1
|
Sartsanga C, Phengchat R, Wako T, Fukui K, Ohmido N. Localization and quantitative distribution of a chromatin structural protein Topoisomerase II on plant chromosome using HVTEM and UHVTEM. Micron 2024; 179:103596. [PMID: 38359615 DOI: 10.1016/j.micron.2024.103596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 02/17/2024]
Abstract
Topoisomerase II (TopoII) is an essential structural protein of the metaphase chromosome. It maintains the axial compaction of chromosomes during metaphase. It is localized at the axial region of chromosomes and accumulates at the centromeric region in metaphase chromosomes. However, little is known about TopoII localization and distribution in plant chromosomes, except for several publications. We used high voltage transmission electron microscopy (HVTEM) and ultra-high voltage transmission electron microscopy (UHVTEM) in conjunction with immunogold labeling and visualization techniques to detect TopoII and investigate its localization, alignment, and density on the barley chromosome at 1.4 nm scale. We found that HVTEM and UHVTEM combined with immunogold labeling is suitable for the detection of structural proteins, including a single molecule of TopoII. This is because the average size of the gold particles for TopoII visualization after silver enhancement is 8.9 ± 3.9 nm, which is well detected. We found that 31,005 TopoII molecules are distributed along the barley chromosomes in an unspecific pattern at the chromosome arms and accumulate specifically at the nucleolus organizer regions (NORs) and centromeric region. The TopoII density were 1.32-fold, 1.58-fold, and 1.36-fold at the terminal region, at the NORs, and the centromeric region, respectively. The findings of TopoII localization in this study support the multiple reported functions of TopoII in the barley metaphase chromosome.
Collapse
Affiliation(s)
- Channarong Sartsanga
- Graduate School of Human Development and Environment, Kobe University, Tsurukabuto 3-11, Nada-ku, 657-8501, Kobe, Japan
| | - Rinyaporn Phengchat
- Nanotechnology Research Centre, National Research of Council, 11421 Saskatchewan Drive, T6G 2M9 Edmonton, Alberta, Canada
| | - Toshiyuki Wako
- Institute of Crop Sciences, National Agriculture and Food Research Organization, 2-1-1 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| | - Kiichi Fukui
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamadaoka 1-6, Suita, Osaka 565-0871, Japan
| | - Nobuko Ohmido
- Graduate School of Human Development and Environment, Kobe University, Tsurukabuto 3-11, Nada-ku, 657-8501, Kobe, Japan.
| |
Collapse
|
2
|
Kuzminov A. Bacterial nucleoid is a riddle wrapped in a mystery inside an enigma. J Bacteriol 2024; 206:e0021123. [PMID: 38358278 PMCID: PMC10994824 DOI: 10.1128/jb.00211-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
Bacterial chromosome, the nucleoid, is traditionally modeled as a rosette of DNA mega-loops, organized around proteinaceous central scaffold by nucleoid-associated proteins (NAPs), and mixed with the cytoplasm by transcription and translation. Electron microscopy of fixed cells confirms dispersal of the cloud-like nucleoid within the ribosome-filled cytoplasm. Here, I discuss evidence that the nucleoid in live cells forms DNA phase separate from riboprotein phase, the "riboid." I argue that the nucleoid-riboid interphase, where DNA interacts with NAPs, transcribing RNA polymerases, nascent transcripts, and ssRNA chaperones, forms the transcription zone. An active part of phase separation, transcription zone enforces segregation of the centrally positioned information phase (the nucleoid) from the surrounding action phase (the riboid), where translation happens, protein accumulates, and metabolism occurs. I speculate that HU NAP mostly tiles up the nucleoid periphery-facilitating DNA mobility but also supporting transcription in the interphase. Besides extruding plectonemically supercoiled DNA mega-loops, condensins could compact them into solenoids of uniform rings, while HU could support rigidity and rotation of these DNA rings. The two-phase cytoplasm arrangement allows the bacterial cell to organize the central dogma activities, where (from the cell center to its periphery) DNA replicates and segregates, DNA is transcribed, nascent mRNA is handed over to ribosomes, mRNA is translated into proteins, and finally, the used mRNA is recycled into nucleotides at the inner membrane. The resulting information-action conveyor, with one activity naturally leading to the next one, explains the efficiency of prokaryotic cell design-even though its main intracellular transportation mode is free diffusion.
Collapse
Affiliation(s)
- Andrei Kuzminov
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
3
|
Villani V, Di Marco G, Iacovelli F, Pietrucci D, Canini A, Gismondi A. Profile and potential bioactivity of the miRNome and metabolome expressed in Malva sylvestris L. leaf and flower. BMC PLANT BIOLOGY 2023; 23:439. [PMID: 37726667 PMCID: PMC10507896 DOI: 10.1186/s12870-023-04434-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 09/03/2023] [Indexed: 09/21/2023]
Abstract
Malva sylvestris L. (common mallow) is a plant species widely used in phytotherapy and ethnobotanical practices since time immemorial. Characterizing the components of this herb might promote a better comprehension of its biological effects on the human body but also favour the identification of the molecular processes that occur in the plant tissues. Thus, in the present contribution, the scientific knowledge about the metabolomic profile of the common mallow was expanded. In particular, the phytocomplex of leaves and flowers from this botanical species and the extraction capacity of different concentrations of ethanol (i.e., 95%, 70%, 50%, and 0%; v/v in ddH2O) for it were investigated by spectrophotometric and chromatographic approaches. In detail, 95% ethanol extracts showed the worst capacity in isolating total phenols and flavonoids, while all the hydroalcoholic samples revealed a specific ability in purifying the anthocyanins. HPLC-DAD system detected and quantified 20 phenolic secondary metabolites, whose concentration in the several extracts depended on their own chemical nature and the percentage of ethanol used in the preparation. In addition, the stability of the purified phytochemicals after resuspension in pure ddH2O was also proved, considering a potential employment of them in biological/medical studies which include in vitro and in vivo experiments on mammalian models. Here, for the first time, the expressed miRNome in M. sylvestris was also defined by Next Generation Sequencing, revealing the presence of 33 microRNAs (miRNAs), 10 typical for leaves and 2 for flowers. Then, both plant and human putative mRNA targets for the detected miRNAs were predicted by bioinformatics analyses, with the aim to clarify the possible role of these small nucleic acids in the common mallow plant tissues and to try to understand if they could exert a potential cross-kingdom regulatory activity on the human health. Surprisingly, our investigations revealed that 19 miRNAs out of 33 were putatively able to modulate, in the plant cells, the expression of various chromosome scaffold proteins. In parallel, we found, in the human transcriptome, a total of 383 mRNAs involved in 5 fundamental mammalian cellular processes (i.e., apoptosis, senescence, cell-cycle, oxidative stress, and invasiveness) that theoretically could be bound and regulated by M. sylvestris miRNAs. The evidence collected in this work would suggest that the beneficial properties of the use of M. sylvestris, documented by the folk medicine, are probably linked to their content of miRNAs and not only to the action of phytochemicals (e.g., anthocyanins). This would open new perspectives about the possibility to develop gene therapies based on miRNAs isolated from medicinal plants, including M. sylvestris.
Collapse
Affiliation(s)
- Valentina Villani
- Department of Biology, Laboratory of Botany, University of Rome Tor Vergata, Via Della Ricerca Scientifica 1, Rome, 00133, Italy
- Department of Biology, PhD Program in Molecular and Cellular Biology, University of Rome Tor Vergata, Rome, Italy
| | - Gabriele Di Marco
- Department of Biology, Laboratory of Botany, University of Rome Tor Vergata, Via Della Ricerca Scientifica 1, Rome, 00133, Italy
| | - Federico Iacovelli
- Department of Biology, Laboratory of Bioinformatics, University of Rome Tor Vergata, Via Della Ricerca Scientifica 1, Rome, 00133, Italy
| | - Daniele Pietrucci
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, Via S.M. in Gradi N.4, 01100, Viterbo, Italy
| | - Antonella Canini
- Department of Biology, Laboratory of Botany, University of Rome Tor Vergata, Via Della Ricerca Scientifica 1, Rome, 00133, Italy
| | - Angelo Gismondi
- Department of Biology, Laboratory of Botany, University of Rome Tor Vergata, Via Della Ricerca Scientifica 1, Rome, 00133, Italy.
| |
Collapse
|
4
|
Super-resolution microscopy reveals the number and distribution of topoisomerase IIα and CENH3 molecules within barley metaphase chromosomes. Chromosoma 2023; 132:19-29. [PMID: 36719450 PMCID: PMC9981516 DOI: 10.1007/s00412-023-00785-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/25/2022] [Accepted: 12/13/2022] [Indexed: 02/01/2023]
Abstract
Topoisomerase IIα (Topo IIα) and the centromere-specific histone H3 variant CENH3 are key proteins involved in chromatin condensation and centromere determination, respectively. Consequently, they are required for proper chromosome segregation during cell divisions. We combined two super-resolution techniques, structured illumination microscopy (SIM) to co-localize Topo IIα and CENH3, and photoactivated localization microscopy (PALM) to determine their molecule numbers in barley metaphase chromosomes. We detected a dispersed Topo IIα distribution along chromosome arms but an accumulation at centromeres, telomeres, and nucleolus-organizing regions. With a precision of 10-50 nm, we counted ~ 20,000-40,000 Topo IIα molecules per chromosome, 28% of them within the (peri)centromere. With similar precision, we identified ~13,500 CENH3 molecules per centromere where Topo IIα proteins and CENH3-containing chromatin intermingle. In short, we demonstrate PALM as a useful method to count and localize single molecules with high precision within chromosomes. The ultrastructural distribution and the detected amount of Topo IIα and CENH3 are instrumental for a better understanding of their functions during chromatin condensation and centromere determination.
Collapse
|
5
|
Sajid A, Lalani EN, Chen B, Hashimoto T, Griffin DK, Bhartiya A, Thompson G, Robinson IK, Yusuf M. Ultra-Structural Imaging Provides 3D Organization of 46 Chromosomes of a Human Lymphocyte Prophase Nucleus. Int J Mol Sci 2021; 22:ijms22115987. [PMID: 34206020 PMCID: PMC8198510 DOI: 10.3390/ijms22115987] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/21/2021] [Accepted: 05/23/2021] [Indexed: 11/18/2022] Open
Abstract
Three dimensional (3D) ultra-structural imaging is an important tool for unraveling the organizational structure of individual chromosomes at various stages of the cell cycle. Performing hitherto uninvestigated ultra-structural analysis of the human genome at prophase, we used serial block-face scanning electron microscopy (SBFSEM) to understand chromosomal architectural organization within 3D nuclear space. Acquired images allowed us to segment, reconstruct, and extract quantitative 3D structural information about the prophase nucleus and the preserved, intact individual chromosomes within it. Our data demonstrate that each chromosome can be identified with its homolog and classified into respective cytogenetic groups. Thereby, we present the first 3D karyotype built from the compact axial structure seen on the core of all prophase chromosomes. The chromosomes display parallel-aligned sister chromatids with familiar chromosome morphologies with no crossovers. Furthermore, the spatial positions of all 46 chromosomes revealed a pattern showing a gene density-based correlation and a neighborhood map of individual chromosomes based on their relative spatial positioning. A comprehensive picture of 3D chromosomal organization at the nanometer level in a single human lymphocyte cell is presented.
Collapse
Affiliation(s)
- Atiqa Sajid
- Centre for Regenerative Medicine and Stem Cell Research, Aga Khan University, Karachi 74800, Pakistan; (A.S.); (E.-N.L.)
| | - El-Nasir Lalani
- Centre for Regenerative Medicine and Stem Cell Research, Aga Khan University, Karachi 74800, Pakistan; (A.S.); (E.-N.L.)
| | - Bo Chen
- London Centre for Nanotechnology, University College London, London WC1H 0AH, UK; (B.C.); (A.B.); (I.K.R.)
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
- Key Laboratory of Performance Evolution and Control for Engineering Structures of the Ministry of Education, Tongji University, Shanghai 200092, China
| | - Teruo Hashimoto
- Department of Materials, University of Manchester, Oxford Road, Manchester M13 9PL, UK; (T.H.); (G.T.)
| | | | - Archana Bhartiya
- London Centre for Nanotechnology, University College London, London WC1H 0AH, UK; (B.C.); (A.B.); (I.K.R.)
| | - George Thompson
- Department of Materials, University of Manchester, Oxford Road, Manchester M13 9PL, UK; (T.H.); (G.T.)
| | - Ian K. Robinson
- London Centre for Nanotechnology, University College London, London WC1H 0AH, UK; (B.C.); (A.B.); (I.K.R.)
- Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Mohammed Yusuf
- Centre for Regenerative Medicine and Stem Cell Research, Aga Khan University, Karachi 74800, Pakistan; (A.S.); (E.-N.L.)
- London Centre for Nanotechnology, University College London, London WC1H 0AH, UK; (B.C.); (A.B.); (I.K.R.)
- Correspondence:
| |
Collapse
|
6
|
Paulson JR, Hudson DF, Cisneros-Soberanis F, Earnshaw WC. Mitotic chromosomes. Semin Cell Dev Biol 2021; 117:7-29. [PMID: 33836947 PMCID: PMC8406421 DOI: 10.1016/j.semcdb.2021.03.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/23/2021] [Accepted: 03/23/2021] [Indexed: 01/25/2023]
Abstract
Our understanding of the structure and function of mitotic chromosomes has come a long way since these iconic objects were first recognized more than 140 years ago, though many details remain to be elucidated. In this chapter, we start with the early history of chromosome studies and then describe the path that led to our current understanding of the formation and structure of mitotic chromosomes. We also discuss some of the remaining questions. It is now well established that each mitotic chromatid consists of a central organizing region containing a so-called "chromosome scaffold" from which loops of DNA project radially. Only a few key non-histone proteins and protein complexes are required to form the chromosome: topoisomerase IIα, cohesin, condensin I and condensin II, and the chromokinesin KIF4A. These proteins are concentrated along the axis of the chromatid. Condensins I and II are primarily responsible for shaping the chromosome and the scaffold, and they produce the loops of DNA by an ATP-dependent process known as loop extrusion. Modelling of Hi-C data suggests that condensin II adopts a spiral staircase arrangement with an extruded loop extending out from each step in a roughly helical pattern. Condensin I then forms loops nested within these larger condensin II loops, thereby giving rise to the final compaction of the mitotic chromosome in a process that requires Topo IIα.
Collapse
Affiliation(s)
- James R Paulson
- Department of Chemistry, University of Wisconsin Oshkosh, 800 Algoma Boulevard, Oshkosh, WI 54901, USA.
| | - Damien F Hudson
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC 3052, Australia
| | - Fernanda Cisneros-Soberanis
- Wellcome Trust Centre for Cell Biology, ICB, University of Edinburgh, Michael Swann Building, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK
| | - William C Earnshaw
- Wellcome Trust Centre for Cell Biology, ICB, University of Edinburgh, Michael Swann Building, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK.
| |
Collapse
|
7
|
Phengchat R, Malac M, Hayashida M. Chromosome inner structure investigation by electron tomography and electron diffraction in a transmission electron microscope. Chromosome Res 2021; 29:63-80. [PMID: 33733375 DOI: 10.1007/s10577-021-09661-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/19/2021] [Accepted: 03/09/2021] [Indexed: 10/21/2022]
Abstract
Our understanding of the inner structure of metaphase chromosomes remains inconclusive despite intensive studies using multiple imaging techniques. Transmission electron microscopy has been extensively used to visualize chromosome ultrastructure. This review summarizes recent results obtained using two transmission electron microscopy-based techniques: electron tomography and electron diffraction. Electron tomography allows advanced three-dimensional imaging of chromosomes, while electron diffraction detects the presence of periodic structures within chromosomes. The combination of these two techniques provides results contributing to the understanding of local structural organization of chromatin fibers within chromosomes.
Collapse
Affiliation(s)
- Rinyaporn Phengchat
- Graduate School of Human Development and Environment, Kobe University, 3-11 Tsurukabuto, Nada-ku, Kobe, 657-8501, Japan.
| | - Marek Malac
- Nanotechnology Research Centre, National Research of Council, 11421 Saskatchewan Drive, T6G 2 M9, Edmonton, Alberta, Canada.,Department of Physics, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
| | - Misa Hayashida
- Nanotechnology Research Centre, National Research of Council, 11421 Saskatchewan Drive, T6G 2 M9, Edmonton, Alberta, Canada
| |
Collapse
|
8
|
Seeing chromosome structure reveals its function. Chromosome Res 2021; 29:1-3. [PMID: 33713240 DOI: 10.1007/s10577-021-09657-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Botchway SW, Farooq S, Sajid A, Robinson IK, Yusuf M. Contribution of advanced fluorescence nano microscopy towards revealing mitotic chromosome structure. Chromosome Res 2021; 29:19-36. [PMID: 33686484 DOI: 10.1007/s10577-021-09654-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 01/07/2023]
Abstract
The organization of chromatin into higher-order structures and its condensation process represent one of the key challenges in structural biology. This is important for elucidating several disease states. To address this long-standing problem, development of advanced imaging methods has played an essential role in providing understanding into mitotic chromosome structure and compaction. Amongst these are two fast evolving fluorescence imaging technologies, specifically fluorescence lifetime imaging (FLIM) and super-resolution microscopy (SRM). FLIM in particular has been lacking in the application of chromosome research while SRM has been successfully applied although not widely. Both these techniques are capable of providing fluorescence imaging with nanometer information. SRM or "nanoscopy" is capable of generating images of DNA with less than 50 nm resolution while FLIM when coupled with energy transfer may provide less than 20 nm information. Here, we discuss the advantages and limitations of both methods followed by their contribution to mitotic chromosome studies. Furthermore, we highlight the future prospects of how advancements in new technologies can contribute in the field of chromosome science.
Collapse
Affiliation(s)
- S W Botchway
- Central Laser Facility, Science and Technology Facilities Council (STFC) Rutherford Appleton Laboratory, Research Complex at Harwell, Oxford, UK
| | - S Farooq
- Centre for Regenerative Medicine and Stem Cell Research, Aga Khan University, P.O.Box 3500, Karachi, 74800, Pakistan
| | - A Sajid
- Centre for Regenerative Medicine and Stem Cell Research, Aga Khan University, P.O.Box 3500, Karachi, 74800, Pakistan
| | - I K Robinson
- London Centre for Nanotechnology, University College London, London, WC1H 0AH, UK.,Brookhaven National Lab, Upton, NY, 11973, USA
| | - M Yusuf
- Centre for Regenerative Medicine and Stem Cell Research, Aga Khan University, P.O.Box 3500, Karachi, 74800, Pakistan. .,London Centre for Nanotechnology, University College London, London, WC1H 0AH, UK.
| |
Collapse
|
10
|
Sartsanga C, Phengchat R, Fukui K, Wako T, Ohmido N. Surface structures consisting of chromatin fibers in isolated barley (Hordeum vulgare) chromosomes revealed by helium ion microscopy. Chromosome Res 2021; 29:81-94. [PMID: 33615407 DOI: 10.1007/s10577-021-09649-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/19/2021] [Accepted: 01/27/2021] [Indexed: 11/24/2022]
Abstract
The chromosome compaction of chromatin fibers results in the formation of the nucleosome, which consists of a DNA unit coiled around a core of histone molecules associated with linker histone. The compaction of chromatin fibers has been a topic of controversy since the discovery of chromosomes in the 19th century. Although chromatin fibers were first identified using electron microscopy, the chromatin fibers on the surface of chromosome structures in plants remain unclear due to shrinking and breaking caused by prior chromosome isolation or preparation with alcohol and acid fixation, and critical point drying occurred into dehydration and denatured chromosomal proteins. This study aimed to develop a high-quality procedure for the isolation and preparation of plant chromosomes, maintaining the native chromosome structure, to elucidate the organization of chromatin fibers on the surface of plant chromosomes by electron microscopy. A simple technique to isolate intact barley (Hordeum vulgare) chromosomes with a high yield was developed, allowing chromosomes to be observed with a high-resolution scanning ion microscopy and helium ion microscopy (HIM) imaging technology, based on a scanning helium ion beam. HIM images from the surface chromatin fibers were analyzed to determine the size and alignment of the chromatin fibers. The unit size of the chromatin fibers was 11.6 ± 3.5 nm and was closely aligned to the chromatin network model. Our findings indicate that compacting the surface structure of barley via a chromatin network and observation via HIM are powerful tools for investigating the structure of chromatin.
Collapse
Affiliation(s)
- Channarong Sartsanga
- Graduate School of Human Development and Environment, Kobe University, Kobe, 657-8501, Japan
| | - Rinyaporn Phengchat
- Graduate School of Human Development and Environment, Kobe University, Kobe, 657-8501, Japan
| | - Kiichi Fukui
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Toshiyuki Wako
- Institute of Crop Sciences, National Agriculture and Food Research Organization, 2-1-1 Kannondai, Tsukuba, Ibaraki, 305-8602, Japan
| | - Nobuko Ohmido
- Graduate School of Human Development and Environment, Kobe University, Kobe, 657-8501, Japan.
| |
Collapse
|
11
|
Imaging the inner structure of chromosomes: contribution of focused ion beam/scanning electron microscopy to chromosome research. Chromosome Res 2021; 29:51-62. [PMID: 33587224 DOI: 10.1007/s10577-021-09650-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 10/22/2022]
Abstract
Visualization of the chromosome ultrastructure has revealed new insights into its structural and functional properties. The use of new methods for revealing not only the surface but also the inner structure of the chromosome has been emerged. Some methods have long been used, such as conventional transmission electron microscopy (TEM). Although it has indispensably contributed to the revelation of the ultrastructure of the various biological samples, including chromosomes, some challenges have also been encountered, such as laborious sample preparation, limited view areas, and loss of information on some parts due to ultramicrotome sectioning. Therefore, a more advanced method is needed. Scanning electron microscopy (SEM) is also advantageous in the surface visualization of chromosome samples. However, it is limited by accessibility to gain the inner structure information. Focused ion beam/scanning electron microscopy (FIB/SEM) provides a way to investigate the inner structure of the samples in a direct slice-and-view manner to observe the ultrastructure of the inner part of the sample continuously and further construct a three-dimensional image. This method has long been used in the material science field, and recently, it has also been applied to biological research, such as in showing the inner structure of chromosomes. This review article presents the contributions of this new method to chromosome research and its recent developments in the inner structure of chromosome and discusses its current and potential applications to the high-resolution imaging of chromosomes.
Collapse
|
12
|
Fukui K, Kato S. Imaging approaches for chromosome structures. Chromosome Res 2021; 29:5-17. [PMID: 33587223 DOI: 10.1007/s10577-021-09648-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 11/30/2022]
Abstract
This review describes image analyses for chromosome visible structures, focusing on the chromosome imaging system CHIAS (Chromosome Image Analyzing System). CHIAS is the first comprehensive imaging system for the analysis and characterization of plant chromosomes. A simulation method for human vision for capturing band positive regions was developed and used for the image analysis of large plant chromosomes with bands. Applying this method to C-banded Crepis chromosomes enabled recognition of band positive regions as seen by human vision. Furthermore, a new image parameter, condensation pattern was developed and successfully applied to identify small plant chromosomes such as rice and brassicas. Condensation profile (CP) derived from condensation pattern was also effective in developing quantitative chromosome maps. The result was quantitative chromosomal maps of several plants with small chromosomes, including Arabidopsis, diploid brassicas, rapeseed, rice, spinach, and sugarcane. In the final chapter, various applications of imaging techniques to the analysis of pachytene chromosomes, improved visibility of multicolor FISH images, 3D reconstruction of a human chromosome based on cross-section images obtained by a FIB/SEM, automatic extraction of chromosomal regions by machine learning, etc. are described.
Collapse
Affiliation(s)
- Kiichi Fukui
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamada-oka, Suita, Osaka, 565-0871, Japan.
| | - Seiji Kato
- Kobe Active Aging Research Hub (KAARb), Graduate School of Human Development and Environment, Kobe University, Tsurukabuto, Kobe, 657-8501, Japan
| |
Collapse
|
13
|
Yusuf M, Farooq S, Robinson I, Lalani EN. Cryo-nanoscale chromosome imaging-future prospects. Biophys Rev 2020; 12:1257-1263. [PMID: 33006727 PMCID: PMC7575669 DOI: 10.1007/s12551-020-00757-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/04/2020] [Indexed: 01/30/2023] Open
Abstract
The high-order structure of mitotic chromosomes remains to be fully elucidated. How nucleosomes compact at various structural levels into a condensed mitotic chromosome is unclear. Cryogenic preservation and imaging have been applied for over three decades, keeping biological structures close to the native in vivo state. Despite being extensively utilized, this field is still wide open for mitotic chromosome research. In this review, we focus specifically on cryogenic efforts for determining the mitotic nanoscale chromatin structures. We describe vitrification methods, current status, and applications of advanced cryo-microscopy including future tools required for resolving the native architecture of these fascinating structures that hold the instructions to life.
Collapse
Affiliation(s)
- Mohammed Yusuf
- London Centre for Nanotechnology, University College London, London, WC1H 0AH, UK.
- Centre for Regenerative Medicine and Stem Cell Research, Aga Khan University, P.O.Box 3500, Karachi, 74800, Pakistan.
| | - Safana Farooq
- Centre for Regenerative Medicine and Stem Cell Research, Aga Khan University, P.O.Box 3500, Karachi, 74800, Pakistan
| | - Ian Robinson
- London Centre for Nanotechnology, University College London, London, WC1H 0AH, UK
- Brookhaven National Lab, Upton, NY, 11973, USA
| | - El-Nasir Lalani
- Centre for Regenerative Medicine and Stem Cell Research, Aga Khan University, P.O.Box 3500, Karachi, 74800, Pakistan
| |
Collapse
|
14
|
Wu M, Leung J, Liu L, Kam C, Chan KYK, Li RA, Feng S, Chen S. A Small-Molecule AIE Chromosome Periphery Probe for Cytogenetic Studies. Angew Chem Int Ed Engl 2020; 59:10327-10331. [PMID: 32163217 PMCID: PMC7318220 DOI: 10.1002/anie.201916718] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/04/2020] [Indexed: 01/12/2023]
Abstract
The chromosome periphery (CP) is a complex network that covers the outer surface of chromosomes. It acts as a carrier of nucleolar components, helps maintain chromosome structure, and plays an important role in mitosis. Current methods for fluorescence imaging of CP largely rely on immunostaining. We herein report a small-molecule fluorescent probe, ID-IQ, which possesses aggregation-induced emission (AIE) property, for CP imaging. By labelling the CP, ID-IQ sharply highlighted the chromosome boundaries, which enabled rapid segmentation of touching and overlapping chromosomes, direct identification of the centromere, and clear visualization of chromosome morphology. ID-IQ staining was also compatible with fluorescence in situ hybridization and could assist the precise location of the gene in designated chromosome. Altogether, this study provides a versatile cytogenetic tool for improved chromosome analysis, which greatly benefits the clinical diagnostic testing and genomic research.
Collapse
Affiliation(s)
- Ming‐Yu Wu
- Ming Wai Lau Centre for Reparative MedicineKarolinska InstitutetHong KongChina
- School of Life Science and EngineeringSouthwest Jiaotong UniversityChengduSichuan610031China
| | - Jong‐Kai Leung
- Ming Wai Lau Centre for Reparative MedicineKarolinska InstitutetHong KongChina
| | - Li Liu
- School of Life Science and EngineeringSouthwest Jiaotong UniversityChengduSichuan610031China
| | - Chuen Kam
- Ming Wai Lau Centre for Reparative MedicineKarolinska InstitutetHong KongChina
| | - Kelvin Yuen Kwong Chan
- Department of Obstetrics and GynaecologyQueen Mary HospitalHong KongChina
- Prenatal Diagnostic LaboratoryTsan Yuk HospitalHong KongChina
| | - Ronald A. Li
- Ming Wai Lau Centre for Reparative MedicineKarolinska InstitutetHong KongChina
- Dr. Li Dak-Sum Research CentreThe University of Hong KongHong KongChina
| | - Shun Feng
- School of Life Science and EngineeringSouthwest Jiaotong UniversityChengduSichuan610031China
| | - Sijie Chen
- Ming Wai Lau Centre for Reparative MedicineKarolinska InstitutetHong KongChina
- Dr. Li Dak-Sum Research CentreThe University of Hong KongHong KongChina
| |
Collapse
|
15
|
Human metaphase chromosome consists of randomly arranged chromatin fibres with up to 30-nm diameter. Sci Rep 2020; 10:8948. [PMID: 32488088 PMCID: PMC7265543 DOI: 10.1038/s41598-020-65842-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/11/2020] [Indexed: 01/17/2023] Open
Abstract
During cell division, mitotic chromosomes assemble and are equally distributed into two new daughter cells. The chromosome organisation of the two chromatids is essential for even distribution of genetic materials. Although the 11-nm fibre or nucleosome structure is well-understood as a fundamental fibrous structure of chromosomes, the reports on organisation of 30-nm basic chromatin fibres have been controversial, with debates on the contribution of 30-nm or thicker fibres to the higher order inner structure of chromosomes. Here, we used focused ion beam/scanning electron microscopy (FIB/SEM) to show that both 11-nm and 30-nm fibres are present in the human metaphase chromosome, although the higher-order periodical structure could not be detected under the conditions employed. We directly dissected the chromosome every 10-nm and observed 224 cross-section SEM images. We demonstrated that the chromosome consisted of chromatin fibres of an average diameter of 16.9-nm. The majority of the chromatin fibres had diameters between 5 and 25-nm, while those with 30-nm were in the minority. The reduced packaging ratio of the chromatin fibres was detected at axial regions of each chromatid. Our results provide a strong basis for further discussions on the chromosome higher-order structure.
Collapse
|
16
|
Wu M, Leung J, Liu L, Kam C, Chan KYK, Li RA, Feng S, Chen S. A Small‐Molecule AIE Chromosome Periphery Probe for Cytogenetic Studies. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Ming‐Yu Wu
- Ming Wai Lau Centre for Reparative Medicine Karolinska Institutet Hong Kong China
- School of Life Science and Engineering Southwest Jiaotong University Chengdu Sichuan 610031 China
| | - Jong‐Kai Leung
- Ming Wai Lau Centre for Reparative Medicine Karolinska Institutet Hong Kong China
| | - Li Liu
- School of Life Science and Engineering Southwest Jiaotong University Chengdu Sichuan 610031 China
| | - Chuen Kam
- Ming Wai Lau Centre for Reparative Medicine Karolinska Institutet Hong Kong China
| | - Kelvin Yuen Kwong Chan
- Department of Obstetrics and Gynaecology Queen Mary Hospital Hong Kong China
- Prenatal Diagnostic Laboratory Tsan Yuk Hospital Hong Kong China
| | - Ronald A. Li
- Ming Wai Lau Centre for Reparative Medicine Karolinska Institutet Hong Kong China
- Dr. Li Dak-Sum Research Centre The University of Hong Kong Hong Kong China
| | - Shun Feng
- School of Life Science and Engineering Southwest Jiaotong University Chengdu Sichuan 610031 China
| | - Sijie Chen
- Ming Wai Lau Centre for Reparative Medicine Karolinska Institutet Hong Kong China
- Dr. Li Dak-Sum Research Centre The University of Hong Kong Hong Kong China
| |
Collapse
|
17
|
Beseda T, Cápal P, Kubalová I, Schubert V, Doležel J, Šimková H. Mitotic chromosome organization: General rules meet species-specific variability. Comput Struct Biotechnol J 2020; 18:1311-1319. [PMID: 32612754 PMCID: PMC7305364 DOI: 10.1016/j.csbj.2020.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/13/2020] [Accepted: 01/16/2020] [Indexed: 10/31/2022] Open
Abstract
Research on the formation of mitotic chromosomes from interphase chromatin domains, ongoing for several decades, made significant progress in recent years. It was stimulated by the development of advanced microscopic techniques and implementation of chromatin conformation capture methods that provide new insights into chromosome ultrastructure. This review aims to summarize and compare several models of chromatin fiber folding to form mitotic chromosomes and discusses them in the light of the novel findings. Functional genomics studies in several organisms confirmed condensins and cohesins as the major players in chromosome condensation. Here we compare available data on the role of these proteins across lower and higher eukaryotes and point to differences indicating evolutionary different pathways to shape mitotic chromosomes. Moreover, we discuss a controversial phenomenon of the mitotic chromosome ultrastructure - chromosome cavities - and using our super-resolution microscopy data, we contribute to its elucidation.
Collapse
Affiliation(s)
- Tomáš Beseda
- Institute of Experimental Botany, Czech Acad. Sci., Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-77900 Olomouc, Czech Republic
| | - Petr Cápal
- Institute of Experimental Botany, Czech Acad. Sci., Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-77900 Olomouc, Czech Republic
| | - Ivona Kubalová
- The Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Corrensstrasse 3, D-06466 Seeland, Germany
| | - Veit Schubert
- The Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Corrensstrasse 3, D-06466 Seeland, Germany
| | - Jaroslav Doležel
- Institute of Experimental Botany, Czech Acad. Sci., Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-77900 Olomouc, Czech Republic
| | - Hana Šimková
- Institute of Experimental Botany, Czech Acad. Sci., Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-77900 Olomouc, Czech Republic
| |
Collapse
|
18
|
Phengchat R, Hayashida M, Ohmido N, Homeniuk D, Fukui K. 3D observation of chromosome scaffold structure using a 360° electron tomography sample holder. Micron 2019; 126:102736. [PMID: 31539626 DOI: 10.1016/j.micron.2019.102736] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 12/23/2022]
Abstract
The chromosome scaffold is considered to be a key structure of the mitotic chromosome. It plays a vital role in chromosome condensation, shaping the X-shaped structure of the mitotic chromosome, and also provides flexibility for chromosome movement during cell division. However, it remains to be elucidated how the chromosome scaffold organizes the mitotic chromosome and how it supports shaping the structure of the chromosome during metaphase. Here we present a new technique that enables the observation of the chromosome scaffold structure in metaphase chromosomes from any direction, by transferring an isolated chromosome to a 360° rotational holder for electron tomography (ET). The chromosome was stained with immunogold-labeled condensin complex, one of the major chromosome scaffold proteins and then observed in three dimensions using ET. Using the locations of gold nanoparticles to visualize the underlying structure, the tomograms we obtained reveal the patterns of chromosome scaffold organization, which appears to consist of a helical structure that serves to organize chromatin loops into the metaphase chromosome.
Collapse
Affiliation(s)
- Rinyaporn Phengchat
- Graduate School of Human development and Environment, Kobe University, 3-11 Tsurukabuto, Nada-ku, Kobe 657-8501, Japan
| | - Misa Hayashida
- Nanotechnology Research Centre, National Research Council of Canada, 11421 Saskatchewan Drive, Edmonton, AB, T6G2M9, Canada.
| | - Nobuko Ohmido
- Graduate School of Human development and Environment, Kobe University, 3-11 Tsurukabuto, Nada-ku, Kobe 657-8501, Japan
| | - Darren Homeniuk
- Nanotechnology Research Centre, National Research Council of Canada, 11421 Saskatchewan Drive, Edmonton, AB, T6G2M9, Canada
| | - Kiichi Fukui
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
19
|
Deakin JE, Potter S, O'Neill R, Ruiz-Herrera A, Cioffi MB, Eldridge MDB, Fukui K, Marshall Graves JA, Griffin D, Grutzner F, Kratochvíl L, Miura I, Rovatsos M, Srikulnath K, Wapstra E, Ezaz T. Chromosomics: Bridging the Gap between Genomes and Chromosomes. Genes (Basel) 2019; 10:genes10080627. [PMID: 31434289 PMCID: PMC6723020 DOI: 10.3390/genes10080627] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/10/2019] [Accepted: 08/13/2019] [Indexed: 02/07/2023] Open
Abstract
The recent advances in DNA sequencing technology are enabling a rapid increase in the number of genomes being sequenced. However, many fundamental questions in genome biology remain unanswered, because sequence data alone is unable to provide insight into how the genome is organised into chromosomes, the position and interaction of those chromosomes in the cell, and how chromosomes and their interactions with each other change in response to environmental stimuli or over time. The intimate relationship between DNA sequence and chromosome structure and function highlights the need to integrate genomic and cytogenetic data to more comprehensively understand the role genome architecture plays in genome plasticity. We propose adoption of the term 'chromosomics' as an approach encompassing genome sequencing, cytogenetics and cell biology, and present examples of where chromosomics has already led to novel discoveries, such as the sex-determining gene in eutherian mammals. More importantly, we look to the future and the questions that could be answered as we enter into the chromosomics revolution, such as the role of chromosome rearrangements in speciation and the role more rapidly evolving regions of the genome, like centromeres, play in genome plasticity. However, for chromosomics to reach its full potential, we need to address several challenges, particularly the training of a new generation of cytogeneticists, and the commitment to a closer union among the research areas of genomics, cytogenetics, cell biology and bioinformatics. Overcoming these challenges will lead to ground-breaking discoveries in understanding genome evolution and function.
Collapse
Affiliation(s)
- Janine E Deakin
- Institute for Applied Ecology, University of Canberra, Canberra, ACT 2617, Australia.
| | - Sally Potter
- Research School of Biology, Australian National University, Acton, ACT 2601, Australia
- Australian Museum Research Institute, Australian Museum, 1 William St Sydney, NSW 2010, Australia
| | - Rachel O'Neill
- Institute for Systems Genomics and Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Aurora Ruiz-Herrera
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Marcelo B Cioffi
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP 13565-905, Brazil
| | - Mark D B Eldridge
- Australian Museum Research Institute, Australian Museum, 1 William St Sydney, NSW 2010, Australia
| | - Kichi Fukui
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita 565-0871, Osaka, Japan
| | - Jennifer A Marshall Graves
- Institute for Applied Ecology, University of Canberra, Canberra, ACT 2617, Australia
- School of Life Sciences, LaTrobe University, Melbourne, VIC 3168, Australia
| | - Darren Griffin
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
| | - Frank Grutzner
- School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Lukáš Kratochvíl
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, 128 44 Prague 2, Czech Republic
| | - Ikuo Miura
- Amphibian Research Center, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Michail Rovatsos
- School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Kornsorn Srikulnath
- Laboratory of Animal Cytogenetics & Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Erik Wapstra
- School of Natural Sciences, University of Tasmania, Hobart 7000, Australia
| | - Tariq Ezaz
- Institute for Applied Ecology, University of Canberra, Canberra, ACT 2617, Australia.
| |
Collapse
|
20
|
Takata H, Madung M, Katoh K, Fukui K. Cdk1-dependent phosphorylation of KIF4A at S1186 triggers lateral chromosome compaction during early mitosis. PLoS One 2018; 13:e0209614. [PMID: 30576375 PMCID: PMC6303012 DOI: 10.1371/journal.pone.0209614] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 12/07/2018] [Indexed: 11/23/2022] Open
Abstract
Chromosome organization during cell division is achieved through the timely association of proteins with chromatin and is regulated by protein phosphorylation. Kinesin family member 4A (KIF4A) plays an important role in the chromosome organization through the formation of the chromosome scaffold structure. However, the relationship between the function of KIF4A and its phosphorylation remains unclear. Here, we demonstrate that Cdk1-dependent phosphorylation of KIF4A at S1186 is required for chromosome binding and chromosome scaffold formation. The KIF4A mutant, which is not phosphorylated at S1186, was found to localize to the nucleus during interphase but did not accumulate in the chromosome scaffold after nuclear envelope breakdown. In addition, defects in KIF4A phosphorylation were found to disrupt the interaction of KIF4A with the condensin I complex. As a result, the morphology of the chromosomes was observed to be laterally decondensed, without condensin I in the chromosome scaffold. Additionally, a defect in chromosome segregation, chromosome bridge formation, was often observed. Although both KIF4A and condensin I disappeared from the chromosomes, the chromosomal localization of condensin II was not affected. Collectively, our novel results revealed that Cdk1-dependent KIF4A phosphorylation at S1186 is a trigger for chromosomal organization during early mitosis.
Collapse
Affiliation(s)
- Hideaki Takata
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ikeda, Osaka, Japan
- * E-mail:
| | - Marliza Madung
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - Kaoru Katoh
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ikeda, Osaka, Japan
| | - Kiichi Fukui
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
21
|
Use of 3D imaging for providing insights into high-order structure of mitotic chromosomes. Chromosoma 2018; 128:7-13. [PMID: 30175387 PMCID: PMC6394650 DOI: 10.1007/s00412-018-0678-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/17/2018] [Accepted: 07/24/2018] [Indexed: 11/16/2022]
Abstract
The high-order structure of metaphase chromosomes remains still under investigation, especially the 30-nm structure that is still controversial. Advanced 3D imaging has provided useful information for our understanding of this detailed structure. It is evident that new technologies together with improved sample preparations and image analyses should be adequately combined. This mini review highlights 3D imaging used for chromosome analysis so far with future imaging directions also highlighted.
Collapse
|
22
|
Walther N, Hossain MJ, Politi AZ, Koch B, Kueblbeck M, Ødegård-Fougner Ø, Lampe M, Ellenberg J. A quantitative map of human Condensins provides new insights into mitotic chromosome architecture. J Cell Biol 2018; 217:2309-2328. [PMID: 29632028 PMCID: PMC6028534 DOI: 10.1083/jcb.201801048] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/09/2018] [Accepted: 03/13/2018] [Indexed: 12/29/2022] Open
Abstract
The two Condensin complexes in human cells are essential for mitotic chromosome structure. We used homozygous genome editing to fluorescently tag Condensin I and II subunits and mapped their absolute abundance, spacing, and dynamic localization during mitosis by fluorescence correlation spectroscopy (FSC)-calibrated live-cell imaging and superresolution microscopy. Although ∼35,000 Condensin II complexes are stably bound to chromosomes throughout mitosis, ∼195,000 Condensin I complexes dynamically bind in two steps: prometaphase and early anaphase. The two Condensins rarely colocalize at the chromatid axis, where Condensin II is centrally confined, but Condensin I reaches ∼50% of the chromatid diameter from its center. Based on our comprehensive quantitative data, we propose a three-step hierarchical loop model of mitotic chromosome compaction: Condensin II initially fixes loops of a maximum size of ∼450 kb at the chromatid axis, whose size is then reduced by Condensin I binding to ∼90 kb in prometaphase and ∼70 kb in anaphase, achieving maximum chromosome compaction upon sister chromatid segregation.
Collapse
Affiliation(s)
- Nike Walther
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - M Julius Hossain
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Antonio Z Politi
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Birgit Koch
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Moritz Kueblbeck
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Øyvind Ødegård-Fougner
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Marko Lampe
- Advanced Light Microscopy Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Jan Ellenberg
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| |
Collapse
|
23
|
Booth DG, Earnshaw WC. Ki-67 and the Chromosome Periphery Compartment in Mitosis. Trends Cell Biol 2017; 27:906-916. [PMID: 28838621 DOI: 10.1016/j.tcb.2017.08.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/01/2017] [Accepted: 08/02/2017] [Indexed: 12/12/2022]
Abstract
The chromosome periphery is a complex network of proteins and RNA molecules (many derived from nucleoli) that covers the outer surface of chromosomes and whose function remains mysterious. Although it was first described over 130 years ago, technological advances and the recent discovery that Ki-67 acts as an organiser of this region have allowed the chromosome periphery to be dissected in previously unattainable detail, leading to a revival of interest in this obscure chromosomal compartment. Here, we review the most recent advances into the composition, structure and function of the chromosome periphery, discuss possible roles of Ki-67 during mitosis and consider why this structure is likely to remain the focus of ongoing attention in the future.
Collapse
Affiliation(s)
- Daniel G Booth
- Centre For Neuroregeneration, Chancellor's Building, University of Edinburgh, Edinburgh, EH16 4SB, UK.
| | - William C Earnshaw
- Wellcome Trust Centre for Cell Biology, King's Buildings, University of Edinburgh, Edinburgh, EH9 3BF, UK.
| |
Collapse
|
24
|
Ono T, Sakamoto C, Nakao M, Saitoh N, Hirano T. Condensin II plays an essential role in reversible assembly of mitotic chromosomes in situ. Mol Biol Cell 2017; 28:2875-2886. [PMID: 28835373 PMCID: PMC5638589 DOI: 10.1091/mbc.e17-04-0252] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 08/15/2017] [Accepted: 08/16/2017] [Indexed: 01/31/2023] Open
Abstract
A modified protocol for inducing reversible assembly of mitotic chromosomes in situ is developed. As judged by this assay, which is combined with quantitative morphological analyses using a supervised machine-learning algorithm, condensin II plays a crucial role in both the recovery of chromatin shapes and the reorganization of chromosome axes. Condensins I and II are multisubunit complexes that play a central role in mitotic chromosome assembly. Although both complexes become concentrated along the axial region of each chromatid by metaphase, it remains unclear exactly how such axes might assemble and contribute to chromosome shaping. To address these questions from a physico-chemical point of view, we have established a set of two-step protocols for inducing reversible assembly of chromosome structure in situ, namely within a whole cell. In this assay, mitotic chromosomes are first expanded in a hypotonic buffer containing a Mg2+-chelating agent and then converted into different shapes in a NaCl concentration-dependent manner. Both chromatin and condensin-positive chromosome axes are converted into near-original shapes at 100 mM NaCl. This assay combined with small interfering RNA depletion demonstrates that the recovery of chromatin shapes and the reorganization of axes are highly sensitive to depletion of condensin II but less sensitive to depletion of condensin I or topoisomerase IIα. Furthermore, quantitative morphological analyses using the machine-learning algorithm wndchrm support the notion that chromosome shaping is tightly coupled to the reorganization of condensin II-based axes. We propose that condensin II makes a primary contribution to mitotic chromosome architecture and maintenance in human cells.
Collapse
Affiliation(s)
- Takao Ono
- Chromosome Dynamics Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Chiyomi Sakamoto
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Mitsuyoshi Nakao
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Noriko Saitoh
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Tatsuya Hirano
- Chromosome Dynamics Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
25
|
Poonperm R, Takata H, Uchiyama S, Fukui K. Interdependency and phosphorylation of KIF4 and condensin I are essential for organization of chromosome scaffold. PLoS One 2017; 12:e0183298. [PMID: 28817632 PMCID: PMC5560531 DOI: 10.1371/journal.pone.0183298] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 08/02/2017] [Indexed: 11/20/2022] Open
Abstract
Kinesin family member 4 (KIF4) and condensins I and II are essential chromosomal proteins for chromosome organization by locating primarily to the chromosome scaffold. However, the mechanism of how KIF4 and condensins localize to the chromosome scaffold is poorly understood. Here, we demonstrate a close relationship between the chromosome localization of KIF4 and condensin I, but not condensin II, and show that KIF4 and condensin I assist each other for stable scaffold formation by forming a stable complex. Moreover, phosphorylation of KIF4 and condensin I by Aurora B and polo-like kinase 1 (Plk1) is important for KIF4 and condensin I localization to the chromosome. Aurora B activity facilitates the targeting of KIF4 and condensin I to the chromosome, whereas Plk1 activity promotes the dissociation of these proteins from the chromosome. Thus, the interdependency between KIF4 and condensin I, and their phosphorylation states play important roles in chromosome scaffold organization during mitosis.
Collapse
Affiliation(s)
- Rawin Poonperm
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - Hideaki Takata
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ikeda, Osaka, JAPAN
- * E-mail: (KF); (HT)
| | - Susumu Uchiyama
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - Kiichi Fukui
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
- Chromosome Engineering Research Center, Tottori University, Yonago, Japan
- * E-mail: (KF); (HT)
| |
Collapse
|
26
|
Condensin, master organizer of the genome. Chromosome Res 2017; 25:61-76. [PMID: 28181049 DOI: 10.1007/s10577-017-9553-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 12/19/2016] [Accepted: 01/23/2017] [Indexed: 02/06/2023]
Abstract
A fundamental requirement in nature is for a cell to correctly package and divide its replicated genome. Condensin is a mechanical multisubunit complex critical to this process. Condensin uses ATP to power conformational changes in DNA to enable to correct DNA compaction, organization, and segregation of DNA from the simplest bacteria to humans. The highly conserved nature of the condensin complex and the structural similarities it shares with the related cohesin complex have provided important clues as to how it functions in cells. The fundamental requirement for condensin in mitosis and meiosis is well established, yet the precise mechanism of action is still an open question. Mutation or removal of condensin subunits across a range of species disrupts orderly chromosome condensation leading to errors in chromosome segregation and likely death of the cell. There are divergences in function across species for condensin. Once considered to function solely in mitosis and meiosis, an accumulating body of evidence suggests that condensin has key roles in also regulating the interphase genome. This review will examine how condensin organizes our genomes, explain where and how it binds the genome at a mechanical level, and highlight controversies and future directions as the complex continues to fascinate and baffle biologists.
Collapse
|
27
|
Phengchat R, Takata H, Morii K, Inada N, Murakoshi H, Uchiyama S, Fukui K. Calcium ions function as a booster of chromosome condensation. Sci Rep 2016; 6:38281. [PMID: 27910894 PMCID: PMC5133622 DOI: 10.1038/srep38281] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 11/07/2016] [Indexed: 12/14/2022] Open
Abstract
Chromosome condensation is essential for the faithful transmission of genetic information to daughter cells during cell division. The depletion of chromosome scaffold proteins does not prevent chromosome condensation despite structural defects. This suggests that other factors contribute to condensation. Here we investigated the contribution of divalent cations, particularly Ca2+, to chromosome condensation in vitro and in vivo. Ca2+ depletion caused defects in proper mitotic progression, particularly in chromosome condensation after the breakdown of the nuclear envelope. Fluorescence lifetime imaging microscopy-Förster resonance energy transfer and electron microscopy demonstrated that chromosome condensation is influenced by Ca2+. Chromosomes had compact globular structures when exposed to Ca2+ and expanded fibrous structures without Ca2+. Therefore, we have clearly demonstrated a role for Ca2+ in the compaction of chromatin fibres.
Collapse
Affiliation(s)
- Rinyaporn Phengchat
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Osaka, Japan
| | - Hideaki Takata
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Osaka, Japan
| | - Kenichi Morii
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Osaka, Japan
| | - Noriko Inada
- The Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-Cho Ikoma-shi, Nara 630-0192, Japan
| | - Hideji Murakoshi
- Supportive Center for Brain Research, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
| | - Susumu Uchiyama
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Osaka, Japan
| | - Kiichi Fukui
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Osaka, Japan
| |
Collapse
|
28
|
Uchiyama S, Fukui K. Condensin in Chromatid Cohesion and Segregation. Cytogenet Genome Res 2016; 147:212-6. [PMID: 26998746 DOI: 10.1159/000444868] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2015] [Indexed: 11/19/2022] Open
Abstract
After replication of genomic DNA during the S phase, 2 chromatids hold together longitudinally. When cells enter mitosis, the paired sister chromatids start to condense and then segregate into individual chromatids except for the centromeric region. Upon attachment of microtubules to the kinetochore, subsequent pulling of the 2 sister chromatids by the spindles towards opposite poles results in 2 completely separated chromatids. Besides more than 100 kinds of kinetochore proteins, several key proteins such as cohesin, separase, shugoshin, and condensin contribute to chromatid cohesion and segregation. Among these proteins, condensin, a protein complex composed of 5 subunits discovered 2 decades ago, has been extensively studied in terms of the maintenance of chromosome morphology as its major function. Recent studies on condensin uncovered its role in chromatid cohesion and segregation, which will be reviewed in this article.
Collapse
Affiliation(s)
- Susumu Uchiyama
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka, Japan
| | | |
Collapse
|
29
|
Uchiyama S, Kawahara K, Hosokawa Y, Fukakusa S, Oki H, Nakamura S, Kojima Y, Noda M, Takino R, Miyahara Y, Maruno T, Kobayashi Y, Ohkubo T, Fukui K. Structural Basis for Dimer Formation of Human Condensin Structural Maintenance of Chromosome Proteins and Its Implications for Single-stranded DNA Recognition. J Biol Chem 2015; 290:29461-77. [PMID: 26491021 PMCID: PMC4705948 DOI: 10.1074/jbc.m115.670794] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 09/17/2015] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic structural maintenance of chromosome proteins (SMC) are major components of cohesin and condensins that regulate chromosome structure and dynamics during cell cycle. We here determine the crystal structure of human condensin SMC hinge heterodimer with ~30 residues of coiled coils. The structure, in conjunction with the hydrogen exchange mass spectrometry analyses, revealed the structural basis for the specific heterodimer formation of eukaryotic SMC and that the coiled coils from two different hinges protrude in the same direction, providing a unique binding surface conducive for binding to single-stranded DNA. The characteristic hydrogen exchange profiles of peptides constituted regions especially across the hinge-hinge dimerization interface, further suggesting the structural alterations upon single-stranded DNA binding and the presence of a half-opened state of hinge heterodimer. This structural change potentially relates to the DNA loading mechanism of SMC, in which the hinge domain functions as an entrance gate as previously proposed for cohesin. Our results, however, indicated that this is not the case for condensins based on the fact that the coiled coils are still interacting with each other, even when DNA binding induces structural changes in the hinge region, suggesting the functional differences of SMC hinge domain between condensins and cohesin in DNA recognition.
Collapse
Affiliation(s)
- Susumu Uchiyama
- From the Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- the Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, 5-1 Higashiyama Myodaiji, Okazaki 444-8787, Japan
| | - Kazuki Kawahara
- the Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan, and
| | - Yuki Hosokawa
- the Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan, and
| | - Shunsuke Fukakusa
- the Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan, and
| | - Hiroya Oki
- the Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan, and
| | - Shota Nakamura
- the Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yukiko Kojima
- the Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan, and
| | - Masanori Noda
- From the Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Rie Takino
- From the Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yuya Miyahara
- From the Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takahiro Maruno
- From the Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yuji Kobayashi
- From the Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tadayasu Ohkubo
- the Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan, and
| | - Kiichi Fukui
- From the Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|