1
|
Kim T, Hearn C, Heidari M. Efficacy of Recombinant Marek's Disease Virus Vaccine 301B/1 Expressing Membrane-Anchored Chicken Interleukin-15. Avian Dis 2024; 68:117-128. [PMID: 38885053 DOI: 10.1637/aviandiseases-d-23-00068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 05/25/2024] [Indexed: 06/20/2024]
Abstract
Cytokines are co-administrated with vaccines or co-expressed in the vaccine virus genome to improve protective efficacy by stimulating immune responses. Using glycosylphosphatidylinositol (GPI) anchoring by attachment to the target cytokine, we constructed recombinant Marek's disease virus (MDV) vaccine strain 301B/1 (v301B/1-rtg-IL-15) that expresses chicken interleukin-15 (IL-15) as the membrane-bound form at the cell surface. We evaluated the vaccine efficacy of v301B/1-rtg-IL-15 given as a bivalent Marek's disease (MD) vaccine in combination with turkey herpesvirus (HVT) against a very virulent plus MDV strain 648A challenge. The efficacy was compared with that of conventional bivalent MD vaccine, as a mixture with HVT plus parental v301B/1 or v301B/1-IL-15, which expresses a natural form of IL-15. The membrane-bound IL-15 expression did not interfere with the virus growth of recombinant v301B/1-rtg-IL-15. However, the MD incidence in birds vaccinated with v301B/1-rtg-IL-15 was higher than that of birds given the conventional bivalent MD vaccine containing parental v301B/1 virus, although the v301B/1-rtg-IL-15 vaccinated group showed increased natural killer cell activation at day 5 postvaccination, the same day as challenge. Overall, the protection of v301B/1-rtg-IL-15 was not improved from that of v301B/1 against very virulent plus MDV challenge.
Collapse
Affiliation(s)
- Taejoong Kim
- Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture, Athens, GA 30605,
| | - Cari Hearn
- Avian Diseases and Oncology Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture, East Lansing, MI 48823
| | - Mohammad Heidari
- Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture, Athens, GA 30605
| |
Collapse
|
2
|
Wei L, Dong C, Zhu W, Wang BZ. mRNA Vaccine Nanoplatforms and Innate Immunity. Viruses 2024; 16:120. [PMID: 38257820 PMCID: PMC10820759 DOI: 10.3390/v16010120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
mRNA-based vaccine technology has been significantly developed and enhanced, particularly highlighted by the authorization of mRNA vaccines for addressing the COVID-19 pandemic. Various biomaterials are developed in nano-scales and applied as mRNA vaccine delivery platforms. However, how these mRNA nanoplatforms influence immune responses has not been thoroughly studied. Hence, we have reviewed the current understanding of various mRNA vaccine platforms. We discussed the possible pathways through which these platforms moderate the host's innate immunity and contribute to the development of adaptive immunity. We shed light on their development in reducing biotoxicity and enhancing antigen delivery efficiency. Beyond the built-in adjuvanticity of mRNA vaccines, we propose that supplementary adjuvants may be required to fine-tune and precisely control innate immunity and subsequent adaptive immune responses.
Collapse
Affiliation(s)
| | | | | | - Bao-Zhong Wang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; (L.W.); (C.D.); (W.Z.)
| |
Collapse
|
3
|
Dong C, Wang BZ. Engineered Nanoparticulate Vaccines to Combat Recurring and Pandemic Influenza Threats. ADVANCED NANOBIOMED RESEARCH 2022; 2:2100122. [PMID: 35754779 PMCID: PMC9231845 DOI: 10.1002/anbr.202100122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Reoccurring seasonal flu epidemics and occasional pandemics are among the most severe threats to public health. Current seasonal influenza vaccines provide limited protection against drifted circulating strains and no protection against influenza pandemics. Next-generation influenza vaccines, designated as universal influenza vaccines, should be safe, affordable, and elicit long-lasting cross-protective influenza immunity. Nanotechnology plays a critical role in the development of such novel vaccines. Engineered nanoparticles can incorporate multiple advantageous properties into the same nanoparticulate platforms to improve vaccine potency and breadth. These immunological properties include virus-like biomimicry, high antigen-load, controlled antigen release, targeted delivery, and induction of innate signaling pathways. Many nanoparticle influenza vaccines have shown promising results in generating potent and broadly protective immune responses. This review will summarize the necessity and characteristics of next-generation influenza vaccines and the immunological correlates of broad influenza immunity and focus on how cutting-edge nanoparticle technology contributes to such vaccine development. The review will give new insights into the rational design of nanoparticle universal vaccines to combat influenza epidemics and pandemics.
Collapse
Affiliation(s)
- Chunhong Dong
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, Atlanta, Georgia 30303, USA
| | - Bao-Zhong Wang
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, Atlanta, Georgia 30303, USA
| |
Collapse
|
4
|
Zhu W, Dong C, Wei L, Wang BZ. Promising Adjuvants and Platforms for Influenza Vaccine Development. Pharmaceutics 2021; 13:pharmaceutics13010068. [PMID: 33430259 PMCID: PMC7825707 DOI: 10.3390/pharmaceutics13010068] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 12/30/2020] [Accepted: 01/04/2021] [Indexed: 01/16/2023] Open
Abstract
Influenza is one of the major threats to public health. Current influenza vaccines cannot provide effective protection against drifted or shifted influenza strains. Researchers have considered two important strategies to develop novel influenza vaccines with improved immunogenicity and broader protective efficacy. One is applying fewer variable viral antigens, such as the haemagglutinin stalk domain. The other is including adjuvants in vaccine formulations. Adjuvants are promising and helpful boosters to promote more rapid and stronger immune responses with a dose-sparing effect. However, few adjuvants are currently licensed for human influenza vaccines, although many potential candidates are in different trials. While many advantages have been observed using adjuvants in influenza vaccine formulations, an improved understanding of the mechanisms underlying viral infection and vaccination-induced immune responses will help to develop new adjuvant candidates. In this review, we summarize the works related to adjuvants in influenza vaccine research that have been used in our studies and other laboratories. The review will provide perspectives for the utilization of adjuvants in developing next-generation and universal influenza vaccines.
Collapse
|
5
|
Cossette B, Kelly SH, Collier JH. Intranasal Subunit Vaccination Strategies Employing Nanomaterials and Biomaterials. ACS Biomater Sci Eng 2020; 7:1765-1779. [DOI: 10.1021/acsbiomaterials.0c01291] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Benjamin Cossette
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Durham, North Carolina 27708, United States
| | - Sean H. Kelly
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Durham, North Carolina 27708, United States
| | - Joel H. Collier
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Durham, North Carolina 27708, United States
| |
Collapse
|
6
|
Incorporating B cell activating factor (BAFF) into the membrane of rabies virus (RABV) particles improves the speed and magnitude of vaccine-induced antibody responses. PLoS Negl Trop Dis 2019; 13:e0007800. [PMID: 31725816 PMCID: PMC6855436 DOI: 10.1371/journal.pntd.0007800] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 09/20/2019] [Indexed: 12/25/2022] Open
Abstract
B cell activating factor (BAFF) is a member of the tumor necrosis factor (TNF) superfamily of cytokines that links innate with adaptive immunity. BAFF signals through receptors on B cells, making it an attractive molecule to potentiate vaccine-induced B cell responses. We hypothesized that a rabies virus (RABV)-based vaccine displaying both antigen and BAFF on the surface of the same virus particle would target antigen-specific B cells for activation and improve RABV-specific antibody responses. To test this hypothesis, we constructed a recombinant RABV-based vector expressing virus membrane-anchored murine BAFF (RABV-ED51-mBAFF). BAFF was incorporated into the RABV particle and determined to be biologically functional, as demonstrated by increased B cell survival of primary murine B cells treated ex-vivo with RABV-ED51-mBAFF. B cell survival was inhibited by pre-treating RABV-ED51-mBAFF with an antibody that blocks BAFF functions. RABV-ED51-mBAFF also activated primary murine B cells ex-vivo more effectively than RABV as shown by significant upregulation of CD69, CD40, and MHCII on the surface of infected B cells. In-vivo, RABV-ED51-mBAFF induced significantly faster and higher virus neutralizing antibody (VNA) titers than RABV while not adversely affecting the longevity of the vaccine-induced antibody response. Since BAFF was incorporated into the virus particle and genome replication was not required for BAFF expression in-vivo, we hypothesized that RABV-ED51-mBAFF would be effective as an inactivated vaccine. Mice immunized with 250 ng/mouse of β-propriolactone-inactivated RABV-ED51-mBAFF showed faster and higher anti-RABV VNA titers compared to mice immunized with inactivated RABV. Together, this model stands as a potential foundation for exploring other virus membrane-anchored molecular adjuvants to make safer, more effective inactivated RABV-based vaccines.
Collapse
|
7
|
Sequential immunizations with a panel of HIV-1 Env virus-like particles coach immune system to make broadly neutralizing antibodies. Sci Rep 2018; 8:7807. [PMID: 29773829 PMCID: PMC5958130 DOI: 10.1038/s41598-018-25960-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 03/26/2018] [Indexed: 12/24/2022] Open
Abstract
Broadly neutralizing antibodies (bnAbs) are correlated with passive HIV/SHIV protection and are desirable components of a HIV protective immunity. In the current study, we have designed a sequential-immunization strategy with a panel of envelope glycoprotein (Env)-enriched virus-like particles (VLPs) from various HIV-1 clades (A-E) to elicit bnAbs with high breadth and potency of neutralization in rabbits. We have compared this regimen with repetitive immunizations of individual Env (subtype B) VLPs or a mixture of various Env VLPs. Our results demonstrate that the sequential immunization group of animals induced significantly higher IgG endpoint titers against respective HIV Env (autologous) antigen than other control groups. Animals vaccinated sequentially showed an increase in the antibody endpoint titers and IgG antibody secreting cells (ASCs) against Con-S Env protein. Sequential immunizations with various Env VLPs promoted antibody avidity indices and enhanced bnAb responses against a panel of HIV pseudotyped virions including some of the tier 3 pseudostrains. Sequential immunizations with various VLPs displaying "native-like" HIV-1 Envs elicited bnAb responses with increased breadth and potency of neutralization.
Collapse
|
8
|
Gao Y, Wijewardhana C, Mann JFS. Virus-Like Particle, Liposome, and Polymeric Particle-Based Vaccines against HIV-1. Front Immunol 2018. [PMID: 29541072 PMCID: PMC5835502 DOI: 10.3389/fimmu.2018.00345] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
It is acknowledged that vaccines remain the best hope for eliminating the HIV-1 epidemic. However, the failure to produce effective vaccine immunogens and the inability of conventional delivery strategies to elicit the desired immune responses remains a central theme and has ultimately led to a significant roadblock in HIV vaccine development. Consequently, significant efforts have been applied to generate novel vaccine antigens and delivery agents, which mimic viral structures for optimal immune induction. Here, we review the latest developments that have occurred in the nanoparticle vaccine field, with special emphasis on strategies that are being utilized to attain highly immunogenic, systemic, and mucosal anti-HIV humoral and cellular immune responses. This includes the design of novel immunogens, the central role of antigen-presenting cells, delivery routes, and biodistribution of nanoparticles to lymph nodes. In particular, we will focus on virus-like-particle formulations and their preclinical uses within the HIV prophylactic vaccine setting.
Collapse
Affiliation(s)
- Yong Gao
- Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada
| | - Chanuka Wijewardhana
- Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada
| | - Jamie F S Mann
- Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada
| |
Collapse
|
9
|
Stable incorporation of GM-CSF into dissolvable microneedle patch improves skin vaccination against influenza. J Control Release 2018; 276:1-16. [PMID: 29496540 PMCID: PMC5967648 DOI: 10.1016/j.jconrel.2018.02.033] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 02/17/2018] [Accepted: 02/19/2018] [Indexed: 11/20/2022]
Abstract
The widely used influenza subunit vaccine would benefit from increased protection rates in vulnerable populations. Skin immunization by microneedle (MN) patch can increase vaccine immunogenicity, as well as increase vaccination coverage due to simplified administration. To further increase immunogenicity, we used granulocyte-macrophage colony stimulating factor (GM-CSF), an immunomodulatory cytokine already approved for skin cancer therapy and cancer support treatment. GM-CSF has been shown to be upregulated in skin following MN insertion. The GM-CSF-adjuvanted vaccine induced robust and long-lived antibody responses cross-reactive to homosubtypic and heterosubtypic influenza viruses. Addition of GM-CSF resulted in increased memory B cell persistence relative to groups given influenza vaccine alone and led to rapid lung viral clearance following lethal infection with homologous virus in the mouse model. Here we demonstrate that successful incorporation of the thermolabile cytokine GM-CSF into MN resulted in improved vaccine-induced protective immunity holding promise as a novel approach to improved influenza vaccination. To our knowledge, this is the first successful incorporation of a cytokine adjuvant into dissolvable MNs, thus advancing and diversifying the rapidly developing field of MN vaccination technology.
Collapse
|
10
|
Vzorov AN, Uryvaev LV. Requirements for the Induction of Broadly Neutralizing Antibodies against HIV-1 by Vaccination. Mol Biol 2017. [DOI: 10.1134/s0026893317060176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Mohan T, Zhu W, Wang Y, Wang BZ. Applications of chemokines as adjuvants for vaccine immunotherapy. Immunobiology 2017; 223:477-485. [PMID: 29246401 DOI: 10.1016/j.imbio.2017.12.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/07/2017] [Accepted: 12/07/2017] [Indexed: 02/06/2023]
Abstract
Vaccinations are expected to aid in building immunity against pathogens. This objective often requires the addition of an adjuvant with certain vaccine formulations containing weakly immunogenic antigens. Adjuvants can improve antigen processing, presentation, and recognition, thereby improving the immunogenicity of a vaccine by simulating and eliciting an immune response. Chemokines are a group of small chemoattractant proteins that are essential regulators of the immune system. They are involved in almost every aspect of tumorigenesis, antitumor immunity, and antimicrobial activity and also play a critical role in regulating innate and adaptive immune responses. More recently, chemokines have been used as vaccine adjuvants due to their ability to modulate lymphocyte development, priming and effector functions, and enhance protective immunity. Chemokines that are produced naturally by the body's own immune system could serve as potentially safer and more reliable adjuvant options versus synthetic adjuvants. This review will primarily focus on chemokines and their immunomodulatory activities against various infectious diseases and cancers.
Collapse
Affiliation(s)
- Teena Mohan
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, 100 Piedmont Ave SE, Atlanta, GA 30303, USA
| | - Wandi Zhu
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, 100 Piedmont Ave SE, Atlanta, GA 30303, USA
| | - Ye Wang
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, 100 Piedmont Ave SE, Atlanta, GA 30303, USA
| | - Bao-Zhong Wang
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, 100 Piedmont Ave SE, Atlanta, GA 30303, USA.
| |
Collapse
|
12
|
Membrane-anchored stalk domain of influenza HA enhanced immune responses in mice. Microb Pathog 2017; 113:421-426. [PMID: 29174687 DOI: 10.1016/j.micpath.2017.11.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 11/17/2017] [Accepted: 11/18/2017] [Indexed: 12/17/2022]
Abstract
Current strategies for influenza virus vaccines primarily aim to elicit immune responses towards the globular head domain of the hemagglutinin (HA) protein so that binding of the virus to membrane receptors on the host cells is inhibited. In the present study, we show a novel strategy to generate immunity against the highly conserved region of the influenza virus. The globular head domain was replaced by different linkers to generate a headless HA (stalk domain) and then coexpressed with influenza M1 proteinin Tni insect cells. The expression was validated by western blot analysis, and stalk domain with peptides (GGGGS)4 linkers was identified to anchor in a stable way to the cell membrane. An immunoelectron microscope showed that stalk domain with (GGGGS)4 linkers were steadily incorporated to the surface of influenza virus-like particles (VLPs). Mice immunized with these VLPs exhibited enhanced systemic antibody responses with increased binding avidity and study found high titers of ADCC antibodies to the influenza virus, these VLPs also induced mucosal immune responses and produced antigen-specific IgG and IgA in nasal and lung washes. In addition, antigen-specific IgG antibody-secreting cells (ASCs) increased significantly in the spleen and lymph node. The results of this study suggest that the headless HA is a useful target in developing a universal vaccine against influenza virus.
Collapse
|
13
|
Sun X, Zhang H, Xu S, Shi L, Dong J, Gao D, Chen Y, Feng H. Membrane-anchored CCL20 augments HIV Env-specific mucosal immune responses. Virol J 2017; 14:163. [PMID: 28830557 PMCID: PMC5568278 DOI: 10.1186/s12985-017-0831-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 08/16/2017] [Indexed: 12/15/2022] Open
Abstract
Background Induction of broad immune responses at mucosal site remains a primary goal for most vaccines against mucosal pathogens. Abundance of evidence indicates that the co-delivery of mucosal adjuvants, including cytokines, is necessary to induce effective mucosal immunity. In the present study, we set out to evaluate the role of a chemokine, CCL20, as an effective mucosal adjuvant for HIV vaccine. Methods To evaluate the role of CCL20 as a potent adjuvant for HIV vaccine, we examined its effects on antigen-specific antibody responses, level of antibody-secreting cells, cytokine production and intestinal homing of plasma cells in vaccine immunized mice. Results CCL20-incorporated VLP administered by mucosal route (intranasal (n = 10, p = 0.0085) or intravaginal (n = 10, p = 0.0091)) showed much higher potency in inducing Env-specific IgA antibody response than those administered by intramuscular route (n = 10). For intranasal administration, the HIV Env-specific IFN-γ(751 pg/ml), IL-4 (566 pg/ml), IL-5 (811 pg/ml) production and IgA-secreting plasma cells (62 IgA-secreting plasma cells/106 cells) in mucosal lamina propria were significantly augmented in CCL20-incorporated VLP immunized mice as compared to those immunized with Env only VLPs (p = 0.0332, 0.0398, 0.033, 0.0302 for IFN-γ, IL-4, IL-5, and IgA-secreting plasma cells, respectively). Further, anti-CCL20 mAb partially suppressed homing of Env-specific IgA ASCs into small intestine in mice immunized with CCL20-incorporated VLP by intranasal (62 decreased to 16 IgA- secreting plasma cells/106 cells, p = 0.0341) or intravaginal (52 decreased to 13 IgA- secreting plasma cells/106 cells, p = 0.0332) routes. Conclusion Our data indicated that the VLP-incorporated CCL20 can enhance HIV Env-specific immune responses in mice, especially those occurring in the mucosal sites. We also found that i.m. prime followed by mucosal boost is critical and required for CCL20 to exert its full function as an effective mucosal adjuvant. Therefore, co-incorporation of CCL20 into Env VLPs when combined with mucosal administration could represent a novel and promising HIV vaccine candidate.
Collapse
Affiliation(s)
- Xianliang Sun
- Medical school of Jiaxing University, Jiahang road 118#, Nanhu District, Jiaxing City, Zhejiang Province, 314000, China
| | - Han Zhang
- Department of Microbiology & Immunology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Shuiling Xu
- Medical school of Jiaxing University, Jiahang road 118#, Nanhu District, Jiaxing City, Zhejiang Province, 314000, China
| | - Lili Shi
- Medical school of Jiaxing University, Jiahang road 118#, Nanhu District, Jiaxing City, Zhejiang Province, 314000, China
| | - Jingjian Dong
- Medical school of Jiaxing University, Jiahang road 118#, Nanhu District, Jiaxing City, Zhejiang Province, 314000, China
| | - Dandan Gao
- Jiaxing Maternity and Child Health Care Hospital, Jiaxing, Zhejiang, 314000, China
| | - Yan Chen
- Medical school of Jiaxing University, Jiahang road 118#, Nanhu District, Jiaxing City, Zhejiang Province, 314000, China
| | - Hao Feng
- Medical school of Jiaxing University, Jiahang road 118#, Nanhu District, Jiaxing City, Zhejiang Province, 314000, China.
| |
Collapse
|
14
|
Matabaro E, He Z, Liu YS, Zhang HJ, Gao XD, Fujita M. Molecular switching system using glycosylphosphatidylinositol to select cells highly expressing recombinant proteins. Sci Rep 2017. [PMID: 28642584 PMCID: PMC5481379 DOI: 10.1038/s41598-017-04330-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Although many pharmaceutical proteins are produced in mammalian cells, there remains a challenge to select cell lines that express recombinant proteins with high productivity. Since most biopharmaceutical proteins are secreted by cells into the medium, it is difficult to select cell lines that produce large amounts of the target protein. To address this issue, a new protein expression system using the glycosylphosphatidylinositol (GPI)-anchor was developed. PGAP2 is involved in processing GPI-anchored proteins (GPI-APs) during transport. In PGAP2 mutant cells, most GPI-APs are secreted into the medium. Here, we established a HEK293 cell line where endogenous PGAP2 was knocked out and exogenous PGAP2 was inserted with a piggyBac transposon in the genome. Using these cells, human lysosomal acid lipase (LIPA) and α-galactosidase A (GLA) were expressed as GPI-anchored forms (LIPA-GPI and GLA-GPI) and cells expressing high levels of LIPA-GPI or GLA-GPI on the cell surface were enriched. Removal of the PGAP2 gene by piggyBac transposase or FLP recombinase converted LIPA-GPI and GLA-GPI from membrane-bound to the secreted forms. Thus, cells expressing LIPA or GLA in large amounts could be enriched using this approach. The GPI-based molecular switching system is an efficient approach to isolate cells expressing recombinant proteins with high productivity.
Collapse
Affiliation(s)
- Emmanuel Matabaro
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China
| | - Zeng'an He
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China
| | - Yi-Shi Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China
| | - Hui-Jie Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China
| | - Xiao-Dong Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China
| | - Morihisa Fujita
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
15
|
Heider S, Dangerfield JA, Metzner C. Biomedical applications of glycosylphosphatidylinositol-anchored proteins. J Lipid Res 2016; 57:1778-1788. [PMID: 27542385 PMCID: PMC5036375 DOI: 10.1194/jlr.r070201] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Indexed: 01/13/2023] Open
Abstract
Glycosylphosphatidylinositol (GPI)-anchored proteins (GPI-APs) use a unique posttranslational modification to link proteins to lipid bilayer membranes. The anchoring structure consists of both a lipid and carbohydrate portion and is highly conserved in eukaryotic organisms regarding its basic characteristics, yet highly variable in its molecular details. The strong membrane targeting property has made the anchors an interesting tool for biotechnological modification of lipid membrane-covered entities from cells through extracellular vesicles to enveloped virus particles. In this review, we will take a closer look at the mechanisms and fields of application for GPI-APs in lipid bilayer membrane engineering and discuss their advantages and disadvantages for biomedicine.
Collapse
Affiliation(s)
- Susanne Heider
- Institute of Virology, University of Veterinary Medicine, 1210 Vienna, Austria
| | | | - Christoph Metzner
- Institute of Virology, University of Veterinary Medicine, 1210 Vienna, Austria.
| |
Collapse
|
16
|
Mohan T, Kim J, Berman Z, Wang S, Compans RW, Wang BZ. Co-delivery of GPI-anchored CCL28 and influenza HA in chimeric virus-like particles induces cross-protective immunity against H3N2 viruses. J Control Release 2016; 233:208-19. [PMID: 27178810 DOI: 10.1016/j.jconrel.2016.05.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 05/02/2016] [Accepted: 05/09/2016] [Indexed: 12/20/2022]
Abstract
Influenza infection typically initiates at respiratory mucosal surfaces. Induction of immune responses at the sites where pathogens initiate replication is crucial for the prevention of infection. We studied the adjuvanticity of GPI-anchored CCL28 co-incorporated with influenza HA-antigens in chimeric virus-like particles (cVLPs), in boosting strong protective immune responses through an intranasal (i.n.) route in mice. We compared the immune responses to that from influenza VLPs without CCL28, or physically mixed with soluble CCL28 at systemic and various mucosal compartments. The cVLPs containing GPI-CCL28 showed in-vitro chemotactic activity towards spleen and lung cells expressing CCR3/CCR10 chemokine receptors. The cVLPs induced antigen specific endpoint titers and avidity indices of IgG in sera and IgA in tracheal, lung, and intestinal secretions, significantly higher (4-6 fold) than other formulations. Significantly higher (3-5 fold) hemagglutination inhibition titers and high serum neutralization against H3N2 viruses were also detected with CCL28-containing VLPs compared to other groups. The CCL28-containing VLPs showed complete and 80% protection, when vaccinated animals were challenged with A/Aichi/2/1968/H3N2 (homologous) and A/Philippines/2/1982/H3N2 (heterologous) viruses, respectively. Thus, GPI-anchored CCL28 in influenza VLPs act as a strong immunostimulator at both systemic and mucosal sites, boosting significant cross-protection in animals against heterologous viruses across a large distance.
Collapse
Affiliation(s)
- Teena Mohan
- Department of Microbiology and Immunology, Emory University School of Medicine, 1518 Clifton Road, Atlanta, GA 30322, USA; Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, 100 Piedmont Ave SE, Atlanta, GA 30303, USA
| | - Jongrok Kim
- Department of Microbiology and Immunology, Emory University School of Medicine, 1518 Clifton Road, Atlanta, GA 30322, USA
| | - Zachary Berman
- Department of Microbiology and Immunology, Emory University School of Medicine, 1518 Clifton Road, Atlanta, GA 30322, USA; Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, 100 Piedmont Ave SE, Atlanta, GA 30303, USA
| | - Shelly Wang
- Department of Microbiology and Immunology, Emory University School of Medicine, 1518 Clifton Road, Atlanta, GA 30322, USA
| | - Richard W Compans
- Department of Microbiology and Immunology, Emory University School of Medicine, 1518 Clifton Road, Atlanta, GA 30322, USA
| | - Bao-Zhong Wang
- Department of Microbiology and Immunology, Emory University School of Medicine, 1518 Clifton Road, Atlanta, GA 30322, USA; Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, 100 Piedmont Ave SE, Atlanta, GA 30303, USA.
| |
Collapse
|
17
|
Vzorov AN, Compans RW. VLP vaccines and effects of HIV-1 Env protein modifications on their antigenic properties. Mol Biol 2016. [DOI: 10.1134/s0026893316030110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
18
|
Schäfer B, Orbán E, Fiser G, Marton A, Vizler C, Tömböly C. Semisynthesis of membrane-anchored cholesteryl lipoproteins on live cell surface by azide–alkyne click reaction. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.01.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
19
|
Zhao C, Ao Z, Yao X. Current Advances in Virus-Like Particles as a Vaccination Approach against HIV Infection. Vaccines (Basel) 2016; 4:vaccines4010002. [PMID: 26805898 PMCID: PMC4810054 DOI: 10.3390/vaccines4010002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 12/31/2015] [Accepted: 01/18/2016] [Indexed: 12/16/2022] Open
Abstract
HIV-1 virus-like particles (VLPs) are promising vaccine candidates against HIV-1 infection. They are capable of preserving the native conformation of HIV-1 antigens and priming CD4+ and CD8+ T cell responses efficiently via cross presentation by both major histocompatibility complex (MHC) class I and II molecules. Progress has been achieved in the preclinical research of HIV-1 VLPs as prophylactic vaccines that induce broadly neutralizing antibodies and potent T cell responses. Moreover, the progress in HIV-1 dendritic cells (DC)-based immunotherapy provides us with a new vision for HIV-1 vaccine development. In this review, we describe updates from the past 5 years on the development of HIV-1 VLPs as a vaccine candidate and on the combined use of HIV particles with HIV-1 DC-based immunotherapy as efficient prophylactic and therapeutic vaccination strategies.
Collapse
Affiliation(s)
- Chongbo Zhao
- Laboratory of Molecular Human Retrovirology, Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| | - Zhujun Ao
- Laboratory of Molecular Human Retrovirology, Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| | - Xiaojian Yao
- Laboratory of Molecular Human Retrovirology, Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
- Department of Microbiology, School of Basic Medical Sciences, Central South University, Changsha 410078, Hunan, China.
| |
Collapse
|