1
|
Geng D, Yuan C, Li X, Wang C, Guo Q, Jiang Y, Wang Z, Chen G, Chang G, Bai H. Identification of key genes associated with residual feed intake in small-sized meat ducks through integrated analysis of mRNA and miRNA transcriptomes. Poult Sci 2025; 104:105058. [PMID: 40132315 PMCID: PMC11986514 DOI: 10.1016/j.psj.2025.105058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/11/2025] [Accepted: 03/16/2025] [Indexed: 03/27/2025] Open
Abstract
As a major producer and consumer of duck meat, China faces industry challenges due to low feed conversion efficiency. Residual feed intake (RFI), a key metric for poultry feed utilization, remains poorly characterized in small-sized meat ducks. We raised 1,000 ducklings with similar initial body weight (BW) under controlled conditions until 63 days of age. RFI was calculated using average daily gain (ADG), average daily feed intake (ADFI), and metabolic body weight (MBW0.75). Thirty high-RFI (HRFI) and thirty low-RFI (LRFI) ducks were selected to evaluate growth performance. Hypothalamic samples from 6 HRFI and 6 LRFI ducks underwent transcriptomic analysis, including differential gene expression, gene ontology, Kyoto Encyclopedia of Genes and Genomes pathway analysis, weighted gene co-expression network analysis, and miRNA target prediction. Results showed that the LRFI group had significantly lower feed intake (FI) and ADFI than the HRFI group (P < 0.05). Compared to low RFI controls, HRFI meat ducks exhibited 45 differentially expressed (DE) miRNAs (6 upregulated and 39 downregulated) and 323 DE mRNAs (133 upregulated and 190 downregulated), enriched in substance and energy metabolism pathways. Weighted gene co-expression network analysis identified ten hub DE miRNAs, including miR-1-3p, miR-10-5p/3p, miR-182-5p/3p, miR-183-5p, miR-263-5p, miR-96-5p, miR-7, and novel-m0108-5p. miRNA-mRNA network analysis revealed 43 DE regulatory pairs, including 15 with negative feedback. Notably, miR-182 targeted and regulated the highest number of DE mRNAs, showing negative feedback interactions with DDC, UPP2, PRSS35, and SLCO1C1. Dual-luciferase reporter assays confirmed the binding of partial genes. Given DDC's role in dopamine and serotonin synthesis, we further validated the miR-182-5p/DDC regulatory relationship through overexpression, interference, and Western blot experiments. This study provides novel insights into the molecular mechanisms underlying feed efficiency in ducks.
Collapse
Affiliation(s)
- Dandan Geng
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, PR China; Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou 225009, PR China
| | - Chunyou Yuan
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou 225009, PR China
| | - Xiaofan Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, PR China; Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou 225009, PR China
| | - Chenxiao Wang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, PR China; Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou 225009, PR China
| | - Qixin Guo
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou 225009, PR China
| | - Yong Jiang
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou 225009, PR China
| | - Zhixiu Wang
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou 225009, PR China
| | - Guohong Chen
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, PR China; Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou 225009, PR China
| | - Guobin Chang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, PR China; Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou 225009, PR China
| | - Hao Bai
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, PR China.
| |
Collapse
|
2
|
Zhao Z, Wang S, Wang K, Ji X, Chen D, Shen Q, Yu Y, Cui S, Wang J, Chen Z, Tang G. Transcriptome analysis of liver and ileum reveals potential regulation of long non-coding RNA in pigs with divergent feed efficiency. Anim Biosci 2025; 38:588-599. [PMID: 39483020 PMCID: PMC11917451 DOI: 10.5713/ab.24.0434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/23/2024] [Accepted: 09/18/2024] [Indexed: 11/03/2024] Open
Abstract
OBJECTIVE Long non-coding RNA (LncRNA) plays a significant role in regulating feed efficiency. This study aims to explore the key lncRNAs, associated genes, and pathways in pigs with extreme feed efficiencies. METHODS We screened pigs with extremely high and low residual feed intake through a 12-week animal growth trial and then conducted transcriptome analysis on their liver and ileum tissues. We analyzed the differential expressed lncRNAs, microRNAs (miRNAs), and messenger RNAs through target gene prediction and functional analysis. And we identified key lncRNAs and their potential regulatory genes associated with feed efficiency through the construction of competitive endogenous RNA network. RESULTS Differentially expressed lncRNAs were pinpointed in the liver, revealing 23 crucial target genes primarily associated with guanosine triphosphate metabolism and glycolipid biosynthesis. In the ileum, a screening identified 92 pivotal target genes, mainly linked to lipid and small molecule metabolism. Moreover, LOC106504303 and LOC102160805 emerged as potentially significant lncRNAs respectively, playing roles in mitochondrial oxidative phosphorylation in the liver, and lipid and cholesterol metabolism in the ileum. CONCLUSION The lncRNAs regulate energy metabolism and biosynthesis in the liver, and the digestive absorption capacity in the small intestine, affecting the feed efficiency of pigs.
Collapse
Affiliation(s)
- Zhenjian Zhao
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130,
China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130,
China
| | - Shujie Wang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130,
China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130,
China
| | - Kai Wang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130,
China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130,
China
| | - Xiang Ji
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130,
China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130,
China
| | - Dong Chen
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130,
China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130,
China
| | - Qi Shen
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130,
China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130,
China
| | - Yang Yu
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130,
China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130,
China
| | - Shendi Cui
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130,
China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130,
China
| | - Junge Wang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130,
China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130,
China
| | - Ziyang Chen
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130,
China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130,
China
| | - Guoqing Tang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130,
China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130,
China
| |
Collapse
|
3
|
Molinero E, Pena RN, Estany J, Ros‐Freixedes R. Association between mitochondrial DNA copy number and production traits in pigs. J Anim Breed Genet 2025; 142:170-183. [PMID: 39189093 PMCID: PMC11812088 DOI: 10.1111/jbg.12894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/29/2024] [Accepted: 08/14/2024] [Indexed: 08/28/2024]
Abstract
Mitochondria are essential organelles in the regulation of cellular energetic metabolism. Mitochondrial DNA copy number (mtDNA_CN) can be used as a proxy for mitochondria number, size, and activity. The aims of our study are to evaluate the effect of mtDNA_CN and mitochondrial haploblocks on production traits in pigs, and to identify the genetic background of this cellular phenotype. We collected performance data of 234 pigs and extracted DNA from skeletal muscle. Whole-genome sequencing data was used to determine mtDNA_CN. We found positive correlations of muscle mtDNA_CN with backfat thickness at 207 d (+0.14; p-value = 0.07) and negative correlations with carcase loin thickness (-0.14; p-value = 0.03). Pigs with mtDNA_CN values below the lower quartile had greater loin thickness (+4.1 mm; p-value = 0.01) and lower backfat thickness (-1.1 mm; p-value = 0.08), which resulted in greater carcase lean percentage (+2.4%; p-value = 0.04), than pigs with mtDNA_CN values above the upper quartile. These results support the hypothesis that a reduction of mitochondrial activity is associated with greater feed efficiency. Higher mtDNA_CN was also positively correlated with higher meat ultimate pH (+0.19; p-value <0.01) but we did not observe significant difference for meat ultimate pH between the two groups with extreme mtDNA_CN. We found no association of the most frequent mitochondrial haploblocks with mtDNA_CN or the production traits, but several genomic regions that harbour potential candidate genes with functions related to mitochondrial biogenesis and homeostasis were associated with mtDNA_CN. These regions provide new insights into the genetic background of this cellular phenotype but it is still uncertain if such associations translate into noticeable effects on the production traits.
Collapse
Affiliation(s)
- Eduard Molinero
- Departament de Ciència AnimalUniversitat de LleidaLleidaSpain
- Agrotecnio‐CERCA CenterLleidaSpain
| | - Ramona N. Pena
- Departament de Ciència AnimalUniversitat de LleidaLleidaSpain
- Agrotecnio‐CERCA CenterLleidaSpain
| | - Joan Estany
- Departament de Ciència AnimalUniversitat de LleidaLleidaSpain
- Agrotecnio‐CERCA CenterLleidaSpain
| | - Roger Ros‐Freixedes
- Departament de Ciència AnimalUniversitat de LleidaLleidaSpain
- Agrotecnio‐CERCA CenterLleidaSpain
| |
Collapse
|
4
|
Wang S, Yang L, Wu Z, Li C, Wang S, Xiao Z, Ma B, Zhu R, Cheng L. Ferroptosis-related genes participate in the microglia-induced neuroinflammation of spinal cord injury via NF-κB signaling: evidence from integrated single-cell and spatial transcriptomic analysis. J Transl Med 2025; 23:43. [PMID: 39799354 PMCID: PMC11725224 DOI: 10.1186/s12967-025-06095-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 01/08/2025] [Indexed: 01/15/2025] Open
Abstract
BACKGROUND Ferroptosis and immune responses are critical pathological events in spinal cord injury (SCI), whereas relative molecular and cellular mechanisms remain unclear. METHODS Micro-array datasets (GSE45006, GSE69334), RNA sequencing (RNA-seq) dataset (GSE151371), spatial transcriptome datasets (GSE214349, GSE184369), and single cell RNA sequencing (scRNA-seq) datasets (GSE162610, GSE226286) were available from the Gene Expression Omnibus (GEO) database. Through weighted gene co-expression network analysis and differential expression analysis in GSE45006, we identified differentially expressed time- and immune-related genes (DETIRGs) associated with chronic SCI and differentially expressed ferroptosis- and immune-related genes (DEFIRGs), which were validated in GSE151371. Protein-protein interaction and microRNA-mRNA-transcription factor regulatory networks were constructed based on Search Tool for the Retrieval of Interacting Genes (STRING) and NetworkAnalyst, respectively, which were validated by chromatin immunoprecipitation followed by sequencing (ChIP-seq). Cell subclusters and unique features of microglia in SCI were identified by single-cell transcriptomic analysis, which were validated in GSE226286. Spatial expression patterns of DETIRGs and DEFIRGs were validated in brain injury (GSE214349) and SCI (GSE184369). Potential mechanisms underlying neuronal regeneration by neurotrophin-3 (NT3)-chitosan were revealed by transcriptomic analyses in GSE69334. Immune- and ferroptosis-related mechanisms of nanolayered double hydroxide loaded with NT3 (LDH-NT3) were investigated in vivo and in vitro. RESULTS GBP2, TEC, UNC93B1, PLXNC1, NFATC1, IL10RB, and TLR8 were DETIRGs represented chronic SCI-specific genes and peripheral blood biomarkers. NFKB1 may regulate expression of CYBB and HMOX1 in a unique subcluster of M1 microglia within the middle SCI lesion, establishing links between microglial ferroptosis and neuroinflammation. Reduced inflammatory responses and microglial ferroptosis were potential effects of NT3-chitosan or LDH-NT3 on neuronal regeneration. CONCLUSIONS A novel subcluster of microglia exhibiting M1 polarization and ferroptosis phenotype was involved in SCI. These microglia may trigger neuroinflammation and induce neuronal degeneration within the middle site of SCI, which might be inhibited by NT3-chitosan or LDH-NT3.
Collapse
Affiliation(s)
- Siqiao Wang
- Division of Spine, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, Tongji University School of Medicine, Shanghai, 200065, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai, 200072, China
| | - Li Yang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai, 200072, China
- Institute of Spinal and Spinal Cord Injury, Tongji University School of Medicine, Shanghai, 200065, China
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Zhourui Wu
- Division of Spine, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, Tongji University School of Medicine, Shanghai, 200065, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai, 200072, China
- Institute of Spinal and Spinal Cord Injury, Tongji University School of Medicine, Shanghai, 200065, China
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Chen Li
- Division of Spine, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, Tongji University School of Medicine, Shanghai, 200065, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai, 200072, China
- Institute of Spinal and Spinal Cord Injury, Tongji University School of Medicine, Shanghai, 200065, China
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Shaoke Wang
- Division of Spine, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, Tongji University School of Medicine, Shanghai, 200065, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai, 200072, China
- Institute of Spinal and Spinal Cord Injury, Tongji University School of Medicine, Shanghai, 200065, China
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Zhihui Xiao
- Division of Spine, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, Tongji University School of Medicine, Shanghai, 200065, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai, 200072, China
| | - Bei Ma
- Division of Spine, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, Tongji University School of Medicine, Shanghai, 200065, China.
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai, 200072, China.
- Institute of Spinal and Spinal Cord Injury, Tongji University School of Medicine, Shanghai, 200065, China.
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China.
| | - Rongrong Zhu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai, 200072, China.
- Institute of Spinal and Spinal Cord Injury, Tongji University School of Medicine, Shanghai, 200065, China.
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China.
| | - Liming Cheng
- Division of Spine, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, Tongji University School of Medicine, Shanghai, 200065, China.
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai, 200072, China.
- Institute of Spinal and Spinal Cord Injury, Tongji University School of Medicine, Shanghai, 200065, China.
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China.
| |
Collapse
|
5
|
Xiang Y, Sun J, Ma G, Dai X, Meng Y, Fu C, Zhang Y, Zhao Q, Li J, Zhang S, Zheng Z, Li X, Fu L, Li K, Qi X. Integrating Multi-Omics Data to Identify Key Functional Variants Affecting Feed Efficiency in Large White Boars. Genes (Basel) 2024; 15:980. [PMID: 39202341 PMCID: PMC11353296 DOI: 10.3390/genes15080980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 09/03/2024] Open
Abstract
Optimizing feed efficiency through the feed conversion ratio (FCR) is paramount for economic viability and sustainability. In this study, we integrated RNA-seq, ATAC-seq, and genome-wide association study (GWAS) data to investigate key functional variants associated with feed efficiency in pigs. Identification of differentially expressed genes in the duodenal and muscle tissues of low- and high-FCR pigs revealed that pathways related to digestion of dietary carbohydrate are responsible for differences in feed efficiency between individuals. Differential open chromatin regions identified by ATAC-seq were linked to genes involved in glycolytic and fatty acid processes. GWAS identified 211 significant single-nucleotide polymorphisms associated with feed efficiency traits, with candidate genes PPP1R14C, TH, and CTSD. Integration of duodenal ATAC-seq data and GWAS data identified six key functional variants, particularly in the 1500985-1509676 region on chromosome 2. In those regions, CTSD was found to be highly expressed in the duodenal tissues of pigs with a high feed conversion ratio, suggesting its role as a potential target gene. Overall, the integration of multi-omics data provided insights into the genetic basis of feed efficiency, offering valuable information for breeding more efficient pig breeds.
Collapse
Affiliation(s)
- Yue Xiang
- Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China; (Y.X.); (Y.M.); (J.L.); (S.Z.); (K.L.)
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.S.); (G.M.); (X.D.); (C.F.); (Y.Z.); (Q.Z.); (Z.Z.); (X.L.); (L.F.)
| | - Jiahui Sun
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.S.); (G.M.); (X.D.); (C.F.); (Y.Z.); (Q.Z.); (Z.Z.); (X.L.); (L.F.)
| | - Guojian Ma
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.S.); (G.M.); (X.D.); (C.F.); (Y.Z.); (Q.Z.); (Z.Z.); (X.L.); (L.F.)
| | - Xueting Dai
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.S.); (G.M.); (X.D.); (C.F.); (Y.Z.); (Q.Z.); (Z.Z.); (X.L.); (L.F.)
| | - Yuan Meng
- Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China; (Y.X.); (Y.M.); (J.L.); (S.Z.); (K.L.)
| | - Chong Fu
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.S.); (G.M.); (X.D.); (C.F.); (Y.Z.); (Q.Z.); (Z.Z.); (X.L.); (L.F.)
| | - Yan Zhang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.S.); (G.M.); (X.D.); (C.F.); (Y.Z.); (Q.Z.); (Z.Z.); (X.L.); (L.F.)
| | - Qiulin Zhao
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.S.); (G.M.); (X.D.); (C.F.); (Y.Z.); (Q.Z.); (Z.Z.); (X.L.); (L.F.)
| | - Jingjin Li
- Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China; (Y.X.); (Y.M.); (J.L.); (S.Z.); (K.L.)
| | - Saixian Zhang
- Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China; (Y.X.); (Y.M.); (J.L.); (S.Z.); (K.L.)
| | - Zhuqing Zheng
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.S.); (G.M.); (X.D.); (C.F.); (Y.Z.); (Q.Z.); (Z.Z.); (X.L.); (L.F.)
| | - Xinyun Li
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.S.); (G.M.); (X.D.); (C.F.); (Y.Z.); (Q.Z.); (Z.Z.); (X.L.); (L.F.)
| | - Liangliang Fu
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.S.); (G.M.); (X.D.); (C.F.); (Y.Z.); (Q.Z.); (Z.Z.); (X.L.); (L.F.)
| | - Kui Li
- Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China; (Y.X.); (Y.M.); (J.L.); (S.Z.); (K.L.)
| | - Xiaolong Qi
- Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China; (Y.X.); (Y.M.); (J.L.); (S.Z.); (K.L.)
| |
Collapse
|
6
|
Jung JH, Lee SM, Oh SH. A genome-wide association study on growth traits of Korean commercial pig breeds using Bayesian methods. Anim Biosci 2024; 37:807-816. [PMID: 38637973 PMCID: PMC11065719 DOI: 10.5713/ab.23.0443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/01/2023] [Accepted: 03/19/2024] [Indexed: 04/20/2024] Open
Abstract
OBJECTIVE This study aims to identify the significant regions and candidate genes of growth-related traits (adjusted backfat thickness [ABF], average daily gain [ADG], and days to 90 kg [DAYS90]) in Korean commercial GGP pig (Duroc, Landrace, and Yorkshire) populations. METHODS A genome-wide association study (GWAS) was performed using single-nucleotide polymorphism (SNP) markers for imputation to Illumina PorcineSNP60. The BayesB method was applied to calculate thresholds for the significance of SNP markers. The identified windows were considered significant if they explained ≥1% genetic variance. RESULTS A total of 28 window regions were related to genetic growth effects. Bayesian GWAS revealed 28 significant genetic regions including 52 informative SNPs associated with growth traits (ABF, ADG, DAYS90) in Duroc, Landrace, and Yorkshire pigs, with genetic variance ranging from 1.00% to 5.46%. Additionally, 14 candidate genes with previous functional validation were identified for these traits. CONCLUSION The identified SNPs within these regions hold potential value for future markerassisted or genomic selection in pig breeding programs. Consequently, they contribute to an improved understanding of genetic architecture and our ability to genetically enhance pigs. SNPs within the identified regions could prove valuable for future marker-assisted or genomic selection in pig breeding programs.
Collapse
Affiliation(s)
| | - Sang Min Lee
- National Institute of Animal Science, RDA, Cheonan, 31000,
Korea
| | - Sang-Hyon Oh
- Division of Animal Science, Gyeongsang National University, Jinju 52725,
Korea
| |
Collapse
|
7
|
Yang G, Sun M, Wang Z, Hu Q, Guo J, Yu J, Lei C, Dang R. Comparative Genomics Identifies the Evolutionarily Conserved Gene TPM3 as a Target of eca-miR-1 Involved in the Skeletal Muscle Development of Donkeys. Int J Mol Sci 2023; 24:15440. [PMID: 37895119 PMCID: PMC10607226 DOI: 10.3390/ijms242015440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/10/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Species within the genus Equus are valued for their draft ability. Skeletal muscle forms the foundation of the draft ability of Equus species; however, skeletal muscle development-related conserved genes and their target miRNAs are rarely reported for Equus. In this study, a comparative genomics analysis was performed among five species (horse, donkey, zebra, cattle, and goat), and the results showed that a total of 15,262 (47.43%) genes formed the core gene set of the five species. Only nine chromosomes (Chr01, Chr02, Chr03, Chr06, Chr10, Chr18, Chr22, Chr27, Chr29, and Chr30) exhibited a good collinearity relationship among Equus species. The micro-synteny analysis results showed that TPM3 was evolutionarily conserved in chromosome 1 in Equus. Furthermore, donkeys were used as the model species for Equus to investigate the genetic role of TPM3 in muscle development. Interestingly, the results of comparative transcriptomics showed that the TPM3 gene was differentially expressed in donkey skeletal muscle S1 (2 months old) and S2 (24 months old), as verified via RT-PCR. Dual-luciferase test analysis showed that the TPM3 gene was targeted by differentially expressed miRNA (eca-miR-1). Furthermore, a total of 17 TPM3 gene family members were identified in the whole genome of donkey, and a heatmap analysis showed that EaTPM3-5 was a key member of the TPM3 gene family, which is involved in skeletal muscle development. In conclusion, the TPM3 gene was conserved in Equus, and EaTPM3-5 was targeted by eca-miR-1, which is involved in skeletal muscle development in donkeys.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ruihua Dang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China; (G.Y.); (M.S.); (Z.W.); (Q.H.); (J.G.); (J.Y.); (C.L.)
| |
Collapse
|
8
|
Lin C, Wang W, Zhang D, Huang K, Zhang Y, Li X, Zhao Y, Zhao L, Wang J, Zhou B, Cheng J, Xu D, Li W, Zhang X, Zheng W. Analysis of liver miRNA in Hu sheep with different residual feed intake. Front Genet 2023; 14:1113411. [PMID: 37928243 PMCID: PMC10620975 DOI: 10.3389/fgene.2023.1113411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 10/09/2023] [Indexed: 11/07/2023] Open
Abstract
Feed efficiency (FE), an important economic trait in sheep production, is indirectly assessed by residual feed intake (RFI). However, RFI in sheep is varied, and the molecular processes that regulate RFI are unclear. It is thus vital to investigate the molecular mechanism of RFI to developing a feed-efficient sheep. The miRNA-sequencing (RNA-Seq) was utilized to investigate miRNAs in liver tissue of 6 out of 137 sheep with extreme RFI phenotypic values. In these animals, as a typical metric of FE, RFI was used to distinguish differentially expressed miRNAs (DE_miRNAs) between animals with high (n = 3) and low (n = 3) phenotypic values. A total of 247 miRNAs were discovered in sheep, with four differentially expressed miRNAs (DE_miRNAs) detected. Among these DE_miRNAs, three were found to be upregulated and one was downregulated in animals with low residual feed intake (Low_RFI) compared to those with high residual feed intake (High_RFI). The target genes of DE_miRNAs were primarily associated with metabolic processes and biosynthetic process regulation. Furthermore, they were also considerably enriched in the FE related to glycolysis, protein synthesis and degradation, and amino acid biosynthesis pathways. Six genes were identified by co-expression analysis of DE_miRNAs target with DE_mRNAs. These results provide a theoretical basis for us to understand the sheep liver miRNAs in RFI molecular regulation.
Collapse
Affiliation(s)
- Changchun Lin
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
- Institute of Animal Husbandry Quality Standards, Xinjiang Academy of Animal Sciences, Urumqi, Xinjiang, China
| | - Weimin Wang
- The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Deyin Zhang
- The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Kai Huang
- The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Yukun Zhang
- The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Xiaolong Li
- The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Yuan Zhao
- The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Liming Zhao
- The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Jianghui Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Bubo Zhou
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Jiangbo Cheng
- The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Dan Xu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Wenxin Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Xiaoxue Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Wenxin Zheng
- Institute of Animal Husbandry Quality Standards, Xinjiang Academy of Animal Sciences, Urumqi, Xinjiang, China
| |
Collapse
|
9
|
Yang Y, Wang X, Wang S, Chen Q, Li M, Lu S. Identification of Potential Sex-Specific Biomarkers in Pigs with Low and High Intramuscular Fat Content Using Integrated Bioinformatics and Machine Learning. Genes (Basel) 2023; 14:1695. [PMID: 37761835 PMCID: PMC10531182 DOI: 10.3390/genes14091695] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/17/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Intramuscular fat (IMF) content is a key determinant of pork quality. Controlling the genetic and physiological factors of IMF and the expression patterns of various genes is important for regulating the IMF content and improving meat quality in pig breeding. Growing evidence has suggested the role of genetic factors and breeds in IMF deposition; however, research on the sex factors of IMF deposition is still lacking. The present study aimed to identify potential sex-specific biomarkers strongly associated with IMF deposition in low- and high-IMF pig populations. The GSE144780 expression dataset of IMF deposition-related genes were obtained from the Gene Expression Omnibus. Initially, differentially expressed genes (DEGs) were detected in male and female low-IMF (162 DEGs, including 64 up- and 98 down-regulated genes) and high-IMF pigs (202 DEGs, including 147 up- and 55 down-regulated genes). Moreover, hub genes were screened via PPI network construction. Furthermore, hub genes were screened for potential sex-specific biomarkers using the least absolute shrinkage and selection operator machine learning algorithm, and sex-specific biomarkers in low-IMF (troponin I (TNNI1), myosin light chain 9(MYL9), and serpin family C member 1(SERPINC1)) and high-IMF pigs (CD4 molecule (CD4), CD2 molecule (CD2), and amine oxidase copper-containing 2(AOC2)) were identified, and then verified by quantitative real-time PCR (qRT-PCR) in semimembranosus muscles. Additionally, the gene set enrichment analysis and single-sample gene set enrichment analysis of hallmark gene sets were collectively performed on the identified biomarkers. Finally, the transcription factor-biomarker and lncRNA-miRNA-mRNA (biomarker) networks were predicted. The identified potential sex-specific biomarkers may provide new insights into the molecular mechanisms of IMF deposition and the beneficial foundation for improving meat quality in pig breeding.
Collapse
Affiliation(s)
| | | | | | | | | | - Shaoxiong Lu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.Y.); (X.W.); (S.W.); (Q.C.); (M.L.)
| |
Collapse
|
10
|
Suárez-Vega A, Frutos P, Gutiérrez-Gil B, Esteban-Blanco C, Toral PG, Arranz JJ, Hervás G. Feed efficiency in dairy sheep: An insight from the milk transcriptome. Front Vet Sci 2023; 10:1122953. [PMID: 37077950 PMCID: PMC10106586 DOI: 10.3389/fvets.2023.1122953] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/16/2023] [Indexed: 04/05/2023] Open
Abstract
IntroductionAs higher feed efficiency in dairy ruminants means a higher capability to transform feed nutrients into milk and milk components, differences in feed efficiency are expected to be partly linked to changes in the physiology of the mammary glands. Therefore, this study aimed to determine the biological functions and key regulatory genes associated with feed efficiency in dairy sheep using the milk somatic cell transcriptome.Material and methodsRNA-Seq data from high (H-FE, n = 8) and low (L-FE, n = 8) feed efficiency ewes were compared through differential expression analysis (DEA) and sparse Partial Least Square-Discriminant analysis (sPLS-DA).ResultsIn the DEA, 79 genes were identified as differentially expressed between both conditions, while the sPLS-DA identified 261 predictive genes [variable importance in projection (VIP) > 2] that discriminated H-FE and L-FE sheep.DiscussionThe DEA between sheep with divergent feed efficiency allowed the identification of genes associated with the immune system and stress in L-FE animals. In addition, the sPLS-DA approach revealed the importance of genes involved in cell division (e.g., KIF4A and PRC1) and cellular lipid metabolic process (e.g., LPL, SCD, GPAM, and ACOX3) for the H-FE sheep in the lactating mammary gland transcriptome. A set of discriminant genes, commonly identified by the two statistical approaches, was also detected, including some involved in cell proliferation (e.g., SESN2, KIF20A, or TOP2A) or encoding heat-shock proteins (HSPB1). These results provide novel insights into the biological basis of feed efficiency in dairy sheep, highlighting the informative potential of the mammary gland transcriptome as a target tissue and revealing the usefulness of combining univariate and multivariate analysis approaches to elucidate the molecular mechanisms controlling complex traits.
Collapse
Affiliation(s)
- Aroa Suárez-Vega
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Pilar Frutos
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), Grulleros, León, Spain
| | - Beatriz Gutiérrez-Gil
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Cristina Esteban-Blanco
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Pablo G. Toral
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), Grulleros, León, Spain
| | - Juan-José Arranz
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, León, Spain
- *Correspondence: Juan-José Arranz
| | - Gonzalo Hervás
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), Grulleros, León, Spain
| |
Collapse
|
11
|
Zhou X, Ma Y, Yang C, Zhao Z, Ding Y, Zhang Y, Wang P, Zhao L, Li C, Su Z, Wang X, Ming W, Zeng L, Kang X. Rumen and Fecal Microbiota Characteristics of Qinchuan Cattle with Divergent Residual Feed Intake. Microorganisms 2023; 11:microorganisms11020358. [PMID: 36838323 PMCID: PMC9964965 DOI: 10.3390/microorganisms11020358] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/18/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
Residual feed intake (RFI) is one of the indicators of feed efficiency. To investigate the microbial characteristics and differences in the gastrointestinal tract of beef cattle with different RFI, a metagenome methodology was used to explore the characteristics of the rumen and fecal microbiota in 10 Qinchuan cattle (five in each of the extremely high and extremely low RFI groups). The results of taxonomic annotation revealed that Bacteroidetes and Firmicutes were the most dominant phyla in rumen and feces. Prevotella was identified as a potential biomarker in the rumen of the LRFI group by the LEfSe method, while Turicibacter and Prevotella might be potential biomarkers of the HRFI and LRFI group in feces, respectively. Functional annotation revealed that the microbiota in the rumen of the HRFI group had a greater ability to utilize dietary polysaccharides and dietary protein. Association analysis of rumen microbes (genus level) with host genes revealed that microbiota including Prevotella, Paraprevotella, Treponema, Oscillibacter, and Muribaculum, were significantly associated with differentially expressed genes regulating RFI. This study discovered variances in the microbial composition of rumen and feces of beef cattle with different RFIs, demonstrating that differences in microbes may play a critical role in regulating the bovine divergent RFI phenotype variations.
Collapse
|
12
|
Yang C, Ding Y, Dan X, Shi Y, Kang X. Multi-transcriptomics reveals RLMF axis-mediated signaling molecules associated with bovine feed efficiency. Front Vet Sci 2023; 10:1090517. [PMID: 37035824 PMCID: PMC10073569 DOI: 10.3389/fvets.2023.1090517] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/07/2023] [Indexed: 04/11/2023] Open
Abstract
The regulatory axis plays a vital role in interpreting the information exchange and interactions among mammal organs. In this study on feed efficiency, it was hypothesized that a rumen-liver-muscle-fat (RLMF) regulatory axis exists and scrutinized the flow of energy along the RLMF axis employing consensus network analysis from a spatial transcriptomic standpoint. Based on enrichment analysis and protein-protein interaction analysis of the consensus network and tissue-specific genes, it was discovered that carbohydrate metabolism, energy metabolism, immune and inflammatory responses were likely to be the biological processes that contribute most to feed efficiency variation on the RLMF regulatory axis. In addition, clusters of genes related to the electron respiratory chain, including ND (2,3,4,4L,5,6), NDUF (A13, A7, S6, B3, B6), COX (1,3), CYTB, UQCR11, ATP (6,8), clusters of genes related to fatty acid metabolism including APO (A1, A2, A4, B, C3), ALB, FG (A, G), as well as clusters of the ribosomal-related gene including RPL (8,18A,18,15,13, P1), the RPS (23,27A,3A,4X), and the PSM (A1-A7, B6, C1, C3, D2-D4, D8 D9, E1) could be the primary effector genes responsible for feed efficiency variation. The findings demonstrate that high feed efficiency cattle, through the synergistic action of the regulatory axis RLMF, may improve the efficiency of biological processes (carbohydrate metabolism, protein ubiquitination, and energy metabolism). Meanwhile, high feed efficiency cattle might enhance the ability to respond to immunity and inflammation, allowing nutrients to be efficiently distributed across these organs associated with digestion and absorption, energy-producing, and energy-storing organs. Elucidating the distribution of nutrients on the RLMF regulatory axis could facilitate an understanding of feed efficiency variation and achieve the study on its molecular regulation.
Collapse
|
13
|
Identification of Differentially Expressed miRNAs in Porcine Adipose Tissues and Evaluation of Their Effects on Feed Efficiency. Genes (Basel) 2022; 13:genes13122406. [PMID: 36553673 PMCID: PMC9778086 DOI: 10.3390/genes13122406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
Feed efficiency (FE) is a very important trait affecting the economic benefits of pig breeding enterprises. Adipose tissue can modulate a variety of processes such as feed intake, energy metabolism and systemic physiological processes. However, the mechanism by which microRNAs (miRNAs) in adipose tissues regulate FE remains largely unknown. Therefore, this study aimed to screen potential miRNAs related to FE through miRNA sequencing. The miRNA profiles in porcine adipose tissues were obtained and 14 miRNAs were identified differentially expressed in adipose tissues of pigs with extreme differences in FE, of which 9 were down-regulated and 5 were up-regulated. GO and KEGG analyses indicated that these miRNAs were significantly related to lipid metabolism and these miRNAs modulated FE by regulating lipid metabolism. Subsequently, quantitative reverse transcription-polymerase chain reaction (qRT-PCR) of five randomly selected DEMs was used to verify the reliability of miRNA-seq data. Furthermore, 39 differentially expressed target genes of these DEMs were obtained, and DEMs-target mRNA interaction networks were constructed. In addition, the most significantly down-regulated miRNAs, ssc-miR-122-5p and ssc-miR-192, might be the key miRNAs for FE. Our results reveal the mechanism by which adipose miRNAs regulate feed efficiency in pigs. This study provides a theoretical basis for the further study of swine feed efficiency improvement.
Collapse
|
14
|
Wang Z, He Y, Tan Z. Transcription Analysis of Liver and Muscle Tissues from Landrace Finishing Pigs with Different Feed Conversion Ratios. Genes (Basel) 2022; 13:2067. [PMID: 36360304 PMCID: PMC9690258 DOI: 10.3390/genes13112067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 10/29/2023] Open
Abstract
The efficiency of feed utilization determines the cost and economic benefits of pig production. In the present study, two pairs of full-sibling and two pairs of half-sibling female Landrace finishing pigs were selected, with each pair including individuals with different feed conversion rates, with liver and longissimus muscle tissue samples collected from each group for transcriptome analysis. A total of 561 differentially expressed genes (DEGs), among which 224 were up-regulated and 337 were down-regulated, were detected in the liver transcriptomes in the high-feed efficiency group compared to the low-feed efficiency group. The DEGs related to phosphorus and phosphate metabolism, arginine biosynthesis, chemical carcinogenesis, cytokine-cytokine receptor interaction, the biosynthesis of amino acids, and drug metabolism-cytochrome P450 in liver tissue were also associated with feed efficiency. In total, 215 DEGs were screened in the longissimus muscle tissue and were mainly related to disease and immune regulation, including complement and coagulation cascades, systemic lupus erythematosus, and prion diseases. The combination of gene expression and functional annotation results led to the identification of candidate feed efficiency-related biomarkers, such as ARG1, ARG2, GOT1, GPT2, ACAA2, ACADM, and ANGPTL4, members of cytochrome P450 family, and complement component family genes. Although the novel feed efficiency-related candidate genes need to be further evaluated by a larger sample size and functional studies, the present study identifies novel candidate biomarkers for the identification of functional SNPs underlying porcine feed efficiency.
Collapse
Affiliation(s)
| | | | - Zhen Tan
- School of Animal Science and Technology, Hainan University, Haikou 570228, China
| |
Collapse
|
15
|
Le Bon M, Tötemeyer S, Emes RD, Mellits KH. Gut transcriptome reveals differential gene expression and enriched pathways linked to immune activation in response to weaning in pigs. Front Genet 2022; 13:961474. [DOI: 10.3389/fgene.2022.961474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Weaning represents one of the most critical periods in pig production associated with increase in disease risk, reduction in performance and economic loss. Physiological changes faced by piglets during the weaning period have been well characterised, however little is currently known about the underlying molecular pathways involved in these processes. As pig meat remains one of the most consumed sources of protein worldwide, understanding how these changes are mediated is critical to improve pig production and consequently sustainable food production globally. In this study, we evaluated the effect of weaning on transcriptomic changes in the colon of healthy piglets over time using an RNA-sequencing approach. The findings revealed a complex and coordinated response to weaning with the majority of genes found to be rapidly differentially expressed within 1 day post weaning. Multiple genes and pathways affected by weaning in the colon were associated with immune regulation, cell signalling and bacterial defence. NOD-like receptors, Toll-like receptor and JAK-STAT signalling pathways were amongst the pathways significantly enriched. Immune activation was evidenced by the enrichment of pathways involved in interferon response, cytokines interactions, oxidoreductase activities and response to microbial invasion. Biosynthesis of amino acids, in particular arginine, was also amongst the most enriched KEGG pathways in weaned pigs, reinforcing the critical role of arginine in gut homeostasis under stress conditions. Overall, transcriptomic and physiological results suggest that pigs going through the weaning transition undergo a transient period of inflammatory state with a temporary breakdown of barrier functions in the gut. These findings could provide valuable tools to monitor host response post weaning, and may be of particular relevance for the investigation and development of intervention strategies aimed to reduce antibiotic use and improve pig health and performance.
Collapse
|
16
|
Zumbaugh MD, Johnson SE, Shi TH, Gerrard DE. Molecular and biochemical regulation of skeletal muscle metabolism. J Anim Sci 2022; 100:6652332. [PMID: 35908794 PMCID: PMC9339271 DOI: 10.1093/jas/skac035] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 02/02/2022] [Indexed: 12/13/2022] Open
Abstract
Skeletal muscle hypertrophy is a culmination of catabolic and anabolic processes that are interwoven into major metabolic pathways, and as such modulation of skeletal muscle metabolism may have implications on animal growth efficiency. Muscle is composed of a heterogeneous population of muscle fibers that can be classified by metabolism (oxidative or glycolytic) and contractile speed (slow or fast). Although slow fibers (type I) rely heavily on oxidative metabolism, presumably to fuel long or continuous bouts of work, fast fibers (type IIa, IIx, and IIb) vary in their metabolic capability and can range from having a high oxidative capacity to a high glycolytic capacity. The plasticity of muscle permits continuous adaptations to changing intrinsic and extrinsic stimuli that can shift the classification of muscle fibers, which has implications on fiber size, nutrient utilization, and protein turnover rate. The purpose of this paper is to summarize the major metabolic pathways in skeletal muscle and the associated regulatory pathways.
Collapse
Affiliation(s)
- Morgan D Zumbaugh
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Sally E Johnson
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Tim H Shi
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - David E Gerrard
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| |
Collapse
|
17
|
Davoudi P, Do DN, Colombo SM, Rathgeber B, Miar Y. Application of Genetic, Genomic and Biological Pathways in Improvement of Swine Feed Efficiency. Front Genet 2022; 13:903733. [PMID: 35754793 PMCID: PMC9220306 DOI: 10.3389/fgene.2022.903733] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/20/2022] [Indexed: 12/24/2022] Open
Abstract
Despite the significant improvement of feed efficiency (FE) in pigs over the past decades, feed costs remain a major challenge for producers profitability. Improving FE is a top priority for the global swine industry. A deeper understanding of the biology underlying FE is crucial for making progress in genetic improvement of FE traits. This review comprehensively discusses the topics related to the FE in pigs including: measurements, genetics, genomics, biological pathways and the advanced technologies and methods involved in FE improvement. We first provide an update of heritability for different FE indicators and then characterize the correlations of FE traits with other economically important traits. Moreover, we present the quantitative trait loci (QTL) and possible candidate genes associated with FE in pigs and outline the most important biological pathways related to the FE traits in pigs. Finally, we present possible ways to improve FE in swine including the implementation of genomic selection, new technologies for measuring the FE traits, and the potential use of genome editing and omics technologies.
Collapse
Affiliation(s)
- Pourya Davoudi
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada
| | - Duy Ngoc Do
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada
| | - Stefanie M Colombo
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada
| | - Bruce Rathgeber
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada
| | - Younes Miar
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada
| |
Collapse
|
18
|
Shen J, Hao Z, Luo Y, Zhen H, Liu Y, Wang J, Hu J, Liu X, Li S, Zhao Z, Liu Y, Yang S, Wang L. Deep Small RNA Sequencing Reveals Important miRNAs Related to Muscle Development and Intramuscular Fat Deposition in Longissimus dorsi Muscle From Different Goat Breeds. Front Vet Sci 2022; 9:911166. [PMID: 35769318 PMCID: PMC9234576 DOI: 10.3389/fvets.2022.911166] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/09/2022] [Indexed: 12/25/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs that have been shown to play important post-transcriptional regulatory roles in the growth and development of skeletal muscle tissues. However, limited research into the effect of miRNAs on muscle development in goats has been reported. In this study, Liaoning cashmere (LC) goats and Ziwuling black (ZB) goats with significant phenotype difference in meat production performance were selected and the difference in Longissimus dorsi muscle tissue expression profile of miRNAs between the two goat breeds was then compared using small RNA sequencing. A total of 1,623 miRNAs were identified in Longissimus dorsi muscle tissues of the two goat breeds, including 410 known caprine miRNAs, 928 known species-conserved miRNAs and 285 novel miRNAs. Of these, 1,142 were co-expressed in both breeds, while 230 and 251 miRNAs were only expressed in LC and ZB goats, respectively. Compared with ZB goats, 24 up-regulated miRNAs and 135 miRNAs down-regulated were screened in LC goats. A miRNA-mRNA interaction network showed that the differentially expressed miRNAs would target important functional genes associated with muscle development and intramuscular fat deposition. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that the target genes of differentially expressed miRNAs were significantly enriched in Ras, Rap 1, FoxO, and Hippo signaling pathways. This study suggested that these differentially expressed miRNAs may be responsible for the phenotype differences in meat production performance between the two goat breeds, thereby providing an improved understanding of the roles of miRNAs in muscle tissue of goats.
Collapse
|
19
|
Mota LFM, Santos SWB, Júnior GAF, Bresolin T, Mercadante MEZ, Silva JAV, Cyrillo JNSG, Monteiro FM, Carvalheiro R, Albuquerque LG. Meta-analysis across Nellore cattle populations identifies common metabolic mechanisms that regulate feed efficiency-related traits. BMC Genomics 2022; 23:424. [PMID: 35672696 PMCID: PMC9172108 DOI: 10.1186/s12864-022-08671-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 05/03/2022] [Indexed: 11/28/2022] Open
Abstract
Background Feed efficiency (FE) related traits play a key role in the economy and sustainability of beef cattle production systems. The accurate knowledge of the physiologic background for FE-related traits can help the development of more efficient selection strategies for them. Hence, multi-trait weighted GWAS (MTwGWAS) and meta-analyze were used to find genomic regions associated with average daily gain (ADG), dry matter intake (DMI), feed conversion ratio (FCR), feed efficiency (FE), and residual feed intake (RFI). The FE-related traits and genomic information belong to two breeding programs that perform the FE test at different ages: post-weaning (1,024 animals IZ population) and post-yearling (918 animals for the QLT population). Results The meta-analyze MTwGWAS identified 14 genomic regions (-log10(p -value) > 5) regions mapped on BTA 1, 2, 3, 4, 7, 8, 11, 14, 15, 18, 21, and 29. These regions explained a large proportion of the total genetic variance for FE-related traits across-population ranging from 20% (FCR) to 36% (DMI) in the IZ population and from 22% (RFI) to 28% (ADG) in the QLT population. Relevant candidate genes within these regions (LIPE, LPL, IGF1R, IGF1, IGFBP5, IGF2, INS, INSR, LEPR, LEPROT, POMC, NPY, AGRP, TGFB1, GHSR, JAK1, LYN, MOS, PLAG1, CHCD7, LCAT, and PLA2G15) highlighted that the physiological mechanisms related to neuropeptides and the metabolic signals controlling the body's energy balance are responsible for leading to greater feed efficiency. Integrated meta-analysis results and functional pathway enrichment analysis highlighted the major effect of biological functions linked to energy, lipid metabolism, and hormone signaling that mediates the effects of peptide signals in the hypothalamus and whole-body energy homeostasis affecting the genetic control of FE-related traits in Nellore cattle. Conclusions Genes and pathways associated with common signals for feed efficiency-related traits provide better knowledge about regions with biological relevance in physiological mechanisms associated with differences in energy metabolism and hypothalamus signaling. These pleiotropic regions would support the selection for feed efficiency-related traits, incorporating and pondering causal variations assigning prior weights in genomic selection approaches. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08671-w.
Collapse
Affiliation(s)
- Lucio F M Mota
- School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal - SP, São Paulo, 14884-900, Brazil.
| | - Samuel W B Santos
- School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal - SP, São Paulo, 14884-900, Brazil
| | - Gerardo A Fernandes Júnior
- School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal - SP, São Paulo, 14884-900, Brazil
| | - Tiago Bresolin
- School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal - SP, São Paulo, 14884-900, Brazil
| | - Maria E Z Mercadante
- Institute of Animal Science, Beef Cattle Research Center, Sertãozinho - SP, São Paulo, 14174-000, Brazil.,National Council for Science and Technological Development, Brasilia - DF, 71605-001, Brazil
| | - Josineudson A V Silva
- National Council for Science and Technological Development, Brasilia - DF, 71605-001, Brazil.,School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu - SP, 18618-681, Brazil
| | - Joslaine N S G Cyrillo
- Institute of Animal Science, Beef Cattle Research Center, Sertãozinho - SP, São Paulo, 14174-000, Brazil
| | - Fábio M Monteiro
- Institute of Animal Science, Beef Cattle Research Center, Sertãozinho - SP, São Paulo, 14174-000, Brazil
| | - Roberto Carvalheiro
- School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal - SP, São Paulo, 14884-900, Brazil.,National Council for Science and Technological Development, Brasilia - DF, 71605-001, Brazil
| | - Lucia G Albuquerque
- School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal - SP, São Paulo, 14884-900, Brazil. .,National Council for Science and Technological Development, Brasilia - DF, 71605-001, Brazil.
| |
Collapse
|
20
|
Wei X, Zhu Y, Zhao X, Zhao Y, Jing Y, Liu G, Wang S, Li H, Ma Y. Transcriptome profiling of mRNAs in muscle tissue of Pinan cattle and Nanyang cattle. Gene 2022; 825:146435. [PMID: 35301069 DOI: 10.1016/j.gene.2022.146435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/03/2022] [Accepted: 03/11/2022] [Indexed: 11/25/2022]
Abstract
Mammalian muscle development is regulated by complex gene networks at the molecular level. The revelation of gene regulatory mechanisms is an important basis for the study of muscle development and molecular breeding. To analyze the excellent meat performance of Pinan cattle at the molecular level, we performed high-throughput RNA sequencing to analyze the key regulatory genes that determine the muscle quality traits in Pinan cattle (n = 3) and Nanyang cattle (n = 3). We identified 57 differentially expressed genes in muscle tissue of Pinan cattle compared to that of Nanyang cattle, including 32 upregulated and 25 downregulated genes. GO enrichment analysis showed that these genes were significantly enriched in 'molecular function', including voltage-gated ion channel activity, calcium channel activity and calcium ion binding, and KEGG pathway analysis results revealed that adrenergic signaling in cardio myocytes, cell adhesion molecules and inositol phosphate metabolism pathway were significantly enriched. We identified the reliability of RNA-Seq data through RT-qPCR. Meanwhile, we found that GSTA3, PLCB1 and ISYNA1 genes are highly expressed in muscle tissue of Pinan cattle, and these genes play important roles in PI3K/Akt, MEK1/2-ERK and p53-ISYNA1 signaling pathway. In summary, our results suggested that these differentially expressed genes may play important roles in muscle development in Pinan cattle. However, the functions and mechanism of these significantly differential expressed genes should be investigated in future studies.
Collapse
Affiliation(s)
- Xuefeng Wei
- College of Life Sciences, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Yunchang Zhu
- College of Life Sciences, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Xue Zhao
- College of Life Sciences, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Yadi Zhao
- College of Life Sciences, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Yujia Jing
- College of Life Sciences, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Gege Liu
- College of Life Sciences, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Shuzhe Wang
- School of Agriculture, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Hui Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Yun Ma
- College of Life Sciences, Xinyang Normal University, Xinyang, Henan 464000, China; School of Agriculture, Ningxia University, Yinchuan, Ningxia 750021, China.
| |
Collapse
|
21
|
Wang K, Wang S, Ji X, Chen D, Shen Q, Yu Y, Xiao W, Wu P, Tang G. Genome-wide association studies identified loci associated with both feed conversion ratio and residual feed intake in Yorkshire pigs. Genome 2022; 65:405-412. [PMID: 35594567 DOI: 10.1139/gen-2021-0105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Feed occupies a significant proportion in the production cost of pigs, and the feed efficiency (FE) in pigs are of utmost economic importance. Hence, the objective of this study is to identify single nucleotide polymorphisms (SNPs) and candidate genes associated with FE related traits, including feed conversion ratio (FCR) and residual feed intake (RFI). A genome-wide association study (GWAS) was conducted for FCR and RFI in 169 Yorkshire pigs using whole-genome sequencing data. A total of 23 and 33 suggestive significant SNPs (P<1×10^(-6)) were detected for FCR and RFI, respectively. However, none of the SNPs achieved the genome-wide significance threshold (P<5×10^(-8)). Importantly, three common SNPs (SSC7:7987268, SSC13:42350250, and SSC13:42551718) were associated with both FCR and RFI. Additionally, the NEDD9 gene related to FCR and RFI traits was overlapped. This study detected novel SNPs on SSC7 and SSC13 common for FCR and RFI. These results provide new insights into the genetic mechanisms and candidate genes of FE-related traits in pigs.
Collapse
Affiliation(s)
- Kai Wang
- Sichuan Agricultural University, 12529, Chengdu, Sichuan, China;
| | - Shujie Wang
- Sichuan Agricultural University, 12529, Chengdu, Sichuan, China;
| | - Xiang Ji
- Sichuan Agricultural University, 12529, Chengdu, Sichuan, China;
| | - Dong Chen
- Sichuan Agricultural University, 12529, Chengdu, Sichuan, China;
| | - Qi Shen
- Sichuan Agricultural University, 12529, Chengdu, Sichuan, China;
| | - Yang Yu
- Sichuan Agricultural University, 12529, Chengdu, Sichuan, China;
| | - Weihang Xiao
- Sichuan Agricultural University, 12529, Yaan, Sichuan, China, 625014;
| | - Pingxian Wu
- Chongqing Academy of Animal Science, Chongqing, China, 402460;
| | - Guoqing Tang
- Sichuan Agricultural University, 12529, Yaan, Sichuan, China, 625014;
| |
Collapse
|
22
|
Peng H, Hu M, Liu Z, Lai W, Shi L, Zhao Z, Ma H, Li Y, Yan S. Transcriptome Analysis of the Liver and Muscle Tissues of Dorper and Small-Tailed Han Sheep. Front Genet 2022; 13:868717. [PMID: 35480317 PMCID: PMC9035493 DOI: 10.3389/fgene.2022.868717] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/21/2022] [Indexed: 11/25/2022] Open
Abstract
It is well known that Dorper (DP) is a full-bodied, fast-growing and high dressing percentage breed, while the production performance of Small-tailed Han sheep (STH) is not so excellent, in contrast to DP. Therefore, in this study, a comparative transcriptomic analysis of liver and muscle tissues from DP and STH breeds was carried out to find differentially expressed genes (DEGs) that affect their growth and meat quality traits. The results showed that the total number of DEGs was 2,188 in the two tissues. There were 950, 160 up-regulated and 1,007, 71 down-regulated genes in the liver and muscle, respectively. Several DEGs such as TGFB1, TGFB3, FABP3, LPL may be associated with growth and development in DP. Also, several GO terms were found to be associated with muscle growth and development, such as developmental growth (GO:0048589), and myofibril (GO:0030016). Further validation of eight genes (6 up-regulated, and 2 down-regulated) was performed using quantitative RT-PCR. These findings will provide valuable information for studying growth and development as well as meat quality traits in sheep.
Collapse
Affiliation(s)
- Hongyang Peng
- College of Animal Science, Jilin University, Changchun, China
| | - Mingyue Hu
- College of Animal Science, Jilin University, Changchun, China
| | - Zhengxi Liu
- College of Animal Science, Jilin University, Changchun, China
| | - Weining Lai
- College of Animal Science, Jilin University, Changchun, China
| | - Lulu Shi
- College of Animal Science, Jilin University, Changchun, China
| | - Zhongli Zhao
- Institute of Animal Husbandry and Veterinary, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Huihai Ma
- Institute of Animal Husbandry and Veterinary, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Yumei Li
- College of Animal Science, Jilin University, Changchun, China
| | - Shouqing Yan
- College of Animal Science, Jilin University, Changchun, China
| |
Collapse
|
23
|
Miao Y, Fu C, Liao M, Fang F. Differences in Liver microRNA profiling in pigs with low and high
feed efficiency. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2022; 64:312-329. [PMID: 35530409 PMCID: PMC9039951 DOI: 10.5187/jast.2022.e4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/20/2021] [Accepted: 01/09/2022] [Indexed: 11/21/2022]
Abstract
Feed cost is the main factor affecting the economic benefits of pig industry.
Improving the feed efficiency (FE) can reduce the feed cost and improve the
economic benefits of pig breeding enterprises. Liver is a complex metabolic
organ which affects the distribution of nutrients and regulates the efficiency
of energy conversion from nutrients to muscle or fat, thereby affecting feed
efficiency. MicroRNAs (miRNAs) are small non-coding RNAs that can regulate feed
efficiency through the modulation of gene expression at the post-transcriptional
level. In this study, we analyzed miRNA profiling of liver tissues in High-FE
and Low-FE pigs for the purpose of identifying key miRNAs related to feed
efficiency. A total 212~221 annotated porcine miRNAs and 136~281 novel
miRNAs were identified in the pig liver. Among them, 188 annotated miRNAs were
co-expressed in High-FE and Low-FE pigs. The 14 miRNAs were significantly
differentially expressed (DE) in the livers of high-FE pigs and low-FE pigs, of
which 5 were downregulated and 9 were upregulated. Kyoto Encyclopedia of Genes
and Genomes analysis of liver DE miRNAs in high-FE pigs and low-FE pigs
indicated that the target genes of DE miRNAs were significantly enriched in
insulin signaling pathway, Gonadotropin-releasing hormone signaling pathway, and
mammalian target of rapamycin signaling pathway. To verify the reliability of
sequencing results, 5 DE miRNAs were randomly selected for quantitative reverse
transcription-polymerase chain reaction (qRT-PCR). The qRT-PCR results of miRNAs
were confirmed to be consistent with sequencing data. DE miRNA data indicated
that liver-specific miRNAs synergistically acted with mRNAs to improve feed
efficiency. The liver miRNAs expression analysis revealed the metabolic pathways
by which the liver miRNAs regulate pig feed efficiency.
Collapse
Affiliation(s)
- Yuanxin Miao
- College of Bioengineering,Jingchu
University of Technology, Jingmen 448000, Hubei, China
- Key Laboratory of Agricultural Animal
Genetics, Breeding and Reproduction of Ministry of Education, Huazhong
Agricultural University, Wuhan 430070, China
| | - Chuanke Fu
- Key Laboratory of Agricultural Animal
Genetics, Breeding and Reproduction of Ministry of Education, Huazhong
Agricultural University, Wuhan 430070, China
| | - Mingxing Liao
- Key Laboratory of Agricultural Animal
Genetics, Breeding and Reproduction of Ministry of Education, Huazhong
Agricultural University, Wuhan 430070, China
| | - Fang Fang
- Key Laboratory of Agricultural Animal
Genetics, Breeding and Reproduction of Ministry of Education, Huazhong
Agricultural University, Wuhan 430070, China
- National Center for International Research
on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong
Agricultural University, Wuhan 430070, China
- Corresponding author: Fang Fang, Key Laboratory of
Agricultural Animal Genetics, Breeding and Reproduction of Ministry of
Education, Huazhong Agricultural University, Wuhan 430070, China. Tel:
+86-278-728-2091, E-mail:
| |
Collapse
|
24
|
Emerging Roles of Non-Coding RNAs in the Feed Efficiency of Livestock Species. Genes (Basel) 2022; 13:genes13020297. [PMID: 35205343 PMCID: PMC8872339 DOI: 10.3390/genes13020297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 01/27/2023] Open
Abstract
A global population of already more than seven billion people has led to an increased demand for food and water, and especially the demand for meat. Moreover, the cost of feed used in animal production has also increased dramatically, which requires animal breeders to find alternatives to reduce feed consumption. Understanding the biology underlying feed efficiency (FE) allows for a better selection of feed-efficient animals. Non-coding RNAs (ncRNAs), especially micro RNAs (miRNAs) and long non-coding RNAs (lncRNAs), play important roles in the regulation of bio-logical processes and disease development. The functions of ncRNAs in the biology of FE have emerged as they participate in the regulation of many genes and pathways related to the major FE indicators, such as residual feed intake and feed conversion ratio. This review provides the state of the art studies related to the ncRNAs associated with FE in livestock species. The contribution of ncRNAs to FE in the liver, muscle, and adipose tissues were summarized. The research gap of the function of ncRNAs in key processes for improved FE, such as the nutrition, heat stress, and gut–brain axis, was examined. Finally, the potential uses of ncRNAs for the improvement of FE were discussed.
Collapse
|
25
|
Zhang C, Wang T, Cui T, Liu S, Zhang B, Li X, Tang J, Wang P, Guo Y, Wang Z. Genome-Wide Phylogenetic Analysis, Expression Pattern, and Transcriptional Regulatory Network of the Pig C/EBP Gene Family. Evol Bioinform Online 2021; 17:11769343211041382. [PMID: 34471342 PMCID: PMC8404664 DOI: 10.1177/11769343211041382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 08/02/2021] [Indexed: 11/16/2022] Open
Abstract
The CCAAT/enhancer binding protein (C/EBP) transcription factors (TFs) regulate many important biological processes, such as energy metabolism, inflammation, cell proliferation etc. A genome-wide gene identification revealed the presence of a total of 99 C/EBP genes in pig and 19 eukaryote genomes. Phylogenetic analysis showed that all C/EBP TFs were classified into 6 subgroups named C/EBPα, C/EBPβ, C/EBPδ, C/EBPε, C/EBPγ, and C/EBPζ. Gene expression analysis showed that the C/EBPα, C/EBPβ, C/EBPδ, C/EBPγ, and C/EBPζ genes were expressed ubiquitously with inconsistent expression patterns in various pig tissues. Moreover, a pig C/EBP regulatory network was constructed, including C/EBP genes, TFs and miRNAs. A total of 27 feed-forward loop (FFL) motifs were detected in the pig C/EBP regulatory network. Based on the RNA-seq data, gene expression patterns related to FFL sub-network were analyzed in 27 adult pig tissues. Certain FFL motifs may be tissue specific. Functional enrichment analysis indicated that C/EBP and its target genes are involved in many important biological pathways. These results provide valuable information that clarifies the evolutionary relationships of the C/EBP family and contributes to the understanding of the biological function of C/EBP genes.
Collapse
Affiliation(s)
- Chaoxin Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
- Bioinformatics Center, Northeast Agricultural University, Harbin, China
| | - Tao Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
- Bioinformatics Center, Northeast Agricultural University, Harbin, China
| | - Tongyan Cui
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
- Bioinformatics Center, Northeast Agricultural University, Harbin, China
| | - Shengwei Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
- Bioinformatics Center, Northeast Agricultural University, Harbin, China
| | - Bing Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
- Bioinformatics Center, Northeast Agricultural University, Harbin, China
| | - Xue Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
- Bioinformatics Center, Northeast Agricultural University, Harbin, China
| | - Jian Tang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
- Bioinformatics Center, Northeast Agricultural University, Harbin, China
| | - Peng Wang
- HeiLongJiang provincial Husbandry Dapartment, Harbin, China
| | - Yuanyuan Guo
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
- Bioinformatics Center, Northeast Agricultural University, Harbin, China
| | - Zhipeng Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
- Bioinformatics Center, Northeast Agricultural University, Harbin, China
- DaBeiNong Group, Beijing, China
| |
Collapse
|
26
|
Messad F, Louveau I, Renaudeau D, Gilbert H, Gondret F. Analysis of merged whole blood transcriptomic datasets to identify circulating molecular biomarkers of feed efficiency in growing pigs. BMC Genomics 2021; 22:501. [PMID: 34217223 PMCID: PMC8254903 DOI: 10.1186/s12864-021-07843-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 06/24/2021] [Indexed: 11/10/2022] Open
Abstract
Background Improving feed efficiency (FE) is an important goal due to its economic and environmental significance for farm animal production. The FE phenotype is complex and based on the measurements of the individual feed consumption and average daily gain during a test period, which is costly and time-consuming. The identification of reliable predictors of FE is a strategy to reduce phenotyping efforts. Results Gene expression data of the whole blood from three independent experiments were combined and analyzed by machine learning algorithms to propose molecular biomarkers of FE traits in growing pigs. These datasets included Large White pigs from two lines divergently selected for residual feed intake (RFI), a measure of net FE, and in which individual feed conversion ratio (FCR) and blood microarray data were available. Merging the three datasets allowed considering FCR values (Mean = 2.85; Min = 1.92; Max = 5.00) for a total of n = 148 pigs, with a large range of body weight (15 to 115 kg) and different test period duration (2 to 9 weeks). Random forest (RF) and gradient tree boosting (GTB) were applied on the whole blood transcripts (26,687 annotated molecular probes) to identify the most important variables for binary classification on RFI groups and a quantitative prediction of FCR, respectively. The dataset was split into learning (n = 74) and validation sets (n = 74). With iterative steps for variable selection, about three hundred’s (328 to 391) molecular probes participating in various biological pathways, were identified as important predictors of RFI or FCR. With the GTB algorithm, simpler models were proposed combining 34 expressed unique genes to classify pigs into RFI groups (100% of success), and 25 expressed unique genes to predict FCR values (R2 = 0.80, RMSE = 8%). The accuracy performance of RF models was slightly lower in classification and markedly lower in regression. Conclusion From small subsets of genes expressed in the whole blood, it is possible to predict the binary class and the individual value of feed efficiency. These predictive models offer good perspectives to identify animals with higher feed efficiency in precision farming applications. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07843-4.
Collapse
Affiliation(s)
- Farouk Messad
- PEGASE, INRAE, Institut Agro, 35590, Saint-Gilles, France
| | | | | | - Hélène Gilbert
- GenPhySE, INRAE, INP-ENVT, 31326, Castanet Tolosan, France
| | | |
Collapse
|
27
|
Miao Y, Mei Q, Fu C, Liao M, Liu Y, Xu X, Li X, Zhao S, Xiang T. Genome-wide association and transcriptome studies identify candidate genes and pathways for feed conversion ratio in pigs. BMC Genomics 2021; 22:294. [PMID: 33888058 PMCID: PMC8063444 DOI: 10.1186/s12864-021-07570-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/25/2021] [Indexed: 12/03/2022] Open
Abstract
Background The feed conversion ratio (FCR) is an important productive trait that greatly affects profits in the pig industry. Elucidating the genetic mechanisms underpinning FCR may promote more efficient improvement of FCR through artificial selection. In this study, we integrated a genome-wide association study (GWAS) with transcriptome analyses of different tissues in Yorkshire pigs (YY) with the aim of identifying key genes and signalling pathways associated with FCR. Results A total of 61 significant single nucleotide polymorphisms (SNPs) were detected by GWAS in YY. All of these SNPs were located on porcine chromosome (SSC) 5, and the covered region was considered a quantitative trait locus (QTL) region for FCR. Some genes distributed around these significant SNPs were considered as candidates for regulating FCR, including TPH2, FAR2, IRAK3, YARS2, GRIP1, FRS2, CNOT2 and TRHDE. According to transcriptome analyses in the hypothalamus, TPH2 exhibits the potential to regulate intestinal motility through serotonergic synapse and oxytocin signalling pathways. In addition, GRIP1 may be involved in glutamatergic and GABAergic signalling pathways, which regulate FCR by affecting appetite in pigs. Moreover, GRIP1, FRS2, CNOT2, and TRHDE may regulate metabolism in various tissues through a thyroid hormone signalling pathway. Conclusions Based on the results from GWAS and transcriptome analyses, the TPH2, GRIP1, FRS2, TRHDE, and CNOT2 genes were considered candidate genes for regulating FCR in Yorkshire pigs. These findings improve the understanding of the genetic mechanisms of FCR and may help optimize the design of breeding schemes. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07570-w.
Collapse
Affiliation(s)
- Yuanxin Miao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China.,Jingchu University of Technology, Jingmen, 448000, China
| | - Quanshun Mei
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Chuanke Fu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Mingxing Liao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China.,Agriculture and Rural Affairs Administration of Jingmen City, Jingmen, 448000, China
| | - Yan Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Xuewen Xu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Xinyun Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Shuhong Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Tao Xiang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China. .,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China.
| |
Collapse
|
28
|
Daza KR, Velez-Irizarry D, Casiró S, Steibel JP, Raney NE, Bates RO, Ernst CW. Integrated Genome-Wide Analysis of MicroRNA Expression Quantitative Trait Loci in Pig Longissimus Dorsi Muscle. Front Genet 2021; 12:644091. [PMID: 33859669 PMCID: PMC8042294 DOI: 10.3389/fgene.2021.644091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 02/24/2021] [Indexed: 01/19/2023] Open
Abstract
Determining mechanisms regulating complex traits in pigs is essential to improve the production efficiency of this globally important protein source. MicroRNAs (miRNAs) are a class of non-coding RNAs known to post-transcriptionally regulate gene expression affecting numerous phenotypes, including those important to the pig industry. To facilitate a more comprehensive understanding of the regulatory mechanisms controlling growth, carcass composition, and meat quality phenotypes in pigs, we integrated miRNA and gene expression data from longissimus dorsi muscle samples with genotypic and phenotypic data from the same animals. We identified 23 miRNA expression Quantitative Trait Loci (miR-eQTL) at the genome-wide level and examined their potential effects on these important production phenotypes through miRNA target prediction, correlation, and colocalization analyses. One miR-eQTL miRNA, miR-874, has target genes that colocalize with phenotypic QTL for 12 production traits across the genome including backfat thickness, dressing percentage, muscle pH at 24 h post-mortem, and cook yield. The results of our study reveal genomic regions underlying variation in miRNA expression and identify miRNAs and genes for future validation of their regulatory effects on traits of economic importance to the global pig industry.
Collapse
Affiliation(s)
- Kaitlyn R Daza
- Department of Animal Science, Michigan State University, East Lansing, MI, United States
| | - Deborah Velez-Irizarry
- Department of Animal Science, Michigan State University, East Lansing, MI, United States
| | - Sebastian Casiró
- Department of Animal Science, Michigan State University, East Lansing, MI, United States
| | - Juan P Steibel
- Department of Animal Science, Michigan State University, East Lansing, MI, United States
| | - Nancy E Raney
- Department of Animal Science, Michigan State University, East Lansing, MI, United States
| | - Ronald O Bates
- Department of Animal Science, Michigan State University, East Lansing, MI, United States
| | - Catherine W Ernst
- Department of Animal Science, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
29
|
Xiao C, Deng J, Zeng L, Sun T, Yang Z, Yang X. Transcriptome Analysis Identifies Candidate Genes and Signaling Pathways Associated With Feed Efficiency in Xiayan Chicken. Front Genet 2021; 12:607719. [PMID: 33815460 PMCID: PMC8010316 DOI: 10.3389/fgene.2021.607719] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 02/25/2021] [Indexed: 11/13/2022] Open
Abstract
Feed efficiency is an important economic factor in poultry production, and the rate of feed efficiency is generally evaluated using residual feed intake (RFI). The molecular regulatory mechanisms of RFI remain unknown. Therefore, the objective of this study was to identify candidate genes and signaling pathways related to RFI using RNA-sequencing for low RFI (LRFI) and high RFI (HRFI) in the Xiayan chicken, a native chicken of the Guangxi province. Chickens were divided into four groups based on FE and sex: LRFI and HRFI for males and females, respectively. We identified a total of 1,015 and 742 differentially expressed genes associated with RFI in males and females, respectively. The 32 and 7 Gene Ontology (GO) enrichment terms, respectively, identified in males and females chiefly involved carbohydrate, amino acid, and energy metabolism. Additionally, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis identified 11 and 5 significantly enriched signaling pathways, including those for nutrient metabolism, insulin signaling, and MAPK signaling, respectively. Protein-protein interaction (PPI) network analysis showed that the pathways involving CAT, ACSL1, ECI2, ABCD2, ACOX1, PCK1, HSPA2, and HSP90AA1 may have an effect on feed efficiency, and these genes are mainly involved in the biological processes of fat metabolism and heat stress. Gene set enrichment analysis indicated that the increased expression of genes in LRFI chickens was related to intestinal microvilli structure and function, and to the fat metabolism process in males. In females, the highly expressed set of genes in the LRFI group was primarily associated with nervous system and cell development. Our findings provide further insight into RFI regulation mechanisms in chickens.
Collapse
Affiliation(s)
- Cong Xiao
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Jixian Deng
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Linghu Zeng
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Tiantian Sun
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Zhuliang Yang
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Xiurong Yang
- College of Animal Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
30
|
Jiang H, Fang S, Yang H, Chen C. Identification of the relationship between the gut microbiome and feed efficiency in a commercial pig cohort. J Anim Sci 2021; 99:6133345. [PMID: 33570553 DOI: 10.1093/jas/skab045] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/05/2021] [Indexed: 12/11/2022] Open
Abstract
Feed efficiency (FE) is an economically important trait in pig production. Gut microbiota plays an important role in energy harvest, nutrient metabolism, and fermentation of dietary indigestible components. Whether and which gut microbes affect FE in pigs are largely unknown. Here, a total of 208 healthy Duroc pigs were used as experimental materials. Feces and serum samples were collected at the age of 140 d. We first performed 16S rRNA gene and metagenomic sequencing analysis to investigate the relationship between the gut microbiome and porcine residual feed intake (RFI). 16S rRNA gene sequencing analysis detected 21 operational taxonomic units showing the tendency to correlation with the RFI (P < 0.01). Metagenomic sequencing further identified that the members of Clostridiales, e.g., Ruminococcus flavefaoiens, Lachnospiraceae bacterium 28-4, and Lachnospiraceae phytofermentans, were enriched in pigs with low RFI (high-FE), while 11 bacterial species including 5 Prevotella spp., especially, the Prevotella copri, had higher abundance in pigs with high RFI. Functional capacity analysis suggested that the gut microbiome of low RFI pigs had a high abundance of the pathways related to amino acid metabolism and biosynthesis, but a low abundance of the pathways associated with monosaccharide metabolism and lipopolysaccharide biosynthesis. Serum metabolome and fecal short-chain fatty acids were determined by UPLC-QTOF/MS and gas chromatography, respectively. Propionic acid in feces and the serum metabolites related to amino acid metabolism were negatively correlated with the RFI. The results from this study may provide potential gut microbial biomarkers that could be used for improving FE in pig production industry.
Collapse
Affiliation(s)
- Hui Jiang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, PR China
| | - Shaoming Fang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, PR China
| | - Hui Yang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, PR China.,College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, PR China
| | - Congying Chen
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, PR China
| |
Collapse
|
31
|
Xu C, Wang X, Zhou S, Wu J, Geng Q, Ruan D, Qiu Y, Quan J, Ding R, Cai G, Wu Z, Zheng E, Yang J. Brain Transcriptome Analysis Reveals Potential Transcription Factors and Biological Pathways Associated with Feed Efficiency in Commercial DLY Pigs. DNA Cell Biol 2020; 40:272-282. [PMID: 33297854 DOI: 10.1089/dna.2020.6071] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Feed efficiency (FE) is one of the most important economic traits in the porcine industry. In this study, high-throughput RNA sequencing (RNA-seq) was first utilized for brain tissue transcriptome analysis in pigs to indicate the potential genes and biological pathways related to FE in pigs. A total of 8 pigs with either extremely high-FE group (HE-group) or low-FE group (LE-group) were selected from 225 Duroc × (Landrace × Yorkshire) (DLY) pigs for transcriptomic analysis. RNA-seq analysis was performed to determine differentially expressed genes (DEGs) between the HE- and LE-group, and 430 DEGs were identified in brain tissues of pigs (|log2(FoldChange)| > 1; adjusted p-values <0.05). Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that the DEGs were mainly enriched in synaptic signaling or transmission, and hormone secretion pathways, in which insulin secretion, and oxytocin signaling pathways were closely associated with FE by regulating feeding behavior and energy metabolism (adjusted p-values <0.05). Further, the transcription factors (TFs) analysis and gene co-expression network analysis indicated three hub differentially expressed TFs (NR2F2, TFAP2D, and HNF1B) that affected FE by mainly regulating feeding behavior, insulin sensitivity, or energy metabolism. Our findings suggest several potential TFs and biological pathways for further investigations of FE in pigs.
Collapse
Affiliation(s)
- Cineng Xu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, P.R. China
| | - Xingwang Wang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, P.R. China
| | - Shenping Zhou
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, P.R. China
| | - Jie Wu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, P.R. China
| | - Qian Geng
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, P.R. China
| | - Donglin Ruan
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, P.R. China
| | - Yibin Qiu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, P.R. China
| | - Jianping Quan
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, P.R. China
| | - Rongrong Ding
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, P.R. China
| | - Gengyuan Cai
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, P.R. China
| | - Zhenfang Wu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, P.R. China
| | - Enqin Zheng
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, P.R. China
| | - Jie Yang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, P.R. China
| |
Collapse
|
32
|
Kaur M, Kumar A, Siddaraju NK, Fairoze MN, Chhabra P, Ahlawat S, Vijh RK, Yadav A, Arora R. Differential expression of miRNAs in skeletal muscles of Indian sheep with diverse carcass and muscle traits. Sci Rep 2020; 10:16332. [PMID: 33004825 PMCID: PMC7529745 DOI: 10.1038/s41598-020-73071-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 09/03/2020] [Indexed: 12/15/2022] Open
Abstract
The study presents the miRNA profiles of two Indian sheep populations with divergent carcass and muscle traits. The RNA sequencing of longissimus thoracis muscles from the two populations revealed a total of 400 known miRNAs. Myomirs or miRNAs specific to skeletal muscles identified in our data included oar-miR-1, oar-miR-133b, oar-miR-206 and oar-miR-486. Comparison of the two populations led to identification of 100 differentially expressed miRNAs (p < 0.05). A total of 45 miRNAs exhibited a log2 fold change of ≥ ( ±) 3.0. Gene Ontology analysis revealed cell proliferation, epithelial to mesenchymal transition, apoptosis, immune response and cell differentiation as the most significant functions of the differentially expressed miRNAs. The differential expression of some miRNAs was validated by qRT-PCR analysis. Enriched pathways included metabolism of proteins and lipids, PI3K-Akt, EGFR and cellular response to stress. The microRNA-gene interaction network revealed miR-21, miR-155, miR-143, miR-221 and miR-23a as the nodal miRNAs, with multiple targets. MicroRNA-21 formed the focal point of the network with 42 interactions. The hub miRNAs identified in our study form putative regulatory candidates for future research on meat quality traits in Indian sheep. Our results provide insight into the biological pathways and regulatory molecules implicated in muscling traits of sheep.
Collapse
Affiliation(s)
- Mandeep Kaur
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, 132001, India.,Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Ashish Kumar
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, 132001, India.,Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | | | | | - Pooja Chhabra
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, 132001, India
| | - Sonika Ahlawat
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, 132001, India
| | - Ramesh Kumar Vijh
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, 132001, India
| | - Anita Yadav
- Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Reena Arora
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, 132001, India.
| |
Collapse
|
33
|
Fazarinc G, Vrecl M, Poklukar K, Škrlep M, Batorek-Lukač N, Brankovič J, Tomažin U, Čandek-Potokar M. Expression of Myosin Heavy Chain and Some Energy Metabolism-Related Genes in the Longissimus Dorsi Muscle of Krškopolje Pigs: Effect of the Production System. Front Vet Sci 2020; 7:533936. [PMID: 33062658 PMCID: PMC7530236 DOI: 10.3389/fvets.2020.533936] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 08/19/2020] [Indexed: 01/04/2023] Open
Abstract
The Slovenian Krškopolje pig is the only preserved local autochthonous breed, appreciated mainly for its good meat quality and considered more appropriate for processing into dry-cured products. However, the biological characteristics of the skeletal myofibers of the Krškopolje breed, specifically the heavy myosin chain-based contractile and metabolic phenotypes that could affect meat quality, have not been established under different husbandry systems. The breed is generally maintained in either conventional indoor or organic systems. In the present study, the morphological, contractile, and metabolic properties of myofibers of the longissimus dorsi muscle were compared between animals reared in either an organic or a conventional indoor system. The myofibers were studied using immunohistochemical and succinate dehydrogenase (SDH) activity-based classification, histomorphometric assessment, and qPCR. Results revealed that the organic production system influenced the composition of the longissimus dorsi myofiber type, characterized by a smaller myofiber cross-sectional area, a shift toward oxidative (SDH-positive) myofiber types, increased relative expression of myosin heavy chain (MyHC) isoforms I, IIa, and IIx, and downregulation of MyHC IIb. On the contrary, no apparent effect was observed on the metabolic phenotype of the myofiber as assessed through relative mRNA expression of energy metabolism-related genes [peroxisome proliferator-activated receptor gamma, coactivator 1 alpha (PGC-1α), peroxisome proliferator-activated receptor gamma (PPARγ), lipoprotein-lipase (LPL), carnitine palmitoyltransferase 1B (CPT1B), glycogen synthase 1 (GYS1), hexokinase 2 (HK2), and fatty acid synthase (FASN)]. Differences in MyHC expression were largely corroborated by the histochemical classification, indicating that the contractile protein content is directly regulated by the MyHC genes. A correlation between the muscle contractile and metabolic phenotypes was not established, except for that between the HK2 and MyHC I genes. In conclusion, the present study showed an evident effect of rearing on the longissimus dorsi myofiber contractile phenotype but not the metabolic phenotype. Moreover, obtained data suggest that rearing the Krškopolje pig breed in a conventional system would result in an increased fiber size and a greater proportion of type IIb myofibers, which are known to be negatively correlated with some meat quality traits.
Collapse
Affiliation(s)
- Gregor Fazarinc
- Veterinary Faculty, Institute of Preclinical Sciences, University of Ljubljana, Ljubljana, Slovenia
| | - Milka Vrecl
- Veterinary Faculty, Institute of Preclinical Sciences, University of Ljubljana, Ljubljana, Slovenia
| | - Klavdija Poklukar
- Animal Science Department, Agricultural Institute of Slovenia, Ljubljana, Slovenia
| | - Martin Škrlep
- Animal Science Department, Agricultural Institute of Slovenia, Ljubljana, Slovenia
| | - Nina Batorek-Lukač
- Animal Science Department, Agricultural Institute of Slovenia, Ljubljana, Slovenia
| | - Jana Brankovič
- Veterinary Faculty, Institute of Preclinical Sciences, University of Ljubljana, Ljubljana, Slovenia
| | - Urška Tomažin
- Animal Science Department, Agricultural Institute of Slovenia, Ljubljana, Slovenia
| | | |
Collapse
|
34
|
Carmelo VAO, Kadarmideen HN. Genetic variations (eQTLs) in muscle transcriptome and mitochondrial genes, and trans-eQTL molecular pathways in feed efficiency from Danish breeding pigs. PLoS One 2020; 15:e0239143. [PMID: 32941478 PMCID: PMC7498092 DOI: 10.1371/journal.pone.0239143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/31/2020] [Indexed: 01/08/2023] Open
Abstract
Feed efficiency (FE) is a key trait in pig production, as improvement in FE has positive economic and environmental impact. FE is a complex phenotype and testing animals for FE is costly. Therefore, there has been a desire to find functionally relevant single nucleotide polymorphisms (SNPs) as biomarkers, to improve our biological understanding of FE as well as accuracy of genomic prediction for FE. We have performed a cis- and trans- eQTL (expression quantitative trait loci) analysis, in a population of Danbred Durocs (N = 11) and Danbred Landrace (N = 27) using both a linear and ANOVA model based on muscle tissue RNA-seq. We analyzed a total of 1425x19179 or 2.7x107 Gene-SNP combinations in eQTL detection models for FE. The 1425 genes were from RNA-Seq based differential gene expression analyses using 25880 genes related to FE and additionally combined with mitochondrial genes. The 19179 SNPs were from applying stringent quality control and linkage disequilibrium filtering on genotype data using a GGP Porcine HD 70k SNP array. We applied 1000 fold bootstrapping and enrichment analysis to further validate and analyze our detected eQTLs. We identified 13 eQTLs with FDR < 0.1, affecting several genes found in previous studies of commercial pig breeds. Examples include MYO19, CPT1B, ACSL1, IER5L, CPT1A, SUCLA2, CSRNP1, PARK7 and MFF. The bootstrapping results showed statistically significant enrichment (p-value<2.2x10-16) of eQTLs with p-value < 0.01 in both cis and trans-eQTLs. Enrichment analysis of top trans-eQTLs revealed high enrichment for gene categories and gene ontologies associated with genomic context and expression regulation. This included transcription factors (p-value = 1.0x10-13), DNA-binding (GO:0003677, p-value = 8.9x10-14), DNA-binding transcription factor activity (GO:0003700,) nucleus gene (GO:0005634, p-value<2.2x10-16), negative regulation of expression (GO:0010629, p-value<2.2x10-16). These results would be useful for future genome assisted breeding of pigs to improve FE, and in the improved understanding of the functional mechanism of trans eQTLs.
Collapse
Affiliation(s)
- Victor A. O. Carmelo
- Quantitative Genomics, Bioinformatics and Computational Biology Group, Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Haja N. Kadarmideen
- Quantitative Genomics, Bioinformatics and Computational Biology Group, Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
- * E-mail:
| |
Collapse
|
35
|
miR-215 Targeting Novel Genes EREG, NIPAL1 and PTPRU Regulates the Resistance to E.coli F18 in Piglets. Genes (Basel) 2020; 11:genes11091053. [PMID: 32906628 PMCID: PMC7563519 DOI: 10.3390/genes11091053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/27/2020] [Accepted: 09/03/2020] [Indexed: 11/17/2022] Open
Abstract
Previous research has revealed that miR-215 might be an important miRNA regulating weaned piglets’ resistance to Escherichia coli (E. coli) F18. In this study, target genes of miR-215 were identified by RNA-seq, bioinformatics analysis and dual luciferase detection. The relationship between target genes and E. coli infection was explored by RNAi technology, combined with E. coli stimulation and enzyme linked immunosorbent assay (ELISA) detection. Molecular regulating mechanisms of target genes expression were analyzed by methylation detection of promoter regions and dual luciferase activity assay of single nucleotide polymorphisms (SNPs) in core promoter regions. The results showed that miR-215 could target EREG, NIPAL1 and PTPRU genes. Expression levels of three genes in porcine intestinal epithelial cells (IPEC-J2) in the RNAi group were significantly lower than those in the negative control pGMLV vector (pGMLV-NC) group after E. coli F18 stimulation, while cytokines levels of TNF-α and IL-1β in the RNAi group were significantly higher than in the pGMLV-NC group. Variant sites in the promoter region of three genes could affect their promoter activities. These results suggested that miR-215 could regulate weaned piglets’ resistance to E. coli F18 by targeting EREG, NIPAL1 and PTPRU genes. This study is the first to annotate new biological functions of EREG, NIPAL1 and PTPRU genes in pigs, and provides a new experimental basis and reference for the research of piglets disease-resistance breeding.
Collapse
|
36
|
Alexandre PA, Reverter A, Berezin RB, Porto-Neto LR, Ribeiro G, Santana MHA, Ferraz JBS, Fukumasu H. Exploring the Regulatory Potential of Long Non-Coding RNA in Feed Efficiency of Indicine Cattle. Genes (Basel) 2020; 11:genes11090997. [PMID: 32854445 PMCID: PMC7565090 DOI: 10.3390/genes11090997] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022] Open
Abstract
Long non-coding RNA (lncRNA) can regulate several aspects of gene expression, being associated with complex phenotypes in humans and livestock species. In taurine beef cattle, recent evidence points to the involvement of lncRNA in feed efficiency (FE), a proxy for increased productivity and sustainability. Here, we hypothesized specific regulatory roles of lncRNA in FE of indicine cattle. Using RNA-Seq data from the liver, muscle, hypothalamus, pituitary gland and adrenal gland from Nellore bulls with divergent FE, we submitted new transcripts to a series of filters to confidently predict lncRNA. Then, we identified lncRNA that were differentially expressed (DE) and/or key regulators of FE. Finally, we explored lncRNA genomic location and interactions with miRNA and mRNA to infer potential function. We were able to identify 126 relevant lncRNA for FE in Bos indicus, some with high homology to previously identified lncRNA in Bos taurus and some possible specific regulators of FE in indicine cattle. Moreover, lncRNA identified here were linked to previously described mechanisms related to FE in hypothalamus-pituitary-adrenal axis and are expected to help elucidate this complex phenotype. This study contributes to expanding the catalogue of lncRNA, particularly in indicine cattle, and identifies candidates for further studies in animal selection and management.
Collapse
Affiliation(s)
- Pâmela A. Alexandre
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of Sao Paulo, Pirassununga, Sao Paulo 13635-900, Brazil; (R.B.B.); (G.R.); (J.B.S.F.); (H.F.)
- Commonwealth Scientific and Industrial Research Organization, Agriculture & Food, St. Lucia, Brisbane, QLD 4067, Australia; (A.R.); (L.R.P.-N.)
- Correspondence: ; Tel.: +61-7-32142453
| | - Antonio Reverter
- Commonwealth Scientific and Industrial Research Organization, Agriculture & Food, St. Lucia, Brisbane, QLD 4067, Australia; (A.R.); (L.R.P.-N.)
| | - Roberta B. Berezin
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of Sao Paulo, Pirassununga, Sao Paulo 13635-900, Brazil; (R.B.B.); (G.R.); (J.B.S.F.); (H.F.)
| | - Laercio R. Porto-Neto
- Commonwealth Scientific and Industrial Research Organization, Agriculture & Food, St. Lucia, Brisbane, QLD 4067, Australia; (A.R.); (L.R.P.-N.)
| | - Gabriela Ribeiro
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of Sao Paulo, Pirassununga, Sao Paulo 13635-900, Brazil; (R.B.B.); (G.R.); (J.B.S.F.); (H.F.)
| | - Miguel H. A. Santana
- Department of Animal Science, Faculty of Animal Science and Food Engineering, University of Sao Paulo, Pirassununga, Sao Paulo 13635-900, Brazil;
| | - José Bento S. Ferraz
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of Sao Paulo, Pirassununga, Sao Paulo 13635-900, Brazil; (R.B.B.); (G.R.); (J.B.S.F.); (H.F.)
| | - Heidge Fukumasu
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of Sao Paulo, Pirassununga, Sao Paulo 13635-900, Brazil; (R.B.B.); (G.R.); (J.B.S.F.); (H.F.)
| |
Collapse
|
37
|
Banerjee P, Carmelo VAO, Kadarmideen HN. Integrative Analysis of Metabolomic and Transcriptomic Profiles Uncovers Biological Pathways of Feed Efficiency in Pigs. Metabolites 2020; 10:E275. [PMID: 32640603 PMCID: PMC7408121 DOI: 10.3390/metabo10070275] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/24/2020] [Accepted: 07/04/2020] [Indexed: 12/12/2022] Open
Abstract
Feed efficiency (FE) is an economically important trait. Thus, reliable predictors would help to reduce the production cost and provide sustainability to the pig industry. We carried out metabolome-transcriptome integration analysis on 40 purebred Duroc and Landrace uncastrated male pigs to identify potential gene-metabolite interactions and explore the molecular mechanisms underlying FE. To this end, we applied untargeted metabolomics and RNA-seq approaches to the same animals. After data quality control, we used a linear model approach to integrate the data and find significant differently correlated gene-metabolite pairs separately for the breeds (Duroc and Landrace) and FE groups (low and high FE) followed by a pathway over-representation analysis. We identified 21 and 12 significant gene-metabolite pairs for each group. The valine-leucine-isoleucine biosynthesis/degradation and arginine-proline metabolism pathways were associated with unique metabolites. The unique genes obtained from significant metabolite-gene pairs were associated with sphingolipid catabolism, multicellular organismal process, cGMP, and purine metabolic processes. While some of the genes and metabolites identified were known for their association with FE, others are novel and provide new avenues for further research. Further validation of genes, metabolites, and gene-metabolite interactions in larger cohorts will elucidate the regulatory mechanisms and pathways underlying FE.
Collapse
Affiliation(s)
| | | | - Haja N. Kadarmideen
- Quantitative Genomics, Bioinformatics and Computational Biology Group, Department of Applied Mathematics and Computer Science, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (P.B.); (V.A.O.C.)
| |
Collapse
|
38
|
Carmelo VAO, Kadarmideen HN. Genome Regulation and Gene Interaction Networks Inferred From Muscle Transcriptome Underlying Feed Efficiency in Pigs. Front Genet 2020; 11:650. [PMID: 32655625 PMCID: PMC7324801 DOI: 10.3389/fgene.2020.00650] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/28/2020] [Indexed: 01/03/2023] Open
Abstract
Improvement of feed efficiency (FE) is key for Sustainability and cost reduction in pig production. Our aim was to characterize the muscle transcriptomic profiles in Danbred Duroc (Duroc; n = 13) and Danbred Landrace (Landrace; n = 28), in relation to FE for identifying potential biomarkers. RNA-seq data on the 41 pigs was analyzed employing differential gene expression methods, gene-gene interaction and network analysis, including pathway and functional analysis. We also compared the results with genome regulation in human exercise data, hypothesizing that increased FE mimics processes triggered in exercised muscle. In the differential expression analysis, 13 genes were differentially expressed, including: MRPS11, MTRF1, TRIM63, MGAT4A, KLH30. Based on a novel gene selection method, the divergent count, we performed pathway enrichment analysis. We found five significantly enriched pathways related to feed conversion ratio (FCR). These pathways were mainly related to mitochondria, and summarized in the mitochondrial translation elongation (MTR) pathway. In the gene interaction analysis, the most interesting genes included the mitochondrial genes: PPIF, MRPL35, NDUFS4 and the fat metabolism and obesity genes: AACS, SMPDL3B, CTNNBL1, NDUFS4, and LIMD2. In the network analysis, we identified two modules significantly correlated with FCR. Pathway enrichment of module genes identified MTR, electron transport chain and DNA repair as enriched pathways. The network analysis revealed the mitochondrial gene group NDUF as key network hub genes, showing their potential as biomarkers. Results show that genes related to human exercise were enriched in identified FCR related genes. We conclude that mitochondrial activity is a key driver for FCR in muscle tissue, and mitochondrial genes could be potential biomarkers for FCR in pigs.
Collapse
Affiliation(s)
- Victor A O Carmelo
- Quantitative Genomics, Bioinformatics and Computational Biology Group, Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Haja N Kadarmideen
- Quantitative Genomics, Bioinformatics and Computational Biology Group, Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
39
|
Xu C, Wang X, Zhuang Z, Wu J, Zhou S, Quan J, Ding R, Ye Y, Peng L, Wu Z, Zheng E, Yang J. A Transcriptome Analysis Reveals that Hepatic Glycolysis and Lipid Synthesis Are Negatively Associated with Feed Efficiency in DLY Pigs. Sci Rep 2020; 10:9874. [PMID: 32555275 PMCID: PMC7303214 DOI: 10.1038/s41598-020-66988-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 06/01/2020] [Indexed: 12/25/2022] Open
Abstract
Feed efficiency (FE) is an important trait in the porcine industry. Therefore, understanding the molecular mechanisms of FE is vital for the improvement of this trait. In this study, 6 extreme high-FE and 6 low-FE pigs were selected from 225 Duroc × (Landrace × Yorkshire) (DLY) pigs for transcriptomic analysis. RNA-seq analysis was performed to determine differentially expressed genes (DEGs) in the liver tissues of the 12 individuals, and 507 DEGs were identified between high-FE pigs (HE- group) and low-FE pigs (LE- group). A gene ontology (GO) enrichment and pathway enrichment analysis were performed and revealed that glycolytic metabolism and lipid synthesis-related pathways were significantly enriched within DEGs; all of these DEGs were downregulated in the HE- group. Moreover, Weighted gene co-expression analysis (WGCNA) revealed that oxidative phosphorylation, thermogenesis, and energy metabolism-related pathways were negatively related to HE- group, which might result in lower energy consumption in higher efficiency pigs. These results implied that the higher FE in the HE- group may be attributed to a lower glycolytic, energy consumption and lipid synthesizing potential in the liver. Furthermore, our findings suggested that the inhibition of lipid synthesis and glucose metabolic activity in the liver may be strategies for improving the FE of DLY pigs.
Collapse
Affiliation(s)
- Cineng Xu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, P.R. China
| | - Xingwang Wang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, P.R. China
| | - Zhanwei Zhuang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, P.R. China
| | - Jie Wu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, P.R. China
| | - Shenping Zhou
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, P.R. China
| | - Jianping Quan
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, P.R. China
| | - Rongrong Ding
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, P.R. China
| | - Yong Ye
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, P.R. China
| | - Longlong Peng
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, P.R. China
| | - Zhenfang Wu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, P.R. China
| | - Enqin Zheng
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, P.R. China.
| | - Jie Yang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, P.R. China.
| |
Collapse
|
40
|
Atashi H, Salavati M, De Koster J, Crowe MA, Opsomer G, Hostens M. Genome-wide association for metabolic clusters in early-lactation Holstein dairy cows. J Dairy Sci 2020; 103:6392-6406. [PMID: 32331880 DOI: 10.3168/jds.2019-17369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 01/22/2020] [Indexed: 11/19/2022]
Abstract
The aim of this study was to detect the genomic region or regions associated with metabolic clusters in early-lactation Holstein cows. This study was carried out in 2 experiments. In experiment I, which was carried out on 105 multiparous Holstein cows, animals were classified through k-means clustering on log-transformed and standardized concentrations of blood glucose, insulin-like growth factor I, free fatty acids, and β-hydroxybutyrate at 14 and 35 d in milk (DIM), into metabolic clusters, either balanced (BAL) or other (OTR). Forty percent of the animals were categorized in the BAL group, and the remainder were categorized as OTR. The cows were genotyped for a total of 777,962 SNP. A genome-wide association study was performed, using a case-control approach through the GEMMA software, accounting for population structure. We found 8 SNP (BTA11, BTA23, and BTAX) associated with the predicted metabolic clusters. In experiment II, carried out on 4,267 second-parity Holstein cows, milk samples collected starting from the first week until 50 DIM were used to determine Fourier-transform mid-infrared (FT-MIR) spectra and subsequently to classify the animals into the same metabolic clusters (BAL vs. OTR). Twenty-eight percent of the animals were categorized in the BAL group, and the remainder were classified in the OTR category. Although daily milk yield was lower in BAL cows, we found no difference in daily fat- and protein-corrected milk yield in cows from the BAL metabolic cluster compared with those in the OTR metabolic cluster. In the next step, a single-step genomic BLUP was used to identify the genomic region(s) associated with the predicted metabolic clusters. The results revealed that prediction of metabolic clusters is a highly polygenic trait regulated by many small-sized effects. The region of 36,258 to 36,295 kb on BTA27 was the highly associated region for the predicted metabolic clusters, with the closest genes to this region (ANK1 and miR-486) being related to hematopoiesis, erythropoiesis, and mammary gland development. The heritability for metabolic clustering was 0.17 (SD 0.03), indicating that the use of FT-MIR spectra in milk to predict metabolic clusters in early-lactation across a large number of cows has satisfactory potential to be included in genetic selection programs for modern dairy cows.
Collapse
Affiliation(s)
- H Atashi
- Department of Reproduction, Obstetrics and Herd Health, Ghent University, Merelbeke 9820, Belgium; Department of Animal Science, Shiraz University, Shiraz 71441-65186, Iran
| | - M Salavati
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - J De Koster
- Department of Reproduction, Obstetrics and Herd Health, Ghent University, Merelbeke 9820, Belgium
| | - M A Crowe
- University College Dublin, 4 Dublin, Ireland
| | - G Opsomer
- Department of Reproduction, Obstetrics and Herd Health, Ghent University, Merelbeke 9820, Belgium
| | | | - M Hostens
- Department of Reproduction, Obstetrics and Herd Health, Ghent University, Merelbeke 9820, Belgium.
| |
Collapse
|
41
|
Hou X, Pu L, Wang L, Liu X, Gao H, Yan H, Zhang J, Zhang Y, Yue J, Zhang L, Wang L. Transcriptome Analysis of Skeletal Muscle in Pigs with Divergent Residual Feed Intake Phenotypes. DNA Cell Biol 2020; 39:404-416. [PMID: 32004088 DOI: 10.1089/dna.2019.4878] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Residual feed intake (RFI) is defined as the difference between the observed and expected feed intake for maintenance and growth requirements. In this study, the expression profiles of mRNAs and long noncoding RNAs (lncRNAs) from skeletal muscle in Duroc pigs with divergent RFI phenotypes were investigated by Illumina sequencing. Finally, a total of 2195 annotated lncRNAs and 1976 novel lncRNAs were obtained. About 210 mRNAs and 43 lncRNAs were differentially expressed among high and low RFI pigs. The differentially expressed mRNAs were potentially involved in the biological processes of lipid metabolism, extracellular matrix organization, cell proliferation, and cell adhesion. The lipolysis in skeletal muscle was increased in high RFI pigs, suggesting that high RFI pigs might need more energy than low RFI pigs. However, skeletal muscle development was increased in low RFI pigs. These results suggested that low RFI pigs might be more efficient in energy utilization during skeletal muscle growth. The function of lncRNA was also analyzed by target prediction. Nine lncRNAs might be candidate lncRNAs for the determination of RFI phenotype, by the regulation of the biological processes of lipid metabolism, cell proliferation, and cell adhesion. This study should facilitate a further understanding of the molecular mechanism for the determination of RFI phenotype in pigs.
Collapse
Affiliation(s)
- Xinhua Hou
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lei Pu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Ligang Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xin Liu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongmei Gao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hua Yan
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jinshan Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuebo Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jingwei Yue
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Longchao Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lixian Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
42
|
Zhang D, Zhang X, Li F, Li C, La Y, Mo F, Li G, Zhang Y, Li X, Song Q, Zhao Y, Wang W. Transcriptome Analysis Identifies Candidate Genes and Pathways Associated With Feed Efficiency in Hu Sheep. Front Genet 2019; 10:1183. [PMID: 31798641 PMCID: PMC6878960 DOI: 10.3389/fgene.2019.01183] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 10/24/2019] [Indexed: 12/20/2022] Open
Abstract
In the genetic improvement of livestock and poultry, residual feed intake (RFI) is an important economic trait. However, in sheep, the genetic regulatory mechanisms of RFI are unclear. In the present study, we measured the feed efficiency (FE)-related phenotypes of 137 male Hu lambs, and selected six lambs with very high (n = 3) and very low (n = 3) RFI values and analyzed their liver transcriptomes. A total of 101 differentially expressed genes were identified, of which 40 were upregulated and 61 were downregulated in the low-RFI group compared with that in the high-RFI group. The downregulated genes were mainly concentrated in immune function pathways, while the upregulated genes were mainly involved in energy metabolism pathways. Two differentially expressed genes, ADRA2A (encoding adrenoceptor alpha 2A) and RYR2 (ryanodine receptor 2), were selected as candidate genes for FE and subjected to single nucleotide polymorphism scanning and association analysis. Two synonymous mutations, ADRA2A g.1429 C > A and RYR2 g.1117 A > C, were detected, which were both significantly associated with the feed conversion rate. These findings provide a deeper understanding of the molecular mechanisms regulating FE, and reveal key genes and genetic variants that could be used to genetically improve FE in sheep.
Collapse
Affiliation(s)
- Deyin Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiaoxue Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China.,Engineering Laboratory of Sheep Breeding and Reproduction Biotechnology in Gansu Province, Minqin Zhongtian Sheep Industry Co. Ltd., Minqin, China
| | - Fadi Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China.,Engineering Laboratory of Sheep Breeding and Reproduction Biotechnology in Gansu Province, Minqin Zhongtian Sheep Industry Co. Ltd., Minqin, China.,The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Chong Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yongfu La
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Futao Mo
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Guoze Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yukun Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiaolong Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Qizhi Song
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yuan Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Weimin Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
43
|
A Transcriptome Analysis Identifies Biological Pathways and Candidate Genes for Feed Efficiency in DLY Pigs. Genes (Basel) 2019; 10:genes10090725. [PMID: 31540540 PMCID: PMC6771153 DOI: 10.3390/genes10090725] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/08/2019] [Accepted: 09/17/2019] [Indexed: 12/20/2022] Open
Abstract
Feed cost accounts for approximately 65–75% of overall commercial pork production costs. Therefore, improving the feed efficiency of pig production is important. In this study, 12 individuals with either extremely high (HE) or low (LE) feed efficiency were selected from 225 Duroc × (Landrace × Yorkshire) (DLY) pigs. After the pigs were slaughtered, we collected small intestine mucosal tissue. Next, RNA sequencing (RNA-seq) analysis was used to reveal the presence and quantity of genes expressed between these extremely HE- and LE-groups. We found 433 significantly differentially expressed genes (DEGs) between the HE- and LE-groups. Of these, 389 and 44 DEGs were upregulated and downregulated in the HE-group, respectively. An enrichment analysis showed that the DEGs were mainly enriched in functions related to apical plasma membrane composition, transporter activity, transport process and hormone regulation of digestion and absorption. Protein network interaction and gene function analyses revealed that SLC2A2 was an important candidate gene for FE in pigs, which may give us a deeper understanding of the mechanism of feed efficiency. Furthermore, some significant DEGs identified in the current study could be incorporated into artificial selection programs for increased feeding efficiency in pigs.
Collapse
|
44
|
Ramayo-Caldas Y, Mármol-Sánchez E, Ballester M, Sánchez JP, González-Prendes R, Amills M, Quintanilla R. Integrating genome-wide co-association and gene expression to identify putative regulators and predictors of feed efficiency in pigs. Genet Sel Evol 2019; 51:48. [PMID: 31477014 PMCID: PMC6721172 DOI: 10.1186/s12711-019-0490-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 08/19/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Feed efficiency (FE) has a major impact on the economic sustainability of pig production. We used a systems-based approach that integrates single nucleotide polymorphism (SNP) co-association and gene-expression data to identify candidate genes, biological pathways, and potential predictors of FE in a Duroc pig population. RESULTS We applied an association weight matrix (AWM) approach to analyse the results from genome-wide association studies (GWAS) for nine FE associated and production traits using 31K SNPs by defining residual feed intake (RFI) as the target phenotype. The resulting co-association network was formed by 829 SNPs. Additive effects of this SNP panel explained 61% of the phenotypic variance of RFI, and the resulting phenotype prediction accuracy estimated by cross-validation was 0.65 (vs. 0.20 using pedigree-based best linear unbiased prediction and 0.12 using the 31K SNPs). Sixty-eight transcription factor (TF) genes were identified in the co-association network; based on the lossless approach, the putative main regulators were COPS5, GTF2H5, RUNX1, HDAC4, ESR1, USP16, SMARCA2 and GTF2F2. Furthermore, gene expression data of the gluteus medius muscle was explored through differential expression and multivariate analyses. A list of candidate genes showing functional and/or structural associations with FE was elaborated based on results from both AWM and gene expression analyses, and included the aforementioned TF genes and other ones that have key roles in metabolism, e.g. ESRRG, RXRG, PPARGC1A, TCF7L2, LHX4, MAML2, NFATC3, NFKBIZ, TCEA1, CDCA7L, LZTFL1 or CBFB. The most enriched biological pathways in this list were associated with behaviour, immunity, nervous system, and neurotransmitters, including melatonin, glutamate receptor, and gustation pathways. Finally, an expression GWAS allowed identifying 269 SNPs associated with the candidate genes' expression (eSNPs). Addition of these eSNPs to the AWM panel of 829 SNPs did not improve the accuracy of genomic predictions. CONCLUSIONS Candidate genes that have a direct or indirect effect on FE-related traits belong to various biological processes that are mainly related to immunity, behaviour, energy metabolism, and the nervous system. The pituitary gland, hypothalamus and thyroid axis, and estrogen signalling play fundamental roles in the regulation of FE in pigs. The 829 selected SNPs explained 61% of the phenotypic variance of RFI, which constitutes a promising perspective for applying genetic selection on FE relying on molecular-based prediction.
Collapse
Affiliation(s)
- Yuliaxis Ramayo-Caldas
- 0000 0001 1943 6646grid.8581.4Animal Breeding and Genetics Program, Institute for Research and Technology in Food and Agriculture (IRTA), Torre Marimon, 08140 Caldes de Montbui, Spain
| | - Emilio Mármol-Sánchez
- grid.7080.fDepartment of Animal Genetics, Centre for Research in Agricultural Genomics (CRAG), CSCIC-IRTA-UAB-UB, Campus de LA Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Maria Ballester
- 0000 0001 1943 6646grid.8581.4Animal Breeding and Genetics Program, Institute for Research and Technology in Food and Agriculture (IRTA), Torre Marimon, 08140 Caldes de Montbui, Spain
| | - Juan Pablo Sánchez
- 0000 0001 1943 6646grid.8581.4Animal Breeding and Genetics Program, Institute for Research and Technology in Food and Agriculture (IRTA), Torre Marimon, 08140 Caldes de Montbui, Spain
| | - Rayner González-Prendes
- grid.7080.fDepartment of Animal Genetics, Centre for Research in Agricultural Genomics (CRAG), CSCIC-IRTA-UAB-UB, Campus de LA Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Marcel Amills
- grid.7080.fDepartment of Animal Genetics, Centre for Research in Agricultural Genomics (CRAG), CSCIC-IRTA-UAB-UB, Campus de LA Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- grid.7080.fDepartament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Raquel Quintanilla
- 0000 0001 1943 6646grid.8581.4Animal Breeding and Genetics Program, Institute for Research and Technology in Food and Agriculture (IRTA), Torre Marimon, 08140 Caldes de Montbui, Spain
| |
Collapse
|
45
|
Messad F, Louveau I, Koffi B, Gilbert H, Gondret F. Investigation of muscle transcriptomes using gradient boosting machine learning identifies molecular predictors of feed efficiency in growing pigs. BMC Genomics 2019; 20:659. [PMID: 31419934 PMCID: PMC6697907 DOI: 10.1186/s12864-019-6010-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 07/30/2019] [Indexed: 01/09/2023] Open
Abstract
Background Improving feed efficiency (FE) is a major challenge in pig production. This complex trait is characterized by a high variability. Therefore, the identification of predictors of FE may be a relevant strategy to reduce phenotyping efforts in breeding and selection programs. The aim of this study was to investigate the suitability of expressed muscle genes in prediction of FE traits in growing pigs. The approach considered different transcriptomics experiments to cover a large range of FE values and identify reliable predictors. Results Microarrays data were obtained from longissimus muscles of two lines divergently selected for residual feed intake (RFI). Pigs (n = 71) from three experiments belonged to generations 6 to 8 of selection, were fed either a diet with a standard composition or a diet rich in fiber and lipids, received feed ad libitum or at restricted level, and weighed between 80 and 115 kg at slaughter. For each pig, breeding value for RFI was estimated (RFI-BV), and feed conversion ratio (FCR) and energy-based feed conversion ratio (FCRe) were calculated during the test periods. Gradient boosting algorithms were used on the merged muscle transcriptomes to identify very important predictors of FE traits. About 20,405 annotated molecular probes were commonly expressed in longissimus muscle across experiments. Six to 267 expressed muscle genes covering a variety of biological processes were found as important predictors for RFI-BV (R2 = 0.63–0.65), FCR (R2 = 0.61–0.70) and FCRe (R2 = 0.49–0.52). The error of prediction was less than 8% for FCR. Altogether, 56 predictors were common to RFI-BV and FCR. Expression levels of 24 target genes were further measured by qPCR. Linear regression confirmed the good accuracy of combining mRNA levels of these genes to fit FE traits (RFI-BV: R2 = 0.73, FRC: R2 = 0.76; FCRe: R2 = 0.75). Stepwise regression procedure highlighted 10 genes (FKBP5, MUM1, AKAP12, FYN, TMED3, PHKB, TGF, SOCS6, ILR4, and FRAS1) in a linear combination predicting FCR and FCRe. In addition, FKBP5 and expression levels of five other genes (IGF2, SERINC3, CSRNP3, EZR and RPL16) significantly contributed to RFI-BV. Conclusion It was possible to identify few genes expressed in muscle that might be reliable predictors of feed efficiency. Electronic supplementary material The online version of this article (10.1186/s12864-019-6010-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Farouk Messad
- Pegase, INRA, Agrocampus Ouest, 35590, Saint-Gilles, France
| | | | - Basile Koffi
- Pegase, INRA, Agrocampus Ouest, 35590, Saint-Gilles, France
| | | | | |
Collapse
|
46
|
Skugor A, Kjos NP, Sundaram AYM, Mydland LT, Ånestad R, Tauson AH, Øverland M. Effects of long-term feeding of rapeseed meal on skeletal muscle transcriptome, production efficiency and meat quality traits in Norwegian Landrace growing-finishing pigs. PLoS One 2019; 14:e0220441. [PMID: 31390356 PMCID: PMC6685631 DOI: 10.1371/journal.pone.0220441] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 07/16/2019] [Indexed: 12/30/2022] Open
Abstract
This study was performed to investigate the effects of dietary inclusion of 20% rapeseed meal (RSM) as an alternative to soybean meal (SBM) in a three-month feeding experiment with growing finishing pigs. Dietary alteration affected growth performance, several carcass traits and transcriptional responses in the skeletal muscle, but did not affect measured meat quality traits. In general, pigs fed the RSM test diet exhibited reduced growth performance compared to pigs on SBM control diet. Significant transcriptional changes in the skeletal muscle of growing pigs fed RSM diet were likely the consequence of an increased amount of fiber and higher polyunsaturated fatty acids, and presence of bioactive phytochemicals, such as glucosinolates. RNAseq pipeline using Tophat2-Cuffdiff identified 57 upregulated and 63 downregulated genes in RSM compared to SBM pigs. Significantly enriched among downregulated pathways was p53-mediated signalling involved in cellular proliferation, while activation of negative growth regulators (IER5, KLF10, BTG2, KLF11, RETREG1, PRUNE2) in RSM fed pigs provided further evidence for reduced proliferation and increased cellular death, in accordance with the observed reduction in performance traits. Upregulation of well-known metabolic controllers (PDK4, UCP3, ESRRG and ESRRB), involved in energy homeostasis (glucose and lipid metabolism, and mitochondrial function), suggested less available energy and nutrients in RSM pigs. Furthermore, several genes supported more pronounced proteolysis (ABTB1, OTUD1, PADI2, SPP1) and reduced protein synthesis (THBS1, HSF4, AP1S2) in RSM muscle tissue. In parallel, higher levels of NR4A3, PDK4 and FGF21, and a drop in adropin, ELOVL6 and CIDEC/FSP27 indicated increased lipolysis and fatty acid oxidation, reflective of lower dressing percentage. Finally, pigs exposed to RSM showed greater expression level of genes responsive to oxidative stress, indicated by upregulation of GPX1, GPX2, and TXNIP.
Collapse
Affiliation(s)
- Adrijana Skugor
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Aas, Norway
| | - Nils Petter Kjos
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Aas, Norway
| | | | - Liv Torunn Mydland
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Aas, Norway
| | - Ragnhild Ånestad
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Aas, Norway
| | - Anne-Helene Tauson
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Aas, Norway
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Margareth Øverland
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Aas, Norway
| |
Collapse
|
47
|
de Oliveira PSN, Coutinho LL, Cesar ASM, Diniz WJDS, de Souza MM, Andrade BG, Koltes JE, Mourão GB, Zerlotini A, Reecy JM, Regitano LCA. Co-Expression Networks Reveal Potential Regulatory Roles of miRNAs in Fatty Acid Composition of Nelore Cattle. Front Genet 2019; 10:651. [PMID: 31354792 PMCID: PMC6637853 DOI: 10.3389/fgene.2019.00651] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 06/19/2019] [Indexed: 12/15/2022] Open
Abstract
Fatty acid (FA) content affects the sensorial and nutritional value of meat and plays a significant role in biological processes such as adipogenesis and immune response. It is well known that, in beef, the main FAs associated with these biological processes are oleic acid (C18:1 cis9, OA) and conjugated linoleic acid (CLA-c9t11), which may have beneficial effects on metabolic diseases such as type 2 diabetes and obesity. Here, we performed differential expression and co-expression analyses, weighted gene co-expression network analysis (WGCNA) and partial correlation with information theory (PCIT), to uncover the complex interactions between miRNAs and mRNAs expressed in skeletal muscle associated with FA content. miRNA and mRNA expression data were obtained from skeletal muscle of Nelore cattle that had extreme genomic breeding values for OA and CLA. Insulin and MAPK signaling pathways were identified by WGCNA as central pathways associated with both of these fatty acids. Co-expression network analysis identified bta-miR-33a/b, bta-miR-100, bta-miR-204, bta-miR-365-5p, bta-miR-660, bta-miR-411a, bta-miR-136, bta-miR-30-5p, bta-miR-146b, bta-let-7a-5p, bta-let-7f, bta-let-7, bta-miR 339, bta-miR-10b, bta-miR 486, and the genes ACTA1 and ALDOA as potential regulators of fatty acid synthesis. This study provides evidence and insights into the molecular mechanisms and potential target genes involved in fatty acid content differences in Nelore beef cattle, revealing new candidate pathways of phenotype modulation that could positively benefit beef production and human consumption.
Collapse
Affiliation(s)
| | - Luiz L Coutinho
- Department of Animal Science, University of São Paulo, Piracicaba, Brazil
| | - Aline S M Cesar
- Department of Agroindustry, Food and Nutrition, University of São Paulo, Piracicaba, Brazil
| | | | - Marcela M de Souza
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Bruno G Andrade
- Embrapa Pecuária Sudeste, Empresa Brasileira de Pesquisa Agropecuária, São Carlos, Brazil
| | - James E Koltes
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Gerson B Mourão
- Department of Agroindustry, Food and Nutrition, University of São Paulo, Piracicaba, Brazil
| | | | - James M Reecy
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Luciana C A Regitano
- Embrapa Pecuária Sudeste, Empresa Brasileira de Pesquisa Agropecuária, São Carlos, Brazil
| |
Collapse
|
48
|
Carvalho EB, Gionbelli MP, Rodrigues RTS, Bonilha SFM, Newbold CJ, Guimarães SEF, Silva W, Verardo LL, Silva FF, Detmann E, Duarte MS. Differentially expressed mRNAs, proteins and miRNAs associated to energy metabolism in skeletal muscle of beef cattle identified for low and high residual feed intake. BMC Genomics 2019; 20:501. [PMID: 31208329 PMCID: PMC6580615 DOI: 10.1186/s12864-019-5890-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 06/07/2019] [Indexed: 12/19/2022] Open
Abstract
Background Feed efficiency is one of the most important parameters that affect beef production costs. The energy metabolism of skeletal muscle greatly contributes to variations in feed efficiency. However, information regarding differences in proteins involved in the energy metabolism of the skeletal muscle in beef cattle divergently identified for feed efficiency is scarce. In this study, we aimed to investigate energy metabolism of skeletal muscle of Nellore beef cattle, identified for low and high residual feed intake using a proteomics approach. We further assessed the expression of candidate microRNAs as a one of the possible mechanisms controlling the biosynthesis of the proteins involved in energy metabolism that were differentially abundant between high and low residual feed intake animals. Results A greater abundance of 14–3-3 protein epsilon (P = 0.01) was observed in skeletal muscle of residual feed intake (RFI) high animals (RFI-High). Conversely, a greater abundance of Heat Shock Protein Beta 1 (P < 0.01) was observed in the skeletal muscle of RFI-Low cattle. A greater mRNA expression of YWHAE, which encodes the 14–3-3 protein epsilon, was also observed in the skeletal muscle of RFI-High animals (P = 0.01). A lower mRNA expression of HSPB1, which encodes the Heat Shock Protein Beta 1, was observed in the skeletal muscle of RFI-High animals (P = 0.01). The miR-665 was identified as a potential regulator of the 14–3-3 protein epsilon, and its expression was greater in RFI-Low animals (P < .001). A greater expression of miR-34a (P = 0.01) and miR-2899 (P < .001) was observed in the skeletal muscle of RFI-High animals, as both miRNAs were identified as potential regulators of HSPB1 expression. Conclusion Our results show that Nellore cattle divergently identified for feed efficiency by RFI present changes in the abundance of proteins involved in energy expenditure in skeletal muscle. Moreover, our data point towards that miR-665, miR34a and miR-2899 are likely involved in controlling both 14-3-3 epsilon and HSPB1 proteins identified as differentially abundant in the skeletal muscle of RFI-High and RFI-Low Nellore cattle. Electronic supplementary material The online version of this article (10.1186/s12864-019-5890-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elisa B Carvalho
- Department of Animal Science, Universidade Federal de Lavras, Lavras, MG, Brazil.,Department of Animal Science, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Mateus P Gionbelli
- Department of Animal Science, Universidade Federal de Lavras, Lavras, MG, Brazil
| | - Rafael T S Rodrigues
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, MG, Brazil.,Department of Veterinary Sciences, Universidade Federal do Vale do São Francisco, Petrolina, PE, Brazil
| | - Sarah F M Bonilha
- Centro APTA Bovinos de Corte, Instituto de Zootecnia, Sertãozinho, SP, Brazil
| | | | - Simone E F Guimarães
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Walmir Silva
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Lucas L Verardo
- Department of Animal Science, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
| | - Fabyano F Silva
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Edenio Detmann
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Marcio S Duarte
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, MG, Brazil.
| |
Collapse
|
49
|
Arora R, S. NK, S. S, Fairoze MN, Kaur M, Sharma A, Girdhar Y, M. SR, Devatkal SK, Ahlawat S, Vijh RK, S. MS. Transcriptome profiling of longissimus thoracis muscles identifies highly connected differentially expressed genes in meat type sheep of India. PLoS One 2019; 14:e0217461. [PMID: 31170190 PMCID: PMC6553717 DOI: 10.1371/journal.pone.0217461] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 05/13/2019] [Indexed: 12/16/2022] Open
Abstract
This study describes the muscle transcriptome profile of Bandur breed, a consumer favoured, meat type sheep of India. The transcriptome was compared to the less desirable, unregistered local sheep population, in order to understand the molecular factors related to muscle traits in Indian sheep breeds. Bandur sheep have tender muscles and higher backfat thickness than local sheep. The longissimus thoracis transcriptome profiles of Bandur and local sheep were obtained using RNA sequencing (RNA Seq). The animals were male, non-castrated, with uniform age and reared under similar environment, as well as management conditions. We could identify 568 significantly up-regulated and 538 significantly down-regulated genes in Bandur sheep (p≤0.05). Among these, 181 up-regulated and 142 down-regulated genes in Bandur sheep, with a fold change ≥1.5, were considered for further analysis. Significant Gene Ontology terms for the up-regulated dataset in Bandur sheep included transporter activity, substrate specific transmembrane, lipid and fatty acid binding. The down-regulated activities in Bandur sheep were mainly related to RNA degradation, regulation of ERK1 and ERK2 cascades and innate immune response. The MAPK signaling pathway, Adipocytokine signaling pathway and PPAR signaling pathway were enriched for Bandur sheep. The highly connected genes identified by network analysis were CNOT2, CNOT6, HSPB1, HSPA6, MAP3K14 and PPARD, which may be important regulators of energy metabolism, cellular stress and fatty acid metabolism in the skeletal muscles. These key genes affect the CCR4-NOT complex, PPAR and MAPK signaling pathways. The highly connected genes identified in this study, form interesting candidates for further research on muscle traits in Bandur sheep.
Collapse
Affiliation(s)
- Reena Arora
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India
- * E-mail:
| | - Naveen Kumar S.
- Karnataka Veterinary Animal and Fisheries Sciences University, Bangalore, Karnataka, India
| | - Sudarshan S.
- Karnataka Veterinary Animal and Fisheries Sciences University, Bangalore, Karnataka, India
| | - Mohamed Nadeem Fairoze
- Karnataka Veterinary Animal and Fisheries Sciences University, Bangalore, Karnataka, India
| | - Mandeep Kaur
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| | - Anju Sharma
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| | - Yashila Girdhar
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| | - Sreesujatha R. M.
- Karnataka Veterinary Animal and Fisheries Sciences University, Bangalore, Karnataka, India
| | | | - Sonika Ahlawat
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| | - Ramesh Kumar Vijh
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| | - Manjunatha S. S.
- Karnataka Veterinary Animal and Fisheries Sciences University, Bangalore, Karnataka, India
| |
Collapse
|
50
|
Vigors S, O'Doherty JV, Bryan K, Sweeney T. A comparative analysis of the transcriptome profiles of liver and muscle tissue in pigs divergent for feed efficiency. BMC Genomics 2019; 20:461. [PMID: 31170913 PMCID: PMC6555042 DOI: 10.1186/s12864-019-5740-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 04/26/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The improvement of feed efficiency is a key economic goal within the pig production industry. The objective of this study was to examine transcriptomic differences in both the liver and muscle of pigs divergent for feed efficiency, thus improving our understanding of the molecular mechanisms influencing feed efficiency and enabling the identification of candidate biomarkers. Residual feed intake (RFI) was calculated for two populations of pigs from two different farms of origin/genotype. The 6 most efficient (LRFI) and 6 least efficient (HRFI) animals from each population were selected for further analysis of Longissimus Dorsi muscle (n = 22) and liver (n = 23). Transcriptomic data were generated from liver and muscle collected post-slaughter. RESULTS The transcriptomic data segregated based on the RFI value of the pig rather than genotype/farm of origin. A total of 6463 genes were identified as being differentially expressed (DE) in muscle, while 964 genes were identified as being DE in liver. Genes that were commonly DE between muscle and liver (n = 526) were used for the multi-tissue analysis. These 526 genes were associated with protein targeting to membrane, extracellular matrix organisation and immune function. In the muscle-only analysis, genes associated with RNA processing, protein synthesis and energy metabolism were down regulated in the LRFI animals while in the liver-only analysis, genes associated with cell signalling and lipid homeostasis were up regulated in the LRFI animals. CONCLUSIONS Differences in the transcriptome segregated on pig RFI value rather than the genotype/farm of origin. Multi-tissue analysis identified that genes associated with GO terms protein targeting to membrane, extracellular matrix organisation and a range of terms relating to immune function were over represented in the differentially expressed genes of both liver and muscle.
Collapse
Affiliation(s)
- Stafford Vigors
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - John V O'Doherty
- School of Agriculture & Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Kenneth Bryan
- School of Agriculture & Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Torres Sweeney
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|