1
|
Beckröge T, Jux B, Seifert H, Theobald H, De Domenico E, Paulusch S, Beyer M, Schlitzer A, Mass E, Kolanus W. Impaired primitive erythropoiesis and defective vascular development in Trim71-KO embryos. Life Sci Alliance 2025; 8:e202402956. [PMID: 39909558 PMCID: PMC11799773 DOI: 10.26508/lsa.202402956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 01/27/2025] [Accepted: 01/27/2025] [Indexed: 02/07/2025] Open
Abstract
The transition of an embryo from gastrulation to organogenesis requires precisely coordinated changes in gene expression, but the underlying mechanisms remain unclear. The RNA-binding protein Trim71 is essential for development and serves as a potent regulator of post-transcriptional gene expression. Here, we show that global deficiency of Trim71 induces severe defects in mesoderm-derived cells at the onset of organogenesis. Murine Trim71-KO embryos displayed impaired primitive erythropoiesis, yolk sac vasculature, heart function, and circulation, explaining the embryonic lethality of these mice. Tie2 Cre Trim71 conditional knockout did not induce strong defects, showing that Trim71 expression in endothelial cells and their immediate progenitors is dispensable for embryonic survival. scRNA-seq of E7.5 global Trim71-KO embryos revealed that transcriptomic changes arise already at gastrulation, showing a strong up-regulation of the mesodermal pioneer transcription factor Eomes. We identify Eomes as a direct target of Trim71-mediated mRNA repression via the NHL domain, demonstrating a functional link between these important regulatory genes. Taken together, our data suggest that Trim71-dependent control of gene expression at gastrulation establishes a framework for proper development during organogenesis.
Collapse
Affiliation(s)
- Tobias Beckröge
- Molecular Immunology and Cell Biology, Life & Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Bettina Jux
- Molecular Immunology and Cell Biology, Life & Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Hannah Seifert
- Molecular Immunology and Cell Biology, Life & Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Hannah Theobald
- Quantitative Systems Biology, Life & Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Elena De Domenico
- Genomics and Immunoregulation, Life & Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V., Bonn, Germany
- PRECISE Platform for Genomics and Epigenomics, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V. and University of Bonn and West German Genome Center, Bonn, Germany
| | - Stefan Paulusch
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V., Bonn, Germany
- PRECISE Platform for Genomics and Epigenomics, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V. and University of Bonn and West German Genome Center, Bonn, Germany
| | - Marc Beyer
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V., Bonn, Germany
- PRECISE Platform for Genomics and Epigenomics, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V. and University of Bonn and West German Genome Center, Bonn, Germany
- Immunogenomics and Neurodegeneration, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V., Bonn, Germany
| | - Andreas Schlitzer
- Quantitative Systems Biology, Life & Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Elvira Mass
- Developmental Biology of the Immune System, Life & Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Waldemar Kolanus
- Molecular Immunology and Cell Biology, Life & Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| |
Collapse
|
2
|
Lou D, Wang J, Zhang H, Jia Q, Liu L, Bian Y, Di Y, Shan C. Tripartite Motif Containing 71 Suppresses Tumor Growth by Down-Regulating eIF5A2 Expression in Laryngeal Squamous Cell Carcinoma. Appl Biochem Biotechnol 2025; 197:1504-1515. [PMID: 39579322 DOI: 10.1007/s12010-024-05084-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2024] [Indexed: 11/25/2024]
Abstract
The incidence of laryngeal squamous cell carcinoma (LSCC) has been rising recently. LSCC is one of the most prevalent malignant tumors of the head and neck. In this study, we aimed to investigate whether tripartite motif containing 71 (TRIM71) could serve as a molecular target for the treatment of LSCC. The mRNA and protein levels were examined by using real-time qPCR and Western blot, respectively. Cell proliferation was determined by cell-counting kit 8 assay. To further confirm the function of TRIM71 in LSCC, an in vivo cell line-derived xenograft study was conducted. The half-life of eukaryotic translation initiation factor 5A2 (eIF5A2) protein was measured by cycloheximide chase assay. Our results showed that TRIM71 was significantly downregulated in LSCC tumor tissues. TRIM71 overexpression significantly inhibited LSCC cell growth and suppressed tumor volume and weight in the xenograft models. The interaction between TRIM71 and eIF5A2 was verified by co-immunoprecipitation assay. Moreover, overexpression of TRIM71 in LSCC cells significantly inhibited the protein expression of eIF5A2 by down-regulating its stability, while it did not affect its mRNA level. In contrast, overexpression of eIF5A2 abolished the anti-tumor effects of TRIM71. In summary, TRIM71 may exert its anti-tumor effects through regulating eIF5A2, highlighting the potential of TRIM71 as an effective therapeutic target for the treatment of LSCC.
Collapse
Affiliation(s)
- Dan Lou
- Department of Otolaryngology, the Second Hospital of Hebei Medical University, No. 215 Heping West Road, Shijiazhuang, 050000, Hebei, China
- Department of Otolaryngology, the First Hospital of Qinhuangdao, Qinhuangdao, 066000, Hebei, China
| | - Jianxing Wang
- Department of Otolaryngology, the Second Hospital of Hebei Medical University, No. 215 Heping West Road, Shijiazhuang, 050000, Hebei, China
| | - Haizhong Zhang
- Department of Otolaryngology, the Second Hospital of Hebei Medical University, No. 215 Heping West Road, Shijiazhuang, 050000, Hebei, China
| | - Qiaojing Jia
- Department of Otolaryngology, the Second Hospital of Hebei Medical University, No. 215 Heping West Road, Shijiazhuang, 050000, Hebei, China
| | - Lisha Liu
- Department of Otolaryngology, the Second Hospital of Hebei Medical University, No. 215 Heping West Road, Shijiazhuang, 050000, Hebei, China
| | - Yanrui Bian
- Department of Otolaryngology, the Second Hospital of Hebei Medical University, No. 215 Heping West Road, Shijiazhuang, 050000, Hebei, China
| | - Yue Di
- Department of Otolaryngology, the First Hospital of Qinhuangdao, Qinhuangdao, 066000, Hebei, China
| | - Chunguang Shan
- Department of Otolaryngology, the Second Hospital of Hebei Medical University, No. 215 Heping West Road, Shijiazhuang, 050000, Hebei, China.
| |
Collapse
|
3
|
Li S, Jiang W, Chen F, Qian J, Yang J. The critical role of TRIM protein family in intervertebral disc degeneration: mechanistic insights and therapeutic perspectives. Front Cell Dev Biol 2025; 13:1525073. [PMID: 39981097 PMCID: PMC11839679 DOI: 10.3389/fcell.2025.1525073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/20/2025] [Indexed: 02/22/2025] Open
Abstract
Intervertebral disc degeneration (IVDD) is a leading cause of chronic back pain, contributing significantly to reduced quality of life and global public health burdens. The TRIM (Tripartite Motif-containing) protein family, with its diverse regulatory roles, has emerged as a key player in critical cellular processes such as inflammation, cell death, and extracellular matrix (ECM) metabolism. Recent findings underscore the involvement of TRIM proteins in IVDD pathogenesis, where they regulate stress responses, maintain cellular homeostasis, and influence the functional integrity of nucleus pulposus (NP) and annulus fibrosus (AF) cells. This review explores the multifaceted roles of TRIM proteins in IVDD, highlighting their contributions to pathological pathways and their potential as therapeutic targets. Advancing our understanding of TRIM protein-mediated mechanisms may pave the way for innovative and precise therapeutic strategies to combat IVDD.
Collapse
Affiliation(s)
- Shangze Li
- Department of Orthopedics, The Second Affiliated Hospital (Shanghai Changzheng Hospital), Naval Medical University, Shanghai, China
| | - Wenli Jiang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Naval Medical University, Shanghai, China
| | - Fei Chen
- Department of Orthopedics, The Second Affiliated Hospital (Shanghai Changzheng Hospital), Naval Medical University, Shanghai, China
| | - Jiao Qian
- Department of Pharmacy, The First Affiliated Hospital (Shanghai Changhai Hospital), Naval Medical University, Shanghai, China
| | - Jun Yang
- Department of Orthopedics, The Second Affiliated Hospital (Shanghai Changzheng Hospital), Naval Medical University, Shanghai, China
| |
Collapse
|
4
|
Duy PQ, Jux B, Zhao S, Mekbib KY, Dennis E, Dong W, Nelson-Williams C, Mehta NH, Shohfi JP, Juusola J, Allington G, Smith H, Marlin S, Belhous K, Monteleone B, Schaefer GB, Pisarska MD, Vásquez J, Estrada-Veras JI, Keren B, Mignot C, Flore LA, Palafoll IV, Alper SL, Lifton RP, Haider S, Moreno-De-Luca A, Jin SC, Kolanus W, Kahle KT. TRIM71 mutations cause a neurodevelopmental syndrome featuring ventriculomegaly and hydrocephalus. Brain 2024; 147:4292-4305. [PMID: 38833623 PMCID: PMC11629693 DOI: 10.1093/brain/awae175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/31/2024] [Accepted: 04/29/2024] [Indexed: 06/06/2024] Open
Abstract
Congenital hydrocephalus, characterized by cerebral ventriculomegaly, is one of the most common reasons for paediatric brain surgery. Recent studies have implicated lin-41 (lineage variant 41)/TRIM71 (tripartite motif 71) as a candidate congenital hydrocephalus risk gene; however, TRIM71 variants have not been systematically examined in a large patient cohort or conclusively linked with an OMIM syndrome. Through cross-sectional analysis of the largest assembled cohort of patients with cerebral ventriculomegaly, including neurosurgically-treated congenital hydrocephalus (totalling 2697 parent-proband trios and 8091 total exomes), we identified 13 protein-altering de novo variants (DNVs) in TRIM71 in unrelated children exhibiting variable ventriculomegaly, congenital hydrocephalus, developmental delay, dysmorphic features and other structural brain defects, including corpus callosum dysgenesis and white matter hypoplasia. Eight unrelated patients were found to harbour arginine variants, including two recurrent missense DNVs, at homologous positions in RPXGV motifs of different NHL domains. Seven patients with rare, damaging, unphased or transmitted variants of uncertain significance were also identified. NHL-domain variants of TRIM71 exhibited impaired binding to the canonical TRIM71 target CDKN1A; other variants failed to direct the subcellular localization of TRIM71 to processing bodies. Single-cell transcriptomic analysis of human embryos revealed expression of TRIM71 in early first-trimester neural stem cells of the brain. These data show TRIM71 is essential for human brain morphogenesis and that TRIM71 mutations cause a novel neurodevelopmental syndrome that we term 'TRIM71-associated developmental disorders (TADD)', featuring variable ventriculomegaly, congenital hydrocephalus and other structural brain defects.
Collapse
Affiliation(s)
- Phan Q Duy
- Department of Neurosurgery, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Bettina Jux
- Molecular Immunology and Cell Biology, Life & Medical Sciences Institute (LiMES), University of Bonn, Bonn 53012, Germany
| | - Shujuan Zhao
- Department of Genetics, School of Medicine, Washington University, St. Louis, MO 63110, USA
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Kedous Y Mekbib
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Evan Dennis
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Weilai Dong
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY 10065, USA
| | - Carol Nelson-Williams
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Neel H Mehta
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - John P Shohfi
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | | - Garrett Allington
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Hannah Smith
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Sandrine Marlin
- Laboratory of Embryology and Genetics of Human Malformation, Imagine Institute, Paris Descartes, Sorbonne Paris Cité University, Paris 75013, France
| | - Kahina Belhous
- Department of Radiology, Necker Children Hospital, Assistance Publique—Hôpitaux de Paris, University Paris 5, Paris 75004, France
| | - Berrin Monteleone
- Division of Clinical Genetics, NYU Langone Health, Long Island, Mineola, NY 11501, USA
| | - G Bradley Schaefer
- Section of Genetics and Metabolism, University of Arkansas for Medical Sciences, Little Rock, AR 77205, USA
| | - Margareta D Pisarska
- Department of Obstretrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jaime Vásquez
- Division of Clinical Genetics, NYU Langone Health, Long Island, Mineola, NY 11501, USA
| | - Juvianee I Estrada-Veras
- Department of Surgery, Henry M Jackson Foundation for the Advancement of Military Medicine and Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA
- Pediatric Subspecialty Genetics Walter Reed National Military Medical Center, Bethesda, MD 20889, USA
| | - Boris Keren
- Department of Genetics, APHP, Sorbonne Université, Pitié-Salpêtrière University Hospital, Paris 75013, France
| | - Cyril Mignot
- Department of Genetics, APHP, Sorbonne Université, Pitié-Salpêtrière University Hospital, Paris 75013, France
- Centre de Référence Déficiences Intellectuelles de Causes Rares, Pitié-Salpêtrière University Hospital, Paris 75013, France
| | - Leigh A Flore
- Division of Genetic, Genomic and Metabolic Disorders, Children's Hospital of Michigan, Detroit, MI 48201, USA
- Central Michigan University College of Medicine, Mount Pleasant, MI 48858, USA
| | - Irene V Palafoll
- Centre de référence Anomalies du développement, CHU Grenoble-Alpes, Grenoble 38700, France
| | - Seth L Alper
- Division of Nephrology and Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Richard P Lifton
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Shozeb Haider
- School of Pharmacy, University College London, London WC1E 6BT, UK
| | - Andres Moreno-De-Luca
- Department of Radiology, Neuroradiology Section, Kingston Health Sciences Centre, Queen’s University Faculty of Health Sciences, Kingston, ON K7L 3N6, Canada
| | - Sheng Chih Jin
- Department of Genetics, School of Medicine, Washington University, St. Louis, MO 63110, USA
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 063110, USA
| | - Waldemar Kolanus
- Molecular Immunology and Cell Biology, Life & Medical Sciences Institute (LiMES), University of Bonn, Bonn 53012, Germany
| | - Kristopher T Kahle
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Department of Pediatrics, and Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA 02115, USA
- Harvard Center for Hydrocephalus and Neurodevelopmental Disorders, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
5
|
Herzeg A, Borges B, Diafos LN, Gupta N, MacKenzie TC, Sanders SJ. The Conundrum of Mechanics Versus Genetics in Congenital Hydrocephalus and Its Implications for Fetal Therapy Approaches: A Scoping Review. Prenat Diagn 2024; 44:1354-1366. [PMID: 39218781 DOI: 10.1002/pd.6654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/07/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
Recent advances in gene therapy, particularly for single-gene disorders (SGDs), have led to significant progress in developing innovative precision medicine approaches that hold promise for treating conditions such as primary hydrocephalus (CH), which is characterized by increased cerebrospinal fluid (CSF) volumes and cerebral ventricular dilation as a result of impaired brain development, often due to genetic causes. CH is a significant contributor to childhood morbidity and mortality and a driver of healthcare costs. In many cases, prenatal ultrasound can readily identify ventriculomegaly as early as 14-20 weeks of gestation, with severe cases showing poor neurodevelopmental outcomes. Postnatal surgical approaches, such as ventriculoperitoneal shunts, do not address the underlying genetic causes, have high complication rates, and result in a marginal improvement of neurocognitive deficits. Prenatal somatic cell gene therapy (PSCGT) promises a novel approach to conditions such as CH by targeting genetic mutations in utero, potentially improving long-term outcomes. To better understand the pathophysiology, genetic basis, and molecular pathomechanisms of CH, we conducted a scoping review of the literature that identified over 160 published genes linked to CH. Mutations in L1CAM, TRIM71, MPDZ, and CCDC88C play a critical role in neural stem cell development, subventricular zone architecture, and the maintenance of the neural stem cell niche, driving the development of CH. Early prenatal interventions targeting these genes could curb the development of the expected CH phenotype, improve neurodevelopmental outcomes, and possibly limit the need for surgical approaches. However, further research is needed to establish robust genotype-phenotype correlations and develop safe and effective PSCGT strategies for CH.
Collapse
Affiliation(s)
- Akos Herzeg
- Department of Surgery, University of California, San Francisco, San Francisco, California, USA
- UCSF Center for Maternal-Fetal Precision Medicine, University of California San Francisco, San Francisco, California, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California, USA
- Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, California, USA
| | - Beltran Borges
- Department of Surgery, University of California, San Francisco, San Francisco, California, USA
- UCSF Center for Maternal-Fetal Precision Medicine, University of California San Francisco, San Francisco, California, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California, USA
| | - Loukas N Diafos
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California, USA
- Department of Pediatrics and Benioff Children's Hospital, University of California, San Francisco, San Francisco, California, USA
| | - Nalin Gupta
- UCSF Center for Maternal-Fetal Precision Medicine, University of California San Francisco, San Francisco, California, USA
- Department of Pediatrics and Benioff Children's Hospital, University of California, San Francisco, San Francisco, California, USA
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
- Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
| | - Tippi C MacKenzie
- Department of Surgery, University of California, San Francisco, San Francisco, California, USA
- UCSF Center for Maternal-Fetal Precision Medicine, University of California San Francisco, San Francisco, California, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California, USA
- Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, California, USA
- Department of Pediatrics and Benioff Children's Hospital, University of California, San Francisco, San Francisco, California, USA
| | - Stephan J Sanders
- UCSF Center for Maternal-Fetal Precision Medicine, University of California San Francisco, San Francisco, California, USA
- Department of Psychiatry and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA
- Institute for Developmental and Regenerative Medicine, Oxford University, Oxford, UK
| |
Collapse
|
6
|
Li X, Morgan C, Nadar‐Ponniah PT, Kolanus W, Doetzlhofer A. TRIM71 reactivation enhances the mitotic and hair cell-forming potential of cochlear supporting cells. EMBO Rep 2023; 24:e56562. [PMID: 37492931 PMCID: PMC10481673 DOI: 10.15252/embr.202256562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 07/27/2023] Open
Abstract
Cochlear hair cell loss is a leading cause of deafness in humans. Neighboring supporting cells have some capacity to regenerate hair cells. However, their regenerative potential sharply declines as supporting cells undergo maturation (postnatal day 5 in mice). We recently reported that reactivation of the RNA-binding protein LIN28B restores the hair cell-regenerative potential of P5 cochlear supporting cells. Here, we identify the LIN28B target Trim71 as a novel and equally potent enhancer of supporting cell plasticity. TRIM71 is a critical regulator of stem cell behavior and cell reprogramming; however, its role in cell regeneration is poorly understood. Employing an organoid-based assay, we show that TRIM71 re-expression increases the mitotic and hair cell-forming potential of P5 cochlear supporting cells by facilitating their de-differentiation into progenitor-like cells. Our mechanistic work indicates that TRIM71's RNA-binding activity is essential for such ability, and our transcriptomic analysis identifies gene modules that are linked to TRIM71 and LIN28B-mediated supporting cell reprogramming. Furthermore, our study uncovers that the TRIM71-LIN28B target Hmga2 is essential for supporting cell self-renewal and hair cell formation.
Collapse
Affiliation(s)
- Xiao‐Jun Li
- The Solomon H. Snyder Department of NeuroscienceJohns Hopkins University School of MedicineBaltimoreMDUSA
- Present address:
Frontier Institute of Science and TechnologyXi'an Jiaotong UniversityXi'an710054China
| | - Charles Morgan
- The Solomon H. Snyder Department of NeuroscienceJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Prathamesh T Nadar‐Ponniah
- The Solomon H. Snyder Department of NeuroscienceJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Waldemar Kolanus
- Molecular Immunology and Cell Biology, Life & Medical Sciences Institute (LIMES)University of BonnBonnGermany
| | - Angelika Doetzlhofer
- The Solomon H. Snyder Department of NeuroscienceJohns Hopkins University School of MedicineBaltimoreMDUSA
- Department of Otolaryngology and Center for Hearing and BalanceJohns Hopkins University School of MedicineBaltimoreMDUSA
| |
Collapse
|
7
|
Rapone R, Del Maestro L, Bouyioukos C, Albini S, Cruz-Tapias P, Joliot V, Cosson B, Ait-Si-Ali S. The cytoplasmic fraction of the histone lysine methyltransferase Setdb1 is essential for embryonic stem cells. iScience 2023; 26:107386. [PMID: 37559904 PMCID: PMC10407132 DOI: 10.1016/j.isci.2023.107386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 06/26/2023] [Accepted: 07/11/2023] [Indexed: 08/11/2023] Open
Abstract
The major lysine methyltransferase (KMT) Setdb1 is essential for self-renewal and viability of mouse embryonic stem cells (mESCs). Setdb1 was primarily known to methylate the lysine 9 of histone 3 (H3K9) in the nucleus, where it regulates chromatin functions. However, Setdb1 is also massively localized in the cytoplasm, including in mESCs, where its role remains elusive. Here, we show that the cytoplasmic Setdb1 (cSetdb1) is essential for the survival of mESCs. Yeast two-hybrid analysis revealed that cSetdb1 interacts with several regulators of mRNA stability and protein translation machinery, such as the ESCs-specific E3 ubiquitin ligase and mRNA silencer Trim71/Lin41. We found that cSetdb1 is required for the integrity of Trim71 complex(es) involved in mRNA metabolism and translation. cSetdb1 modulates the abundance of mRNAs and the rate of newly synthesized proteins. Altogether, our data uncovered the cytoplasmic post-transcriptional regulation of gene expression mediated by a key epigenetic regulator.
Collapse
Affiliation(s)
- Roberta Rapone
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, UMR7216, 75013 Paris, France
| | - Laurence Del Maestro
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, UMR7216, 75013 Paris, France
| | - Costas Bouyioukos
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, UMR7216, 75013 Paris, France
| | - Sonia Albini
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, UMR7216, 75013 Paris, France
| | - Paola Cruz-Tapias
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, UMR7216, 75013 Paris, France
| | - Véronique Joliot
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, UMR7216, 75013 Paris, France
| | - Bertrand Cosson
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, UMR7216, 75013 Paris, France
| | - Slimane Ait-Si-Ali
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, UMR7216, 75013 Paris, France
| |
Collapse
|
8
|
Welte T, Goulois A, Stadler MB, Hess D, Soneson C, Neagu A, Azzi C, Wisser MJ, Seebacher J, Schmidt I, Estoppey D, Nigsch F, Reece-Hoyes J, Hoepfner D, Großhans H. Convergence of multiple RNA-silencing pathways on GW182/TNRC6. Mol Cell 2023:S1097-2765(23)00423-9. [PMID: 37369201 DOI: 10.1016/j.molcel.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 04/02/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023]
Abstract
The RNA-binding protein TRIM71/LIN-41 is a phylogenetically conserved developmental regulator that functions in mammalian stem cell reprogramming, brain development, and cancer. TRIM71 recognizes target mRNAs through hairpin motifs and silences them through molecular mechanisms that await identification. Here, we uncover that TRIM71 represses its targets through RNA-supported interaction with TNRC6/GW182, a core component of the miRNA-induced silencing complex (miRISC). We demonstrate that AGO2, TRIM71, and UPF1 each recruit TNRC6 to specific sets of transcripts to silence them. As cellular TNRC6 levels are limiting, competition occurs among the silencing pathways, such that the loss of AGO proteins or of AGO binding to TNRC6 enhances the activities of the other pathways. We conclude that a miRNA-like silencing activity is shared among different mRNA silencing pathways and that the use of TNRC6 as a central hub provides a means to integrate their activities.
Collapse
Affiliation(s)
- Thomas Welte
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland; Department of Medicine IV, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Alison Goulois
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Michael B Stadler
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland; SIB Swiss Institute of Bioinformatics, Basel, Switzerland; Faculty of Natural Sciences, University of Basel, Basel, Switzerland
| | - Daniel Hess
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Charlotte Soneson
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland; SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Anca Neagu
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Chiara Azzi
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Marlena J Wisser
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland; Faculty of Natural Sciences, University of Basel, Basel, Switzerland
| | - Jan Seebacher
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Isabel Schmidt
- Novartis Institutes for Biomedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - David Estoppey
- Novartis Institutes for Biomedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Florian Nigsch
- Novartis Institutes for Biomedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - John Reece-Hoyes
- Department of Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Dominic Hoepfner
- Novartis Institutes for Biomedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Helge Großhans
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland; Faculty of Natural Sciences, University of Basel, Basel, Switzerland.
| |
Collapse
|
9
|
Duy PQ, Rakic P, Alper SL, Robert SM, Kundishora AJ, Butler WE, Walsh CA, Sestan N, Geschwind DH, Jin SC, Kahle KT. A neural stem cell paradigm of pediatric hydrocephalus. Cereb Cortex 2023; 33:4262-4279. [PMID: 36097331 PMCID: PMC10110448 DOI: 10.1093/cercor/bhac341] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 07/12/2022] [Accepted: 08/02/2022] [Indexed: 12/25/2022] Open
Abstract
Pediatric hydrocephalus, the leading reason for brain surgery in children, is characterized by enlargement of the cerebral ventricles classically attributed to cerebrospinal fluid (CSF) overaccumulation. Neurosurgical shunting to reduce CSF volume is the default treatment that intends to reinstate normal CSF homeostasis, yet neurodevelopmental disability often persists in hydrocephalic children despite optimal surgical management. Here, we discuss recent human genetic and animal model studies that are shifting the view of pediatric hydrocephalus from an impaired fluid plumbing model to a new paradigm of dysregulated neural stem cell (NSC) fate. NSCs are neuroprogenitor cells that comprise the germinal neuroepithelium lining the prenatal brain ventricles. We propose that heterogenous defects in the development of these cells converge to disrupt cerebrocortical morphogenesis, leading to abnormal brain-CSF biomechanical interactions that facilitate passive pooling of CSF and secondary ventricular distention. A significant subset of pediatric hydrocephalus may thus in fact be due to a developmental brain malformation leading to secondary enlargement of the ventricles rather than a primary defect of CSF circulation. If hydrocephalus is indeed a neuroradiographic presentation of an inborn brain defect, it suggests the need to focus on optimizing neurodevelopment, rather than CSF diversion, as the primary treatment strategy for these children.
Collapse
Affiliation(s)
- Phan Q Duy
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
- Medical Scientist Training Program, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Pasko Rakic
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Seth L Alper
- Division of Nephrology and Vascular Biology Research Center, Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Stephanie M Robert
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Adam J Kundishora
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | - William E Butler
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Christopher A Walsh
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Department of Pediatrics, and Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA 02115, USA
- Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Nenad Sestan
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Daniel H Geschwind
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Sheng Chih Jin
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kristopher T Kahle
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Harvard Center for Hydrocephalus and Neurodevelopmental Disorders, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
10
|
Cao L, Wang R, Liu G, Zhang Y, Thorne RF, Zhang XD, Li J, Xia Y, Guo L, Shao F, Gu H, Wu M. Glycolytic Pfkp acts as a Lin41 protein kinase to promote endodermal differentiation of embryonic stem cells. EMBO Rep 2023; 24:e55683. [PMID: 36660859 PMCID: PMC9986826 DOI: 10.15252/embr.202255683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 12/21/2022] [Accepted: 01/03/2023] [Indexed: 01/21/2023] Open
Abstract
Unveiling the principles governing embryonic stem cell (ESC) differentiation into specific lineages is critical for understanding embryonic development and for stem cell applications in regenerative medicine. Here, we establish an intersection between LIF-Stat3 signaling that is essential for maintaining murine (m) ESCs pluripotency, and the glycolytic enzyme, the platelet isoform of phosphofructokinase (Pfkp). In the pluripotent state, Stat3 transcriptionally suppresses Pfkp in mESCs while manipulating the cells to lift this repression results in differentiation towards the ectodermal lineage. Pfkp exhibits substrate specificity changes to act as a protein kinase, catalyzing serine phosphorylation of the developmental regulator Lin41. Such phosphorylation stabilizes Lin41 by impeding its autoubiquitination and proteasomal degradation, permitting Lin41-mediated binding and destabilization of mRNAs encoding ectodermal specification markers to favor the expression of endodermal specification genes. This provides new insights into the wiring of pluripotency-differentiation circuitry where Pfkp plays a role in germ layer specification during mESC differentiation.
Collapse
Affiliation(s)
- Leixi Cao
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical ScienceZhengzhou UniversityZhengzhouChina
| | - Ruijie Wang
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical ScienceZhengzhou UniversityZhengzhouChina
| | - Guangzhi Liu
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical ScienceZhengzhou UniversityZhengzhouChina
| | - Yuwei Zhang
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical ScienceZhengzhou UniversityZhengzhouChina
| | - Rick Francis Thorne
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical ScienceZhengzhou UniversityZhengzhouChina
- School of Biomedical Sciences & PharmacyUniversity of NewcastleNewcastleNSWAustralia
| | - Xu Dong Zhang
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical ScienceZhengzhou UniversityZhengzhouChina
- School of Environmental & Life SciencesUniversity of NewcastleNewcastleNSWAustralia
| | - Jinming Li
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical ScienceZhengzhou UniversityZhengzhouChina
| | - Yang Xia
- Department of Immunology, School of Basic Medical SciencesAnhui Medical UniversityHefeiChina
| | - Lili Guo
- Department of Immunology, School of Basic Medical SciencesAnhui Medical UniversityHefeiChina
| | - Fengmin Shao
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical ScienceZhengzhou UniversityZhengzhouChina
| | - Hao Gu
- Department of Immunology, School of Basic Medical SciencesAnhui Medical UniversityHefeiChina
| | - Mian Wu
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical ScienceZhengzhou UniversityZhengzhouChina
- School of Clinical MedicineHenan UniversityZhengzhouChina
- CAS Centre for Excellence in Molecular Cell Sciencethe First Affiliated Hospital of University of Science and Technology of ChinaHefeiChina
| |
Collapse
|
11
|
Li XJ, Morgan C, Nadar-Ponniah PT, Kolanus W, Doetzlhofer A. Reactivation of the progenitor gene Trim71 enhances the mitotic and hair cell-forming potential of cochlear supporting cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.12.523802. [PMID: 36711735 PMCID: PMC9882147 DOI: 10.1101/2023.01.12.523802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Cochlear hair cell loss is a leading cause of deafness in humans. Neighboring supporting cells have some capacity to regenerate hair cells. However, their regenerative potential sharply declines as supporting cells undergo maturation (postnatal day 5 in mice). We recently reported that reactivation of the RNA-binding protein LIN28B restores the hair cell-regenerative potential of P5 cochlear supporting cells. Here, we identify the LIN28B target Trim71 as a novel and equally potent enhancer of supporting cell plasticity. TRIM71 is a critical regulator of stem cell behavior and cell reprogramming, however, its role in cell regeneration is poorly understood. Employing an organoid-based assay, we show that TRIM71 reactivation increases the mitotic and hair cell-forming potential of P5 cochlear supporting cells by facilitating their de-differentiation into progenitor-like cells. Our mechanistic work indicates that TRIM71’s RNA-binding activity is essential for such ability, and our transcriptomic analysis identifies gene modules that are linked to TRIM71 and LIN28B-mediated supporting cell reprogramming. Furthermore, our study uncovers that the TRIM71-LIN28B target Hmga2 is essential for supporting cell self-renewal and hair cell formation.
Collapse
|
12
|
Rethinking the cilia hypothesis of hydrocephalus. Neurobiol Dis 2022; 175:105913. [DOI: 10.1016/j.nbd.2022.105913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
|
13
|
Spike CA, Tsukamoto T, Greenstein D. Ubiquitin ligases and a processive proteasome facilitate protein clearance during the oocyte-to-embryo transition in Caenorhabditis elegans. Genetics 2022; 221:iyac051. [PMID: 35377419 PMCID: PMC9071522 DOI: 10.1093/genetics/iyac051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 03/27/2022] [Indexed: 02/07/2023] Open
Abstract
The ubiquitin-mediated degradation of oocyte translational regulatory proteins is a conserved feature of the oocyte-to-embryo transition. In the nematode Caenorhabditis elegans, multiple translational regulatory proteins, including the TRIM-NHL RNA-binding protein LIN-41/Trim71 and the Pumilio-family RNA-binding proteins PUF-3 and PUF-11, are degraded during the oocyte-to-embryo transition. Degradation of each protein requires activation of the M-phase cyclin-dependent kinase CDK-1, is largely complete by the end of the first meiotic division and does not require the anaphase-promoting complex. However, only LIN-41 degradation requires the F-box protein SEL-10/FBW7/Cdc4p, the substrate recognition subunit of an SCF-type E3 ubiquitin ligase. This finding suggests that PUF-3 and PUF-11, which localize to LIN-41-containing ribonucleoprotein particles, are independently degraded through the action of other factors and that the oocyte ribonucleoprotein particles are disassembled in a concerted fashion during the oocyte-to-embryo transition. We develop and test the hypothesis that PUF-3 and PUF-11 are targeted for degradation by the proteasome-associated HECT-type ubiquitin ligase ETC-1/UBE3C/Hul5, which is broadly expressed in C. elegans. We find that several GFP-tagged fusion proteins that are degraded during the oocyte-to-embryo transition, including fusions with PUF-3, PUF-11, LIN-41, IFY-1/Securin, and CYB-1/Cyclin B, are incompletely degraded when ETC-1 function is compromised. However, it is the fused GFP moiety that appears to be the critical determinant of this proteolysis defect. These findings are consistent with a conserved role for ETC-1 in promoting proteasome processivity and suggest that proteasomal processivity is an important element of the oocyte-to-embryo transition during which many key oocyte regulatory proteins are rapidly targeted for degradation.
Collapse
Affiliation(s)
- Caroline A Spike
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Tatsuya Tsukamoto
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - David Greenstein
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
14
|
Duy PQ, Weise SC, Marini C, Li XJ, Liang D, Dahl PJ, Ma S, Spajic A, Dong W, Juusola J, Kiziltug E, Kundishora AJ, Koundal S, Pedram MZ, Torres-Fernández LA, Händler K, De Domenico E, Becker M, Ulas T, Juranek SA, Cuevas E, Hao LT, Jux B, Sousa AMM, Liu F, Kim SK, Li M, Yang Y, Takeo Y, Duque A, Nelson-Williams C, Ha Y, Selvaganesan K, Robert SM, Singh AK, Allington G, Furey CG, Timberlake AT, Reeves BC, Smith H, Dunbar A, DeSpenza T, Goto J, Marlier A, Moreno-De-Luca A, Yu X, Butler WE, Carter BS, Lake EMR, Constable RT, Rakic P, Lin H, Deniz E, Benveniste H, Malvankar NS, Estrada-Veras JI, Walsh CA, Alper SL, Schultze JL, Paeschke K, Doetzlhofer A, Wulczyn FG, Jin SC, Lifton RP, Sestan N, Kolanus W, Kahle KT. Impaired neurogenesis alters brain biomechanics in a neuroprogenitor-based genetic subtype of congenital hydrocephalus. Nat Neurosci 2022; 25:458-473. [PMID: 35379995 PMCID: PMC9664907 DOI: 10.1038/s41593-022-01043-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/28/2022] [Indexed: 01/16/2023]
Abstract
Hydrocephalus, characterized by cerebral ventricular dilatation, is routinely attributed to primary defects in cerebrospinal fluid (CSF) homeostasis. This fosters CSF shunting as the leading reason for brain surgery in children despite considerable disease heterogeneity. In this study, by integrating human brain transcriptomics with whole-exome sequencing of 483 patients with congenital hydrocephalus (CH), we found convergence of CH risk genes in embryonic neuroepithelial stem cells. Of all CH risk genes, TRIM71/lin-41 harbors the most de novo mutations and is most specifically expressed in neuroepithelial cells. Mice harboring neuroepithelial cell-specific Trim71 deletion or CH-specific Trim71 mutation exhibit prenatal hydrocephalus. CH mutations disrupt TRIM71 binding to its RNA targets, causing premature neuroepithelial cell differentiation and reduced neurogenesis. Cortical hypoplasia leads to a hypercompliant cortex and secondary ventricular enlargement without primary defects in CSF circulation. These data highlight the importance of precisely regulated neuroepithelial cell fate for normal brain-CSF biomechanics and support a clinically relevant neuroprogenitor-based paradigm of CH.
Collapse
Affiliation(s)
- Phan Q Duy
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, USA.,Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA.,Medical Scientist Training Program, Yale University School of Medicine, New Haven, CT, USA
| | - Stefan C Weise
- Molecular Immunology and Cell Biology, Life & Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Claudia Marini
- Institute for Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Xiao-Jun Li
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Center for Hearing and Balance, Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dan Liang
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Peter J Dahl
- Microbial Sciences Institute, Yale University, West Haven, CT, USA.,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Shaojie Ma
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Ana Spajic
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Weilai Dong
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, USA
| | | | - Emre Kiziltug
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Adam J Kundishora
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Sunil Koundal
- Department of Anesthesiology, Yale University School of Medicine, New Haven, CT, USA
| | - Maysam Z Pedram
- Department of Anesthesiology, Yale University School of Medicine, New Haven, CT, USA
| | - Lucia A Torres-Fernández
- Molecular Immunology and Cell Biology, Life & Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Kristian Händler
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany.,Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany.,Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE). PRECISE Platform for Genomics and Epigenomics at DZNE and University of Bonn, Bonn, Germany
| | - Elena De Domenico
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany.,Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany.,Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE). PRECISE Platform for Genomics and Epigenomics at DZNE and University of Bonn, Bonn, Germany
| | - Matthias Becker
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany.,Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany.,Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE). PRECISE Platform for Genomics and Epigenomics at DZNE and University of Bonn, Bonn, Germany
| | - Thomas Ulas
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany.,Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany.,Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE). PRECISE Platform for Genomics and Epigenomics at DZNE and University of Bonn, Bonn, Germany
| | - Stefan A Juranek
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn, Bonn, Germany
| | - Elisa Cuevas
- Stem Cells and Regenerative Medicine Section, University College London Great Ormond Street Institute of Child Health, London, UK
| | - Le Thi Hao
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Bettina Jux
- Molecular Immunology and Cell Biology, Life & Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - André M M Sousa
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Fuchen Liu
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Suel-Kee Kim
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Mingfeng Li
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Yiying Yang
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA
| | - Yutaka Takeo
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Alvaro Duque
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | | | - Yonghyun Ha
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Kartiga Selvaganesan
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Stephanie M Robert
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Amrita K Singh
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Garrett Allington
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Charuta G Furey
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Andrew T Timberlake
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Benjamin C Reeves
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Hannah Smith
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Ashley Dunbar
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Tyrone DeSpenza
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - June Goto
- Division of Pediatric Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Arnaud Marlier
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Andres Moreno-De-Luca
- Department of Radiology, Autism & Developmental Medicine Institute, Genomic Medicine Institute, Geisinger, Danville, PA, USA
| | - Xin Yu
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - William E Butler
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Bob S Carter
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Evelyn M R Lake
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - R Todd Constable
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Pasko Rakic
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Haifan Lin
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA
| | - Engin Deniz
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Helene Benveniste
- Department of Anesthesiology, Yale University School of Medicine, New Haven, CT, USA
| | - Nikhil S Malvankar
- Microbial Sciences Institute, Yale University, West Haven, CT, USA.,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Juvianee I Estrada-Veras
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA.,Pediatric Subspecialty Genetics Walter Reed National Military Medical Center, Bethesda, MD, USA.,Murtha Cancer Center/Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Christopher A Walsh
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Department of Pediatrics, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA.,Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Seth L Alper
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Division of Nephrology and Vascular Biology Research Center, Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Joachim L Schultze
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany.,Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany.,Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE). PRECISE Platform for Genomics and Epigenomics at DZNE and University of Bonn, Bonn, Germany
| | - Katrin Paeschke
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn, Bonn, Germany
| | - Angelika Doetzlhofer
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Center for Hearing and Balance, Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - F Gregory Wulczyn
- Institute for Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Sheng Chih Jin
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Richard P Lifton
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, USA
| | - Nenad Sestan
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Waldemar Kolanus
- Molecular Immunology and Cell Biology, Life & Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Kristopher T Kahle
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA. .,Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Department of Pediatrics, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA. .,Broad Institute of MIT and Harvard, Cambridge, MA, USA. .,Harvard Center for Hydrocephalus and Neurodevelopmental Disorders, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
15
|
In Silico Analysis to Explore Lineage-Independent and -Dependent Transcriptional Programs Associated with the Process of Endothelial and Neural Differentiation of Human Induced Pluripotent Stem Cells. J Clin Med 2021; 10:jcm10184161. [PMID: 34575270 PMCID: PMC8471316 DOI: 10.3390/jcm10184161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/11/2021] [Accepted: 09/13/2021] [Indexed: 11/17/2022] Open
Abstract
Despite a major interest in understanding how the endothelial cell phenotype is established, the underlying molecular basis of this process is not yet fully understood. We have previously reported the generation of induced pluripotent stem cells (iPS) from human umbilical vein endothelial cells and differentiation of the resulting HiPS back to endothelial cells (Ec-Diff), as well as neural (Nn-Diff) cell lineage that contained both neurons and astrocytes. Furthermore, the identities of these cell lineages were established by gene array analysis. Here, we explored the same arrays to gain insight into the gene alteration processes that accompany the establishment of endothelial vs. non-endothelial neural cell phenotypes. We compared the expression of genes that code for transcription factors and epigenetic regulators when HiPS is differentiated into these endothelial and non-endothelial lineages. Our in silico analyses have identified cohorts of genes that are similarly up- or downregulated in both lineages, as well as those that exhibit lineage-specific alterations. Based on these results, we propose that genes that are similarly altered in both lineages participate in priming the stem cell for differentiation in a lineage-independent manner, whereas those that are differentially altered in endothelial compared to neural cells participate in a lineage-specific differentiation process. Specific GATA family members and their cofactors and epigenetic regulators (DNMT3B, PRDM14, HELLS) with a major role in regulating DNA methylation were among participants in priming HiPS for lineage-independent differentiation. In addition, we identified distinct cohorts of transcription factors and epigenetic regulators whose alterations correlated specifically with the establishment of endothelial vs. non-endothelial neural lineages.
Collapse
|
16
|
Torres-Fernández LA, Emich J, Port Y, Mitschka S, Wöste M, Schneider S, Fietz D, Oud MS, Di Persio S, Neuhaus N, Kliesch S, Hölzel M, Schorle H, Friedrich C, Tüttelmann F, Kolanus W. TRIM71 Deficiency Causes Germ Cell Loss During Mouse Embryogenesis and Is Associated With Human Male Infertility. Front Cell Dev Biol 2021; 9:658966. [PMID: 34055789 PMCID: PMC8155544 DOI: 10.3389/fcell.2021.658966] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/30/2021] [Indexed: 12/21/2022] Open
Abstract
Mutations affecting the germline can result in infertility or the generation of germ cell tumors (GCT), highlighting the need to identify and characterize the genes controlling germ cell development. The RNA-binding protein and E3 ubiquitin ligase TRIM71 is essential for embryogenesis, and its expression has been reported in GCT and adult mouse testes. To investigate the role of TRIM71 in mammalian germ cell embryonic development, we generated a germline-specific conditional Trim71 knockout mouse (cKO) using the early primordial germ cell (PGC) marker Nanos3 as a Cre-recombinase driver. cKO mice are infertile, with male mice displaying a Sertoli cell-only (SCO) phenotype which in humans is defined as a specific subtype of non-obstructive azoospermia characterized by the absence of germ cells in the seminiferous tubules. Infertility in male Trim71 cKO mice originates during embryogenesis, as the SCO phenotype was already apparent in neonatal mice. The in vitro differentiation of mouse embryonic stem cells (ESCs) into PGC-like cells (PGCLCs) revealed reduced numbers of PGCLCs in Trim71-deficient cells. Furthermore, TCam-2 cells, a human GCT-derived seminoma cell line which was used as an in vitro model for PGCs, showed proliferation defects upon TRIM71 knockdown. Additionally, in vitro growth competition assays, as well as proliferation assays with wild type and CRISPR/Cas9-generated TRIM71 mutant NCCIT cells showed that TRIM71 also promotes proliferation in this malignant GCT-derived non-seminoma cell line. Importantly, the PGC-specific markers BLIMP1 and NANOS3 were consistently downregulated in Trim71 KO PGCLCs, TRIM71 knockdown TCam-2 cells and TRIM71 mutant NCCIT cells. These data collectively support a role for TRIM71 in PGC development. Last, via exome sequencing analysis, we identified several TRIM71 variants in a cohort of infertile men, including a loss-of-function variant in a patient with an SCO phenotype. Altogether, our work reveals for the first time an association of TRIM71 deficiency with human male infertility, and uncovers further developmental roles for TRIM71 in the germline during mouse embryogenesis.
Collapse
Affiliation(s)
| | - Jana Emich
- Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - Yasmine Port
- Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Sibylle Mitschka
- Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Marius Wöste
- Institute of Medical Informatics, University of Münster, Münster, Germany
| | - Simon Schneider
- Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - Daniela Fietz
- Institute for Veterinary Anatomy, Histology and Embryology, Justus Liebig University Gießen, Gießen, Germany
- Hessian Centre of Reproductive Medicine (HZRM), Justus Liebig University Gießen, Gießen, Germany
| | - Manon S. Oud
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Sara Di Persio
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, University Hospital Münster, Münster, Germany
| | - Nina Neuhaus
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, University Hospital Münster, Münster, Germany
| | - Sabine Kliesch
- Centre of Reproductive Medicine and Andrology, Department of Clinical and Surgical Andrology, University Hospital Münster, Münster, Germany
| | - Michael Hölzel
- Institute of Experimental Oncology, University Hospital Bonn, Bonn, Germany
| | - Hubert Schorle
- Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - Corinna Friedrich
- Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - Frank Tüttelmann
- Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - Waldemar Kolanus
- Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| |
Collapse
|
17
|
Torres Fernández LA, Mitschka S, Ulas T, Weise S, Dahm K, Becker M, Händler K, Beyer M, Windhausen J, Schultze JL, Kolanus W. The stem cell-specific protein TRIM71 inhibits maturation and activity of the pro-differentiation miRNA let-7 via two independent molecular mechanisms. RNA (NEW YORK, N.Y.) 2021; 27:rna.078696.121. [PMID: 33975917 PMCID: PMC8208056 DOI: 10.1261/rna.078696.121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/29/2021] [Indexed: 05/05/2023]
Abstract
The stem cell-specific RNA-binding protein TRIM71/LIN-41 was the first identified target of the pro-differentiation and tumor suppressor miRNA let-7. TRIM71 has essential functions in embryonic development and a proposed oncogenic role in several cancer types, such as hepatocellular carcinoma. Here, we show that TRIM71 regulates let-7 expression and activity via two independent mechanisms. On the one hand, TRIM71 enhances pre-let-7 degradation through its direct interaction with LIN28 and TUT4, thereby inhibiting let-7 maturation and indirectly promoting the stabilization of let-7 targets. On the other hand, TRIM71 represses the activity of mature let-7 via its RNA-dependent interaction with the RNA-Induced Silencing Complex (RISC) effector protein AGO2. We found that TRIM71 directly binds and stabilizes let-7 targets, suggesting that let-7 activity inhibition occurs on active RISCs. MiRNA enrichment analysis of several transcriptomic datasets from mouse embryonic stem cells and human hepatocellular carcinoma cells suggests that these let-7 regulatory mechanisms shape transcriptomic changes during developmental and oncogenic processes. Altogether, our work reveals a novel role for TRIM71 as a miRNA repressor and sheds light on a dual mechanism of let-7 regulation.
Collapse
Affiliation(s)
| | | | - Thomas Ulas
- German Center for Neurodegenerative Diseases (DZNE) & Life and Medical Sciences Institute (LIMES), University of Bonn
| | - Stefan Weise
- Life and Medical Sciences Institute (LIMES), University of Bonn
| | - Kilian Dahm
- Life and Medical Sciences Institute (LIMES), University of Bonn
| | - Matthias Becker
- German Center for Neurodegenerative Diseases (DZNE), University of Bonn
| | - Kristian Händler
- German Center for Neurodegenerative Diseases (DZNE), University of Bonn
| | - Marc Beyer
- Life and Medical Sciences Institute (LIMES)
| | | | - Joachim L Schultze
- German Center for Neurodegenerative Diseases (DZNE) & Life and Medical Sciences Institute (LIMES), University of Bonn
| | | |
Collapse
|
18
|
Connacher RP, Goldstrohm AC. Molecular and biological functions of TRIM-NHL RNA-binding proteins. WILEY INTERDISCIPLINARY REVIEWS. RNA 2021; 12:e1620. [PMID: 32738036 PMCID: PMC7855385 DOI: 10.1002/wrna.1620] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 01/02/2023]
Abstract
The TRIM-NHL family of proteins shares a conserved domain architecture and play crucial roles in stem cell biology, fertility, and development. This review synthesizes new insights that have revolutionized our understanding of the molecular and biological functions of TRIM-NHL proteins. Multiple TRIM-NHLs have been shown to bind specific RNA sequences and structures. X-ray crystal structures of TRIM-NHL proteins in complex with RNA ligands reveal versatile modes of RNA recognition by the NHL domain. Functional and genetic analyses show that TRIM-NHL RNA-binding proteins negatively regulate the protein expression from the target mRNAs that they bind. This repressive activity plays a crucial role in controlling stem cell fate in the developing brain and differentiating germline. To highlight these paradigms, we focus on several of the most-extensively studied TRIM-NHL proteins, specifically Drosophila and vertebrate TRIM71, among others. Brat is essential for development and regulates key target mRNAs to control differentiation of germline and neural stem cells. TRIM71 is also required for development and promotes stem cell proliferation while antagonizing differentiation. Moreover, TRIM71 can be utilized to help reprogram fibroblasts into induced pluripotent stem cells. Recently discovered mutations in TRIM71 cause the neurodevelopmental disease congenital hydrocephalus and emphasize the importance of its RNA-binding function in brain development. Further relevance of TRIM71 to disease pathogenesis comes from evidence linking it to several types of cancer, including liver and testicular cancer. Collectively, these advances demonstrate a primary role for TRIM-NHL proteins in the post-transcriptional regulation of gene expression in crucial biological processes. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications Translation > Translation Regulation RNA Turnover and Surveillance > Regulation of RNA Stability.
Collapse
Affiliation(s)
- Robert P. Connacher
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA 55455
| | - Aaron C. Goldstrohm
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA 55455
| |
Collapse
|
19
|
Liu Q, Chen X, Novak MK, Zhang S, Hu W. Repressing Ago2 mRNA translation by Trim71 maintains pluripotency through inhibiting let-7 microRNAs. eLife 2021; 10:66288. [PMID: 33599613 PMCID: PMC7906602 DOI: 10.7554/elife.66288] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 02/12/2021] [Indexed: 12/19/2022] Open
Abstract
The regulation of stem cell fate is poorly understood. Genetic studies in Caenorhabditis elegans lead to the hypothesis that a conserved cytoplasmic double-negative feedback loop consisting of the RNA-binding protein Trim71 and the let-7 microRNA controls the pluripotency and differentiation of stem cells. Although let-7-microRNA-mediated inhibition of Trim71 promotes differentiation, whether and how Trim71 regulates pluripotency and inhibits the let-7 microRNA are still unknown. Here, we show that Trim71 represses Ago2 mRNA translation in mouse embryonic stem cells. Blocking this repression leads to a specific post-transcriptional increase of mature let-7 microRNAs, resulting in let-7-dependent stemness defects and accelerated differentiation in the stem cells. These results not only support the Trim71-let-7-microRNA bi-stable switch model in controlling stem cell fate, but also reveal that repressing the conserved pro-differentiation let-7 microRNAs at the mature microRNA level by Ago2 availability is critical to maintaining pluripotency.
Collapse
Affiliation(s)
- Qiuying Liu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, United States
| | - Xiaoli Chen
- Department of Computer Science, University of Central Florida, Orlando, United States
| | - Mariah K Novak
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, United States
| | - Shaojie Zhang
- Department of Computer Science, University of Central Florida, Orlando, United States
| | - Wenqian Hu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, United States
| |
Collapse
|
20
|
Foster DJ, Chang HM, Haswell JR, Gregory RI, Slack FJ. TRIM71 binds to IMP1 and is capable of positive and negative regulation of target RNAs. Cell Cycle 2020; 19:2314-2326. [PMID: 32816599 DOI: 10.1080/15384101.2020.1804232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
TRIM71 is an important RNA-binding protein in development and disease, yet its direct targets have not been investigated globally. Here we describe a number of disease and developmentally-relevant TRIM71 RNA targets such as the MBNL family, LIN28B, MDM2, and TCF7L2. We describe a new role for TRIM71 as capable of positive or negative RNA regulation depending on the RNA target. We found that TRIM71 co-precipitated with IMP1 which could explain its multiple mechanisms of RNA regulation, as IMP1 is typically thought to stabilize RNAs. Deletion of the NHL domain of TRIM71 impacted its ability to bind to RNA and RNAs bound by congenital hydrocephalus-associated point mutations in the RNA-binding NHL domain of TRIM71 clustered closely with RNAs bound by the NHL deletion mutant. Our work expands the possible mechanisms by which TRIM71 may regulate RNAs and elucidates further potential RNA targets.
Collapse
Affiliation(s)
- Daniel J Foster
- HMS Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, MA, USA
| | - Hao-Ming Chang
- Stem Cell Program, Boston Children's Hospital, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Harvard Stem Cell Institute , Boston, MA, USA
| | - Jeffrey R Haswell
- HMS Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, MA, USA
| | - Richard I Gregory
- Stem Cell Program, Boston Children's Hospital, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Harvard Stem Cell Institute , Boston, MA, USA.,Department of Pediatrics, HMS Initiative for RNA Medicine, Harvard Medical School , Boston, MA, USA
| | - Frank J Slack
- HMS Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, MA, USA
| |
Collapse
|
21
|
Torres-Fernández LA, Jux B, Bille M, Port Y, Schneider K, Geyer M, Mayer G, Kolanus W. The mRNA repressor TRIM71 cooperates with Nonsense-Mediated Decay factors to destabilize the mRNA of CDKN1A/p21. Nucleic Acids Res 2020; 47:11861-11879. [PMID: 31732746 PMCID: PMC7145526 DOI: 10.1093/nar/gkz1057] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 10/22/2019] [Accepted: 11/10/2019] [Indexed: 12/30/2022] Open
Abstract
Nonsense-mediated decay (NMD) plays a fundamental role in the degradation of premature termination codon (PTC)-containing transcripts, but also regulates the expression of functional transcripts lacking PTCs, although such 'non-canonical' functions remain ill-defined and require the identification of factors targeting specific mRNAs to the NMD machinery. Our work identifies the stem cell-specific mRNA repressor protein TRIM71 as one of these factors. TRIM71 plays an essential role in embryonic development and is linked to carcinogenesis. For instance, TRIM71 has been correlated with advanced stages and poor prognosis in hepatocellular carcinoma. Our data shows that TRIM71 represses the mRNA of the cell cycle inhibitor and tumor suppressor CDKN1A/p21 and promotes the proliferation of HepG2 tumor cells. CDKN1A specific recognition involves the direct interaction of TRIM71 NHL domain with a structural RNA stem-loop motif within the CDKN1A 3'UTR. Importantly, CDKN1A repression occurs independently of miRNA-mediated silencing. Instead, the NMD factors SMG1, UPF1 and SMG7 assist TRIM71-mediated degradation of CDKN1A mRNA, among other targets. Our data sheds light on TRIM71-mediated target recognition and repression mechanisms and uncovers a role for this stem cell-specific factor and oncogene in non-canonical NMD, revealing the existence of a novel mRNA surveillance mechanism which we have termed the TRIM71/NMD axis.
Collapse
Affiliation(s)
- Lucia A Torres-Fernández
- Molecular Immunology and Cell Biology, Life & Medical Sciences Institute (LIMES), University of Bonn, 53115 Bonn, Germany
| | - Bettina Jux
- Molecular Immunology and Cell Biology, Life & Medical Sciences Institute (LIMES), University of Bonn, 53115 Bonn, Germany
| | - Maximilian Bille
- Molecular Immunology and Cell Biology, Life & Medical Sciences Institute (LIMES), University of Bonn, 53115 Bonn, Germany
| | - Yasmine Port
- Molecular Immunology and Cell Biology, Life & Medical Sciences Institute (LIMES), University of Bonn, 53115 Bonn, Germany
| | - Karin Schneider
- Molecular Immunology and Cell Biology, Life & Medical Sciences Institute (LIMES), University of Bonn, 53115 Bonn, Germany
| | - Matthias Geyer
- Institute of Structural Biology, University Clinics Bonn, University of Bonn, 53127 Bonn, Germany
| | - Günter Mayer
- Center of Aptamer Research & Development; Chemical Biology & Chemical Genetics, Life & Medical Sciences Institute (LIMES). University of Bonn, 53121 Bonn, Germany
| | - Waldemar Kolanus
- Molecular Immunology and Cell Biology, Life & Medical Sciences Institute (LIMES), University of Bonn, 53115 Bonn, Germany
| |
Collapse
|
22
|
Williams FP, Haubrich K, Perez-Borrajero C, Hennig J. Emerging RNA-binding roles in the TRIM family of ubiquitin ligases. Biol Chem 2020; 400:1443-1464. [PMID: 31120853 DOI: 10.1515/hsz-2019-0158] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/11/2019] [Indexed: 12/14/2022]
Abstract
TRIM proteins constitute a large, diverse and ancient protein family which play a key role in processes including cellular differentiation, autophagy, apoptosis, DNA repair, and tumour suppression. Mostly known and studied through the lens of their ubiquitination activity as E3 ligases, it has recently emerged that many of these proteins are involved in direct RNA binding through their NHL or PRY/SPRY domains. We summarise the current knowledge concerning the mechanism of RNA binding by TRIM proteins and its biological role. We discuss how RNA-binding relates to their previously described functions such as E3 ubiquitin ligase activity, and we will consider the potential role of enrichment in membrane-less organelles.
Collapse
Affiliation(s)
- Felix Preston Williams
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Collaboration for Joint PhD Degree between EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Kevin Haubrich
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Collaboration for Joint PhD Degree between EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Cecilia Perez-Borrajero
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Janosch Hennig
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany, e-mail:
| |
Collapse
|
23
|
Nenasheva VV, Tarantul VZ. Many Faces of TRIM Proteins on the Road from Pluripotency to Neurogenesis. Stem Cells Dev 2019; 29:1-14. [PMID: 31686585 DOI: 10.1089/scd.2019.0152] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Tripartite motif (TRIM) proteins participate in numerous biological processes. They are the key players in immune system and are involved in the oncogenesis. Moreover, TRIMs are the highly conserved regulators of developmental pathways in both vertebrates and invertebrates. In particular, numerous data point to the participation of TRIMs in the determination of stem cell fate, as well as in the neurogenesis. TRIMs apply various mechanisms to perform their functions. Their common feature is the ability to ubiquitinate proteins mediated by the Really Interesting New Gene (RING) domain. Different C-terminal domains of TRIMs are involved in DNA and RNA binding, protein/protein interactions, and chromatin-mediated transcriptional regulation. Mutations and alterations of TRIM expression cause significant disturbances in the stem cells' self-renewal and neurogenesis, which result in the various pathologies of the nervous system (neurodegeneration, neuroinflammation, and malignant transformation). This review discusses the diverse molecular mechanisms of participation of TRIMs in stem cell maintenance and self-renewal as well as in neural differentiation processes and neuropathology.
Collapse
Affiliation(s)
- Valentina V Nenasheva
- Department of Viral and Cellular Molecular Genetics, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Vyacheslav Z Tarantul
- Department of Viral and Cellular Molecular Genetics, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
24
|
Welte T, Tuck AC, Papasaikas P, Carl SH, Flemr M, Knuckles P, Rankova A, Bühler M, Großhans H. The RNA hairpin binder TRIM71 modulates alternative splicing by repressing MBNL1. Genes Dev 2019; 33:1221-1235. [PMID: 31371437 PMCID: PMC6719626 DOI: 10.1101/gad.328492.119] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 06/19/2019] [Indexed: 01/19/2023]
Abstract
In this study, Welte et al. investigated the dual roles of mammalian TRIM71, a phylogenetically conserved regulator of development, in the control of stem cell fate. They demonstrate that TRIM71 shapes the transcriptome of mESCs predominantly through its RNA-binding activity and identify a set of primary targets consistently regulated in various human and mouse cell lines, including MBNL1/Muscleblind. TRIM71/LIN-41, a phylogenetically conserved regulator of development, controls stem cell fates. Mammalian TRIM71 exhibits both RNA-binding and protein ubiquitylation activities, but the functional contribution of either activity and relevant primary targets remain poorly understood. Here, we demonstrate that TRIM71 shapes the transcriptome of mouse embryonic stem cells (mESCs) predominantly through its RNA-binding activity. We reveal that TRIM71 binds targets through 3′ untranslated region (UTR) hairpin motifs and that it acts predominantly by target degradation. TRIM71 mutations implicated in etiogenesis of human congenital hydrocephalus impair target silencing. We identify a set of primary targets consistently regulated in various human and mouse cell lines, including MBNL1 (Muscleblind-like protein 1). MBNL1 promotes cell differentiation through regulation of alternative splicing, and we demonstrate that TRIM71 promotes embryonic splicing patterns through MBNL1 repression. Hence, repression of MBNL1-dependent alternative splicing may contribute to TRIM71's function in regulating stem cell fates.
Collapse
Affiliation(s)
- Thomas Welte
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Alex C Tuck
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Panagiotis Papasaikas
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland.,Swiss Institute of Bioinformatics, 4058 Basel, Switzerland.,These authors contributed equally to this work
| | - Sarah H Carl
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland.,Swiss Institute of Bioinformatics, 4058 Basel, Switzerland.,These authors contributed equally to this work
| | - Matyas Flemr
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Philip Knuckles
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Aneliya Rankova
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland.,University of Basel, 4056 Basel, Switzerland
| | - Marc Bühler
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland.,University of Basel, 4056 Basel, Switzerland
| | - Helge Großhans
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland.,University of Basel, 4056 Basel, Switzerland
| |
Collapse
|
25
|
Li YP, Duan FF, Zhao YT, Gu KL, Liao LQ, Su HB, Hao J, Zhang K, Yang N, Wang Y. A TRIM71 binding long noncoding RNA Trincr1 represses FGF/ERK signaling in embryonic stem cells. Nat Commun 2019; 10:1368. [PMID: 30911006 PMCID: PMC6433952 DOI: 10.1038/s41467-019-08911-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/11/2019] [Indexed: 12/27/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) have emerged as important components of gene regulatory network in embryonic stem cells (ESCs). However, the function and molecular mechanism of lncRNAs are still largely unknown. Here we identifies Trincr1 (TRIM71 interacting long noncoding RNA 1) lncRNA that regulates the FGF/ERK signaling and self-renewal of ESCs. Trincr1 is exported by THOC complex to cytoplasm where it binds and represses TRIM71, leading to the downregulation of SHCBP1 protein. Knocking out Trincr1 leads to the upregulation of phosphorylated ERK and ERK pathway target genes and the decrease of ESC self-renewal, while knocking down Trim71 completely rescues the defects of Trincr1 knockout. Furthermore, ectopic expression of Trincr1 represses FGF/ERK signaling and the self-renewal of neural progenitor cells (NPCs). Together, this study highlights lncRNA as an important player in cell signaling network to coordinate cell fate specification. FGF signaling through ERK is known to promote the differentiation of embryonic stem cells (ES cells). Here, the authors demonstrate that the lncRNA Trincr1 binds and represses TRIM71 in ES cells, leading to downregulation of SHCBP1 protein, the reduction of FGF/ERK signaling and the promotion of self-renewal.
Collapse
Affiliation(s)
- Ya-Pu Li
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, 100871, Beijing, China
| | - Fei-Fei Duan
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, 100871, Beijing, China
| | - Yu-Ting Zhao
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, 100871, Beijing, China
| | - Kai-Li Gu
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, 100871, Beijing, China
| | - Le-Qi Liao
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, 100871, Beijing, China
| | - Huai-Bin Su
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, 100871, Beijing, China
| | - Jing Hao
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, 100871, Beijing, China
| | - Kun Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, 300353, Tianjin, China
| | - Na Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, 300353, Tianjin, China
| | - Yangming Wang
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, 100871, Beijing, China.
| |
Collapse
|
26
|
Jux B, Gosejacob D, Tolksdorf F, Mandel C, Rieck M, Namislo A, Pfeifer A, Kolanus W. Cytohesin-3 is required for full insulin receptor signaling and controls body weight via lipid excretion. Sci Rep 2019; 9:3442. [PMID: 30837656 PMCID: PMC6401384 DOI: 10.1038/s41598-019-40231-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 02/12/2019] [Indexed: 01/14/2023] Open
Abstract
Insulin plays a central role in regulating metabolic homeostasis and guanine-nucleotide exchange factors of the cytohesin family have been suggested to be involved in insulin signal transduction. The Drosophila homolog of cytohesin-3, steppke, has been shown to be essential for insulin signaling during larval development. However, genetic evidence for the functional importance of cytohesin-3 in mammals is missing. We therefore analyzed the consequences of genetic cytohesin-3-deficiency on insulin signaling and function in young and aged mice, using normal chow or high-fat diet (HFD). Insulin-receptor dependent signaling events are significantly reduced in liver and adipose tissue of young cytohesin-3-deficient mice after insulin-injection, although blood glucose levels and other metabolic parameters remain normal in these animals. Interestingly, however, cytohesin-3-deficient mice showed a reduced age- and HFD-induced weight gain with a significant reduction of body fat compared to wild-type littermates. Furthermore, cytohesin-3-deficient mice on HFD displayed no alterations in energy expenditure, but had an increased lipid excretion instead, as well as a reduced expression of genes essential for bile acid synthesis. Our findings show for the first time that an intact cyth3 locus is required for full insulin signaling in mammals and might constitute a novel therapeutic target for weight reduction.
Collapse
Affiliation(s)
- Bettina Jux
- Department of Molecular Immune and Cell Biology, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Dominic Gosejacob
- Institute of Pharmacology and Toxicology, University of Bonn, Bonn, Germany
| | - Felix Tolksdorf
- Department of Molecular Immune and Cell Biology, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Christa Mandel
- Department of Molecular Immune and Cell Biology, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Michael Rieck
- Department of Molecular Immune and Cell Biology, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Angrit Namislo
- Department of Molecular Immune and Cell Biology, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Alexander Pfeifer
- Institute of Pharmacology and Toxicology, University of Bonn, Bonn, Germany
| | - Waldemar Kolanus
- Department of Molecular Immune and Cell Biology, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany.
| |
Collapse
|
27
|
Spike CA, Huelgas-Morales G, Tsukamoto T, Greenstein D. Multiple Mechanisms Inactivate the LIN-41 RNA-Binding Protein To Ensure a Robust Oocyte-to-Embryo Transition in Caenorhabditis elegans. Genetics 2018; 210:1011-1037. [PMID: 30206186 PMCID: PMC6218228 DOI: 10.1534/genetics.118.301421] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 09/10/2018] [Indexed: 12/23/2022] Open
Abstract
In the nematode Caenorhabditis elegans, the conserved LIN-41 RNA-binding protein is a translational repressor that coordinately controls oocyte growth and meiotic maturation. LIN-41 exerts these effects, at least in part, by preventing the premature activation of the cyclin-dependent kinase CDK-1 Here we investigate the mechanism by which LIN-41 is rapidly eliminated upon the onset of meiotic maturation. Elimination of LIN-41 requires the activities of CDK-1 and multiple SCF (Skp1, Cul1, and F-box protein)-type E3 ubiquitin ligase subunits, including the conserved substrate adaptor protein SEL-10/Fbw7/Cdc4, suggesting that LIN-41 is a target of ubiquitin-mediated protein degradation. Within the LIN-41 protein, two nonoverlapping regions, Deg-A and Deg-B, are individually necessary for LIN-41 degradation; both contain several potential phosphodegron sequences, and at least one of these sequences is required for LIN-41 degradation. Finally, Deg-A and Deg-B are sufficient, in combination, to mediate SEL-10-dependent degradation when transplanted into a different oocyte protein. Although LIN-41 is a potent inhibitor of protein translation and M phase entry, the failure to eliminate LIN-41 from early embryos does not result in the continued translational repression of LIN-41 oocyte messenger RNA targets. Based on these observations, we propose a model for the elimination of LIN-41 by the SEL-10 E3 ubiquitin ligase and suggest that LIN-41 is inactivated before it is degraded. Furthermore, we provide evidence that another RNA-binding protein, the GLD-1 tumor suppressor, is regulated similarly. Redundant mechanisms to extinguish translational repression by RNA-binding proteins may both control and provide robustness to irreversible developmental transitions, including meiotic maturation and the oocyte-to-embryo transition.
Collapse
Affiliation(s)
- Caroline A Spike
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| | - Gabriela Huelgas-Morales
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| | - Tatsuya Tsukamoto
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| | - David Greenstein
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
28
|
Wang C, Xu J, Fu H, Zhang Y, Zhang X, Yang D, Zhu Z, Wei Z, Hu Z, Yan R, Cai Q. TRIM32 promotes cell proliferation and invasion by activating β-catenin signalling in gastric cancer. J Cell Mol Med 2018; 22:5020-5028. [PMID: 30079558 PMCID: PMC6156241 DOI: 10.1111/jcmm.13784] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 06/13/2018] [Accepted: 06/16/2018] [Indexed: 12/18/2022] Open
Abstract
The tripartite motif (TRIM) family comprises more than 70 members involved in the regulation of many cellular pathways. TRIM32 acts as an E3 ubiquitin ligase and has been reported to participate in many human cancers. Here, we aimed to investigate the role of TRIM32 in gastric cancer (GC) and the clinical implications. High expression of TRIM32 was observed in GC tissues and cell lines, and was significantly associated with poor prognosis. Knockdown TRIM32 expression remarkably suppressed the proliferation, migration, and invasion of GC cells in vitro and tumour growth in vivo, whereas overexpression of TRIM32 yielded the opposite results. Western blotting and quantitative reverse‐transcription PCR (qRT‐PCR) analyses revealed that up‐regulation of TRIM32 significantly enhanced expression of β‐catenin protein and of its downstream targets TCF1, cyclin D1, Axin2 and MMP7 mRNAs. Moreover, we found that the mechanism behind the TRIM32‐promoted GC progression was related to the β‐catenin signalling pathway. Collectively, these data suggest that TRIM32 promotes GC cell proliferation, migration, and invasion by activating the β‐catenin signalling pathway.
Collapse
Affiliation(s)
- Changming Wang
- General Surgery Department, Shanghai Baoshan Hospital of Integrated Traditional Chinese Medicine and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201999, China
| | - Jiapeng Xu
- Department of Gastrointestinal Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Hongbing Fu
- Department of Gastrointestinal Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yu Zhang
- Department of Gastrointestinal Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Xin Zhang
- Department of Gastrointestinal Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Dejun Yang
- Department of Gastrointestinal Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Zhenxin Zhu
- Department of Gastrointestinal Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Ziran Wei
- Department of Gastrointestinal Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Zunqi Hu
- Department of Gastrointestinal Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Ronglin Yan
- Department of Gastrointestinal Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Qingping Cai
- Department of Gastrointestinal Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
29
|
Furey CG, Choi J, Jin SC, Zeng X, Timberlake AT, Nelson-Williams C, Mansuri MS, Lu Q, Duran D, Panchagnula S, Allocco A, Karimy JK, Khanna A, Gaillard JR, DeSpenza T, Antwi P, Loring E, Butler WE, Smith ER, Warf BC, Strahle JM, Limbrick DD, Storm PB, Heuer G, Jackson EM, Iskandar BJ, Johnston JM, Tikhonova I, Castaldi C, López-Giráldez F, Bjornson RD, Knight JR, Bilguvar K, Mane S, Alper SL, Haider S, Guclu B, Bayri Y, Sahin Y, Apuzzo MLJ, Duncan CC, DiLuna ML, Günel M, Lifton RP, Kahle KT. De Novo Mutation in Genes Regulating Neural Stem Cell Fate in Human Congenital Hydrocephalus. Neuron 2018; 99:302-314.e4. [PMID: 29983323 PMCID: PMC7839075 DOI: 10.1016/j.neuron.2018.06.019] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/03/2018] [Accepted: 06/12/2018] [Indexed: 12/30/2022]
Abstract
Congenital hydrocephalus (CH), featuring markedly enlarged brain ventricles, is thought to arise from failed cerebrospinal fluid (CSF) homeostasis and is treated with lifelong surgical CSF shunting with substantial morbidity. CH pathogenesis is poorly understood. Exome sequencing of 125 CH trios and 52 additional probands identified three genes with significant burden of rare damaging de novo or transmitted mutations: TRIM71 (p = 2.15 × 10-7), SMARCC1 (p = 8.15 × 10-10), and PTCH1 (p = 1.06 × 10-6). Additionally, two de novo duplications were identified at the SHH locus, encoding the PTCH1 ligand (p = 1.2 × 10-4). Together, these probands account for ∼10% of studied cases. Strikingly, all four genes are required for neural tube development and regulate ventricular zone neural stem cell fate. These results implicate impaired neurogenesis (rather than active CSF accumulation) in the pathogenesis of a subset of CH patients, with potential diagnostic, prognostic, and therapeutic ramifications.
Collapse
Affiliation(s)
- Charuta Gavankar Furey
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Jungmin Choi
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Sheng Chih Jin
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Xue Zeng
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Andrew T Timberlake
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Carol Nelson-Williams
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - M Shahid Mansuri
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Qiongshi Lu
- Department of Biostatistics & Medical Informatics, University of Wisconsin, Madison, WI 53706, USA
| | - Daniel Duran
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Shreyas Panchagnula
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | - August Allocco
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Jason K Karimy
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Arjun Khanna
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Jonathan R Gaillard
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Tyrone DeSpenza
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Prince Antwi
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Erin Loring
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - William E Butler
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Edward R Smith
- Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Benjamin C Warf
- Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jennifer M Strahle
- Department of Neurological Surgery and Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - David D Limbrick
- Department of Neurological Surgery and Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Phillip B Storm
- Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Gregory Heuer
- Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Eric M Jackson
- Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Bermans J Iskandar
- Department of Neurological Surgery, University of Wisconsin Medical School, Madison, WI 53726, USA
| | - James M Johnston
- Department of Neurosurgery, University of Alabama School of Medicine, Birmingham, AL 35233, USA
| | - Irina Tikhonova
- Yale Center for Genome Analysis, Yale University, New Haven, CT 06510, USA
| | | | | | - Robert D Bjornson
- Yale Center for Genome Analysis, Yale University, New Haven, CT 06510, USA
| | - James R Knight
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA; Yale Center for Genome Analysis, Yale University, New Haven, CT 06510, USA
| | - Kaya Bilguvar
- Yale Center for Genome Analysis, Yale University, New Haven, CT 06510, USA
| | - Shrikant Mane
- Yale Center for Genome Analysis, Yale University, New Haven, CT 06510, USA
| | - Seth L Alper
- Division of Nephrology and Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Shozeb Haider
- Department of Pharmaceutical and Biological Chemistry, University College London School of Pharmacy, London WC1N 1AX, UK
| | - Bulent Guclu
- Kartal Dr. Lutfi Kirdar Research and Training Hospital, Istanbul 34860, Turkey
| | - Yasar Bayri
- Acibadem Mehmet Ali Aydinlar University, School of Medicine, Department of Neurosurgery, Division of Pediatric Neurosurgery, Istanbul 34752, Turkey
| | - Yener Sahin
- Acibadem Mehmet Ali Aydinlar University, School of Medicine, Department of Neurosurgery, Division of Pediatric Neurosurgery, Istanbul 34752, Turkey
| | - Michael L J Apuzzo
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Charles C Duncan
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Michael L DiLuna
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Murat Günel
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Richard P Lifton
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA; Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY 10065, USA
| | - Kristopher T Kahle
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
30
|
Larmonie NSD, Arentsen-Peters TCJM, Obulkasim A, Valerio D, Sonneveld E, Danen-van Oorschot AA, de Haas V, Reinhardt D, Zimmermann M, Trka J, Baruchel A, Pieters R, van den Heuvel-Eibrink MM, Zwaan CM, Fornerod M. MN1 overexpression is driven by loss of DNMT3B methylation activity in inv(16) pediatric AML. Oncogene 2018; 37:107-115. [PMID: 28892045 DOI: 10.1038/onc.2017.293] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 06/09/2017] [Accepted: 07/17/2017] [Indexed: 12/15/2022]
Abstract
In acute myeloid leukemia (AML), specific genomic aberrations induce aberrant methylation, thus directly influencing the transcriptional programing of leukemic cells. Therefore, therapies targeting epigenetic processes are advocated as a promising therapeutic tool for AML treatment. However, to develop new therapies, a comprehensive understanding of the mechanism(s) driving the epigenetic changes as a result of acquired genetic abnormalities is necessary. This understanding is still lacking. In this study, we performed genome-wide CpG-island methylation profiling on pediatric AML samples. Six differentially methylated genomic regions within two genes, discriminating inv(16)(p13;q22) from non-inv(16) pediatric AML samples, were identified. All six regions had a hypomethylated phenotype in inv(16) AML samples, and this was most prominent at the regions encompassing the meningioma (disrupted in balanced translocation) 1 (MN1) oncogene. MN1 expression primarily correlated with the methylation level of the 3' end of the MN1 exon-1 locus. Decitabine treatment of different cell lines showed that induced loss of methylation at the MN1 locus can result in an increase of MN1 expression, indicating that MN1 expression is coregulated by DNA methylation. To investigate this methylation-associated mechanism, we determined the expression of DNA methyltransferases in inv(16) AML. We found that DNMT3B expression was significantly lower in inv(16) samples. Furthermore, DNMT3B expression correlated negatively with MN1 expression in pediatric AML samples. Importantly, depletion of DNMT3B impaired remethylation efficiency of the MN1 exon-1 locus in AML cells after decitabine exposure. These findings identify DNMT3B as an important coregulator of MN1 methylation. Taken together, this study shows that the methylation level of the MN1 exon-1 locus regulates MN1 expression levels in inv(16) pediatric AML. This methylation level is dependent on DNMT3B, thus suggesting a role for DNMT3B in leukemogenesis in inv(16) AML, through MN1 methylation regulation.
Collapse
MESH Headings
- Adolescent
- Azacitidine/analogs & derivatives
- Azacitidine/pharmacology
- Carcinogenesis/genetics
- Cell Line, Tumor
- Child
- Child, Preschool
- CpG Islands/genetics
- DNA (Cytosine-5-)-Methyltransferases/metabolism
- DNA Methylation/drug effects
- DNA Methylation/genetics
- Decitabine
- Epigenesis, Genetic/genetics
- Exons/genetics
- Female
- Gene Expression Regulation, Leukemic
- Humans
- Infant
- Infant, Newborn
- Leukemia, Myeloid, Acute/blood
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Male
- Nucleic Acid Hybridization/methods
- Oligonucleotide Array Sequence Analysis/methods
- Oncogene Proteins, Fusion/genetics
- Promoter Regions, Genetic/genetics
- Trans-Activators
- Tumor Suppressor Proteins/genetics
- DNA Methyltransferase 3B
Collapse
Affiliation(s)
- N S D Larmonie
- Department of Pediatric Oncology/Hematology, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - T C J M Arentsen-Peters
- Department of Pediatric Oncology/Hematology, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - A Obulkasim
- Department of Pediatric Oncology/Hematology, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - D Valerio
- Department of Pediatric Oncology/Hematology, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - E Sonneveld
- Dutch Childhood Oncology Group (DCOG), The Hague, The Netherlands
| | - A A Danen-van Oorschot
- Department of Pediatric Oncology/Hematology, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - V de Haas
- Dutch Childhood Oncology Group (DCOG), The Hague, The Netherlands
| | - D Reinhardt
- Department of Pediatric Oncology/Hematology, Medical High School, Hannover, Germany
| | - M Zimmermann
- Department of Pediatric Oncology/Hematology, Medical High School, Hannover, Germany
| | - J Trka
- Pediatric Hematology/Oncology, 2nd Medical School, Charles University, Prague, Czech Republic
| | - A Baruchel
- CHU de Paris-Hôpital Robert Debré, Paris, France
| | - R Pieters
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | | | - C M Zwaan
- Department of Pediatric Oncology/Hematology, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - M Fornerod
- Department of Pediatric Oncology/Hematology, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
| |
Collapse
|
31
|
Ren H, Xu Y, Wang Q, Jiang J, Wudumuli, Hui L, Zhang Q, Zhang X, Wang E, Sun L, Qiu X. E3 ubiquitin ligase tripartite motif-containing 71 promotes the proliferation of non-small cell lung cancer through the inhibitor of kappaB-α/nuclear factor kappaB pathway. Oncotarget 2017. [PMID: 29541383 PMCID: PMC5834285 DOI: 10.18632/oncotarget.19075] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Tripartite motif-containing (TRIM) 71 belongs to the TRIM protein family. Many studies have shown that TRIM71 plays conserved roles in stem cell proliferation, differentiation, and embryonic development; however, the relationship between TRIM71 and tumorigenesis is not clear. In this study, we demonstrate that TRIM71 expression in non-small cell lung cancer (NSCLC) is associated with tumor size, lymph node metastasis, TNM stage, and poor prognosis. We found that TRIM71 was highly expressed in NSCLC cell lines compared with that in human normal bronchial epithelial cells. Moreover, by altering the expression of TRIM71 in selected cell lines, we found that TRIM71 promoted the proliferation of NSCLC cells through activation of the inhibitor of kappaB/nuclear factor kappaB pathway. These results suggested that TRIM71 plays a role in promoting the development of NSCLC.
Collapse
Affiliation(s)
- Hongjiu Ren
- Department of Pathology, College of Basic Medical Sciences and First Affiliated Hospital, China Medical University, Shenyang, China
| | - Yitong Xu
- Department of Pathology, College of Basic Medical Sciences and First Affiliated Hospital, China Medical University, Shenyang, China
| | - Qiongzi Wang
- Department of Pathology, College of Basic Medical Sciences and First Affiliated Hospital, China Medical University, Shenyang, China
| | - Jun Jiang
- Department of Pathology, College of Basic Medical Sciences and First Affiliated Hospital, China Medical University, Shenyang, China
| | - Wudumuli
- Department of Pathology, College of Basic Medical Sciences and First Affiliated Hospital, China Medical University, Shenyang, China
| | - Linping Hui
- Department of Pathology, College of Basic Medical Sciences and First Affiliated Hospital, China Medical University, Shenyang, China.,Fouth Affiliated Hospital, China Medical University, Shenyang, China
| | - Qingfu Zhang
- Department of Pathology, College of Basic Medical Sciences and First Affiliated Hospital, China Medical University, Shenyang, China
| | - Xiupeng Zhang
- Department of Pathology, College of Basic Medical Sciences and First Affiliated Hospital, China Medical University, Shenyang, China
| | - Enhua Wang
- Department of Pathology, College of Basic Medical Sciences and First Affiliated Hospital, China Medical University, Shenyang, China
| | - Limei Sun
- Department of Pathology, College of Basic Medical Sciences and First Affiliated Hospital, China Medical University, Shenyang, China
| | - Xueshan Qiu
- Department of Pathology, College of Basic Medical Sciences and First Affiliated Hospital, China Medical University, Shenyang, China
| |
Collapse
|
32
|
LIN-41 and OMA Ribonucleoprotein Complexes Mediate a Translational Repression-to-Activation Switch Controlling Oocyte Meiotic Maturation and the Oocyte-to-Embryo Transition in Caenorhabditis elegans. Genetics 2017; 206:2007-2039. [PMID: 28576864 PMCID: PMC5560804 DOI: 10.1534/genetics.117.203174] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 05/31/2017] [Indexed: 11/30/2022] Open
Abstract
An extended meiotic prophase is a hallmark of oogenesis. Hormonal signaling activates the CDK1/cyclin B kinase to promote oocyte meiotic maturation, which involves nuclear and cytoplasmic events. Nuclear maturation encompasses nuclear envelope breakdown, meiotic spindle assembly, and chromosome segregation. Cytoplasmic maturation involves major changes in oocyte protein translation and cytoplasmic organelles and is poorly understood. In the nematode Caenorhabditis elegans, sperm release the major sperm protein (MSP) hormone to promote oocyte growth and meiotic maturation. Large translational regulatory ribonucleoprotein (RNP) complexes containing the RNA-binding proteins OMA-1, OMA-2, and LIN-41 regulate meiotic maturation downstream of MSP signaling. To understand the control of translation during meiotic maturation, we purified LIN-41-containing RNPs and characterized their protein and RNA components. Protein constituents of LIN-41 RNPs include essential RNA-binding proteins, the GLD-2 cytoplasmic poly(A) polymerase, the CCR4-NOT deadenylase complex, and translation initiation factors. RNA sequencing defined messenger RNAs (mRNAs) associated with both LIN-41 and OMA-1, as well as sets of mRNAs associated with either LIN-41 or OMA-1. Genetic and genomic evidence suggests that GLD-2, which is a component of LIN-41 RNPs, stimulates the efficient translation of many LIN-41-associated transcripts. We analyzed the translational regulation of two transcripts specifically associated with LIN-41 which encode the RNA regulators SPN-4 and MEG-1. We found that LIN-41 represses translation of spn-4 and meg-1, whereas OMA-1 and OMA-2 promote their expression. Upon their synthesis, SPN-4 and MEG-1 assemble into LIN-41 RNPs prior to their functions in the embryo. This study defines a translational repression-to-activation switch as a key element of cytoplasmic maturation.
Collapse
|
33
|
Nguyen DTT, Richter D, Michel G, Mitschka S, Kolanus W, Cuevas E, Wulczyn FG. The ubiquitin ligase LIN41/TRIM71 targets p53 to antagonize cell death and differentiation pathways during stem cell differentiation. Cell Death Differ 2017; 24:1063-1078. [PMID: 28430184 PMCID: PMC5442473 DOI: 10.1038/cdd.2017.54] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 03/04/2017] [Accepted: 03/17/2017] [Indexed: 12/13/2022] Open
Abstract
Rapidity and specificity are characteristic features of proteolysis mediated by the ubiquitin-proteasome system. Therefore, the UPS is ideally suited for the remodeling of the embryonic stem cell proteome during the transition from pluripotent to differentiated states and its inverse, the generation of inducible pluripotent stem cells. The Trim-NHL family member LIN41 is among the first E3 ubiquitin ligases to be linked to stem cell pluripotency and reprogramming. Initially discovered in C. elegans as a downstream target of the let-7 miRNA, LIN41 is now recognized as a critical regulator of stem cell fates as well as the timing of neurogenesis. Despite being indispensable for embryonic development and neural tube closure in mice, the underlying mechanisms for LIN41 function in these processes are poorly understood. To better understand the specific contributions of the E3 ligase activity for the stem cell functions of LIN41, we characterized global changes in ubiquitin or ubiquitin-like modifications using Lin41-inducible mouse embryonic stem cells. The tumor suppressor protein p53 was among the five most strongly affected proteins in cells undergoing neural differentiation in response to LIN41 induction. We show that LIN41 interacts with p53, controls its abundance by ubiquitination and antagonizes p53-dependent pro-apoptotic and pro-differentiation responses. In vivo, the lack of LIN41 is associated with upregulation of Grhl3 and widespread caspase-3 activation, two downstream effectors of p53 with essential roles in neural tube closure. As Lin41-deficient mice display neural tube closure defects, we conclude that LIN41 is critical for the regulation of p53 functions in cell fate specification and survival during early brain development.
Collapse
Affiliation(s)
- Duong Thi Thuy Nguyen
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Institute of Cell Biology and Neurobiology, Charitéplatz 1, Berlin 10117, Germany
| | - Daniel Richter
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Institute of Cell Biology and Neurobiology, Charitéplatz 1, Berlin 10117, Germany
| | - Geert Michel
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Forschungseinrichtung für Experimentelle Medizin, Krahmerstraße 6-10, Berlin 12207, Germany
| | - Sibylle Mitschka
- University of Bonn, Life &Medical Sciences Institute (LIMES), Molecular Immunology and Cell Biology, Carl-Troll-Straße 31, Bonn 53115, Germany
| | - Waldemar Kolanus
- University of Bonn, Life &Medical Sciences Institute (LIMES), Molecular Immunology and Cell Biology, Carl-Troll-Straße 31, Bonn 53115, Germany
| | - Elisa Cuevas
- UCL Institute of Child Health, Stem Cells &Regenerative Medicine Section, 30 Guilford Street, London WC1N 1EH, Great Britain, UK
| | - F Gregory Wulczyn
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Institute of Cell Biology and Neurobiology, Charitéplatz 1, Berlin 10117, Germany
| |
Collapse
|
34
|
LIN41 Post-transcriptionally Silences mRNAs by Two Distinct and Position-Dependent Mechanisms. Mol Cell 2017; 65:476-489.e4. [DOI: 10.1016/j.molcel.2016.12.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 11/11/2016] [Accepted: 12/13/2016] [Indexed: 12/14/2022]
|
35
|
Nenasheva VV, Novosadova EV, Makarova IV, Lebedeva OS, Grefenshtein MA, Arsenyeva EL, Antonov SA, Grivennikov IA, Tarantul VZ. The Transcriptional Changes of trim Genes Associated with Parkinson’s Disease on a Model of Human Induced Pluripotent Stem Cells. Mol Neurobiol 2016; 54:7204-7211. [DOI: 10.1007/s12035-016-0230-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 10/16/2016] [Indexed: 12/31/2022]
|
36
|
Moris N, Pina C, Arias AM. Transition states and cell fate decisions in epigenetic landscapes. Nat Rev Genet 2016; 17:693-703. [PMID: 27616569 DOI: 10.1038/nrg.2016.98] [Citation(s) in RCA: 268] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Waddington's epigenetic landscape is an abstract metaphor frequently used to represent the relationship between gene activity and cell fates during development. Over the past few years, it has become a useful framework for interpreting results from single-cell transcriptomics experiments. It has led to the proposal that, during fate transitions, cells experience smooth, continuous progressions of global transcriptional activity, which can be captured by (pseudo)temporal dynamics. Here, focusing strictly on the fate decision events, we suggest an alternative view: that fate transitions occur in a discontinuous, stochastic manner whereby signals modulate the probability of the transition events.
Collapse
Affiliation(s)
- Naomi Moris
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Cristina Pina
- Department of Haematology, University of Cambridge, Cambridge CB2 0PT, UK
| | | |
Collapse
|
37
|
Mohanty V, Shah A, Allender E, Siddiqui MR, Monick S, Ichi S, Mania-Farnell B, G McLone D, Tomita T, Mayanil CS. Folate Receptor Alpha Upregulates Oct4, Sox2 and Klf4 and Downregulates miR-138 and miR-let-7 in Cranial Neural Crest Cells. Stem Cells 2016; 34:2721-2732. [PMID: 27300003 DOI: 10.1002/stem.2421] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 05/09/2016] [Accepted: 05/28/2016] [Indexed: 12/20/2022]
Abstract
Prenatal folic acid (FA) supplementation prevents neural tube defects. Folate receptor alpha (FRα) is critical for embryonic development, including neural crest (NC) development. Previously we showed that FRα translocates to the nucleus in response to FA, where it acts as a transcription factor. In this study, we examined if FA through interaction with FRα regulates stem cell characteristics of cranial neural crest cells (CNCCs)-critical for normal development. We hypothesized that FRα upregulates coding genes and simultaneously downregulates non-coding miRNA which targets coding genes in CNCCs. Quantitative RT-PCR and chromatin immunoprecipitation showed that FRα upregulates Oct4, Sox2, and Klf4 by binding to their cis-regulator elements-5' enhancer/promoters defined by H3K27Ac and p300 occupancy. FA via FRα downregulates miRNAs, miR-138 and miR-let-7, which target Oct4 and Trim71 (an Oct4 downstream effector), respectively. Co-immunoprecipitation data suggests that FRα interacts with the Drosha-DGCR8 complex to affect pre-miRNA processing. Transfecting anti-miR-138 or anti-miR-let-7 into non-proliferating neural crest cells (NCCs) derived from Splotch (Sp-/- ), restored their proliferation potential. In summary, these results suggest a novel pleiotropic role of FRα: (a) direct activation of Oct4, Sox2, and Klf4 genes; and (b) repression of biogenesis of miRNAs that target these genes or their effector molecules. Stem Cells 2016;34:2721-2732.
Collapse
Affiliation(s)
- Vineet Mohanty
- Developmental Biology Program, Stanley Manne Children's Research Institute, Division of Pediatric Neurosurgery, Ann and Robert H. Lurie Children's Hospital of Chicago, Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Amar Shah
- Developmental Biology Program, Stanley Manne Children's Research Institute, Division of Pediatric Neurosurgery, Ann and Robert H. Lurie Children's Hospital of Chicago, Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Elise Allender
- Developmental Biology Program, Stanley Manne Children's Research Institute, Division of Pediatric Neurosurgery, Ann and Robert H. Lurie Children's Hospital of Chicago, Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - M Rizwan Siddiqui
- Developmental Biology Program, Stanley Manne Children's Research Institute, Division of Pediatric Neurosurgery, Ann and Robert H. Lurie Children's Hospital of Chicago, Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Sarah Monick
- Developmental Biology Program, Stanley Manne Children's Research Institute, Division of Pediatric Neurosurgery, Ann and Robert H. Lurie Children's Hospital of Chicago, Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Shunsuke Ichi
- Department of Neurosurgery, Japanese Red Cross Medical Center, Shibuya-Ku, Tokyo, Japan
| | | | - David G McLone
- Developmental Biology Program, Stanley Manne Children's Research Institute, Division of Pediatric Neurosurgery, Ann and Robert H. Lurie Children's Hospital of Chicago, Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Tadanori Tomita
- Developmental Biology Program, Stanley Manne Children's Research Institute, Division of Pediatric Neurosurgery, Ann and Robert H. Lurie Children's Hospital of Chicago, Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Chandra Shekhar Mayanil
- Developmental Biology Program, Stanley Manne Children's Research Institute, Division of Pediatric Neurosurgery, Ann and Robert H. Lurie Children's Hospital of Chicago, Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
38
|
Abstract
During development, cells transition from a pluripotent to a differentiated state, generating all the different types of cells in the body. Development is generally considered an irreversible process, meaning that a differentiated cell is thought to be unable to return to the pluripotent state. However, it is now possible to reprogram mature cells to pluripotency. It is generally thought that reprogramming is accomplished by reversing the natural developmental differentiation process, suggesting that the two mechanisms are closely related. Therefore, a detailed study of cell reprogramming has the potential to shed light on unexplained developmental mechanisms and, conversely, a better understanding of developmental differentiation can help improve cell reprogramming. However, fundamental differences between reprogramming processes and multi-lineage specification during early embryonic development have also been uncovered. In addition, there are multiple routes by which differentiated cells can re-enter the pluripotent state. In this Review, we discuss the connections and disparities between differentiation and reprogramming, and assess the degree to which reprogramming can be considered as a simple reversal of development.
Collapse
Affiliation(s)
- Kazutoshi Takahashi
- Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
| | - Shinya Yamanaka
- Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
| |
Collapse
|