1
|
Wayment-Steele HK, Otten R, Pitsawong W, Ojoawo AM, Glaser A, Calderone LA, Kern D. The conformational landscape of fold-switcher KaiB is tuned to the circadian rhythm timescale. Proc Natl Acad Sci U S A 2024; 121:e2412293121. [PMID: 39475637 PMCID: PMC11551320 DOI: 10.1073/pnas.2412293121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/02/2024] [Indexed: 11/06/2024] Open
Abstract
How can a single protein domain encode a conformational landscape with multiple stably folded states, and how do those states interconvert? Here, we use real-time and relaxation-dispersion NMR to characterize the conformational landscape of the circadian rhythm protein KaiB from Rhodobacter sphaeroides. Unique among known natural metamorphic proteins, this KaiB variant spontaneously interconverts between two monomeric states: the "Ground" and "Fold-switched" (FS) states. KaiB in its FS state interacts with multiple binding partners, including the central KaiC protein, to regulate circadian rhythms. We find that KaiB itself takes hours to interconvert between the Ground and FS state, underscoring the ability of a single-sequence to encode the slow process needed for function. We reveal the rate-limiting step between the Ground and FS state is the cis-trans isomerization of three prolines in the fold-switching region by demonstrating interconversion acceleration by the prolyl isomerase Cyclophilin A. The interconversion proceeds through a "partially disordered" (PD) state, where the C-terminal half becomes disordered while the N-terminal half remains stably folded. We found two additional properties of KaiB's landscape. First, the Ground state experiences cold denaturation: At 4 °C, the PD state becomes the majorly populated state. Second, the Ground state exchanges with a fourth state, the "Enigma" state, on the millisecond-timescale. We combine AlphaFold2-based predictions and NMR chemical shift predictions to predict this Enigma state is a beta-strand register shift that relieves buried charged residues, and support this structure experimentally. These results provide mechanistic insight into how evolution can design a single-sequence that achieves specific timing needed for its function.
Collapse
Affiliation(s)
| | - Renee Otten
- Department of Biochemistry, Brandeis University, Waltham, MA02453
- HHMI, Waltham, MA02453
| | - Warintra Pitsawong
- Department of Biochemistry, Brandeis University, Waltham, MA02453
- HHMI, Waltham, MA02453
| | - Adedolapo M. Ojoawo
- Department of Biochemistry, Brandeis University, Waltham, MA02453
- HHMI, Waltham, MA02453
| | - Andrew Glaser
- Department of Biochemistry, Brandeis University, Waltham, MA02453
- HHMI, Waltham, MA02453
| | - Logan A. Calderone
- Department of Biochemistry, Brandeis University, Waltham, MA02453
- HHMI, Waltham, MA02453
| | - Dorothee Kern
- Department of Biochemistry, Brandeis University, Waltham, MA02453
- HHMI, Waltham, MA02453
| |
Collapse
|
2
|
Kubyshkin V, Rubini M. Proline Analogues. Chem Rev 2024; 124:8130-8232. [PMID: 38941181 DOI: 10.1021/acs.chemrev.4c00007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Within the canonical repertoire of the amino acid involved in protein biogenesis, proline plays a unique role as an amino acid presenting a modified backbone rather than a side-chain. Chemical structures that mimic proline but introduce changes into its specific molecular features are defined as proline analogues. This review article summarizes the existing chemical, physicochemical, and biochemical knowledge about this peculiar family of structures. We group proline analogues from the following compounds: substituted prolines, unsaturated and fused structures, ring size homologues, heterocyclic, e.g., pseudoproline, and bridged proline-resembling structures. We overview (1) the occurrence of proline analogues in nature and their chemical synthesis, (2) physicochemical properties including ring conformation and cis/trans amide isomerization, (3) use in commercial drugs such as nirmatrelvir recently approved against COVID-19, (4) peptide and protein synthesis involving proline analogues, (5) specific opportunities created in peptide engineering, and (6) cases of protein engineering with the analogues. The review aims to provide a summary to anyone interested in using proline analogues in systems ranging from specific biochemical setups to complex biological systems.
Collapse
Affiliation(s)
| | - Marina Rubini
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
3
|
Wayment-Steele HK, Otten R, Pitsawong W, Ojoawo AM, Glaser A, Calderone LA, Kern D. The conformational landscape of fold-switcher KaiB is tuned to the circadian rhythm timescale. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.03.597139. [PMID: 38895306 PMCID: PMC11185700 DOI: 10.1101/2024.06.03.597139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
How can a single protein domain encode a conformational landscape with multiple stably-folded states, and how do those states interconvert? Here, we use real-time and relaxation-dispersion NMR to characterize the conformational landscape of the circadian rhythm protein KaiB from Rhodobacter sphaeroides. Unique among known natural metamorphic proteins, this KaiB variant spontaneously interconverts between two monomeric states: the "Ground" and "Fold-switched" (FS) state. KaiB in its FS state interacts with multiple binding partners, including the central KaiC protein, to regulate circadian rhythms. We find that KaiB itself takes hours to interconvert between the Ground and FS state, underscoring the ability of a single sequence to encode the slow process needed for function. We reveal the rate-limiting step between the Ground and FS state is the cis-trans isomerization of three prolines in the fold-switching region by demonstrating interconversion acceleration by the prolyl isomerase CypA. The interconversion proceeds through a "partially disordered" (PD) state, where the C-terminal half becomes disordered while the N-terminal half remains stably folded. We discovered two additional properties of KaiB's landscape. Firstly, the Ground state experiences cold denaturation: at 4°C, the PD state becomes the majorly populated state. Secondly, the Ground state exchanges with a fourth state, the "Enigma" state, on the millisecond timescale. We combine AlphaFold2-based predictions and NMR chemical shift predictions to predict this "Enigma" state is a beta-strand register shift that eases buried charged residues, and support this structure experimentally. These results provide mechanistic insight in how evolution can design a single sequence that achieves specific timing needed for its function.
Collapse
Affiliation(s)
- Hannah K Wayment-Steele
- Department of Biochemistry, Brandeis University and Howard Hughes Medical Institute, Waltham, MA, USA
| | - Renee Otten
- Department of Biochemistry, Brandeis University and Howard Hughes Medical Institute, Waltham, MA, USA
- Present address: Treeline Biosciences, Watertown, MA, USA
| | - Warintra Pitsawong
- Department of Biochemistry, Brandeis University and Howard Hughes Medical Institute, Waltham, MA, USA
- Present address: Biomolecular Discovery, Relay Therapeutics, Cambridge, MA, USA
| | - Adedolapo M Ojoawo
- Department of Biochemistry, Brandeis University and Howard Hughes Medical Institute, Waltham, MA, USA
| | - Andrew Glaser
- Department of Biochemistry, Brandeis University and Howard Hughes Medical Institute, Waltham, MA, USA
| | - Logan A Calderone
- Department of Biochemistry, Brandeis University and Howard Hughes Medical Institute, Waltham, MA, USA
| | - Dorothee Kern
- Department of Biochemistry, Brandeis University and Howard Hughes Medical Institute, Waltham, MA, USA
| |
Collapse
|
4
|
Kienlein M, Zacharias M, Reif MM. Comprehensive Analysis of Coupled Proline Cis-Trans States in Bradykinin Using ωBP-REMD Simulations. J Chem Theory Comput 2024; 20:2643-2654. [PMID: 38465868 DOI: 10.1021/acs.jctc.3c01356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
It is well-known that proline (Pro) cis-trans isomerization plays a decisive role in the folding and stabilization of proteins. The conformational coupling between isomerization states of different Pro residues in proteins during conformational adaptation processes is not well understood. In the present work, we investigate the coupled cis-trans isomerization of three Pro residues using bradykinin (BK), a partially unstructured nonapeptide hormone, as a model system. We use a recently developed enhanced-sampling molecular dynamics method (ω-bias potential replica exchange molecular dynamics; ωBP-REMD) that allows us to exhaustively sample all combinations of Pro isomer states and obtain converged probability densities of all eight state combinations within 885 ns ωBP-REMD simulations. In agreement with experiment, the all-trans state is seen to be the preferred isomer of zwitterionic aqueous BK. In about a third of its structures, this state presents the characteristic C-terminal β-turn conformation; however, other isomer combinations also contribute significantly to the structural ensemble. Unbiased probabilities can be projected onto the peptide bond dihedral angles of the three Pro residues. This unveils the interdependence of the individual Pro isomerization states, i.e., a possible coupling of the different Pro isomers. The cis/trans equilibrium of a Pro residue can change by up to 2.5 kcal·mol-1, depending on the isomerization state of other Pro residues. For example, for Pro7, the simulations indicate that its cis state becomes favored compared to its trans state when Pro2 is switched from the trans state to the cis state. Our findings demonstrate the efficiency of the ωBP-REMD methodology and suggest that the coupling of Pro isomerization states may play an even more decisive role in larger folded proteins subject to more conformational restraints.
Collapse
Affiliation(s)
- Maximilian Kienlein
- Center for Functional Protein Assemblies (CPA), Physics Department, Chair of Theoretical Biophysics (T38), Technical University of Munich, Ernst-Otto-Fischer-Str. 8, 85748 Garching, Germany
| | - Martin Zacharias
- Center for Functional Protein Assemblies (CPA), Physics Department, Chair of Theoretical Biophysics (T38), Technical University of Munich, Ernst-Otto-Fischer-Str. 8, 85748 Garching, Germany
| | - Maria M Reif
- Center for Functional Protein Assemblies (CPA), Physics Department, Chair of Theoretical Biophysics (T38), Technical University of Munich, Ernst-Otto-Fischer-Str. 8, 85748 Garching, Germany
| |
Collapse
|
5
|
Loughlin JO, Zinovjev K, Napolitano S, van der Kamp M, Rubini M. 4-Thiaproline accelerates the slow folding phase of proteins containing cis prolines in the native state by two orders of magnitude. Protein Sci 2024; 33:e4877. [PMID: 38115231 PMCID: PMC10804670 DOI: 10.1002/pro.4877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/21/2023]
Abstract
The cis/trans isomerization of peptidyl-prolyl peptide bonds is often the bottleneck of the refolding reaction for proteins containing cis proline residues in the native state. Proline (Pro) analogues, especially C4-substituted fluoroprolines, have been widely used in protein engineering to enhance the thermodynamic stability of peptides and proteins and to investigate folding kinetics. 4-thiaproline (Thp) has been shown to bias the ring pucker of Pro, to increase the cis population percentage of model peptides in comparison to Pro, and to diminish the activation energy barrier for the cis/trans isomerization reaction. Despite its intriguing properties, Thp has been seldom incorporated into proteins. Moreover, the impact of Thp on the folding kinetics of globular proteins has never been reported. In this study, we show that upon incorporation of Thp at cisPro76 into the thioredoxin variant Trx1P the half-life of the refolding reaction decreased from ~2 h to ~35 s. A dramatic acceleration of the refolding rate could be observed also for the protein pseudo wild-type barstar upon replacement of cisPro48 with Thp. Quantum chemical calculations suggested that the replacement of the Cγ H2 group by a sulfur atom in the pyrrolidine ring, might lower the barrier for cis/trans rotation due to a weakened peptide bond. The protein variants retained their thermodynamic stability upon incorporation of Thp, while the catalytic and enzymatic activities of the modified Trx1P remained unchanged. Our results show that the Pro isostere Thp might accelerate the rate of the slow refolding reaction for proteins containing cis proline residues in the native state, independent from the local structural environment.
Collapse
Affiliation(s)
| | - Kirill Zinovjev
- School of Biochemistry, University of BristolBristolUK
- Department of Physical ChemistryUniversity of ValenciaValenciaSpain
| | - Silvia Napolitano
- Department of Molecular Biology and BiophysicsETH ZürichZürichSwitzerland
| | | | - Marina Rubini
- School of Chemistry, University College Dublin, BelfieldDublin 4Ireland
| |
Collapse
|
6
|
Kienlein M, Zacharias M, Reif MM. Efficient and accurate calculation of proline cis/trans isomerization free energies from Hamiltonian replica exchange molecular dynamics simulations. Structure 2023; 31:1473-1484.e6. [PMID: 37657438 DOI: 10.1016/j.str.2023.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/17/2023] [Accepted: 08/07/2023] [Indexed: 09/03/2023]
Abstract
Proline cis/trans isomerization plays an important role in many biological processes but occurs on time scales not accessible to brute-force molecular dynamics (MD) simulations. We have designed a new Hamiltonian replica exchange scheme, ω-bias potential replica exchange molecular dynamics (ωBP-REMD), to efficiently and accurately calculate proline cis/trans isomerization free energies. ωBP-REMD is applied to various proline-containing tripeptides and a biologically important proline residue in the N2-domain of the gene-3-protein of phage fd in the wildtype and mutant variants of the protein. Excellent cis/trans transition rates are obtained. Reweighting of the sampled probability distribution along the peptide bond dihedral angle allows construction of the corresponding free-energy profile and calculation of the cis/trans isomerization free energy with high statistical precision. Very good agreement with experimental data is obtained. ωBP-REMD outperforms standard umbrella sampling in terms of convergence and agreement with experiment and strongly reduces perturbation of the local structure near the proline residue.
Collapse
Affiliation(s)
- Maximilian Kienlein
- Center for Functional Protein Assemblies (CPA), Physics Department, Chair of Theoretical Biophysics (T38), Technical University of Munich, Ernst-Otto-Fischer-Str. 8, 85748 Garching, Germany
| | - Martin Zacharias
- Center for Functional Protein Assemblies (CPA), Physics Department, Chair of Theoretical Biophysics (T38), Technical University of Munich, Ernst-Otto-Fischer-Str. 8, 85748 Garching, Germany
| | - Maria M Reif
- Center for Functional Protein Assemblies (CPA), Physics Department, Chair of Theoretical Biophysics (T38), Technical University of Munich, Ernst-Otto-Fischer-Str. 8, 85748 Garching, Germany.
| |
Collapse
|
7
|
Kaushik A, Udgaonkar JB. Replacement of the native cis prolines by alanine leads to simplification of the complex folding mechanism of a small globular protein. Biophys J 2023; 122:3894-3908. [PMID: 37596784 PMCID: PMC10560683 DOI: 10.1016/j.bpj.2023.08.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/08/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023] Open
Abstract
The folding mechanism of MNEI, a single-chain variant of naturally occurring double-chain monellin, is complex, with multiple parallel refolding channels. To determine whether its folding energy landscape could be simplified, the two native cis-prolines, Pro41 and Pro93, were mutated, singly and together, to Ala. The stability of P93A was the same as that of the wild-type protein, pWT; however, P41A and P41AP93A were destabilized by ∼0.9 kcal mol-1. The effects of the mutations on the very fast, fast, slow, and very slow phases of folding were studied. They showed that heterogeneity in the unfolded state arises due to cis to trans isomerization of the Gly92-Pro93 peptide bond. The Pro41 to Ala mutation abolished the very slow phase of folding, whereas surprisingly, the Pro93 to Ala mutation abolished the very fast phase of folding. Double-jump, interrupted folding experiments indicated that two sequential trans to cis proline isomerization steps, of the Gly92-Pro93 peptide bond followed by the Arg40-Pro41 peptide bond, lead to the formation of the native state. They also revealed the accumulation of a late native-like intermediate, N∗, which differs from the native state in the isomeric status of the Arg40-Pro41 bond, as well as in a few tertiary contacts as monitored by near-UV CD measurements. The Pro to Ala mutations not only eliminated the cis to trans Pro isomerization reaction in the unfolded state, but also the two trans to cis Pro isomerization reactions during folding. By doing so, and by differentially affecting the relative stabilities of folding intermediates, the mutations resulted in a simplification of the folding mechanism. The two Pro to Ala mutations together accelerate folding to such an extent that the native state forms more than 1000-fold faster than in the case of pWT.
Collapse
Affiliation(s)
- Anushka Kaushik
- Indian Institute of Science Education and Research, Pune, India
| | - Jayant B Udgaonkar
- Indian Institute of Science Education and Research, Pune, India; National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India.
| |
Collapse
|
8
|
Hoang T, Jeong C, Jang SH, Lee C. Tyr76 is essential for the cold adaptation of a class II glutaredoxin 4 with a heat-labile structure from the Arctic bacterium Sphingomonas sp. FEBS Open Bio 2023; 13:500-510. [PMID: 36680400 PMCID: PMC9989929 DOI: 10.1002/2211-5463.13560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/12/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023] Open
Abstract
Glutaredoxins (Grxs) are small proteins that share a well-conserved thioredoxin (Trx)-fold and participate in many biological processes. This study examined the cold adaptation mechanism of a Fe-S cluster binding class II Grx4 (SpGrx4) from the psychrophilic Arctic bacterium Sphingomonas sp. PAMC 26621. Three polar residues close to the cis-proline residue (P73) of SpGrx4 form a hydrogen bond network (Q74-S67-Y76) with the cis-proline loop main chain. The hydroxyl group of S67 or Y76 or both is replaced in similar Grxs depending on the temperature of the habitat. Mutants with reduced hydrogen bonds (S67A, Q74A, Y76F, and S67A/Y76W) were more susceptible to urea-induced unfolding and more flexible than the wild-type (WT). By contrast, Y76W, with a bulky indole group, was the most stable. These mutants showed higher melting temperatures than WT as a consequence of increased hydrophobic interactions. These results suggest that the tyrosine residue, Y76, is preferred for the cold adaptation of SpGrx4 with a heat-labile structure despite the rigid cis-proline loop, due to hydrogen bond formation. An aromatic residue on β3 (cis-proline plus3) modulates the stability-flexibility of the cis-proline loop for temperature adaptation of prokaryotic class II Grx4 members via hydrogen bonds and hydrophobic interactions.
Collapse
Affiliation(s)
- Trang Hoang
- Department of Biomedical Science and Center for Bio-Nanomaterials, Daegu University, Gyeongsan, South Korea
| | - ChanSu Jeong
- Department of Biomedical Science and Center for Bio-Nanomaterials, Daegu University, Gyeongsan, South Korea
| | - Sei-Heon Jang
- Department of Biomedical Science and Center for Bio-Nanomaterials, Daegu University, Gyeongsan, South Korea
| | - ChangWoo Lee
- Department of Biomedical Science and Center for Bio-Nanomaterials, Daegu University, Gyeongsan, South Korea
| |
Collapse
|
9
|
FK506-Binding Protein 2 Participates in Proinsulin Folding. Biomolecules 2023; 13:biom13010152. [PMID: 36671537 PMCID: PMC9855983 DOI: 10.3390/biom13010152] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/15/2023] Open
Abstract
Apart from chaperoning, disulfide bond formation, and downstream processing, the molecular sequence of proinsulin folding is not completely understood. Proinsulin requires proline isomerization for correct folding. Since FK506-binding protein 2 (FKBP2) is an ER-resident proline isomerase, we hypothesized that FKBP2 contributes to proinsulin folding. We found that FKBP2 co-immunoprecipitated with proinsulin and its chaperone GRP94 and that inhibition of FKBP2 expression increased proinsulin turnover with reduced intracellular proinsulin and insulin levels. This phenotype was accompanied by an increased proinsulin secretion and the formation of proinsulin high-molecular-weight complexes, a sign of proinsulin misfolding. FKBP2 knockout in pancreatic β-cells increased apoptosis without detectable up-regulation of ER stress response genes. Interestingly, FKBP2 mRNA was overexpressed in β-cells from pancreatic islets of T2D patients. Based on molecular modeling and an in vitro enzymatic assay, we suggest that proline at position 28 of the proinsulin B-chain (P28) is the substrate of FKBP2's isomerization activity. We propose that this isomerization step catalyzed by FKBP2 is an essential sequence required for correct proinsulin folding.
Collapse
|
10
|
Maass T, Westermann LT, Creutznacher R, Mallagaray A, Dülfer J, Uetrecht C, Peters T. Assignment of Ala, Ile, Leu proS, Met, and Val proS methyl groups of the protruding domain of murine norovirus capsid protein VP1 using methyl-methyl NOEs, site directed mutagenesis, and pseudocontact shifts. BIOMOLECULAR NMR ASSIGNMENTS 2022; 16:97-107. [PMID: 35050443 PMCID: PMC9068638 DOI: 10.1007/s12104-022-10066-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 01/12/2022] [Indexed: 05/14/2023]
Abstract
The protruding domain (P-domain) of the murine norovirus (MNV) capsid protein VP1 is essential for infection. It mediates receptor binding and attachment of neutralizing antibodies. Protein NMR studies into interactions of the P-domain with ligands will yield insights not easily available from other biophysical techniques and will extend our understanding of MNV attachment to host cells. Such studies require at least partial NMR assignments. Here, we describe the assignment of about 70% of the Ala, Ile, LeuproS, Met, and ValproS methyl groups. An unfavorable distribution of methyl group resonance signals prevents complete assignment based exclusively on 4D HMQC-NOESY-HMQC experiments, yielding assignment of only 55 out of 100 methyl groups. Therefore, we created point mutants and measured pseudo contact shifts, extending and validating assignments based on methyl-methyl NOEs. Of note, the P-domains are present in two different forms caused by an approximate equal distribution of trans- and cis-configured proline residues in position 361.
Collapse
Affiliation(s)
- Thorben Maass
- Center of Structural and Cell Biology in Medicine (CSCM), Institute of Chemistry and Metabolomics, University of Luebeck, Ratzeburger Allee 160, 23562, Luebeck, Germany
| | - Leon Torben Westermann
- Center of Structural and Cell Biology in Medicine (CSCM), Institute of Chemistry and Metabolomics, University of Luebeck, Ratzeburger Allee 160, 23562, Luebeck, Germany
| | - Robert Creutznacher
- Center of Structural and Cell Biology in Medicine (CSCM), Institute of Chemistry and Metabolomics, University of Luebeck, Ratzeburger Allee 160, 23562, Luebeck, Germany
| | - Alvaro Mallagaray
- Center of Structural and Cell Biology in Medicine (CSCM), Institute of Chemistry and Metabolomics, University of Luebeck, Ratzeburger Allee 160, 23562, Luebeck, Germany
| | - Jasmin Dülfer
- Leibniz Institute for Experimental Virology (HPI), 20251, Hamburg, Germany
| | - Charlotte Uetrecht
- Leibniz Institute for Experimental Virology (HPI), 20251, Hamburg, Germany
- School of Life Sciences, University of Siegen, 57076 Siegen & Centre for Structural Systems Biology (CSSB), & Deutsches Elektronensynchrotron (DESY), 22607 Hamburg & European XFEL GmbH, 22869, Schenefeld, Germany
| | - Thomas Peters
- Center of Structural and Cell Biology in Medicine (CSCM), Institute of Chemistry and Metabolomics, University of Luebeck, Ratzeburger Allee 160, 23562, Luebeck, Germany.
| |
Collapse
|
11
|
Napolitano S, Pokharna A, Glockshuber R, Gossert AD. The trans-to-cis proline isomerization in E. coli Trx folding is accelerated by trans prolines. Biophys J 2021; 120:5207-5218. [PMID: 34736898 DOI: 10.1016/j.bpj.2021.10.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/17/2021] [Accepted: 10/27/2021] [Indexed: 10/19/2022] Open
Abstract
The conserved fold of thioredoxin (Trx)-like thiol/disulfide oxidoreductases contains an invariant cis-proline residue (P76 in Escherichia coli Trx) that is essential for Trx function and that is responsible for the folding rate-limiting step. E. coli Trx contains four additional prolines, which are all in the trans conformation in the native state. Notably, a recent study revealed that replacement of all four trans prolines in Trx by alanines (Trx variant Trx1P) further slowed the rate-limiting step 25-fold, indicating that one or several of the four trans prolines accelerate the trans-to-cis transition of P76 in Trx wild-type (wt). Here, we characterized the folding kinetics of Trx variants containing cisP76 and one or several of the natural trans prolines of Trx wt with NMR spectroscopy. First, we demonstrate that the isomerization reaction in Trx1P is a pure two-state transition between two distinct tertiary structures, in which all observed NMR resonances changes follow the same first-order kinetics. Moreover, we show that trans-P68 is the critical residue responsible for the faster folding of wt Trx relative to the single-proline (P76) variant Trx1P, as the two-proline variant Trx2P(P76P68) already folds seven times faster than Trx1P. trans-P34 also accelerates trans-to-cis isomerization of P76, albeit to a smaller extent. Overall, the results demonstrate that trans prolines can significantly modulate the kinetics of rate-limiting trans-to-cis proline isomerization in protein folding. Finally, we discuss possible mechanisms of acceleration and the potential significance of a protein-internal folding acceleration mechanism for Trx in a living cell.
Collapse
Affiliation(s)
| | - Aditya Pokharna
- Institute of Molecular Biology and Biophysics, Zürich, Switzerland
| | - Rudi Glockshuber
- Institute of Molecular Biology and Biophysics, Zürich, Switzerland.
| | - Alvar D Gossert
- Institute of Molecular Biology and Biophysics, Zürich, Switzerland; Biomolecular NMR Spectroscopy Platform, Department of Biology, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
12
|
Mardirossian M, Rubini M, Adamo MFA, Scocchi M, Saviano M, Tossi A, Gennaro R, Caporale A. Natural and Synthetic Halogenated Amino Acids-Structural and Bioactive Features in Antimicrobial Peptides and Peptidomimetics. Molecules 2021; 26:7401. [PMID: 34885985 PMCID: PMC8659048 DOI: 10.3390/molecules26237401] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/16/2021] [Accepted: 11/26/2021] [Indexed: 11/17/2022] Open
Abstract
The 3D structure and surface characteristics of proteins and peptides are crucial for interactions with receptors or ligands and can be modified to some extent to modulate their biological roles and pharmacological activities. The introduction of halogen atoms on the side-chains of amino acids is a powerful tool for effecting this type of tuning, influencing both the physico-chemical and structural properties of the modified polypeptides, helping to first dissect and then rationally modify features that affect their mode of action. This review provides examples of the influence of different types of halogenation in amino acids that replace native residues in proteins and peptides. Examples of synthetic strategies for obtaining halogenated amino acids are also provided, focusing on some representative compounds and their biological effects. The role of halogenation in native and designed antimicrobial peptides (AMPs) and their mimetics is then discussed. These are in the spotlight for the development of new antimicrobial drugs to counter the rise of antibiotic-resistant pathogens. AMPs represent an interesting model to study the role that natural halogenation has on their mode of action and also to understand how artificially halogenated residues can be used to rationally modify and optimize AMPs for pharmaceutical purposes.
Collapse
Affiliation(s)
- Mario Mardirossian
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell’Ospitale, 1, 34125 Trieste, Italy
| | - Marina Rubini
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland;
| | - Mauro F. A. Adamo
- Department of Chemistry, Centre for Synthesis and Chemical Biology (CSCB), RCSI, 123 St. Stephens Green, Dublin 2, Ireland;
| | - Marco Scocchi
- Department of Life Sciences, University of Trieste, Via L. Giorgieri, 5, Q Building, 34127 Trieste, Italy; (M.S.); (A.T.); (R.G.)
| | - Michele Saviano
- Institute of Crystallography (IC), National Research Council (CNR), Via Amendola, 122, 70126 Bari, Italy;
| | - Alessandro Tossi
- Department of Life Sciences, University of Trieste, Via L. Giorgieri, 5, Q Building, 34127 Trieste, Italy; (M.S.); (A.T.); (R.G.)
| | - Renato Gennaro
- Department of Life Sciences, University of Trieste, Via L. Giorgieri, 5, Q Building, 34127 Trieste, Italy; (M.S.); (A.T.); (R.G.)
| | - Andrea Caporale
- Institute of Crystallography (IC), National Research Council (CNR), c/o Area Science Park, S.S. 14 Km 163.5, Basovizza, 34149 Trieste, Italy
| |
Collapse
|
13
|
O' Loughlin J, Napolitano S, Rubini M. Protein Design with Fluoroprolines: 4,4-Difluoroproline Does Not Eliminate the Rate-Limiting Step of Thioredoxin Folding. Chembiochem 2021; 22:3326-3332. [PMID: 34545985 PMCID: PMC9292674 DOI: 10.1002/cbic.202100418] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/20/2021] [Indexed: 01/08/2023]
Abstract
C4‐substituted fluoroprolines (4R)‐fluoroproline ((4R)‐Flp) and (4S)‐fluoroproline ((4S)‐Flp) have been used in protein engineering to enhance the thermodynamic stability of peptides and proteins. The electron‐withdrawing effect of fluorine can bias the pucker of the pyrrolidine ring, influence the conformational preference of the preceding peptide bond, and can accelerate the cis/trans prolyl peptide bond isomerisation by diminishing its double bond character. The role of 4,4‐difluoroproline (Dfp) in the acceleration of the refolding rate of globular proteins bearing a proline (Pro) residue in the cis conformation in the native state remains elusive. Moreover, the impact of Dfp on the thermodynamic stability and bioactivity of globular proteins has been seldom described. In this study, we show that the incorporation of Dfp caused a redox state dependent and position dependent destabilisation of the thioredoxin (Trx) fold, while the catalytic activities of the modified proteins remained unchanged. The Pro to Dfp substitution at the conserved cisPro76 in the thioredoxin variant Trx1P did not elicited acceleration of the rate‐limiting trans‐to‐cis isomerization of the Ile75‐Pro76 peptide bond. Our results show that pucker preferences in the context of a tertiary structure could play a major role in protein folding, thus overtaking the rules determined for cis/trans isomerisation barriers determined in model peptides.
Collapse
Affiliation(s)
- Jennie O' Loughlin
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Silvia Napolitano
- Department of Molecular Biology and Biophysics, ETH Zürich, Otto-Stern-Weg 5, 8093, Zürich, Switzerland
| | - Marina Rubini
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
14
|
Transmembrane protein rotaxanes reveal kinetic traps in the refolding of translocated substrates. Commun Biol 2020; 3:159. [PMID: 32246060 PMCID: PMC7125113 DOI: 10.1038/s42003-020-0840-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 02/20/2020] [Indexed: 01/22/2023] Open
Abstract
Understanding protein folding under conditions similar to those found in vivo remains challenging. Folding occurs mainly vectorially as a polypeptide emerges from the ribosome or from a membrane translocon. Protein folding during membrane translocation is particularly difficult to study. Here, we describe a single-molecule method to characterize the folded state of individual proteins after membrane translocation, by monitoring the ionic current passing through the pore. We tag both N and C termini of a model protein, thioredoxin, with biotinylated oligonucleotides. Under an electric potential, one of the oligonucleotides is pulled through a α-hemolysin nanopore driving the unfolding and translocation of the protein. We trap the protein in the nanopore as a rotaxane-like complex using streptavidin stoppers. The protein is subjected to cycles of unfolding-translocation-refolding switching the voltage polarity. We find that the refolding pathway after translocation is slower than in bulk solution due to the existence of kinetic traps. Feng et al address the technical challenge of monitoring the protein folding during membrane translocation. Using thioredoxin as a model and with electric potential driving its translocation through single a-hemolysin nanopore, they observe that after translocation, folding is slower than in bulk due to existence of kinetic traps.
Collapse
|
15
|
Napolitano S, Reber RJ, Rubini M, Glockshuber R. Functional analyses of ancestral thioredoxins provide insights into their evolutionary history. J Biol Chem 2019; 294:14105-14118. [PMID: 31366732 PMCID: PMC6755812 DOI: 10.1074/jbc.ra119.009718] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/29/2019] [Indexed: 12/24/2022] Open
Abstract
Thioredoxin (Trx) is a conserved, cytosolic reductase in all known organisms. The enzyme receives two electrons from NADPH via thioredoxin reductase (TrxR) and passes them on to multiple cellular reductases via disulfide exchange. Despite the ubiquity of thioredoxins in all taxa, little is known about the functions of resurrected ancestral thioredoxins in the context of a modern mesophilic organism. Here, we report on functional in vitro and in vivo analyses of seven resurrected Precambrian thioredoxins, dating back 1–4 billion years, in the Escherichia coli cytoplasm. Using synthetic gene constructs for recombinant expression of the ancestral enzymes, along with thermodynamic and kinetic assays, we show that all ancestral thioredoxins, as today's thioredoxins, exhibit strongly reducing redox potentials, suggesting that thioredoxins served as catalysts of cellular reduction reactions from the beginning of evolution, even before the oxygen catastrophe. A detailed, quantitative characterization of their interactions with the electron donor TrxR from Escherichia coli and the electron acceptor methionine sulfoxide reductase, also from E. coli, strongly hinted that thioredoxins and thioredoxin reductases co-evolved and that the promiscuity of thioredoxins toward downstream electron acceptors was maintained during evolution. In summary, our findings suggest that thioredoxins evolved high specificity for their sole electron donor TrxR while maintaining promiscuity to their multiple electron acceptors.
Collapse
Affiliation(s)
- Silvia Napolitano
- Institute of Molecular Biology and Biophysics, Department of Biology, Swiss Federal Institute of Technology Zurich, Otto-Stern-Weg 5, CH-8093 Zurich, Switzerland
| | - Robin J Reber
- Institute of Molecular Biology and Biophysics, Department of Biology, Swiss Federal Institute of Technology Zurich, Otto-Stern-Weg 5, CH-8093 Zurich, Switzerland
| | - Marina Rubini
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Rudi Glockshuber
- Institute of Molecular Biology and Biophysics, Department of Biology, Swiss Federal Institute of Technology Zurich, Otto-Stern-Weg 5, CH-8093 Zurich, Switzerland
| |
Collapse
|
16
|
Bayse CA, Pollard DB. Conformation dynamics of cyclic disulfides and selenosulfides in CXXC(U) (X = Gly, Ala) tetrapeptide redox motifs. J Pept Sci 2019; 25:e3160. [PMID: 30873692 DOI: 10.1002/psc.3160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/26/2019] [Accepted: 02/05/2019] [Indexed: 02/01/2023]
Abstract
Thioredoxin fold proteins often contain a Cys-(Xxx)n -Cys(Sec) or CXn C(U) motif, where the active cysteine (C) or selenocysteine (U) is bridged by X residues, which vary with protein function. The effect of the X residues on the conformation space of the oxidized disulfide and selenosulfide forms of the CXXC(U) motif has been investigated using molecular dynamics (MD) and density functional theory. Multi-microsecond-length MD simulations of the CGGC, CGAC, and CAGC cyclic peptides show that CGGC rings readily exchange between several conformations over the course of the simulation, but steric interactions with the methyl group of Ala limit the conformation space available to the cyclic peptide, especially for CGAC. The potential for the motif to be reduced, as measured by the energy of the lowest unoccupied molecular orbitals, is dependent upon the ring conformation. These results suggest that control of available conformations by the bridging residues and the protein tertiary structure may be important for defining the function of the CXXC motif. Theoretical 77 Se chemical shifts of the selenosulfide moiety are dependent upon the conformation and/or intramolecular Se···O interactions with the backbone carbonyl group of the C-terminal U residue.
Collapse
Affiliation(s)
- Craig A Bayse
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA, 23529
| | - Deanna B Pollard
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA, 23529
| |
Collapse
|
17
|
Characterization of TrxC, an Atypical Thioredoxin Exclusively Present in Cyanobacteria. Antioxidants (Basel) 2018; 7:antiox7110164. [PMID: 30428557 PMCID: PMC6262485 DOI: 10.3390/antiox7110164] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/08/2018] [Accepted: 11/11/2018] [Indexed: 12/15/2022] Open
Abstract
Cyanobacteria form a diverse group of oxygenic photosynthetic prokaryotes considered to be the antecessor of plant chloroplast. They contain four different thioredoxins isoforms, three of them corresponding to m, x and y type present in plant chloroplast, while the fourth one (named TrxC) is exclusively found in cyanobacteria. TrxC has a modified active site (WCGLC) instead of the canonical (WCGPC) present in most thioredoxins. We have purified it and assayed its activity but surprisingly TrxC lacked all the classical activities, such as insulin precipitation or activation of the fructose-1,6-bisphosphatase. Mutants lacking trxC or over-expressing it were generated in the model cyanobacterium Synechocystis sp. PCC 6803 and their phenotypes have been analyzed. The ΔtrxC mutant grew at similar rates to WT in all conditions tested although it showed an increased carotenoid content especially under low carbon conditions. Overexpression strains showed reduced growth under the same conditions and accumulated lower amounts of carotenoids. They also showed lower oxygen evolution rates at high light but higher Fv’/Fm’ and Non-photochemical-quenching (NPQ) in dark adapted cells, suggesting a more oxidized plastoquinone pool. All these data suggest that TrxC might have a role in regulating photosynthetic adaptation to low carbon and/or high light conditions.
Collapse
|
18
|
Lee S, Wang C, Liu H, Xiong J, Jiji R, Hong X, Yan X, Chen Z, Hammel M, Wang Y, Dai S, Wang J, Jiang C, Zhang G. Hydrogen bonds are a primary driving force for de novo protein folding. Acta Crystallogr D Struct Biol 2017; 73:955-969. [PMID: 29199976 PMCID: PMC5713874 DOI: 10.1107/s2059798317015303] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 10/20/2017] [Indexed: 01/09/2023] Open
Abstract
The protein-folding mechanism remains a major puzzle in life science. Purified soluble activation-induced cytidine deaminase (AID) is one of the most difficult proteins to obtain. Starting from inclusion bodies containing a C-terminally truncated version of AID (residues 1-153; AID153), an optimized in vitro folding procedure was derived to obtain large amounts of AID153, which led to crystals with good quality and to final structural determination. Interestingly, it was found that the final refolding yield of the protein is proline residue-dependent. The difference in the distribution of cis and trans configurations of proline residues in the protein after complete denaturation is a major determining factor of the final yield. A point mutation of one of four proline residues to an asparagine led to a near-doubling of the yield of refolded protein after complete denaturation. It was concluded that the driving force behind protein folding could not overcome the cis-to-trans proline isomerization, or vice versa, during the protein-folding process. Furthermore, it was found that successful refolding of proteins optimally occurs at high pH values, which may mimic protein folding in vivo. It was found that high pH values could induce the polarization of peptide bonds, which may trigger the formation of protein secondary structures through hydrogen bonds. It is proposed that a hydrophobic environment coupled with negative charges is essential for protein folding. Combined with our earlier discoveries on protein-unfolding mechanisms, it is proposed that hydrogen bonds are a primary driving force for de novo protein folding.
Collapse
Affiliation(s)
- Schuyler Lee
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206, USA
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Denver, Aurora, CO 80206, USA
| | - Chao Wang
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206, USA
| | - Haolin Liu
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206, USA
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Denver, Aurora, CO 80206, USA
| | - Jian Xiong
- Department of Chemistry, University of Missouri, Columbus, Mississippi, USA
| | - Renee Jiji
- Department of Chemistry, University of Missouri, Columbus, Mississippi, USA
| | - Xia Hong
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206, USA
| | - Xiaoxue Yan
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206, USA
| | - Zhangguo Chen
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Denver, Aurora, CO 80206, USA
| | - Michal Hammel
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Yang Wang
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206, USA
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Denver, Aurora, CO 80206, USA
| | - Shaodong Dai
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206, USA
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Denver, Aurora, CO 80206, USA
| | - Jing Wang
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Denver, Aurora, CO 80206, USA
| | - Chengyu Jiang
- Department of Biochemistry and Molecular Biology, Peking Union Medical College, Beijing 100005, People’s Republic of China
| | - Gongyi Zhang
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206, USA
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Denver, Aurora, CO 80206, USA
| |
Collapse
|
19
|
Faure G, Ogurtsov AY, Shabalina SA, Koonin EV. Adaptation of mRNA structure to control protein folding. RNA Biol 2017; 14:1649-1654. [PMID: 28722509 DOI: 10.1080/15476286.2017.1349047] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Comparison of mRNA and protein structures shows that highly structured mRNAs typically encode compact protein domains suggesting that mRNA structure controls protein folding. This function is apparently performed by distinct structural elements in the mRNA, which implies 'fine tuning' of mRNA structure under selection for optimal protein folding. We find that, during evolution, changes in the mRNA folding energy follow amino acid replacements, reinforcing the notion of an intimate connection between the structures of a mRNA and the protein it encodes, and the double encoding of protein sequence and folding in the mRNA.
Collapse
Affiliation(s)
- Guilhem Faure
- a National Center for Biotechnology Information, National Library of Medicine , National Institutes of Health , Bethesda , MD , USA
| | - Aleksey Y Ogurtsov
- a National Center for Biotechnology Information, National Library of Medicine , National Institutes of Health , Bethesda , MD , USA
| | - Svetlana A Shabalina
- a National Center for Biotechnology Information, National Library of Medicine , National Institutes of Health , Bethesda , MD , USA
| | - Eugene V Koonin
- a National Center for Biotechnology Information, National Library of Medicine , National Institutes of Health , Bethesda , MD , USA
| |
Collapse
|
20
|
Singh MK, Manoj N. Structural role of a conserved active sitecisproline in theThermotoga maritimaacetyl esterase from the carbohydrate esterase family 7. Proteins 2017; 85:694-708. [DOI: 10.1002/prot.25249] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 12/17/2016] [Accepted: 01/04/2017] [Indexed: 01/24/2023]
Affiliation(s)
- Mrityunjay K. Singh
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences; Indian Institute of Technology Madras; Chennai 600036 Tamil Nadu India
| | - Narayanan Manoj
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences; Indian Institute of Technology Madras; Chennai 600036 Tamil Nadu India
| |
Collapse
|
21
|
Roderer D, Glockshuber R, Rubini M. Acceleration of the Rate-Limiting Step of Thioredoxin Folding by Replacement of its Conserved cis-Proline with (4 S)-Fluoroproline. Chembiochem 2015; 16:2162-6. [PMID: 26382254 DOI: 10.1002/cbic.201500342] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Indexed: 11/09/2022]
Abstract
The incorporation of the non-natural amino acids (4R)- and (4S)-fluoroproline (Flp) has been successfully used to improve protein stability, but little is known about their effect on protein folding kinetics. Here we analyzed the influence of (4R)- and (4S)-Flp on the rate-limiting trans-to-cis isomerization of the Ile75-Pro76 peptide bond in the folding of Escherichia coli thioredoxin (Trx). While (4R)-Flp at position 76 had essentially no effect on the isomerization rate in the context of the intact tertiary structure, (4S)-Flp accelerated the folding reaction ninefold. Similarly, tenfold faster trans-to-cis isomerization of Ile75-(4S)-Flp76 relative to Ile75-Pro76 was observed in the unfolded state of Trx. Our results show that the replacement of cis prolines by non-natural proline analogues can be used for modulating the folding rates of proteins with cis prolyl-peptide bonds in the native state.
Collapse
Affiliation(s)
- Daniel Roderer
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zürich, Otto-Stern-Weg 5, 8093, Zürich, Switzerland.,Max-Planck-Institute of Molecular Physiology, Department of Structural Biochemistry, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
| | - Rudi Glockshuber
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zürich, Otto-Stern-Weg 5, 8093, Zürich, Switzerland
| | - Marina Rubini
- Department of Organic Chemistry, University of Konstanz, Universitätsstrasse 10, 78464, Konstanz, Germany.
| |
Collapse
|