1
|
Ding L, Cui L, Wang Y, Dronsella B, Liu X, Luo H, Huang H, Su X, Bai Y, Zhang J, Tu T, Qin X, Wang Y, Wang Y, Yao B, Xue X, Guo G, Wang X. Fructose metabolism in Entner-Doudoroff pathway-deficient Cupriavidus necator H16 depends on the Calvin shunt. Microbiol Res 2025; 298:128222. [PMID: 40408994 DOI: 10.1016/j.micres.2025.128222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 05/10/2025] [Accepted: 05/13/2025] [Indexed: 05/25/2025]
Abstract
As a facultative chemolithoautotrophic bacterium, Cupriavidus necator H16 uses the Entner-Doudoroff (ED) pathway for heterotrophic growth on carbohydrates such as fructose and the Calvin cycle for lithoautotrophic carbon dioxide fixation. In a previous study, we found that an ED pathway-deficient C. necator strain can survive on fructose, but the underlying metabolic pathway remained unclear. This study aimed to elucidate the metabolic mechanism of fructose metabolism in this ED pathway-deficient C. necator strain. First, the metabolic characteristics of fructose catabolism in the deficient strain were examined. Then, the roles of glycolysis/gluconeogenesis, the Calvin shunt, and the non-oxidative pentose phosphate pathway (non-OxPPP) in the metabolism of fructose were identified through comparative transcriptomic analysis combined with 13C tracer experiments. Further growth experiments using knockout strains of key genes involved in these pathways confirmed that the non-OxPPP compensates for the blocked ED pathway to metabolize fructose and provide a precursor for the Calvin shunt, thereby driving subsequent carbon fluxes. Additionally, phosphoglycolate salvage pathways, particularly the malate cycle, are crucial for recycling glycolate-2-phosphate produced during RuBisCO-catalyzed oxidation. This study revealed a novel fructose metabolism mechanism in C. necator and highlighted its metabolic flexibility, thereby deepening our understanding of its carbon utilization strategies and providing a theoretical basis for further metabolic engineering research.
Collapse
Affiliation(s)
- Lijuan Ding
- College of Animal Science, Shanxi Agricultural University, Shanxi 030801, China
| | - Lin Cui
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuheng Wang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Beau Dronsella
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, Marburg 35043, Germany
| | - Xu Liu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huiying Luo
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huoqing Huang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaoyun Su
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yingguo Bai
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jie Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Tao Tu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xing Qin
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuan Wang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yaru Wang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bin Yao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xianli Xue
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Gang Guo
- College of Animal Science, Shanxi Agricultural University, Shanxi 030801, China.
| | - Xiaolu Wang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
2
|
Feng J, Li X, Teng X, Fan D, Yin J, Qiu Y, Yi Z, Chen L, Zhang HM, Rao C. Harnessing CO 2 fixation and reducing power recycling for enhanced polyhydroxyalkanoates industrial bioproduction. Metab Eng 2025; 91:204-216. [PMID: 40318752 DOI: 10.1016/j.ymben.2025.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/24/2025] [Accepted: 04/30/2025] [Indexed: 05/07/2025]
Abstract
Palm oil is an attractive feedstock for bioproduction due to its high carbon content and low cost. However, its metabolism generates excess reducing power, leading to redox imbalances and reduced metabolic efficiency in industrial fermentations. Through a model-driven approach integrating flux balance analysis, we activated the Calvin-Benson-Bassham (CBB) cycle in Cupriavidus necator to recycle surplus reducing power and restore metabolic balance in polyhydroxyalkanoate (PHA) bioproduction. Computational simulations predicted that constitutive activation of the CBB cycle enhanced CO2 fixation and accelerated biomass generation when utilizing palm oil as the carbon source. Model-guided optimization revealed that precise tuning of CBB activation strength was critical, as both insufficient and excessive activation led to metabolic inefficiencies. At the 2-liter bench-scale, CBB activation tuning resulted in biomass changes ranging from -18 % to 21 % and PHA yield changes ranging from -36 % to 25 %. Mechanistic studies demonstrated that CBB activation improves metabolic efficiency through reducing power recycling and carbon redistribution. In the 15 m3 industrial-scale fermentations, the engineered strain achieved a 20 % higher PHA yield. These results demonstrate that recycling surplus reducing power is a scalable and robust strategy for enhanced bioproduction efficiency.
Collapse
Affiliation(s)
| | - Xueshan Li
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism & Integrative Biology, Fudan University, Shanghai, China
| | - Xin Teng
- Bluepha Co. Ltd., Shanghai, China
| | | | - Jin Yin
- Bluepha Co. Ltd., Shanghai, China
| | | | | | - Li Chen
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism & Integrative Biology, Fudan University, Shanghai, China.
| | | | | |
Collapse
|
3
|
Donati S, Johnson CW. Optimizing Cupriavidus necator H16 as a host for aerobic C1 conversion. Curr Opin Biotechnol 2025; 93:103306. [PMID: 40279808 DOI: 10.1016/j.copbio.2025.103306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 03/11/2025] [Accepted: 04/07/2025] [Indexed: 04/29/2025]
Abstract
Biological systems capable of converting CO2 or CO2-derived, single-carbon (C1) compounds can be used to reduce or reverse carbon emissions while establishing a circular bioeconomy to provide sustainable sources of the fuels, foods, and materials humanity relies on. A robust bioeconomy will rely upon a variety of microorganisms capable of assimilating C1 compounds and converting them to valuable products at industrial scale. While anaerobic microbes are ideal hosts for production of short-chain acids and alcohols, microbes capable of aerobic respiration are well suited for biosynthesis of higher molecular weight products. One such organism is the gram-negative soil bacterium Cupriavidus necator, which has been utilized in commercial production of biopolymers for decades. More recently, its capability of robust, aerobic growth on CO2 has inspired research efforts that have advanced it toward becoming one of the leading bacterial hosts for C1-based biomanufacturing. This review highlights those efforts in the context of the characteristics that have historically made C. necator an excellent host for industrial bioconversion processes: its metabolic versatility, ability to grow rapidly to high cell densities, and genetic amenability.
Collapse
Affiliation(s)
- Stefano Donati
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Christopher W Johnson
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, United States.
| |
Collapse
|
4
|
Hill JD, Seo H, Papoutsakis ET. Acetogenic mixotrophy for carbon-neutral and carbon-negative production of chemicals. Curr Opin Biotechnol 2025; 93:103298. [PMID: 40157045 DOI: 10.1016/j.copbio.2025.103298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 03/04/2025] [Accepted: 03/05/2025] [Indexed: 04/01/2025]
Abstract
Microbial conversion of renewable carbon sources into valuable chemicals can significantly reduce our reliance on fossil resources and decrease the carbon footprint of chemical manufacturing. Of emerging interest is anaerobic, nonphotosynthetic mixotrophy (ANP mixotrophy) that simultaneously converts renewable carbohydrates and C1 gases (CO2 and CO) into value-added chemical products in carbon-neutral and even carbon-negative fermentations. Despite significant advances in ANP mixotrophy over the past decade, several challenges remain. We discuss key challenges for carbon-neutral/negative ANP fermentations, notably the necessity of supplying additional electrons for reduced metabolite production, the slow adoption of genetic tools, uncertainties about carbon catabolite repression, and gas transfer limitations.
Collapse
Affiliation(s)
- John D Hill
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA.
| | - Hyeongmin Seo
- Department of Chemical and Biochemical Engineering, University of Iowa, Iowa City, IA, USA.
| | | |
Collapse
|
5
|
Hu X, Fang X, Zhao Y, Shao W, Hou J, Li X, Liu J, Zhai M, Tian F, Yan Y, Lu Y. Gel Foam Loaded O 2-Consuming Microbial Community and the Stratification Structure in Preventing Coal Spontaneous Combustion. ACS APPLIED MATERIALS & INTERFACES 2025; 17:14085-14096. [PMID: 39993316 DOI: 10.1021/acsami.4c22558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Gel foam is vital to its applications but remains a challenge. Herein, microbial gel foam was developed for coal spontaneous combustion, which was a gel foam loaded O2-consuming microbial community. The microbial gel foam had the ability to consume O2 and produce CO2. The O2 consumption was 94.46%, and the percentage of CO2 reached 48.88% at 250 h. The relative abundance of Enterobacteriaceae and Candida was 93-98% and 73-77% in the upper gel foam and the bottom liquid of microbial gel foam at 240 h, respectively. Fungal in the O2-consuming microbial community has stronger environmental tolerance than the bacterial, which was more suitable for loading in gel foam. Although the gel foam would collapse and deform, some flagellated microorganisms in the gel foam sealed the pores caused by the collapse of the foam. The "inert gas-foam layer" was formed by microorganisms at the junction of the foam and bottom liquid, which was conducive to the oxygen isolation function of the gel foam. Our results could be helpful in understanding the spatial structure of microbial gel foam and developing microbial gel foam with strong O2 consumption.
Collapse
Affiliation(s)
- Xiangming Hu
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
- State Key Laboratory of Mine Lab Disaster Prevention and Control Co-found by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, China
- Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao 266590, China
| | - Xin Fang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
- State Key Laboratory of Mine Lab Disaster Prevention and Control Co-found by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, China
- Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao 266590, China
| | - Yanyun Zhao
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
- State Key Laboratory of Mine Lab Disaster Prevention and Control Co-found by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, China
- Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao 266590, China
| | - Wenqi Shao
- College of Mining Engineering and Geology, Xinjiang Institute of Engineering, Urumqi 830023, China
| | - Jiajia Hou
- China Energy Wuhai Energy Co., Ltd., Wuhai 016000, China
| | - Xiao Li
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
- State Key Laboratory of Mine Lab Disaster Prevention and Control Co-found by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, China
- Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao 266590, China
| | - Jindi Liu
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
- State Key Laboratory of Mine Lab Disaster Prevention and Control Co-found by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, China
- Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao 266590, China
| | - Mulan Zhai
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
- State Key Laboratory of Mine Lab Disaster Prevention and Control Co-found by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, China
- Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao 266590, China
| | - Fengzhen Tian
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
- State Key Laboratory of Mine Lab Disaster Prevention and Control Co-found by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, China
- Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao 266590, China
| | - Yuting Yan
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
- State Key Laboratory of Mine Lab Disaster Prevention and Control Co-found by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, China
- Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao 266590, China
| | - Yashu Lu
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
- State Key Laboratory of Mine Lab Disaster Prevention and Control Co-found by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, China
- Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao 266590, China
| |
Collapse
|
6
|
Wang Y, Tian Y, Xu D, Cheng S, Li WW, Song H. Recent advances in synthetic biology toolkits and metabolic engineering of Ralstonia eutropha H16 for production of value-added chemicals. Biotechnol Adv 2025; 79:108516. [PMID: 39793936 DOI: 10.1016/j.biotechadv.2025.108516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 01/03/2025] [Accepted: 01/03/2025] [Indexed: 01/13/2025]
Abstract
Ralstonia eutropha H16, a facultative chemolithoautotrophic Gram-negative bacterium, demonstrates remarkable metabolic flexibility by utilizing either diverse organic substrates or CO2 as the sole carbon source, with H2 serving as the electron donor under aerobic conditions. The capacity of carbon and energy metabolism of R. eutropha H16 enabled development of synthetic biology technologies and strategies to engineer its metabolism for biosynthesis of value-added chemicals. This review firstly outlines the development of synthetic biology tools tailored for R. eutropha H16, including construction of expression vectors, regulatory elements, and transformation techniques. The availability of comprehensive omics data (i.e., transcriptomic, proteomic, and metabolomic) combined with the fully annotated genome sequence provides a robust genetic framework for advanced metabolic engineering. These advancements facilitate efficient reprogramming metabolic network of R. eutropha. The potential of R. eutropha as a versatile microbial platform for industrial biotechnology is further underscored by its ability to utilize a wide range of carbon sources for the production of value-added chemicals through both autotrophic and heterotrophic pathways. The integration of state-of-the-art genetic and genomic engineering tools and strategies with high cell-density fermentation processes enables engineered R. eutropha as promising microbial cell factories for optimizing carbon fluxes and expanding the portfolio of bio-based products.
Collapse
Affiliation(s)
- Ye Wang
- State Key Laboratory of Synthetic Biology, and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yao Tian
- State Key Laboratory of Synthetic Biology, and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Dake Xu
- Shenyang National Laboratory for Materials Science, Northeastern University, 110819 Shenyang, China; Electrobiomaterials Institute, Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, 110819 Shenyang, China
| | - Shaoan Cheng
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou 310027, China
| | - Wen-Wei Li
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
| | - Hao Song
- State Key Laboratory of Synthetic Biology, and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; College of Life and Health Sciences, Northeastern University, Shenyang 110169, China.
| |
Collapse
|
7
|
Gu Y, Jiao J, Xu H, Chen Y, He X, Wu X, Wang J, Chen X, He H, Yan W. Intercropping improves the yield by increasing nutrient metabolism capacity and crucial microbial abundance in root of Camellia oleifera in purple soil. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109318. [PMID: 39608339 DOI: 10.1016/j.plaphy.2024.109318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/11/2024] [Accepted: 11/19/2024] [Indexed: 11/30/2024]
Abstract
Intercropping system influences the endophytic microbial abundance, hormone balance, nutrient metabolism and yield, but the molecular mechanism of yield advantage in Camellia oleifera intercropping with peanut is not clear. In this study, the C. oleifera monoculture (CK) and C. oleifera-peanut intercropping (CP) treatments in purple soil were conducted, and the physicochemical properties, gene expressions, signal pathways and crucial microbial abundances were investigated to reveal the molecular mechanism of the yield advantage of intercropped C. oleifera. The results showed that the intercropping system increased in contents of pigment, carbohydrate, available nitrogen and phosphorus in leaf and root, as well as the abundances of Burkholderia, Ralstonia, Delftia, Pseudoalteromonas and Caulobacter, enhanced the relative expression levels of CoSPS, CoGBE, CoGlgP, CoGBSS/GlgA genes to promote sugar metabolism, decreased the relative expression levels of CoASA, CoTSB, CoPAI, CoTDC and CoCYP71A13 genes for inhibiting IAA biosynthesis and signal transduction, as well as microbial diversity, Fusarium, Albifimbria and Coniosporium abundances in root, ultimately improved the fruit yield of C. oleifera. These findings indicate that intercropping system improves the fruit yield by enhancing the nutrient metabolism capability and crucial microbial abundances in root of C. oleifera in purple soil.
Collapse
Affiliation(s)
- Yuanzheng Gu
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, College of Life and Environmental Sciences, Central South University of Forestry & Technology, Changsha, 410004, Hunan, China; Hunan Provincial Key Laboratory of Forestry Biotechnology, College of Life and Environmental Sciences, Central South University of Forestry & Technology, Changsha, 410004, Hunan, China
| | - Jing Jiao
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, College of Life and Environmental Sciences, Central South University of Forestry & Technology, Changsha, 410004, Hunan, China; Hunan Provincial Key Laboratory of Forestry Biotechnology, College of Life and Environmental Sciences, Central South University of Forestry & Technology, Changsha, 410004, Hunan, China
| | - Haobo Xu
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, College of Life and Environmental Sciences, Central South University of Forestry & Technology, Changsha, 410004, Hunan, China; Hunan Lutou Forest Ecosystem National Orientation Observation and Research Station, Yueyang, 414000, Hunan, China
| | - Yazhen Chen
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, College of Life and Environmental Sciences, Central South University of Forestry & Technology, Changsha, 410004, Hunan, China; Hunan Lutou Forest Ecosystem National Orientation Observation and Research Station, Yueyang, 414000, Hunan, China
| | - Xinxing He
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, College of Life and Environmental Sciences, Central South University of Forestry & Technology, Changsha, 410004, Hunan, China; Hunan Lutou Forest Ecosystem National Orientation Observation and Research Station, Yueyang, 414000, Hunan, China
| | - Xiaohong Wu
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, College of Life and Environmental Sciences, Central South University of Forestry & Technology, Changsha, 410004, Hunan, China; Hunan Lutou Forest Ecosystem National Orientation Observation and Research Station, Yueyang, 414000, Hunan, China
| | - Jun Wang
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, College of Life and Environmental Sciences, Central South University of Forestry & Technology, Changsha, 410004, Hunan, China; Hunan Lutou Forest Ecosystem National Orientation Observation and Research Station, Yueyang, 414000, Hunan, China
| | - Xiaoyong Chen
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, College of Life and Environmental Sciences, Central South University of Forestry & Technology, Changsha, 410004, Hunan, China; College of Arts and Sciences, Governors State University, University Park, IL, 60484, USA
| | - Hanjie He
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, College of Life and Environmental Sciences, Central South University of Forestry & Technology, Changsha, 410004, Hunan, China; Hunan Provincial Key Laboratory of Forestry Biotechnology, College of Life and Environmental Sciences, Central South University of Forestry & Technology, Changsha, 410004, Hunan, China; Hunan Lutou Forest Ecosystem National Orientation Observation and Research Station, Yueyang, 414000, Hunan, China.
| | - Wende Yan
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, College of Life and Environmental Sciences, Central South University of Forestry & Technology, Changsha, 410004, Hunan, China; Hunan Lutou Forest Ecosystem National Orientation Observation and Research Station, Yueyang, 414000, Hunan, China.
| |
Collapse
|
8
|
Jahn M, Crang N, Gynnå AH, Kabova D, Frielingsdorf S, Lenz O, Charpentier E, Hudson EP. The energy metabolism of Cupriavidus necator in different trophic conditions. Appl Environ Microbiol 2024; 90:e0074824. [PMID: 39320125 PMCID: PMC11540253 DOI: 10.1128/aem.00748-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/29/2024] [Indexed: 09/26/2024] Open
Abstract
The "knallgas" bacterium Cupriavidus necator is attracting interest due to its extremely versatile metabolism. C. necator can use hydrogen or formic acid as an energy source, fixes CO2 via the Calvin-Benson-Bassham (CBB) cycle, and grows on organic acids and sugars. Its tripartite genome is notable for its size and duplications of key genes (CBB cycle, hydrogenases, and nitrate reductases). Little is known about which of these isoenzymes and their cofactors are actually utilized for growth on different substrates. Here, we investigated the energy metabolism of C. necator H16 by growing a barcoded transposon knockout library on succinate, fructose, hydrogen (H2/CO2), and formic acid. The fitness contribution of each gene was determined from enrichment or depletion of the corresponding mutants. Fitness analysis revealed that (i) some, but not all, molybdenum cofactor biosynthesis genes were essential for growth on formate and nitrate respiration. (ii) Soluble formate dehydrogenase (FDH) was the dominant enzyme for formate oxidation, not membrane-bound FDH. (iii) For hydrogenases, both soluble and membrane-bound enzymes were utilized for lithoautotrophic growth. (iv) Of the six terminal respiratory complexes in C. necator H16, only some are utilized, and utilization depends on the energy source. (v) Deletion of hydrogenase-related genes boosted heterotrophic growth, and we show that the relief from associated protein cost is responsible for this phenomenon. This study evaluates the contribution of each of C. necator's genes to fitness in biotechnologically relevant growth regimes. Our results illustrate the genomic redundancy of this generalist bacterium and inspire future engineering strategies.IMPORTANCEThe soil bacterium Cupriavidus necator can grow on gas mixtures of CO2, H2, and O2. It also consumes formic acid as carbon and energy source and various other substrates. This metabolic flexibility comes at a price, for example, a comparatively large genome (6.6 Mb) and a significant background expression of lowly utilized genes. In this study, we mutated every non-essential gene in C. necator using barcoded transposons in order to determine their effect on fitness. We grew the mutant library in various trophic conditions including hydrogen and formate as the sole energy source. Fitness analysis revealed which of the various energy-generating iso-enzymes are actually utilized in which condition. For example, only a few of the six terminal respiratory complexes are used, and utilization depends on the substrate. We also show that the protein cost for the various lowly utilized enzymes represents a significant growth disadvantage in specific conditions, offering a route to rational engineering of the genome. All fitness data are available in an interactive app at https://m-jahn.shinyapps.io/ShinyLib/.
Collapse
Affiliation(s)
- Michael Jahn
- School of Engineering
Sciences in Chemistry, Biotechnology and Health, Science for Life
Laboratory, KTH—Royal Institute of
Technology, Stockholm,
Sweden
- Max Planck Unit for
the Science of Pathogens,
Berlin, Germany
| | - Nick Crang
- School of Engineering
Sciences in Chemistry, Biotechnology and Health, Science for Life
Laboratory, KTH—Royal Institute of
Technology, Stockholm,
Sweden
| | - Arvid H. Gynnå
- School of Engineering
Sciences in Chemistry, Biotechnology and Health, Science for Life
Laboratory, KTH—Royal Institute of
Technology, Stockholm,
Sweden
| | - Deria Kabova
- Department of
Chemistry, Technical University Berlin,
Berlin, Germany
| | | | - Oliver Lenz
- Department of
Chemistry, Technical University Berlin,
Berlin, Germany
| | - Emmanuelle Charpentier
- Max Planck Unit for
the Science of Pathogens,
Berlin, Germany
- Humboldt-Universität
zu Berlin, Institute for Biology,
Berlin, Germany
| | - Elton P. Hudson
- School of Engineering
Sciences in Chemistry, Biotechnology and Health, Science for Life
Laboratory, KTH—Royal Institute of
Technology, Stockholm,
Sweden
| |
Collapse
|
9
|
Mitchell JH, Freedman AH, Delaney JA, Girguis PR. Co-expression analysis reveals distinct alliances around two carbon fixation pathways in hydrothermal vent symbionts. Nat Microbiol 2024; 9:1526-1539. [PMID: 38839975 PMCID: PMC11636981 DOI: 10.1038/s41564-024-01704-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 04/19/2024] [Indexed: 06/07/2024]
Abstract
Most autotrophic organisms possess a single carbon fixation pathway. The chemoautotrophic symbionts of the hydrothermal vent tubeworm Riftia pachyptila, however, possess two functional pathways: the Calvin-Benson-Bassham (CBB) and the reductive tricarboxylic acid (rTCA) cycles. How these two pathways are coordinated is unknown. Here we measured net carbon fixation rates, transcriptional/metabolic responses and transcriptional co-expression patterns of Riftia pachyptila endosymbionts by incubating tubeworms collected from the East Pacific Rise at environmental pressures, temperature and geochemistry. Results showed that rTCA and CBB transcriptional patterns varied in response to different geochemical regimes and that each pathway is allied to specific metabolic processes; the rTCA is allied to hydrogenases and dissimilatory nitrate reduction, whereas the CBB is allied to sulfide oxidation and assimilatory nitrate reduction, suggesting distinctive yet complementary roles in metabolic function. Furthermore, our network analysis implicates the rTCA and a group 1e hydrogenase as key players in the physiological response to limitation of sulfide and oxygen. Net carbon fixation rates were also exemplary, and accordingly, we propose that co-activity of CBB and rTCA may be an adaptation for maintaining high carbon fixation rates, conferring a fitness advantage in dynamic vent environments.
Collapse
|
10
|
Hudson EP. The Calvin Benson cycle in bacteria: New insights from systems biology. Semin Cell Dev Biol 2024; 155:71-83. [PMID: 37002131 DOI: 10.1016/j.semcdb.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 02/21/2023] [Accepted: 03/16/2023] [Indexed: 03/31/2023]
Abstract
The Calvin Benson cycle in phototrophic and chemolithoautotrophic bacteria has ecological and biotechnological importance, which has motivated study of its regulation. I review recent advances in our understanding of how the Calvin Benson cycle is regulated in bacteria and the technologies used to elucidate regulation and modify it, and highlight differences between and photoautotrophic and chemolithoautotrophic models. Systems biology studies have shown that in oxygenic phototrophic bacteria, Calvin Benson cycle enzymes are extensively regulated at post-transcriptional and post-translational levels, with multiple enzyme activities connected to cellular redox status through thioredoxin. In chemolithoautotrophic bacteria, regulation is primarily at the transcriptional level, with effector metabolites transducing cell status, though new methods should now allow facile, proteome-wide exploration of biochemical regulation in these models. A biotechnological objective is to enhance CO2 fixation in the cycle and partition that carbon to a product of interest. Flux control of CO2 fixation is distributed over multiple enzymes, and attempts to modulate gene Calvin cycle gene expression show a robust homeostatic regulation of growth rate, though the synthesis rates of products can be significantly increased. Therefore, de-regulation of cycle enzymes through protein engineering may be necessary to increase fluxes. Non-canonical Calvin Benson cycles, if implemented with synthetic biology, could have reduced energy demand and enzyme loading, thus increasing the attractiveness of these bacteria for industrial applications.
Collapse
Affiliation(s)
- Elton P Hudson
- Department of Protein Science, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden.
| |
Collapse
|
11
|
Zhu YG, Peng J, Chen C, Xiong C, Li S, Ge A, Wang E, Liesack W. Harnessing biological nitrogen fixation in plant leaves. TRENDS IN PLANT SCIENCE 2023; 28:1391-1405. [PMID: 37270352 DOI: 10.1016/j.tplants.2023.05.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 06/05/2023]
Abstract
The importance of biological nitrogen fixation (BNF) in securing food production for the growing world population with minimal environmental cost has been increasingly acknowledged. Leaf surfaces are one of the biggest microbial habitats on Earth, harboring diverse free-living N2-fixers. These microbes inhabit the epiphytic and endophytic phyllosphere and contribute significantly to plant N supply and growth. Here, we summarize the contribution of phyllosphere-BNF to global N cycling, evaluate the diversity of leaf-associated N2-fixers across plant hosts and ecosystems, illustrate the ecological adaptation of N2-fixers to the phyllosphere, and identify the environmental factors driving BNF. Finally, we discuss potential BNF engineering strategies to improve the nitrogen uptake in plant leaves and thus sustainable food production.
Collapse
Affiliation(s)
- Yong-Guan Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| | - Jingjing Peng
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing, 100193, China
| | - Cai Chen
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Chao Xiong
- College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Shule Li
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Anhui Ge
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, SIBS, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, SIBS, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Werner Liesack
- Max Planck Institute for Terrestrial Microbiology, Marburg, 35043, Germany
| |
Collapse
|
12
|
Morlino MS, Serna García R, Savio F, Zampieri G, Morosinotto T, Treu L, Campanaro S. Cupriavidus necator as a platform for polyhydroxyalkanoate production: An overview of strains, metabolism, and modeling approaches. Biotechnol Adv 2023; 69:108264. [PMID: 37775073 DOI: 10.1016/j.biotechadv.2023.108264] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/18/2023] [Accepted: 09/26/2023] [Indexed: 10/01/2023]
Abstract
Cupriavidus necator is a bacterium with a high phenotypic diversity and versatile metabolic capabilities. It has been extensively studied as a model hydrogen oxidizer, as well as a producer of polyhydroxyalkanoates (PHA), plastic-like biopolymers with a high potential to substitute petroleum-based materials. Thanks to its adaptability to diverse metabolic lifestyles and to the ability to accumulate large amounts of PHA, C. necator is employed in many biotechnological processes, with particular focus on PHA production from waste carbon sources. The large availability of genomic information has enabled a characterization of C. necator's metabolism, leading to the establishment of metabolic models which are used to devise and optimize culture conditions and genetic engineering approaches. In this work, the characteristics of available C. necator strains and genomes are reviewed, underlining how a thorough comprehension of the genetic variability of C. necator is lacking and it could be instrumental for wider application of this microorganism. The metabolic paradigms of C. necator and how they are connected to PHA production and accumulation are described, also recapitulating the variety of carbon substrates used for PHA accumulation, highlighting the most promising strategies to increase the yield. Finally, the review describes and critically analyzes currently available genome-scale metabolic models and reduced metabolic network applications commonly employed in the optimization of PHA production. Overall, it appears that the capacity of C. necator of performing CO2 bioconversion to PHA is still underexplored, both in biotechnological applications and in metabolic modeling. However, the accurate characterization of this organism and the efforts in using it for gas fermentation can help tackle this challenging perspective in the future.
Collapse
Affiliation(s)
- Maria Silvia Morlino
- Department of Biology, University of Padua, via U. Bassi 58/b, 35131 Padova, Italy
| | - Rebecca Serna García
- CALAGUA - Unidad Mixta UV-UPV, Departament d'Enginyeria Química, Universitat de València, Avinguda de la Universitat s/n, 46100 Burjassot, Valencia, Spain
| | - Filippo Savio
- Department of Biology, University of Padua, via U. Bassi 58/b, 35131 Padova, Italy
| | - Guido Zampieri
- Department of Biology, University of Padua, via U. Bassi 58/b, 35131 Padova, Italy
| | - Tomas Morosinotto
- Department of Biology, University of Padua, via U. Bassi 58/b, 35131 Padova, Italy
| | - Laura Treu
- Department of Biology, University of Padua, via U. Bassi 58/b, 35131 Padova, Italy.
| | - Stefano Campanaro
- Department of Biology, University of Padua, via U. Bassi 58/b, 35131 Padova, Italy
| |
Collapse
|
13
|
Orsi E, Nikel PI, Nielsen LK, Donati S. Synergistic investigation of natural and synthetic C1-trophic microorganisms to foster a circular carbon economy. Nat Commun 2023; 14:6673. [PMID: 37865689 PMCID: PMC10590403 DOI: 10.1038/s41467-023-42166-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/02/2023] [Indexed: 10/23/2023] Open
Abstract
A true circular carbon economy must upgrade waste greenhouse gases. C1-based biomanufacturing is an attractive solution, in which one carbon (C1) molecules (e.g. CO2, formate, methanol, etc.) are converted by microbial cell factories into value-added goods (i.e. food, feed, and chemicals). To render C1-based biomanufacturing cost-competitive, we must adapt microbial metabolism to perform chemical conversions at high rates and yields. To this end, the biotechnology community has undertaken two (seemingly opposing) paths: optimizing natural C1-trophic microorganisms versus engineering synthetic C1-assimilation de novo in model microorganisms. Here, we pose how these approaches can instead create synergies for strengthening the competitiveness of C1-based biomanufacturing as a whole.
Collapse
Affiliation(s)
- Enrico Orsi
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Pablo Ivan Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Lars Keld Nielsen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, 4072, Brisbane, QLD, Australia
| | - Stefano Donati
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark.
| |
Collapse
|
14
|
Tang R, Yuan X, Yang J. Problems and corresponding strategies for converting CO 2 into value-added products in Cupriavidus necator H16 cell factories. Biotechnol Adv 2023; 67:108183. [PMID: 37286176 DOI: 10.1016/j.biotechadv.2023.108183] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/17/2023] [Accepted: 05/31/2023] [Indexed: 06/09/2023]
Abstract
Elevated CO2 emissions have substantially altered the worldwide climate, while the excessive reliance on fossil fuels has exacerbated the energy crisis. Therefore, the conversion of CO2 into fuel, petroleum-based derivatives, drug precursors, and other value-added products is expected. Cupriavidus necator H16 is the model organism of the "Knallgas" bacterium and is considered to be a microbial cell factory as it can convert CO2 into various value-added products. However, the development and application of C. necator H16 cell factories has several limitations, including low efficiency, high cost, and safety concerns arising from the autotrophic metabolic characteristics of the strains. In this review, we first considered the autotrophic metabolic characteristics of C. necator H16, and then categorized and summarized the resulting problems. We also provided a detailed discussion of some corresponding strategies concerning metabolic engineering, trophic models, and cultivation mode. Finally, we provided several suggestions for improving and combining them. This review might help in the research and application of the conversion of CO2 into value-added products in C. necator H16 cell factories.
Collapse
Affiliation(s)
- Ruohao Tang
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, Shandong Province, People's Republic of China; Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, Shandong Province, People's Republic of China
| | - Xianzheng Yuan
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, Shandong Province, People's Republic of China
| | - Jianming Yang
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, Shandong Province, People's Republic of China.
| |
Collapse
|
15
|
Sporre E, Karlsen J, Schriever K, Asplund-Samuelsson J, Janasch M, Strandberg L, Karlsson A, Kotol D, Zeckey L, Piazza I, Syrén PO, Edfors F, Hudson EP. Metabolite interactions in the bacterial Calvin cycle and implications for flux regulation. Commun Biol 2023; 6:947. [PMID: 37723200 PMCID: PMC10507043 DOI: 10.1038/s42003-023-05318-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 09/01/2023] [Indexed: 09/20/2023] Open
Abstract
Metabolite-level regulation of enzyme activity is important for microbes to cope with environmental shifts. Knowledge of such regulations can also guide strain engineering for biotechnology. Here we apply limited proteolysis-small molecule mapping (LiP-SMap) to identify and compare metabolite-protein interactions in the proteomes of two cyanobacteria and two lithoautotrophic bacteria that fix CO2 using the Calvin cycle. Clustering analysis of the hundreds of detected interactions shows that some metabolites interact in a species-specific manner. We estimate that approximately 35% of interacting metabolites affect enzyme activity in vitro, and the effect is often minor. Using LiP-SMap data as a guide, we find that the Calvin cycle intermediate glyceraldehyde-3-phosphate enhances activity of fructose-1,6/sedoheptulose-1,7-bisphosphatase (F/SBPase) from Synechocystis sp. PCC 6803 and Cupriavidus necator in reducing conditions, suggesting a convergent feed-forward activation of the cycle. In oxidizing conditions, glyceraldehyde-3-phosphate inhibits Synechocystis F/SBPase by promoting enzyme aggregation. In contrast, the glycolytic intermediate glucose-6-phosphate activates F/SBPase from Cupriavidus necator but not F/SBPase from Synechocystis. Thus, metabolite-level regulation of the Calvin cycle is more prevalent than previously appreciated.
Collapse
Affiliation(s)
- Emil Sporre
- Department of Protein Science, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Jan Karlsen
- Department of Protein Science, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Karen Schriever
- Department of Fiber and Polymer Technology, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Johannes Asplund-Samuelsson
- Department of Protein Science, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Markus Janasch
- Department of Protein Science, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
- Department of Biotechnology and Nanomedicine, SINTEF Industry, 7465, Trondheim, Norway
| | - Linnéa Strandberg
- Department of Protein Science, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Anna Karlsson
- Department of Protein Science, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - David Kotol
- Department of Protein Science, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Luise Zeckey
- Department of Protein Science, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Ilaria Piazza
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Per-Olof Syrén
- Department of Fiber and Polymer Technology, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Fredrik Edfors
- Department of Protein Science, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Elton P Hudson
- Department of Protein Science, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden.
| |
Collapse
|
16
|
Nastro RA, Salvian A, Kuppam C, Pasquale V, Pietrelli A, Rossa CA. Inorganic Carbon Assimilation and Electrosynthesis of Platform Chemicals in Bioelectrochemical Systems (BESs) Inoculated with Clostridium saccharoperbutylacetonicum N1-H4. Microorganisms 2023; 11:735. [PMID: 36985308 PMCID: PMC10051846 DOI: 10.3390/microorganisms11030735] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/01/2023] [Accepted: 03/06/2023] [Indexed: 03/14/2023] Open
Abstract
The need for greener processes to satisfy the demand of platform chemicals together with the possibility of reusing CO2 from human activities has recently encouraged research on the set-up, optimization, and development of bioelectrochemical systems (BESs) for the electrosynthesis of organic compounds from inorganic carbon (CO2, HCO3-). In the present study, we tested the ability of Clostridium saccharoperbutylacetonicum N1-4 (DSMZ 14923) to produce acetate and D-3-hydroxybutyrate from inorganic carbon present in a CO2:N2 gas mix. At the same time, we tested the ability of a Shewanella oneidensis MR1 and Pseudomonas aeruginosa PA1430/CO1 consortium to provide reducing power to sustain carbon assimilation at the cathode. We tested the performance of three different systems with the same layouts, inocula, and media, but with the application of 1.5 V external voltage, of a 1000 Ω external load, and without any connection between the electrodes or external devices (open circuit voltage, OCV). We compared both CO2 assimilation rate and production of metabolites (formate, acetate 3-D-hydroxybutyrate) in our BESs with the values obtained in non-electrogenic control cultures and estimated the energy used by our BESs to assimilate 1 mol of CO2. Our results showed that C. saccharoperbutylacetonicum NT-1 achieved the maximum CO2 assimilation (95.5%) when the microbial fuel cells (MFCs) were connected to the 1000 Ω external resistor, with the Shewanella/Pseudomonas consortium as the only source of electrons. Furthermore, we detected a shift in the metabolism of C. saccharoperbutylacetonicum NT-1 because of its prolonged activity in BESs. Our results open new perspectives for the utilization of BESs in carbon capture and electrosynthesis of platform chemicals.
Collapse
Affiliation(s)
- Rosa Anna Nastro
- Department of Science and Technology, University of Naples “Parthenope”, 80133 Naples, Italy
| | - Anna Salvian
- Laboratory of Systems Microbiology, Department of Microbial Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Chandrasekhar Kuppam
- Department of Biotechnology, Vignan’s Foundation for Science, Technology and Research, Vadlamudi, Guntur 522213, Andhra Pradesh, India
| | - Vincenzo Pasquale
- Department of Science and Technology, University of Naples “Parthenope”, 80133 Naples, Italy
| | - Andrea Pietrelli
- Laboratoire Ampere CNRS UMR 5005, Département Génie Electrique et des Procédés Université de Lyon, F-69621 Villeurbanne, France
| | - Claudio Avignone Rossa
- Laboratory of Systems Microbiology, Department of Microbial Sciences, University of Surrey, Guildford GU2 7XH, UK
| |
Collapse
|
17
|
Lin L, Huang H, Zhang X, Dong L, Chen Y. Hydrogen-oxidizing bacteria and their applications in resource recovery and pollutant removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155559. [PMID: 35483467 DOI: 10.1016/j.scitotenv.2022.155559] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/16/2022] [Accepted: 04/23/2022] [Indexed: 06/14/2023]
Abstract
Hydrogen oxidizing bacteria (HOB), a type of chemoautotroph, are a group of bacteria from different genera that share the ability to oxidize H2 and fix CO2 to provide energy and synthesize cellular material. Recently, HOB have received growing attention due to their potential for CO2 capture and waste recovery. This review provides a comprehensive overview of the biological characteristics of HOB and their application in resource recovery and pollutant removal. Firstly, the enzymes, genes and corresponding regulation systems responsible for the key metabolic processes of HOB are discussed in detail. Then, the enrichment and cultivation methods including the coupled water splitting-biosynthetic system cultivation, mixed cultivation and two-stage cultivation strategies for HOB are summarized, which is the critical prerequisite for their application. On the basis, recent advances of HOB application in the recovery of high-value products and the removal of pollutants are presented. Finally, the key points for future investigation are proposed that more attention should be paid to the main limitations in the large-scale industrial application of HOB, including the mass transfer rate of the gases, the safety of the production processes and products, and the commercial value of the products.
Collapse
Affiliation(s)
- Lin Lin
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Haining Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xin Zhang
- Shanghai Municipal Engineering Design Institute (Group) Co. LTD, 901 Zhongshan North Second Rd, Shanghai 200092, China
| | - Lei Dong
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Municipal Engineering Design Institute (Group) Co. LTD, 901 Zhongshan North Second Rd, Shanghai 200092, China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| |
Collapse
|
18
|
Janasch M, Crang N, Asplund-Samuelsson J, Sporre E, Bruch M, Gynnå A, Jahn M, Hudson EP. Thermodynamic limitations of PHB production from formate and fructose in Cupriavidus necator. Metab Eng 2022; 73:256-269. [PMID: 35987434 DOI: 10.1016/j.ymben.2022.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/10/2022] [Accepted: 08/06/2022] [Indexed: 11/30/2022]
Abstract
The chemolithotroph Cupriavidus necator H16 is known as a natural producer of the bioplastic-polymer PHB, as well as for its metabolic versatility to utilize different substrates, including formate as the sole carbon and energy source. Depending on the entry point of the substrate, this versatility requires adjustment of the thermodynamic landscape to maintain sufficiently high driving forces for biological processes. Here we employed a model of the core metabolism of C. necator H16 to analyze the thermodynamic driving forces and PHB yields from formate for different metabolic engineering strategies. For this, we enumerated elementary flux modes (EFMs) of the network and evaluated their PHB yields as well as thermodynamics via Max-min driving force (MDF) analysis and random sampling of driving forces. A heterologous ATP:citrate lyase reaction was predicted to increase driving force for producing acetyl-CoA. A heterologous phosphoketolase reaction was predicted to increase maximal PHB yields as well as driving forces. These enzymes were then verified experimentally to enhance PHB titers between 60 and 300% in select conditions. The EFM analysis also revealed that PHB production from formate may be limited by low driving forces through citrate lyase and aconitase, as well as cofactor balancing, and identified additional reactions associated with low and high PHB yield. Proteomics analysis of the engineered strains confirmed an increased abundance of aconitase and cofactor balancing. The findings of this study aid in understanding metabolic adaptation. Furthermore, the outlined approach will be useful in designing metabolic engineering strategies in other non-model bacteria.
Collapse
Affiliation(s)
- Markus Janasch
- Science for Life Laboratory, School of Engineering Science in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, P-Box 1031, 171 21, Solna, Sweden.
| | - Nick Crang
- Science for Life Laboratory, School of Engineering Science in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, P-Box 1031, 171 21, Solna, Sweden.
| | - Johannes Asplund-Samuelsson
- Science for Life Laboratory, School of Engineering Science in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, P-Box 1031, 171 21, Solna, Sweden
| | - Emil Sporre
- Science for Life Laboratory, School of Engineering Science in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, P-Box 1031, 171 21, Solna, Sweden
| | - Manuel Bruch
- Science for Life Laboratory, School of Engineering Science in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, P-Box 1031, 171 21, Solna, Sweden
| | - Arvid Gynnå
- Science for Life Laboratory, School of Engineering Science in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, P-Box 1031, 171 21, Solna, Sweden
| | - Michael Jahn
- Science for Life Laboratory, School of Engineering Science in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, P-Box 1031, 171 21, Solna, Sweden
| | - Elton P Hudson
- Science for Life Laboratory, School of Engineering Science in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, P-Box 1031, 171 21, Solna, Sweden.
| |
Collapse
|
19
|
A genome-scale metabolic model of Cupriavidus necator H16 integrated with TraDIS and transcriptomic data reveals metabolic insights for biotechnological applications. PLoS Comput Biol 2022; 18:e1010106. [PMID: 35604933 PMCID: PMC9166356 DOI: 10.1371/journal.pcbi.1010106] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 06/03/2022] [Accepted: 04/14/2022] [Indexed: 11/29/2022] Open
Abstract
Exploiting biological processes to recycle renewable carbon into high value platform chemicals provides a sustainable and greener alternative to current reliance on petrochemicals. In this regard Cupriavidus necator H16 represents a particularly promising microbial chassis due to its ability to grow on a wide range of low-cost feedstocks, including the waste gas carbon dioxide, whilst also naturally producing large quantities of polyhydroxybutyrate (PHB) during nutrient-limited conditions. Understanding the complex metabolic behaviour of this bacterium is a prerequisite for the design of successful engineering strategies for optimising product yields. We present a genome-scale metabolic model (GSM) of C. necator H16 (denoted iCN1361), which is directly constructed from the BioCyc database to improve the readability and reusability of the model. After the initial automated construction, we have performed extensive curation and both theoretical and experimental validation. By carrying out a genome-wide essentiality screening using a Transposon-directed Insertion site Sequencing (TraDIS) approach, we showed that the model could predict gene knockout phenotypes with a high level of accuracy. Importantly, we indicate how experimental and computational predictions can be used to improve model structure and, thus, model accuracy as well as to evaluate potential false positives identified in the experiments. Finally, by integrating transcriptomics data with iCN1361 we create a condition-specific model, which, importantly, better reflects PHB production in C. necator H16. Observed changes in the omics data and in-silico-estimated alterations in fluxes were then used to predict the regulatory control of key cellular processes. The results presented demonstrate that iCN1361 is a valuable tool for unravelling the system-level metabolic behaviour of C. necator H16 and can provide useful insights for designing metabolic engineering strategies. Genome-scale metabolic models (GSMs) provide a tool for unravelling the complex metabolic behaviour of bacteria and how they adapt to changing environments and genetic perturbations, and thus offer invaluable insights for biotechnology applications. For a GSM to be used efficiently for strain development purposes, however, the model must be easily readable and reusable by other researchers, whilst being able to predict metabolic behaviour with a high level of accuracy. In this work, we developed a GSM for Cupriavidus necator H16 that is linked to the BioCyc database, which provides an efficient way of application, model update, integration of experimental data and network visualisation for other researchers. Using our model, we demonstrate how integrating experimental observations, including Transposon-directed Insertion site Sequencing (TraDIS) and omics data, can be used to compensate for the lack of regulatory, kinetic and thermodynamic information in GSMs, and thus improve model accuracy. Importantly, we found that TraDIS in vivo screening and GSM analysis are complementary approaches, which can be used in combination to provide reliable gene essentiality predictions. Overall, our results offer an informed strategy for the deliberate manipulation of C. necator H16 metabolic capabilities, towards its industrial application to convert greenhouse gases into biochemicals and biofuels.
Collapse
|
20
|
Kalapos MP, de Bari L. Hidden biochemical fossils reveal an evolutionary trajectory for glycolysis in the prebiotic era. FEBS Lett 2022; 596:1955-1968. [DOI: 10.1002/1873-3468.14408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/08/2022] [Accepted: 05/13/2022] [Indexed: 11/09/2022]
Affiliation(s)
| | - Lidia de Bari
- Institute of Biomembranes Bioenergetics and Molecular Biotechnologies Bari Italy
| |
Collapse
|
21
|
Strittmatter CS, Eggers J, Biesgen V, Pauels I, Becker F, Steinbüchel A. The reliance of glycerol utilization by Cupriavidus necator on CO 2 fixation and improved glycerol catabolism. Appl Microbiol Biotechnol 2022; 106:2541-2555. [PMID: 35325274 DOI: 10.1007/s00253-022-11842-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 11/29/2022]
Abstract
While crude glycerol is a cheap carbon source for industrial-scale cultivation of microorganisms, its application relies on fast growth and conversion. The biopolymer producing Cupriavidus necator H16 (synonym: Ralstonia eutropha H16) grows poorly on glycerol. The heterologous expression of glycerol facilitator glpF, glycerol kinase glpK, and glycerol dehydrogenase glpD from E. coli accelerated the growth considerably. The naturally occurring glycerol utilization is inhibited by low glycerol kinase activity. A limited heterotrophic growth promotes the dependency on autotrophic growth by carbon dioxide (CO2) fixation and refixation. As mixotrophic growth occurs in the wildtype due to low consumption rates of glycerol, CO2 fixation by the Calvin-Benson-Bassham (CBB) cycle is essential. The deletion of both cbbX copies encoding putative RuBisCO-activases (AAA + ATPase) resulted in a sharp slowdown of growth and glycerol consumption. Activase activity is necessary for functioning carboxylation by RuBisCO. Each of the two copies compensates for the loss of the other, as suggested by observed expression levels. The strong tendency towards autotrophy supports previous investigations of glycerol growth and emphasizes the versatility of the metabolism of C. necator H16. Mixotrophy with glycerol-utilization and CO2 fixation with a high dependence on the CBB is automatically occurring unless transportation and degradation of glycerol are optimized. Parallel engineering of CO2 fixation and glycerol degradation is suggested towards application for value-added production from crude glycerol. KEY POINTS: • Growth on glycerol is highly dependent on efficient carbon fixation via CBB cycle. • CbbX is essential for the efficiency of RuBisCO in C. necator H16. • Expression of glycerol degradation pathway enzymes accelerates glycerol utilization.
Collapse
Affiliation(s)
- Carl Simon Strittmatter
- Insitut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universtität Münster, Münster, Germany
| | - Jessica Eggers
- Insitut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universtität Münster, Münster, Germany
| | - Vanessa Biesgen
- Insitut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universtität Münster, Münster, Germany
| | - Inga Pauels
- Insitut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universtität Münster, Münster, Germany
| | - Florian Becker
- Insitut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universtität Münster, Münster, Germany
| | - Alexander Steinbüchel
- Insitut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universtität Münster, Münster, Germany. .,Environmental Science Department, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
22
|
Sohn YJ, Son J, Jo SY, Park SY, Yoo JI, Baritugo KA, Na JG, Choi JI, Kim HT, Joo JC, Park SJ. Chemoautotroph Cupriavidus necator as a potential game-changer for global warming and plastic waste problem: A review. BIORESOURCE TECHNOLOGY 2021; 340:125693. [PMID: 34365298 DOI: 10.1016/j.biortech.2021.125693] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
Cupriavidus necator, a versatile microorganism found in both soil and water, can have both heterotrophic and lithoautotrophic metabolisms depending on environmental conditions. C. necator has been extensively examined for producing Polyhydroxyalkanoates (PHAs), the promising polyester alternatives to petroleum-based synthetic polymers because it has a superior ability for accumulating a considerable amount of PHAs from renewable resources. The development of metabolically engineered C. necator strains has led to their application for synthesizing biopolymers, biofuels and biochemicals such as ethanol, isobutanol and higher alcohols. Bio-based processes of recombinant C. necator have made much progress in production of these high-value products from biomass wastes, plastic wastes and even waste gases. In this review, we discuss the potential of C. necator as promising platform host strains that provide a great opportunity for developing a waste-based circular bioeconomy.
Collapse
Affiliation(s)
- Yu Jung Sohn
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jina Son
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Seo Young Jo
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Se Young Park
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jee In Yoo
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Kei-Anne Baritugo
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jeong Geol Na
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, Republic of Korea.
| | - Jong-Il Choi
- Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju 61186, Korea.
| | - Hee Taek Kim
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134, Republic of Korea.
| | - Jeong Chan Joo
- Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Republic of Korea.
| | - Si Jae Park
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|
23
|
Jahn M, Crang N, Janasch M, Hober A, Forsström B, Kimler K, Mattausch A, Chen Q, Asplund-Samuelsson J, Hudson EP. Protein allocation and utilization in the versatile chemolithoautotroph Cupriavidus necator. eLife 2021; 10:69019. [PMID: 34723797 PMCID: PMC8591527 DOI: 10.7554/elife.69019] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 10/30/2021] [Indexed: 12/12/2022] Open
Abstract
Bacteria must balance the different needs for substrate assimilation, growth
functions, and resilience in order to thrive in their environment. Of all
cellular macromolecules, the bacterial proteome is by far the most important
resource and its size is limited. Here, we investigated how the highly versatile
'knallgas' bacterium Cupriavidus necator reallocates protein
resources when grown on different limiting substrates and with different growth
rates. We determined protein quantity by mass spectrometry and estimated enzyme
utilization by resource balance analysis modeling. We found that C.
necator invests a large fraction of its proteome in functions that
are hardly utilized. Of the enzymes that are utilized, many are present in
excess abundance. One prominent example is the strong expression of CBB cycle
genes such as Rubisco during growth on fructose. Modeling and mutant competition
experiments suggest that CO2-reassimilation through Rubisco does not
provide a fitness benefit for heterotrophic growth, but is rather an investment
in readiness for autotrophy.
Collapse
Affiliation(s)
- Michael Jahn
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Nick Crang
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Markus Janasch
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Andreas Hober
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Björn Forsström
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Kyle Kimler
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Alexander Mattausch
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Qi Chen
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Johannes Asplund-Samuelsson
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Elton Paul Hudson
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
24
|
Subagyo DCH, Shimizu R, Orita I, Fukui T. Isopropanol production with reutilization of glucose-derived CO 2 by engineered Ralstonia eutropha. J Biosci Bioeng 2021; 132:479-486. [PMID: 34507913 DOI: 10.1016/j.jbiosc.2021.08.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/11/2021] [Accepted: 08/16/2021] [Indexed: 12/17/2022]
Abstract
Chemolithoautotrophic bacterium Ralstonia eutropha is a versatile host for production of various useful compounds including polyhydroxyalkanoates (PHAs) under both heterotrophic and autotrophic conditions. In this bacterium, Calvin-Benson-Bassham (CBB) cycle is functional even under heterotrophic conditions on sugars and reutilizes CO2 emitted through sugar metabolisms into PHA, leading to increase in yield of the storage polyester. This study focused on isopropanol production from glucose by engineered strains of R. eutropha. The isopropanol-producing strains were constructed by introduction of codon-optimized genes of acetoacetate decarboxylase (adc) and primary-secondary alcohol dehydrogenase (adh) from clostridia into glucose-utilizing and PHA-negative (ΔphaC1) strain of R. eutropha. Several genetic modifications showed that high expression of the isopropanol synthesis genes by using a strong synthetic promoter and deletion of NAD+-dependent (S)-3-hydroxybutyryl-CoA dehydrogenase genes (paaH1 and had) in addition to NADPH-dependent acetoacetyl-CoA reductase genes (phaB1 and phaB3) were effective for improving isopropanol production with low by-production of acetone. Isopropanol titer of 4.13 g/L was achieved by two-stage cultivation of the strain IP-007/pBj5c2-adh-adc, corresponding to overall yield of 0.6 mol mol-glucose-1. The fixation of sugar-derived CO2 during isopropanol synthesis was evaluated by 13C-labelling of the isopropanol produced from [1-13C]-glucose. The 13C-abundance in isopropanol synthesized by the engineered strain was significantly increased up to 4.8%, demonstrating actual reassimilation of CO2 emitted from glucose moiety by decarboxylation and potential contribution towards increase in the carbon yield of isopropanol on glucose.
Collapse
Affiliation(s)
- Dyah Candra Hapsari Subagyo
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Rie Shimizu
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Izumi Orita
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Toshiaki Fukui
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan.
| |
Collapse
|
25
|
Paredes GF, Viehboeck T, Lee R, Palatinszky M, Mausz MA, Reipert S, Schintlmeister A, Maier A, Volland JM, Hirschfeld C, Wagner M, Berry D, Markert S, Bulgheresi S, König L. Anaerobic Sulfur Oxidation Underlies Adaptation of a Chemosynthetic Symbiont to Oxic-Anoxic Interfaces. mSystems 2021; 6:e0118620. [PMID: 34058098 PMCID: PMC8269255 DOI: 10.1128/msystems.01186-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 04/20/2021] [Indexed: 11/23/2022] Open
Abstract
Chemosynthetic symbioses occur worldwide in marine habitats, but comprehensive physiological studies of chemoautotrophic bacteria thriving on animals are scarce. Stilbonematinae are coated by thiotrophic Gammaproteobacteria. As these nematodes migrate through the redox zone, their ectosymbionts experience varying oxygen concentrations. However, nothing is known about how these variations affect their physiology. Here, by applying omics, Raman microspectroscopy, and stable isotope labeling, we investigated the effect of oxygen on "Candidatus Thiosymbion oneisti." Unexpectedly, sulfur oxidation genes were upregulated in anoxic relative to oxic conditions, but carbon fixation genes and incorporation of 13C-labeled bicarbonate were not. Instead, several genes involved in carbon fixation were upregulated under oxic conditions, together with genes involved in organic carbon assimilation, polyhydroxyalkanoate (PHA) biosynthesis, nitrogen fixation, and urea utilization. Furthermore, in the presence of oxygen, stress-related genes were upregulated together with vitamin biosynthesis genes likely necessary to withstand oxidative stress, and the symbiont appeared to proliferate less. Based on its physiological response to oxygen, we propose that "Ca. T. oneisti" may exploit anaerobic sulfur oxidation coupled to denitrification to proliferate in anoxic sand. However, the ectosymbiont would still profit from the oxygen available in superficial sand, as the energy-efficient aerobic respiration would facilitate carbon and nitrogen assimilation. IMPORTANCE Chemoautotrophic endosymbionts are famous for exploiting sulfur oxidization to feed marine organisms with fixed carbon. However, the physiology of thiotrophic bacteria thriving on the surface of animals (ectosymbionts) is less understood. One longstanding hypothesis posits that attachment to animals that migrate between reduced and oxic environments would boost sulfur oxidation, as the ectosymbionts would alternatively access sulfide and oxygen, the most favorable electron acceptor. Here, we investigated the effect of oxygen on the physiology of "Candidatus Thiosymbion oneisti," a gammaproteobacterium which lives attached to marine nematodes inhabiting shallow-water sand. Surprisingly, sulfur oxidation genes were upregulated under anoxic relative to oxic conditions. Furthermore, under anoxia, the ectosymbiont appeared to be less stressed and to proliferate more. We propose that animal-mediated access to oxygen, rather than enhancing sulfur oxidation, would facilitate assimilation of carbon and nitrogen by the ectosymbiont.
Collapse
Affiliation(s)
- Gabriela F. Paredes
- University of Vienna, Department of Functional and Evolutionary Ecology, Environmental Cell Biology Group, Vienna, Austria
| | - Tobias Viehboeck
- University of Vienna, Department of Functional and Evolutionary Ecology, Environmental Cell Biology Group, Vienna, Austria
- University of Vienna, Center for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria
| | - Raymond Lee
- Washington State University, School of Biological Sciences, Pullman, Washington, USA
| | - Marton Palatinszky
- University of Vienna, Center for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria
| | - Michaela A. Mausz
- University of Warwick, School of Life Sciences, Coventry, United Kingdom
| | - Siegfried Reipert
- University of Vienna, Core Facility Cell Imaging and Ultrastructure Research, Vienna, Austria
| | - Arno Schintlmeister
- University of Vienna, Center for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria
- University of Vienna, Center for Microbiology and Environmental Systems Science, Large-Instrument Facility for Environmental and Isotope Mass Spectrometry, Vienna, Austria
| | - Andreas Maier
- University of Vienna, Faculty of Geosciences, Geography, and Astronomy, Department of Geography and Regional Research, Geoecology, Vienna, Austria
| | - Jean-Marie Volland
- University of Vienna, Department of Functional and Evolutionary Ecology, Environmental Cell Biology Group, Vienna, Austria
| | - Claudia Hirschfeld
- University of Greifswald, Institute of Pharmacy, Department of Pharmaceutical Biotechnology, Greifswald, Germany
| | - Michael Wagner
- University of Vienna, Center for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria
- Aalborg University, Department of Chemistry and Bioscience, Aalborg, Denmark
| | - David Berry
- University of Vienna, Center for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
| | - Stephanie Markert
- University of Greifswald, Institute of Pharmacy, Department of Pharmaceutical Biotechnology, Greifswald, Germany
| | - Silvia Bulgheresi
- University of Vienna, Department of Functional and Evolutionary Ecology, Environmental Cell Biology Group, Vienna, Austria
| | - Lena König
- University of Vienna, Department of Functional and Evolutionary Ecology, Environmental Cell Biology Group, Vienna, Austria
| |
Collapse
|
26
|
Asplund-Samuelsson J, Hudson EP. Wide range of metabolic adaptations to the acquisition of the Calvin cycle revealed by comparison of microbial genomes. PLoS Comput Biol 2021; 17:e1008742. [PMID: 33556078 PMCID: PMC7895386 DOI: 10.1371/journal.pcbi.1008742] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/19/2021] [Accepted: 01/25/2021] [Indexed: 11/21/2022] Open
Abstract
Knowledge of the genetic basis for autotrophic metabolism is valuable since it relates to both the emergence of life and to the metabolic engineering challenge of incorporating CO2 as a potential substrate for biorefining. The most common CO2 fixation pathway is the Calvin cycle, which utilizes Rubisco and phosphoribulokinase enzymes. We searched thousands of microbial genomes and found that 6.0% contained the Calvin cycle. We then contrasted the genomes of Calvin cycle-positive, non-cyanobacterial microbes and their closest relatives by enrichment analysis, ancestral character estimation, and random forest machine learning, to explore genetic adaptations associated with acquisition of the Calvin cycle. The Calvin cycle overlaps with the pentose phosphate pathway and glycolysis, and we could confirm positive associations with fructose-1,6-bisphosphatase, aldolase, and transketolase, constituting a conserved operon, as well as ribulose-phosphate 3-epimerase, ribose-5-phosphate isomerase, and phosphoglycerate kinase. Additionally, carbohydrate storage enzymes, carboxysome proteins (that raise CO2 concentration around Rubisco), and Rubisco activases CbbQ and CbbX accompanied the Calvin cycle. Photorespiration did not appear to be adapted specifically for the Calvin cycle in the non-cyanobacterial microbes under study. Our results suggest that chemoautotrophy in Calvin cycle-positive organisms was commonly enabled by hydrogenase, and less commonly ammonia monooxygenase (nitrification). The enrichment of specific DNA-binding domains indicated Calvin-cycle associated genetic regulation. Metabolic regulatory adaptations were illustrated by negative correlation to AraC and the enzyme arabinose-5-phosphate isomerase, which suggests a downregulation of the metabolite arabinose-5-phosphate, which may interfere with the Calvin cycle through enzyme inhibition and substrate competition. Certain domains of unknown function that were found to be important in the analysis may indicate yet unknown regulatory mechanisms in Calvin cycle-utilizing microbes. Our gene ranking provides targets for experiments seeking to improve CO2 fixation, or engineer novel CO2-fixing organisms.
Collapse
Affiliation(s)
- Johannes Asplund-Samuelsson
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Solna, Sweden
| | - Elton P. Hudson
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Solna, Sweden
| |
Collapse
|
27
|
The gene dosage effect of carbonic anhydrase on the biosynthesis of poly(3-hydroxybutyrate) under autotrophic and mixotrophic culture conditions. Polym J 2020. [DOI: 10.1038/s41428-020-00409-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
28
|
Valk LC, Diender M, Stouten GR, Petersen JF, Nielsen PH, Dueholm MS, Pronk JT, van Loosdrecht MCM. " Candidatus Galacturonibacter soehngenii" Shows Acetogenic Catabolism of Galacturonic Acid but Lacks a Canonical Carbon Monoxide Dehydrogenase/Acetyl-CoA Synthase Complex. Front Microbiol 2020; 11:63. [PMID: 32063897 PMCID: PMC7000372 DOI: 10.3389/fmicb.2020.00063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/13/2020] [Indexed: 11/24/2022] Open
Abstract
Acetogens have the ability to fixate carbon during fermentation by employing the Wood-Ljungdahl pathway (WLP), which is highly conserved across Bacteria and Archaea. In a previous study, product stoichometries in galacturonate-limited, anaerobic enrichment cultures of “Candidatus Galacturonibacter soehngenii,” from a novel genus within the Lachnospiraceae, suggested the simultaneous operation of a modified Entner-Doudoroff pathway for galacturonate fermentation and a WLP for acetogenesis. However, a draft metagenome-assembled genome (MAG) based on short reads did not reveal homologs of genes encoding a canonical WLP carbon-monoxide-dehydrogenase/acetyl-Coenzyme A synthase (CODH/ACS) complex. In this study, NaH13CO3 fed to chemostat-grown, galacturonate-limited enrichment cultures of “Ca. G. soehngenii” was shown to be incorporated into acetate. Preferential labeling of the carboxyl group of acetate was consistent with acetogenesis via a WLP in which the methyl group of acetate was predominately derived from formate. This interpretation was further supported by high transcript levels of a putative pyruvate-formate lyase gene and very low transcript levels of a candidate gene for formate dehydrogenase. Reassembly of the “Ca. G. soehngenii” MAG with support from long-read nanopore sequencing data produced a single-scaffold MAG, which confirmed the absence of canonical CODH/ACS-complex genes homologs. However, high CO-dehydrogenase activities were measured in cell extracts of “Ca. G. soehngenii” enrichment cultures, contradicting the absence of corresponding homologs in the MAG. Based on the highly conserved amino-acid motif associated with anaerobic Ni-CO dehydrogenase proteins, a novel candidate was identified which could be responsible for the observed activities. These results demonstrate operation of an acetogenic pathway, most probably as a yet unresolved variant of the Wood-Ljungdahl pathway, in anaerobic, galacturonate-limited cultures of “Ca. G. soehngenii.”
Collapse
Affiliation(s)
- Laura C Valk
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Martijn Diender
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, Netherlands
| | - Gerben R Stouten
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Jette F Petersen
- Department of Chemistry and Bioscience, Centre for Microbial Communities, Aalborg University, Aalborg, Denmark
| | - Per H Nielsen
- Department of Chemistry and Bioscience, Centre for Microbial Communities, Aalborg University, Aalborg, Denmark
| | - Morten S Dueholm
- Department of Chemistry and Bioscience, Centre for Microbial Communities, Aalborg University, Aalborg, Denmark
| | - Jack T Pronk
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | | |
Collapse
|
29
|
Esparza M, Jedlicki E, González C, Dopson M, Holmes DS. Effect of CO 2 Concentration on Uptake and Assimilation of Inorganic Carbon in the Extreme Acidophile Acidithiobacillus ferrooxidans. Front Microbiol 2019; 10:603. [PMID: 31019493 PMCID: PMC6458275 DOI: 10.3389/fmicb.2019.00603] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 03/11/2019] [Indexed: 02/01/2023] Open
Abstract
This study was motivated by surprising gaps in the current knowledge of microbial inorganic carbon (Ci) uptake and assimilation at acidic pH values (pH < 3). Particularly striking is the limited understanding of the differences between Ci uptake mechanisms in acidic versus circumneutral environments where the Ci predominantly occurs either as a dissolved gas (CO2) or as bicarbonate (HCO3 -), respectively. In order to gain initial traction on the problem, the relative abundance of transcripts encoding proteins involved in Ci uptake and assimilation was studied in the autotrophic, polyextreme acidophile Acidithiobacillus ferrooxidans whose optimum pH for growth is 2.5 using ferrous iron as an energy source, although they are able to grow at pH 5 when using sulfur as an energy source. The relative abundance of transcripts of five operons (cbb1-5) and one gene cluster (can-sulP) was monitored by RT-qPCR and, in selected cases, at the protein level by Western blotting, when cells were grown under different regimens of CO2 concentration in elemental sulfur. Of particular note was the absence of a classical bicarbonate uptake system in A. ferrooxidans. However, bioinformatic approaches predict that sulP, previously annotated as a sulfate transporter, is a novel type of bicarbonate transporter. A conceptual model of CO2 fixation was constructed from combined bioinformatic and experimental approaches that suggests strategies for providing ecological flexibility under changing concentrations of CO2 and provides a portal to elucidating Ci uptake and regulation in acidic conditions. The results could advance the understanding of industrial bioleaching processes to recover metals such as copper at acidic pH. In addition, they may also shed light on how chemolithoautotrophic acidophiles influence the nutrient and energy balance in naturally occurring low pH environments.
Collapse
Affiliation(s)
- Mario Esparza
- Laboratorio de Biominería, Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
| | - Eugenia Jedlicki
- Center for Bioinformatics and Genome Biology, Fundación Ciencia & Vida, Santiago, Chile
| | - Carolina González
- Center for Bioinformatics and Genome Biology, Fundación Ciencia & Vida, Santiago, Chile
| | - Mark Dopson
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - David S. Holmes
- Center for Bioinformatics and Genome Biology, Fundación Ciencia & Vida, Santiago, Chile
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| |
Collapse
|
30
|
A thiotrophic microbial community in an acidic brine lake in Northern Chile. Antonie van Leeuwenhoek 2018; 111:1403-1419. [PMID: 29748902 DOI: 10.1007/s10482-018-1087-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 04/12/2018] [Indexed: 10/16/2022]
Abstract
The endorheic basins of the Northern Chilean Altiplano contain saline lakes and salt flats. Two of the salt flats, Gorbea and Ignorado, have high acidic brines. The causes of the local acidity have been attributed to the occurrence of volcanic native sulfur, the release of sulfuric acid by oxidation, and the low buffering capacity of the rocks in the area. Understanding the microbial community composition and available energy in this pristine ecosystem is relevant in determining the origin of the acidity and in supporting the rationale of conservation policies. Besides, a comparison between similar systems in Australia highlights key microbial components and specific ones associated with geological settings and environmental conditions. Sediment and water samples from the Salar de Gorbea were collected, physicochemical parameters measured and geochemical and molecular biological analyses performed. A low diversity microbial community was observed in brines and sediments dominated by Actinobacteria, Algae, Firmicutes and Proteobacteria. Most of the constituent genera have been reported to be either sulfur oxidizing microorganisms or ones having the potential for sulfur oxidation given available genomic data and information drawn from the literature on cultured relatives. In addition, a link between sulfur oxidation and carbon fixation was observed. In contrast, to acid mine drainage communities, Gorbea microbial diversity is mainly supported by chemolithoheterotrophic, facultative chemolithoautotrophic and oligotrophic sulfur oxidizing populations indicating that microbial activity should also be considered as a causative agent of local acidity.
Collapse
|
31
|
Thakur IS, Kumar M, Varjani SJ, Wu Y, Gnansounou E, Ravindran S. Sequestration and utilization of carbon dioxide by chemical and biological methods for biofuels and biomaterials by chemoautotrophs: Opportunities and challenges. BIORESOURCE TECHNOLOGY 2018; 256:478-490. [PMID: 29459105 DOI: 10.1016/j.biortech.2018.02.039] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/06/2018] [Accepted: 02/07/2018] [Indexed: 06/08/2023]
Abstract
To meet the CO2 emission reduction targets, carbon dioxide capture and utilization (CCU) comes as an evolve technology. CCU concept is turning into a feedstock and technologies have been developed for transformation of CO2 into useful organic products. At industrial scale, utilization of CO2 as raw material is not much significant as compare to its abundance. Mechanisms in nature have evolved for carbon concentration, fixation and utilization. Assimilation and subsequent conversion of CO2 into complex molecules are performed by the photosynthetic and chemolithotrophic organisms. In the last three decades, substantial research is carry out to discover chemical and biological conversion of CO2 in various synthetic and biological materials, such as carboxylic acids, esters, lactones, polymer biodiesel, bio-plastics, bio-alcohols, exopolysaccharides. This review presents an over view of catalytic transformation of CO2 into biofuels and biomaterials by chemical and biological methods.
Collapse
Affiliation(s)
- Indu Shekhar Thakur
- School of Environmental Sciences, JawaharNehru University, New Delhi 110067, India; Bioenergy and Energy Planning Research Group (BPE), IIC, ENAC, Station 18, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| | - Manish Kumar
- School of Environmental Sciences, JawaharNehru University, New Delhi 110067, India
| | - Sunita J Varjani
- Gujarat Pollution Control Board, Sector-10A, Gandhinagar 382010, Gujarat, India; Bioenergy and Energy Planning Research Group (BPE), IIC, ENAC, Station 18, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Yonghong Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China.
| | - Edgard Gnansounou
- Bioenergy and Energy Planning Research Group (BPE), IIC, ENAC, Station 18, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| | - Sindhu Ravindran
- Microbial Processes and Technology Division, CSIR-NIIST, Trivandrum, India
| |
Collapse
|
32
|
Ghysels S, Mozumder MSI, De Wever H, Volcke EIP, Garcia-Gonzalez L. Targeted poly(3-hydroxybutyrate-co-3-hydroxyvalerate) bioplastic production from carbon dioxide. BIORESOURCE TECHNOLOGY 2018; 249:858-868. [PMID: 29136942 DOI: 10.1016/j.biortech.2017.10.081] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 10/18/2017] [Accepted: 10/20/2017] [Indexed: 05/21/2023]
Abstract
A microbial production process was developed to convert CO2 and valeric acid into tailored poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) bioplastics. The aim was to understand microbial PHBV production in mixotrophic conditions and to control the monomer distribution in the polymer. Continuous sparging of CO2 with pulse and pH-stat feeding of valeric acid were evaluated to produce PHBV copolyesters with predefined properties. The desired random monomer distribution was obtained by limiting the valeric acid concentration (below 1 gL-1). 1H-NMR, 13C-NMR and chromatographic analysis of the PHBV copolymer confirmed both the monomer distribution and the 3-hydroxyvalerate (3HV) fraction in the produced PHBV. A physical-based model was developed for mixotrophic PHBV production, which was calibrated and validated with independent experimental datasets. To produce PHBV with a predefined 3HV fraction, an operating diagram was constructed. This tool was able to predict the 3HV fraction with a very good accuracy (2% deviation).
Collapse
Affiliation(s)
- Stef Ghysels
- Ghent University, Department of Biosystems Engineering, Coupure Links 653, 9000 Gent, Belgium.
| | - Md Salatul Islam Mozumder
- Shahjalal University of Science and Technology, Department of Chemical Engineering and Polymer Science, Sylhet, Bangladesh
| | - Heleen De Wever
- Flemish Institute for Technological Research (VITO), Business Unit Separation and Conversion Technology, Boeretang 200, 2400 Mol, Belgium
| | - Eveline I P Volcke
- Ghent University, Department of Biosystems Engineering, Coupure Links 653, 9000 Gent, Belgium
| | - Linsey Garcia-Gonzalez
- Flemish Institute for Technological Research (VITO), Business Unit Separation and Conversion Technology, Boeretang 200, 2400 Mol, Belgium
| |
Collapse
|
33
|
Alagesan S, Minton NP, Malys N. 13C-assisted metabolic flux analysis to investigate heterotrophic and mixotrophic metabolism in Cupriavidus necator H16. Metabolomics 2017; 14:9. [PMID: 29238275 PMCID: PMC5715045 DOI: 10.1007/s11306-017-1302-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 11/22/2017] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Cupriavidus necator H16 is a gram-negative bacterium, capable of lithoautotrophic growth by utilizing hydrogen as an energy source and fixing carbon dioxide (CO2) through Calvin-Benson-Bassham (CBB) cycle. The potential to utilize synthesis gas (Syngas) and the prospects of rerouting carbon from polyhydroxybutyrate synthesis to value-added compounds makes C. necator an excellent chassis for industrial application. OBJECTIVES In the context of lack of sufficient quantitative information of the metabolic pathways and to advance in rational metabolic engineering for optimized product synthesis in C. necator H16, we carried out a metabolic flux analysis based on steady-state 13C-labelling. METHODS In this study, steady-state carbon labelling experiments, using either d-[1-13C]fructose or [1,2-13C]glycerol, were undertaken to investigate the carbon flux through the central carbon metabolism in C. necator H16 under heterotrophic and mixotrophic growth conditions, respectively. RESULTS We found that the CBB cycle is active even under heterotrophic condition, and growth is indeed mixotrophic. While Entner-Doudoroff (ED) pathway is shown to be the major route for sugar degradation, tricarboxylic acid (TCA) cycle is highly active in mixotrophic condition. Enhanced flux is observed in reductive pentose phosphate pathway (redPPP) under the mixotrophic condition to supplement the precursor requirement for CBB cycle. The flux distribution was compared to the mRNA abundance of genes encoding enzymes involved in key enzymatic reactions of the central carbon metabolism. CONCLUSION This study leads the way to establishing 13C-based quantitative fluxomics for rational pathway engineering in C. necator H16.
Collapse
Affiliation(s)
- Swathi Alagesan
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, Centre for Biomolecular Sciences, University Park, The University of Nottingham, Nottingham, NG7 2RD, UK
| | - Nigel P Minton
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, Centre for Biomolecular Sciences, University Park, The University of Nottingham, Nottingham, NG7 2RD, UK
| | - Naglis Malys
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, Centre for Biomolecular Sciences, University Park, The University of Nottingham, Nottingham, NG7 2RD, UK.
| |
Collapse
|
34
|
Heinrich D, Raberg M, Steinbüchel A. Studies on the aerobic utilization of synthesis gas (syngas) by wild type and recombinant strains of Ralstonia eutropha H16. Microb Biotechnol 2017; 11:647-656. [PMID: 29027357 PMCID: PMC6011924 DOI: 10.1111/1751-7915.12873] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 09/18/2017] [Accepted: 09/18/2017] [Indexed: 01/11/2023] Open
Abstract
The biotechnical platform strain Ralstonia eutropha H16 was genetically engineered to express a cox subcluster of the carboxydotrophic Oligotropha carboxidovoransOM5, including (i) the structural genes coxM, -S and -L, coding for an aerobic carbon monoxide dehydrogenase (CODH) and (ii) the genes coxD, -E, -F and -G, essential for the maturation of CODH. The coxOc genes expressed under control of the CO2 -inducible promoter PL enabled R. eutropha to oxidize CO to CO2 for the use as carbon source, as demonstrated by 13 CO experiments, but the recombinant strains remained dependent on H2 as external energy supply. Therefore, a synthetic metabolism, which could be described as 'carboxyhydrogenotrophic', was established in R. eutropha. With this extension of the bacterium's substrate range, growth in CO-, H2 - and CO2 -containing artificial synthesis gas atmosphere was enhanced, and poly(3-hydroxybutyrate) synthesis was increased by more than 20%.
Collapse
Affiliation(s)
- Daniel Heinrich
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, Münster, Germany
| | - Matthias Raberg
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, Münster, Germany
| | - Alexander Steinbüchel
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, Münster, Germany.,Environmental Sciences Department, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
35
|
Nagao H, Nishizawa H, Bamba T, Nakayama Y, Isozumi N, Nagamori S, Kanai Y, Tanaka Y, Kita S, Fukuda S, Funahashi T, Maeda N, Fukusaki E, Shimomura I. Increased Dynamics of Tricarboxylic Acid Cycle and Glutamate Synthesis in Obese Adipose Tissue: IN VIVO METABOLIC TURNOVER ANALYSIS. J Biol Chem 2017; 292:4469-4483. [PMID: 28119455 DOI: 10.1074/jbc.m116.770172] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/06/2017] [Indexed: 01/20/2023] Open
Abstract
Obesity is closely associated with various metabolic disorders. However, little is known about abnormalities in the metabolic change of obese adipose tissue. Here we use static metabolic analysis and in vivo metabolic turnover analysis to assess metabolic dynamics in obese mice. The static metabolic analyses showed that glutamate and constitutive metabolites of the TCA cycle were increased in the white adipose tissue (WAT) of ob/ob and diet-induced obesity mice but not in the liver or skeletal muscle of these obese mice. Moreover, in vivo metabolic turnover analyses demonstrated that these glucose-derived metabolites were dynamically and specifically produced in obese WAT compared with lean WAT. Glutamate rise in obese WAT was associated with down-regulation of glutamate aspartate transporter (GLAST), a major glutamate transporter for adipocytes, and low uptake of glutamate into adipose tissue. In adipocytes, glutamate treatment reduced adiponectin secretion and insulin-mediated glucose uptake and phosphorylation of Akt. These data suggest that a high intra-adipocyte glutamate level potentially relates to adipocyte dysfunction in obesity. This study provides novel insights into metabolic dysfunction in obesity through comprehensive application of in vivo metabolic turnover analysis in two obese animal models.
Collapse
Affiliation(s)
| | | | - Takeshi Bamba
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yasumune Nakayama
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | | | | | | | | | - Shunbun Kita
- From the Departments of Metabolic Medicine.,Metabolism and Atherosclerosis, Graduate School of Medicine, and
| | | | - Tohru Funahashi
- From the Departments of Metabolic Medicine.,Metabolism and Atherosclerosis, Graduate School of Medicine, and
| | - Norikazu Maeda
- From the Departments of Metabolic Medicine.,Metabolism and Atherosclerosis, Graduate School of Medicine, and
| | - Eiichiro Fukusaki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | | |
Collapse
|
36
|
Satagopan S, Tabita FR. RubisCO selection using the vigorously aerobic and metabolically versatile bacterium Ralstonia eutropha. FEBS J 2016; 283:2869-80. [PMID: 27261087 DOI: 10.1111/febs.13774] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 05/06/2016] [Accepted: 06/03/2016] [Indexed: 11/29/2022]
Abstract
UNLABELLED Recapturing atmospheric CO2 is key to reducing global warming and increasing biological carbon availability. Ralstonia eutropha is a biotechnologically useful aerobic bacterium that uses the Calvin-Benson-Bassham (CBB) cycle and the enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) for CO2 utilization, suggesting that it may be a useful host to bioselect RubisCO molecules with improved CO2 -capture capabilities. A host strain of R. eutropha was constructed for this purpose after deleting endogenous genes encoding two related RubisCOs. This strain could be complemented for CO2 -dependent growth by introducing native or heterologous RubisCO genes. Mutagenesis and suppressor selection identified amino acid substitutions in a hydrophobic region that specifically influences RubisCO's interaction with its substrates, particularly O2 , which competes with CO2 at the active site. Unlike most RubisCOs, the R. eutropha enzyme has evolved to retain optimal CO2 -fixation rates in a fast-growing host, despite the presence of high levels of competing O2 . Yet its structure-function properties resemble those of several commonly found RubisCOs, including the higher plant enzymes, allowing strategies to engineer analogous enzymes. Because R. eutropha can be cultured rapidly under harsh environmental conditions (e.g., with toxic industrial flue gas), in the presence of near saturation levels of oxygen, artificial selection and directed evolution studies in this organism could potentially impact efforts toward improving RubisCO-dependent biological CO2 utilization in aerobic environments. ENZYMES d-ribulose 1,5-bisphosphate carboxylase/oxygenase, EC 4.1.1.39; phosphoribulokinase, EC 2.7.1.19.
Collapse
Affiliation(s)
- Sriram Satagopan
- Department of Microbiology, The Ohio State University, Columbus, OH, USA
| | - F Robert Tabita
- Department of Microbiology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
37
|
Magomedova Z, Grecu A, Sensen CW, Schwab H, Heidinger P. Characterization of two novel alcohol short-chain dehydrogenases/reductases from Ralstonia eutropha H16 capable of stereoselective conversion of bulky substrates. J Biotechnol 2016; 221:78-90. [DOI: 10.1016/j.jbiotec.2016.01.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 01/20/2016] [Accepted: 01/21/2016] [Indexed: 12/19/2022]
|