. As a provirus, HIV-1 has several aspects in common with an oncogene. Both the HIV-1 provirus and oncogenes only cause disease when expressed. A successful cure of both cancer and HIV-1 includes elimination of all cells with potential to regenerate the disease. For over two decades, epigenetic drugs developed against cancer have been used in the HIV-1 field to modulate the state of the proviral chromatin. Cells with an intact HIV-1 provirus exist in three states of infection: productive, inducible latent, and non-inducible latent. Here focus is on HIV-1, transcription control and chromatin structure; how the inducible proviruses are maintained in a chromatin structure that allows reactivation of transcription; and how transcription switches between different stages to allow for an abundance of different transcripts from a single promoter. Recently it was shown that a functional cure of HIV can be achieved by encapsulating all intact HIV-1 proviruses in heterochromatin, giving hope that epigenetic interventions may be used to end the HIV-1 epidemic.
Collapse
Affiliation(s)
- J Peter Svensson
- Department of Biosciences and Nutrition, Karolinska Institutet (KI), Huddinge, Sweden
| |
Collapse
|
8
|
Singh R, Ramsuran V, Naranbhai V, Yende-Zuma N, Garrett N, Mlisana K, Dong KL, Walker BD, Abdool Karim SS, Carrington M, Ndung'u T. Epigenetic Regulation of BST-2 Expression Levels and the Effect on HIV-1 Pathogenesis. Front Immunol 2021; 12:669241. [PMID: 34025670 PMCID: PMC8131512 DOI: 10.3389/fimmu.2021.669241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/20/2021] [Indexed: 11/23/2022] Open
Abstract
HIV-1 must overcome host antiviral restriction factors for efficient replication. We hypothesized that elevated levels of bone marrow stromal cell antigen 2 (BST-2), a potent host restriction factor that interferes with HIV-1 particle release in some human cells and is antagonized by the viral protein Vpu, may associate with viral control. Using cryopreserved samples, from HIV-1 seronegative and seropositive Black women, we measured in vitro expression levels of BST-2 mRNA using a real-time PCR assay and protein levels were validated by Western blotting. The expression level of BST-2 showed an association with viral control within two independent cohorts of Black HIV infected females (r=-0.53, p=0.015, [n =21]; and r=-0.62, p=0.0006, [n=28]). DNA methylation was identified as a mechanism regulating BST-2 levels, where increased BST-2 methylation results in lower expression levels and associates with worse HIV disease outcome. We further demonstrate the ability to regulate BST-2 levels using a DNA hypomethylation drug. Our results suggest BST-2 as a factor for potential therapeutic intervention against HIV and other diseases known to involve BST-2.
Collapse
Affiliation(s)
- Ravesh Singh
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa.,Africa Health Research Institute (AHRI), Durban, South Africa.,Department of Microbiology, National Health Laboratory Services, KZN Academic Complex, Inkosi Albert Luthuli Central Hospital, Durban, South Africa
| | - Veron Ramsuran
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.,The Ragon Institute of MGH, MIT and Harvard University, Cambridge, MA, United States.,Basic Science Program, Frederick National Laboratory for Cancer Research in the Laboratory of Integrative Cancer Immunology, Bethesda, MD, United States.,Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - Vivek Naranbhai
- The Ragon Institute of MGH, MIT and Harvard University, Cambridge, MA, United States.,Basic Science Program, Frederick National Laboratory for Cancer Research in the Laboratory of Integrative Cancer Immunology, Bethesda, MD, United States.,Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - Nonhlanhla Yende-Zuma
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - Nigel Garrett
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - Koleka Mlisana
- Department of Microbiology, National Health Laboratory Services, KZN Academic Complex, Inkosi Albert Luthuli Central Hospital, Durban, South Africa
| | - Krista L Dong
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Bruce D Walker
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa.,Africa Health Research Institute (AHRI), Durban, South Africa.,The Ragon Institute of MGH, MIT and Harvard University, Cambridge, MA, United States
| | - Salim S Abdool Karim
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - Mary Carrington
- The Ragon Institute of MGH, MIT and Harvard University, Cambridge, MA, United States.,Basic Science Program, Frederick National Laboratory for Cancer Research in the Laboratory of Integrative Cancer Immunology, Bethesda, MD, United States
| | - Thumbi Ndung'u
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa.,Africa Health Research Institute (AHRI), Durban, South Africa.,The Ragon Institute of MGH, MIT and Harvard University, Cambridge, MA, United States.,Max Planck Institute for Infection Biology, Chariteplatz, Berlin, Germany.,Division of Infection and Immunity, University College London, London, United Kingdom
| |
Collapse
|
9
|
Jochems SP, Jacquelin B, Tchitchek N, Busato F, Pichon F, Huot N, Liu Y, Ploquin MJ, Roché E, Cheynier R, Dereuddre-Bosquet N, Stahl-Henning C, Le Grand R, Tost J, Müller-Trutwin M. DNA methylation changes in metabolic and immune-regulatory pathways in blood and lymph node CD4 + T cells in response to SIV infections. Clin Epigenetics 2020; 12:188. [PMID: 33298174 PMCID: PMC7724887 DOI: 10.1186/s13148-020-00971-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/05/2020] [Indexed: 02/07/2023] Open
Abstract
The molecular mechanisms underlying HIV-induced inflammation, which persists even during effective long-term treatment, remain incompletely defined. Here, we studied pathogenic and nonpathogenic simian immunodeficiency virus (SIV) infections in macaques and African green monkeys, respectively. We longitudinally analyzed genome-wide DNA methylation changes in CD4 + T cells from lymph node and blood, using arrays. DNA methylation changes after SIV infection were more pronounced in lymph nodes than blood and already detected in primary infection. Differentially methylated genes in pathogenic SIV infection were enriched for Th1-signaling (e.g., RUNX3, STAT4, NFKB1) and metabolic pathways (e.g., PRKCZ). In contrast, nonpathogenic SIVagm infection induced DNA methylation in genes coding for regulatory proteins such as LAG-3, arginase-2, interleukin-21 and interleukin-31. Between 15 and 18% of genes with DNA methylation changes were differentially expressed in CD4 + T cells in vivo. Selected identified sites were validated using bisulfite pyrosequencing in an independent cohort of uninfected, viremic and SIV controller macaques. Altered DNA methylation was confirmed in blood and lymph node CD4 + T cells in viremic macaques but was notably absent from SIV controller macaques. Our study identified key genes differentially methylated already in primary infection and in tissues that could contribute to the persisting metabolic disorders and inflammation in HIV-infected individuals despite effective treatment.
Collapse
Affiliation(s)
- Simon P Jochems
- HIV Inflammation and Persistence Unit, Institut Pasteur, 28 Rue Didot, 75015, Paris, France
- Sorbonne Paris Cité, Université Paris Diderot, Paris, France
- Leiden University Medical Center, Leiden, The Netherlands
| | - Beatrice Jacquelin
- HIV Inflammation and Persistence Unit, Institut Pasteur, 28 Rue Didot, 75015, Paris, France
| | - Nicolas Tchitchek
- IDMIT Department/IBFJ, Immunology of Viral Infections and Autoimmune Diseases (IMVA), INSERM U1184, CEA, Université Paris Sud, Fontenay-aux-Roses, France
| | - Florence Busato
- Laboratory for Epigenetics and Environment, Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie François Jacob, Evry, France
| | - Fabien Pichon
- Laboratory for Epigenetics and Environment, Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie François Jacob, Evry, France
| | - Nicolas Huot
- HIV Inflammation and Persistence Unit, Institut Pasteur, 28 Rue Didot, 75015, Paris, France
| | - Yi Liu
- Laboratory for Epigenetics and Environment, Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie François Jacob, Evry, France
| | - Mickaël J Ploquin
- HIV Inflammation and Persistence Unit, Institut Pasteur, 28 Rue Didot, 75015, Paris, France
| | - Elodie Roché
- Laboratory for Epigenetics and Environment, Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie François Jacob, Evry, France
| | - Rémi Cheynier
- UMR8104, CNRS, U1016, INSERM, Institut Cochin, Université de Paris, 75014, Paris, France
| | - Nathalie Dereuddre-Bosquet
- IDMIT Department/IBFJ, Immunology of Viral Infections and Autoimmune Diseases (IMVA), INSERM U1184, CEA, Université Paris Sud, Fontenay-aux-Roses, France
| | | | - Roger Le Grand
- IDMIT Department/IBFJ, Immunology of Viral Infections and Autoimmune Diseases (IMVA), INSERM U1184, CEA, Université Paris Sud, Fontenay-aux-Roses, France
| | - Jorg Tost
- Laboratory for Epigenetics and Environment, Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie François Jacob, Evry, France
| | - Michaela Müller-Trutwin
- HIV Inflammation and Persistence Unit, Institut Pasteur, 28 Rue Didot, 75015, Paris, France.
| |
Collapse
|
10
|
Zeng X, Tsui JCC, Shi M, Peng J, Cao CY, Kan LLY, Lau CPY, Liang Y, Wang L, Liu L, Chen Z, Tsui SKW. Genome-Wide Characterization of Host Transcriptional and Epigenetic Alterations During HIV Infection of T Lymphocytes. Front Immunol 2020; 11:2131. [PMID: 33013899 PMCID: PMC7511662 DOI: 10.3389/fimmu.2020.02131] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/06/2020] [Indexed: 12/12/2022] Open
Abstract
Background and methods: Host genomic alterations are closely related to dysfunction of CD4+ T lymphocytes in the HIV-host interplay. However, the roles of aberrant DNA methylation and gene expression in the response to HIV infection are not fully understood. We investigated the genome-wide DNA methylation and transcriptomic profiles in two HIV-infected T lymphocyte cell lines using high-throughput sequencing. Results: Based on DNA methylation data, we identified 3,060 hypomethylated differentially methylated regions (DMRs) and 2,659 hypermethylated DMRs in HIV-infected cells. Transcription-factor-binding motifs were significantly associated with methylation alterations, suggesting that DNA methylation modulates gene expression by affecting the binding to transcription factors during HIV infection. In support of this hypothesis, genes with promoters overlapping with DMRs were enriched in the biological function related to transcription factor activities. Furthermore, the analysis of gene expression data identified 1,633 upregulated genes and 2,142 downregulated genes on average in HIV-infected cells. These differentially expressed genes (DEGs) were significantly enriched in apoptosis-related pathways. Our results suggest alternative splicing as an additional mechanism that may contribute to T-cell apoptosis during HIV infection. We also demonstrated a genome-scale correlation between DNA methylation and gene expression in HIV-infected cells. We identified 831 genes with alterations in both DNA methylation and gene expression, which were enriched in apoptosis. Our results were validated using various experimental methods. In addition, consistent with our in silico results, a luciferase assay showed that the activity of the PDX1 and SMAD3 promoters was significantly decreased in the presence of HIV proteins, indicating the potential of these genes as genetic markers of HIV infection. Conclusions: Our results suggest important roles for DNA methylation and gene expression regulation in T-cell apoptosis during HIV infection. We propose a list of novel genes related to these processes for further investigation. This study also provides a comprehensive characterization of changes occurring at the transcriptional and epigenetic levels in T cells in response to HIV infection.
Collapse
Affiliation(s)
- Xi Zeng
- Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan, China
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Joseph Chi-Ching Tsui
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Mai Shi
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jie Peng
- Acquired Immunodeficiency Syndrome (AIDS) Institute, The University of Hong Kong, Hong Kong, China
| | - Cyanne Ye Cao
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Lea Ling-Yu Kan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Carol Po-Ying Lau
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Yonghao Liang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Lingyi Wang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Li Liu
- Acquired Immunodeficiency Syndrome (AIDS) Institute, The University of Hong Kong, Hong Kong, China
| | - Zhiwei Chen
- Acquired Immunodeficiency Syndrome (AIDS) Institute, The University of Hong Kong, Hong Kong, China
| | - Stephen Kwok-Wing Tsui
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong, China
- Centre for Microbial Genomics and Proteomics, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
11
|
Oriol-Tordera B, Berdasco M, Llano A, Mothe B, Gálvez C, Martinez-Picado J, Carrillo J, Blanco J, Duran-Castells C, Ganoza C, Sanchez J, Clotet B, Calle ML, Sánchez-Pla A, Esteller M, Brander C, Ruiz-Riol M. Methylation regulation of Antiviral host factors, Interferon Stimulated Genes (ISGs) and T-cell responses associated with natural HIV control. PLoS Pathog 2020; 16:e1008678. [PMID: 32760119 PMCID: PMC7410168 DOI: 10.1371/journal.ppat.1008678] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 06/03/2020] [Indexed: 01/21/2023] Open
Abstract
GWAS, immune analyses and biomarker screenings have identified host factors associated with in vivo HIV-1 control. However, there is a gap in the knowledge about the mechanisms that regulate the expression of such host factors. Here, we aimed to assess DNA methylation impact on host genome in natural HIV-1 control. To this end, whole DNA methylome in 70 untreated HIV-1 infected individuals with either high (>50,000 HIV-1-RNA copies/ml, n = 29) or low (<10,000 HIV-1-RNA copies/ml, n = 41) plasma viral load (pVL) levels were compared and identified 2,649 differentially methylated positions (DMPs). Of these, a classification random forest model selected 55 DMPs that correlated with virologic (pVL and proviral levels) and HIV-1 specific adaptive immunity parameters (IFNg-T cell responses and neutralizing antibodies capacity). Then, cluster and functional analyses identified two DMP clusters: cluster 1 contained hypo-methylated genes involved in antiviral and interferon response (e.g. PARP9, MX1, and USP18) in individuals with high viral loads while in cluster 2, genes related to T follicular helper cell (Tfh) commitment (e.g. CXCR5 and TCF7) were hyper-methylated in the same group of individuals with uncontrolled infection. For selected genes, mRNA levels negatively correlated with DNA methylation, confirming an epigenetic regulation of gene expression. Further, these gene expression signatures were also confirmed in early and chronic stages of infection, including untreated, cART treated and elite controllers HIV-1 infected individuals (n = 37). These data provide the first evidence that host genes critically involved in immune control of the virus are under methylation regulation in HIV-1 infection. These insights may offer new opportunities to identify novel mechanisms of in vivo virus control and may prove crucial for the development of future therapeutic interventions aimed at HIV-1 cure.
Collapse
Affiliation(s)
- Bruna Oriol-Tordera
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Institute for Health Science Research Germans Trias i Pujol (IGTP), Badalona, Spain
| | - Maria Berdasco
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat, Barcelona, Spain
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain
| | - Anuska Llano
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Institute for Health Science Research Germans Trias i Pujol (IGTP), Badalona, Spain
| | - Beatriz Mothe
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Institute for Health Science Research Germans Trias i Pujol (IGTP), Badalona, Spain
- University of Vic—Central University of Catalonia, Catalonia, Vic, Spain
- Fundació Lluita contra la Sida, Infectious Disease Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Cristina Gálvez
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Institute for Health Science Research Germans Trias i Pujol (IGTP), Badalona, Spain
| | - Javier Martinez-Picado
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Institute for Health Science Research Germans Trias i Pujol (IGTP), Badalona, Spain
- University of Vic—Central University of Catalonia, Catalonia, Vic, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Jorge Carrillo
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Institute for Health Science Research Germans Trias i Pujol (IGTP), Badalona, Spain
| | - Julià Blanco
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Institute for Health Science Research Germans Trias i Pujol (IGTP), Badalona, Spain
- University of Vic—Central University of Catalonia, Catalonia, Vic, Spain
| | - Clara Duran-Castells
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Institute for Health Science Research Germans Trias i Pujol (IGTP), Badalona, Spain
| | - Carmela Ganoza
- Asociación Civil IMPACTA Salud y Educacion, Lima, Peru
- Alberto Hurtado School of Medicine, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Jorge Sanchez
- Asociación Civil IMPACTA Salud y Educacion, Lima, Peru
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
- Centro de Investigaciones Tecnológicas, Biomédicas y Medioambientales, CITBM, Lima, Peru
| | - Bonaventura Clotet
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Institute for Health Science Research Germans Trias i Pujol (IGTP), Badalona, Spain
- University of Vic—Central University of Catalonia, Catalonia, Vic, Spain
- Fundació Lluita contra la Sida, Infectious Disease Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Maria Luz Calle
- University of Vic—Central University of Catalonia, Catalonia, Vic, Spain
| | - Alex Sánchez-Pla
- Statistics Department, Biology Faculty, University of Barcelona, Spain
- Statistics and Bioinformatics Unit Vall d'Hebron Institut de Recerca (VHIR), Spain
| | - Manel Esteller
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Catalonia, Spain
| | - Christian Brander
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Institute for Health Science Research Germans Trias i Pujol (IGTP), Badalona, Spain
- University of Vic—Central University of Catalonia, Catalonia, Vic, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- AELIX Therapeutics, Barcelona, Spain
| | - Marta Ruiz-Riol
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Institute for Health Science Research Germans Trias i Pujol (IGTP), Badalona, Spain
| |
Collapse
|
12
|
Bannister S, Messina NL, Novakovic B, Curtis N. The emerging role of epigenetics in the immune response to vaccination and infection: a systematic review. Epigenetics 2020; 15:555-593. [PMID: 31914857 PMCID: PMC7574386 DOI: 10.1080/15592294.2020.1712814] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 12/20/2019] [Indexed: 12/14/2022] Open
Abstract
Extensive research has highlighted the role of infection-induced epigenetic events in the development of cancer. More recently, attention has focused on the ability of non-carcinogenic infections, as well as vaccines, to modify the human epigenome and modulate the immune response. This review explores this rapidly evolving area of investigation and outlines the many and varied ways in which vaccination and natural infection can influence the human epigenome from modulation of the innate and adaptive immune response, to biological ageing and modification of disease risk. The implications of these epigenetic changes on immune regulation and their potential application to the diagnosis and treatment of chronic infection and vaccine development are also discussed.
Collapse
Affiliation(s)
- Samantha Bannister
- Department of Paediatrics, The University of Melbourne, Parkville, Australia
- Infectious Diseases Research Group, Murdoch Children’s Research Institute, Parkville, Australia
- Infectious Diseases Unit, Royal Children’s Hospital Melbourne, Parkville, Australia
| | - Nicole L. Messina
- Department of Paediatrics, The University of Melbourne, Parkville, Australia
- Infectious Diseases Research Group, Murdoch Children’s Research Institute, Parkville, Australia
| | - Boris Novakovic
- Department of Paediatrics, The University of Melbourne, Parkville, Australia
- Epigenetics Research Group, Murdoch Children’s Research Institute, Parkville, Australia
| | - Nigel Curtis
- Department of Paediatrics, The University of Melbourne, Parkville, Australia
- Infectious Diseases Research Group, Murdoch Children’s Research Institute, Parkville, Australia
- Infectious Diseases Unit, Royal Children’s Hospital Melbourne, Parkville, Australia
| |
Collapse
|
13
|
Saad MN, Mabrouk MS, Eldeib AM, Shaker OG. Studying the effects of haplotype partitioning methods on the RA-associated genomic results from the North American Rheumatoid Arthritis Consortium (NARAC) dataset. J Adv Res 2019; 18:113-126. [PMID: 30891314 PMCID: PMC6403413 DOI: 10.1016/j.jare.2019.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/03/2019] [Accepted: 01/14/2019] [Indexed: 12/16/2022] Open
Abstract
Haplotype blocks methods plays a complementary role to the single-SNP approaches. CIT, FGT, SSLD, and single-SNP methods should be applied to discover the markers. Selection of the method used for the association has an impact on the biomarkers. SSLD method detected more significant SNPs than CIT, FGT, and single-SNP methods. The 383 SNPs discovered by all methods are significantly associated with RA.
The human genome, which includes thousands of genes, represents a big data challenge. Rheumatoid arthritis (RA) is a complex autoimmune disease with a genetic basis. Many single-nucleotide polymorphism (SNP) association methods partition a genome into haplotype blocks. The aim of this genome wide association study (GWAS) was to select the most appropriate haplotype block partitioning method for the North American Rheumatoid Arthritis Consortium (NARAC) dataset. The methods used for the NARAC dataset were the individual SNP approach and the following haplotype block methods: the four-gamete test (FGT), confidence interval test (CIT), and solid spine of linkage disequilibrium (SSLD). The measured parameters that reflect the strength of the association between the biomarker and RA were the P-value after Bonferroni correction and other parameters used to compare the output of each haplotype block method. This work presents a comparison among the individual SNP approach and the three haplotype block methods to select the method that can detect all the significant SNPs when applied alone. The GWAS results from the NARAC dataset obtained with the different methods are presented. The individual SNP, CIT, FGT, and SSLD methods detected 541, 1516, 1551, and 1831 RA-associated SNPs respectively, and the individual SNP, FGT, CIT, and SSLD methods detected 65, 156, 159, and 450 significant SNPs respectively, that were not detected by the other methods. Three hundred eighty-three SNPs were discovered by the haplotype block methods and the individual SNP approach, while 1021 SNPs were discovered by all three haplotype block methods. The 383 SNPs detected by all the methods are promising candidates for studying RA susceptibility. A hybrid technique involving all four methods should be applied to detect the significant SNPs associated with RA in the NARAC dataset, but the SSLD method may be preferred because of its advantages when only one method was used.
Collapse
Affiliation(s)
- Mohamed N Saad
- Biomedical Engineering Department, Faculty of Engineering, Minia University, Minia, Egypt
| | - Mai S Mabrouk
- Biomedical Engineering Department, Faculty of Engineering, Misr University for Science and Technology, 6th of October City, Egypt
| | - Ayman M Eldeib
- Systems and Biomedical Engineering Department, Faculty of Engineering, Cairo University, Giza, Egypt
| | - Olfat G Shaker
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
14
|
Kremer WW, Van Zummeren M, Novianti PW, Richter KL, Verlaat W, Snijders PJF, Heideman DAM, Steenbergen RDM, Dreyer G, Meijer CJLM. Detection of hypermethylated genes as markers for cervical screening in women living with HIV. J Int AIDS Soc 2018; 21:e25165. [PMID: 30101434 PMCID: PMC6088247 DOI: 10.1002/jia2.25165] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 07/02/2018] [Indexed: 01/01/2023] Open
Abstract
INTRODUCTION To evaluate the performance of hypermethylation analysis of ASCL1, LHX8 and ST6GALNAC5 in physician-taken cervical scrapes for detection of cervical cancer and cervical intraepithelial neoplasia (CIN) grade 3 in women living with HIV (WLHIV) in South Africa. METHODS Samples from a prospective observational cohort study were used for these analyses. Two cohorts were included: a cohort of WLHIV who were invited for cervical screening (n = 321) and a gynaecologic outpatient cohort of women referred for evaluation of abnormal cytology or biopsy proven cervical cancer (n = 108, 60% HIV seropositive). Cervical scrapes collected from all subjects were analysed for hypermethylation of ASCL1, LHX8 and ST6GALNAC5 by multiplex quantitative methylation specific PCR (qMSP). Histology endpoints were available for all study subjects. RESULTS Hypermethylation levels of ASCL1, LHX8 and ST6GALNAC5 increased with severity of cervical disease. The performance for detection of CIN3 or worse (CIN3+ ) as assessed by the area under the receiver operating characteristic (ROC) curves (AUC) was good for ASCL1 and LHX8 (AUC 0.79 and 0.81 respectively), and moderate for ST6GALNAC5 (AUC 0.71). At a threshold corresponding to 75% specificity, CIN3+ sensitivity was 72.1% for ASCL1 and 73.8% for LHX8 and all samples from women with cervical cancer scored positive for these two markers. CONCLUSIONS Hypermethylation analysis of ASCL1 or LHX8 in cervical scrape material of WLHIV detects all cervical carcinomas with an acceptable sensitivity and good specificity for CIN3+ , warranting further exploration of these methylation markers as a stand-alone test for cervical screening in low-resource settings.
Collapse
Affiliation(s)
- Wieke W Kremer
- Department of PathologyCancer Center AmsterdamVU University Medical CenterAmsterdamThe Netherlands
| | - Marjolein Van Zummeren
- Department of PathologyCancer Center AmsterdamVU University Medical CenterAmsterdamThe Netherlands
| | - Putri W Novianti
- Department of PathologyCancer Center AmsterdamVU University Medical CenterAmsterdamThe Netherlands
- Department of Epidemiology and BiostatisticsVU University Medical CenterAmsterdamThe Netherlands
| | - Karin L Richter
- Department of Medical VirologyUniversity of Pretoria and National Health Laboratory ServicesPretoriaSouth Africa
| | - Wina Verlaat
- Department of PathologyCancer Center AmsterdamVU University Medical CenterAmsterdamThe Netherlands
| | - Peter JF Snijders
- Department of PathologyCancer Center AmsterdamVU University Medical CenterAmsterdamThe Netherlands
| | - Daniëlle AM Heideman
- Department of PathologyCancer Center AmsterdamVU University Medical CenterAmsterdamThe Netherlands
| | - Renske DM Steenbergen
- Department of PathologyCancer Center AmsterdamVU University Medical CenterAmsterdamThe Netherlands
| | - Greta Dreyer
- Department of Obstetrics and GynaecologyUniversity of PretoriaPretoriaSouth Africa
| | - Chris JLM Meijer
- Department of PathologyCancer Center AmsterdamVU University Medical CenterAmsterdamThe Netherlands
| |
Collapse
|
15
|
Kint S, De Spiegelaere W, De Kesel J, Vandekerckhove L, Van Criekinge W. Evaluation of bisulfite kits for DNA methylation profiling in terms of DNA fragmentation and DNA recovery using digital PCR. PLoS One 2018; 13:e0199091. [PMID: 29902267 PMCID: PMC6002050 DOI: 10.1371/journal.pone.0199091] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 05/31/2018] [Indexed: 02/06/2023] Open
Abstract
DNA methylation is one of the most important epigenetic modifications in the regulation of gene transcription. The current gold standard to study this modification is bisulfite sequencing. Although multiple commercial bisulfite treatment kits provide good conversion efficiencies, DNA loss and especially DNA fragmentation remain troublesome. This hampers DNA methylation profiling of long DNA sequences. Here, we explored the performance of twelve commercial bisulfite kits by an in-depth comparison of DNA fragmentation using gel electrophoresis, qPCR and digital PCR, DNA recovery by spectroscopic measurements and digital PCR and conversion efficiency by next generation sequencing. The results show a clear performance difference between the bisulfite kits, and depending on the specific goal of the study, the most appropriate kit might differ. Moreover, we demonstrated that digital PCR is a valuable method to monitor both DNA fragmentation as well as DNA recovery after bisulfite treatment.
Collapse
Affiliation(s)
- Sam Kint
- Department of Data Analysis and Mathematical Modelling, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- HIV Cure Research Center, Department of Internal Medicine, Faculty of Medicine and Health Sciences, Ghent University and Ghent University Hospital, Ghent, Belgium
- * E-mail:
| | - Ward De Spiegelaere
- Department of Morphology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Jonas De Kesel
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Linos Vandekerckhove
- HIV Cure Research Center, Department of Internal Medicine, Faculty of Medicine and Health Sciences, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Wim Van Criekinge
- Department of Data Analysis and Mathematical Modelling, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
16
|
Abstract
Insulinlike growth factor (IGF) binding proteins (IGFBPs) 1 to 6 are high-affinity regulators of IGF activity. They generally inhibit IGF actions by preventing binding to the IGF-I receptor but can also enhance their actions under some conditions. Posttranslational modifications such as glycosylation and phosphorylation modulate IGFBP properties, and IGFBP proteolysis results in IGF release. IGFBPs have more recently been shown to have IGF-independent actions. A number of mechanisms are involved, including modulation of other growth factor pathways, nuclear localization and transcriptional regulation, interaction with the sphingolipid pathway, and binding to non-IGF biomolecules in the extracellular space and matrix, on the cell surface and intracellularly. IGFBPs modulate important biological processes, including cell proliferation, survival, migration, senescence, autophagy, and angiogenesis. Their actions have been implicated in growth, metabolism, cancer, stem cell maintenance and differentiation, and immune regulation. Recent studies have shown that epigenetic mechanisms are involved in the regulation of IGFBP abundance. A more complete understanding of IGFBP biology is necessary to further define their cellular roles and determine their therapeutic potential.
Collapse
Affiliation(s)
- Leon A Bach
- Department of Endocrinology and Diabetes, The Alfred Hospital, Melbourne, Victoria, Australia
- Department of Medicine, Alfred Medical Research and Education Precinct, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
17
|
Abstract
OBJECTIVE Cervical cancer is the leading cause of cancer-related death in women in South Africa. This study evaluates DNA methylation levels in cervical (pre)cancer and aims to assess the value of high-risk human papillomavirus (hrHPV) testing and methylation analysis, alone or in combination, on physician-taken cervical scrapes to detect cervical cancer, and cervical intraepithelial neoplasia grade 3 (CIN3) in an HIV-infected South African population. DESIGN Prospective observational multicentre cohort study. METHODS Women from a cohort of women living with HIV (n = 355) and a referral cohort (n = 109, 60% HIV seropositive) were included. Cervical scrapes were collected for hrHPV testing and methylation analysis of cell adhesion molecule 1, T-lymphocyte maturation-associated protein, and microRNA124-2 genes. Histologic endpoints were available for all participants. Performance for detection of CIN3 or worse (CIN3+) was determined in the cohort of women living with HIV and different testing strategies were compared. RESULTS HrHPV and methylation positivity rates increased with severity of cervical disease in the two study cohorts, each reaching 100% in samples of women with carcinoma. HrHPV testing showed a sensitivity for CIN3+ of 83.6%, at a specificity of 67.7%. Methylation analysis showed a comparable CIN3+ sensitivity of 85.2%, but a significantly lower specificity of 49.6%. HrHPV testing with reflex methylation analysis showed a CIN3+ sensitivity of 73.8%, at a specificity of 81.5%. CONCLUSION In this HIV-infected South African population, stratifying hrHPV-positive women with reflex methylation analysis detects all cervical carcinomas and yields an acceptable sensitivity and specificity for CIN3+.
Collapse
|
18
|
Identification of HIV infection-related DNA methylation sites and advanced epigenetic aging in HIV-positive, treatment-naive U.S. veterans. AIDS 2017; 31:571-575. [PMID: 27922854 DOI: 10.1097/qad.0000000000001360] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVE HIV-positive individuals are at higher risk than healthy persons for aging-related diseases, including myocardial infarction and non-AIDS defining cancers. Recent evidence suggests that HIV infection may modulate changes in the host cell epigenome, and these changes represent a potential mechanism through which HIV infection accelerates aging. We assessed the difference in DNA methylation (DNAm) age, an aging marker involving multiple age-related cytosine-guanine dinucleotide (CpG) sites, among antiretroviral treatment (ART)-naive HIV-positive and HIV-negative individuals in a cohort of veterans from the Veterans Aging Cohort Study. DESIGN Peripheral blood samples were collected from 19 ART-naive, HIV-positive, and 19 HIV-negative male participants, matched by age and race. Blood samples were collected from HIV-positive participants 7-11 years after ART initiation. METHODS We compared DNAm age between HIV-positive and HIV-negative groups at baseline and between HIV-positive patients at baseline and follow-up. We also performed an epigenome-wide analysis to identify CpG methylation sites associated with HIV infection. RESULTS DNAm age in HIV-positive individuals is, on average, 11.2 years higher than HIV study participants at baseline, and two of 10 HIV-positive individuals showed an increase in DNAm age after ART initiation. Epigenome-wide association studies showed an association of HIV infection with one site, in gene VPS37B, which approached statistical significance in our cohort (P = 3.30 × 10, Bonferroni-corrected threshold = 1.22 × 10) and was replicated in a second, larger cohort. CONCLUSION ART treatment-naive HIV-positive individuals have significantly older DNAm age compared to HIV-negative individuals in the Veterans Aging Cohort Study cohort. Longitudinal changes in DNAm age are highly variable across individuals after initiation of antiretroviral therapy.
Collapse
|
19
|
Zhang X, Justice AC, Hu Y, Wang Z, Zhao H, Wang G, Johnson EO, Emu B, Sutton RE, Krystal JH, Xu K. Epigenome-wide differential DNA methylation between HIV-infected and uninfected individuals. Epigenetics 2016; 11:750-760. [PMID: 27672717 PMCID: PMC5094631 DOI: 10.1080/15592294.2016.1221569] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Epigenetic control of human immunodeficiency virus-1 (HIV-1) genes is critical for viral integration and latency. However, epigenetic changes in the HIV-1-infected host genome have not been well characterized. Here, we report the first large-scale epigenome-wide association study of DNA methylation for HIV-1 infection. We recruited HIV-infected (n = 261) and uninfected (n = 117) patients from the Veteran Aging Cohort Study (VACS) and all samples were profiled for 485,521 CpG sites in DNA extracted from the blood. After adjusting for cell type and clinical confounders, we identified 20 epigenome-wide significant CpGs for HIV-1 infection. Importantly, 2 CpGs in the promoter of the NLR family, CARD domain containing gene 5 (NLRC5), a key regulator of major histocompatibility complex class I gene expression, showed significantly lower methylation in HIV-infected subjects than in uninfected subjects (cg07839457: t = −6.03, Pnominal = 4.96 × 10−9; cg16411857: t = −7.63, Pnominal = 3.07 × 10−13). Hypomethylation of these 2 CpGs was replicated in an independent sample (GSE67705: cg07839457: t = −4.44, Pnominal = 1.61 × 10−5; cg16411857: t = −5.90; P = 1.99 × 10−8). Methylation of these 2 CpGs in NLRC5 was negatively correlated with viral load in the 2 HIV-infected samples (cg07839457: P = 1.8 × 10−4; cg16411857: P = 0.03 in the VACS; and cg07839457: P = 0.04; cg164111857: P = 0.01 in GSE53840). Our findings demonstrate that differential DNA methylation is associated with HIV infection and suggest the involvement of a novel host gene, NLRC5, in HIV pathogenesis.
Collapse
Affiliation(s)
- Xinyu Zhang
- a Department of Psychiatry , Yale School of Medicine , New Haven , CT , USA.,b Connecticut Veteran Health System , West Haven , CT , USA
| | - Amy C Justice
- c Yale University School of Medicine, New Haven Veterans Affairs Connecticut Healthcare System , West Haven , CT , USA
| | - Ying Hu
- d Center for Biomedical Informatics & Information Technology, National Cancer Institute , Bethesda , MD , USA
| | - Zuoheng Wang
- e Department of Internal Medicine , Division of Infectious Disease, Yale University School of Medicine , New Haven , CT , USA
| | - Hongyu Zhao
- f Department of Biostatistics , Yale School of Public Health , New Haven , CT , USA
| | - Guilin Wang
- g Yale Center of Genomic Analysis, West Campus , Orange , CT , USA
| | - Eric O Johnson
- h Fellow Program and Behavioral Health and Criminal Justice Division, RTI International , Research Triangle Park, NC , USA
| | - Brinda Emu
- e Department of Internal Medicine , Division of Infectious Disease, Yale University School of Medicine , New Haven , CT , USA
| | - Richard E Sutton
- e Department of Internal Medicine , Division of Infectious Disease, Yale University School of Medicine , New Haven , CT , USA
| | - John H Krystal
- a Department of Psychiatry , Yale School of Medicine , New Haven , CT , USA.,b Connecticut Veteran Health System , West Haven , CT , USA
| | - Ke Xu
- a Department of Psychiatry , Yale School of Medicine , New Haven , CT , USA.,b Connecticut Veteran Health System , West Haven , CT , USA
| |
Collapse
|
20
|
Corley MJ, Dye C, D'Antoni ML, Byron MM, Yo KLA, Lum-Jones A, Nakamoto B, Valcour V, SahBandar I, Shikuma CM, Ndhlovu LC, Maunakea AK. Comparative DNA Methylation Profiling Reveals an Immunoepigenetic Signature of HIV-related Cognitive Impairment. Sci Rep 2016; 6:33310. [PMID: 27629381 PMCID: PMC5024304 DOI: 10.1038/srep33310] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 08/24/2016] [Indexed: 11/20/2022] Open
Abstract
Monocytes/macrophages contribute to the neuropathogenesis of HIV-related cognitive impairment (CI); however, considerable gaps in our understanding of the precise mechanisms driving this relationship remain. Furthermore, whether a distinct biological profile associated with HIV-related CI resides in immune cell populations remains unknown. Here, we profiled DNA methylomes and transcriptomes of monocytes derived from HIV-infected individuals with and without CI using genome-wide DNA methylation and gene expression profiling. We identified 1,032 CI-associated differentially methylated loci in monocytes. These loci related to gene networks linked to the central nervous system (CNS) and interactions with HIV. Most (70.6%) of these loci exhibited higher DNA methylation states in the CI group and were preferentially distributed over gene bodies and intergenic regions of the genome. CI-associated DNA methylation states at 12 CpG sites associated with neuropsychological testing performance scores. CI-associated DNA methylation also associated with gene expression differences including CNS genes CSRNP1 (P = 0.017), DISC1 (P = 0.012), and NR4A2 (P = 0.005); and a gene known to relate to HIV viremia, THBS1 (P = 0.003). This discovery cohort data unveils cell type-specific DNA methylation patterns related to HIV-associated CI and provide an immunoepigenetic DNA methylation “signature” potentially useful for corroborating clinical assessments, informing pathogenic mechanisms, and revealing new therapeutic targets against CI.
Collapse
Affiliation(s)
- Michael J Corley
- Department of Native Hawaiian Health, John A. Burns School of Medicine, Suite 1016B, University of Hawaii, Honolulu, HI 96813, USA
| | - Christian Dye
- Department of Native Hawaiian Health, John A. Burns School of Medicine, Suite 1016B, University of Hawaii, Honolulu, HI 96813, USA
| | - Michelle L D'Antoni
- Department of Tropical Medicine, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street, BSB325C, Honolulu, HI 96813, USA
| | - Mary Margaret Byron
- Department of Tropical Medicine, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street, BSB325C, Honolulu, HI 96813, USA
| | - Kaahukane Leite-Ah Yo
- Department of Native Hawaiian Health, John A. Burns School of Medicine, Suite 1016B, University of Hawaii, Honolulu, HI 96813, USA
| | - Annette Lum-Jones
- Department of Native Hawaiian Health, John A. Burns School of Medicine, Suite 1016B, University of Hawaii, Honolulu, HI 96813, USA
| | - Beau Nakamoto
- Hawaii Center for AIDS, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street, BSB, Honolulu, HI 96815, USA
| | - Victor Valcour
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Ivo SahBandar
- Department of Tropical Medicine, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street, BSB325C, Honolulu, HI 96813, USA
| | - Cecilia M Shikuma
- Hawaii Center for AIDS, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street, BSB, Honolulu, HI 96815, USA
| | - Lishomwa C Ndhlovu
- Department of Tropical Medicine, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street, BSB325C, Honolulu, HI 96813, USA.,Hawaii Center for AIDS, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street, BSB, Honolulu, HI 96815, USA
| | - Alika K Maunakea
- Department of Native Hawaiian Health, John A. Burns School of Medicine, Suite 1016B, University of Hawaii, Honolulu, HI 96813, USA
| |
Collapse
|
21
|
Zhang Y, Li SK, Tsui SKW. Genome-wide analysis of DNA methylation associated with HIV infection based on a pair of monozygotic twins. GENOMICS DATA 2015; 6:12-5. [PMID: 26697319 PMCID: PMC4664672 DOI: 10.1016/j.gdata.2015.07.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 07/07/2015] [Indexed: 11/24/2022]
Abstract
Alteration of DNA methylation in mammalian cells could be elicited by many factors, including viral infections [1]. HIV has shown the ability to interact with host cellular factors to change the methylation status of some genes [2], [3], [4]. However, the change of the DNA methylation associated with HIV infection based on the whole genome has not been well illustrated. In this study, a unique pair of monozygotic twins was recruited: one of the twins was infected with HIV without further anti-retroviral therapy while the other one was healthy, which could be considered as a relatively ideal model for profiling the alterations of DNA methylation associated with HIV infection. Therefore, using methylated DNA immunoprecipitation–microarray method (MeDIP–microarray), we found the increased DNA methylation level in peripheral blood mononuclear cells from HIV infected twin compared to her normal sibling. Moreover, several distinguished differential methylation regions (DMRs) in HIV infected twin worth further study. The raw data has been deposited in Gene Expression Omnibus (GEO) datasets with reference number GSE68028.
Collapse
Affiliation(s)
- Yinfeng Zhang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Sai-Kam Li
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Stephen Kwok-Wing Tsui
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong ; Hong Kong Bioinformatics Center, The Chinese University of Hong Kong, Hong Kong ; Centre for Microbial Genomics and Proteomics, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|