1
|
Macrì S, Di-Poï N. The SmARTR pipeline: A modular workflow for the cinematic rendering of 3D scientific imaging data. iScience 2024; 27:111475. [PMID: 39720527 PMCID: PMC11667014 DOI: 10.1016/j.isci.2024.111475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/19/2024] [Accepted: 11/21/2024] [Indexed: 12/26/2024] Open
Abstract
Advancements in noninvasive surface and internal imaging techniques, along with computational methods, have revolutionized 3D visualization of organismal morphology-enhancing research, medical anatomical analysis, and facilitating the preservation and digital archiving of scientific specimens. We introduce the SmARTR pipeline (Small Animal Realistic Three-dimensional Rendering), a comprehensive workflow integrating wet lab procedures, 3D data acquisition, and processing to produce photorealistic scientific data through 3D cinematic rendering. This versatile pipeline supports multiscale visualizations-from tissue-level to whole-organism details across diverse living organisms-and is adaptable to various imaging sources. Its modular design and customizable rendering scenarios, enabled by the global illumination modeling and programming modules available in the free MeVisLab software and seamlessly integrated into detailed SmARTR networks, make it a powerful tool for 3D data analysis. Accessible to a broad audience, the SmARTR pipeline serves as a valuable resource across multiple life science research fields and for education, diagnosis, outreach, and artistic endeavors.
Collapse
Affiliation(s)
- Simone Macrì
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Nicolas Di-Poï
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
2
|
Owens A, Zhang T, Gu P, Hart J, Stobbs J, Cieslak M, Elomaa P, Prusinkiewicz P. The hidden diversity of vascular patterns in flower heads. THE NEW PHYTOLOGIST 2024; 243:423-439. [PMID: 38361330 DOI: 10.1111/nph.19571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 01/18/2024] [Indexed: 02/17/2024]
Abstract
Vascular systems are intimately related to the shape and spatial arrangement of the plant organs they support. We investigate the largely unexplored association between spiral phyllotaxis and the vascular system in Asteraceae flower heads. We imaged heads of eight species using synchrotron-based X-ray micro-computed tomography and applied original virtual reality and haptic software to explore head vasculature in three dimensions. We then constructed a computational model to infer a plausible patterning mechanism. The vascular system in the head of the model plant Gerbera hybrida is qualitatively different from those of Bellis perennis and Helianthus annuus, characterized previously. Cirsium vulgare, Craspedia globosa, Echinacea purpurea, Echinops bannaticus, and Tanacetum vulgare represent variants of the Bellis and Helianthus systems. In each species, the layout of the main strands is stereotypical, but details vary. The observed vascular patterns can be generated by a common computational model with different parameter values. In spite of the observed differences of vascular systems in heads, they may be produced by a conserved mechanism. The diversity and irregularities of vasculature stand in contrast with the relative uniformity and regularity of phyllotactic patterns, confirming that phyllotaxis in heads is not driven by the vasculature.
Collapse
Affiliation(s)
- Andrew Owens
- Department of Computer Science, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Teng Zhang
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, PO Box 27, Helsinki, 00014, Finland
| | - Philmo Gu
- Department of Computer Science, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Jeremy Hart
- Department of Computer Science, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Jarvis Stobbs
- Canadian Light Source Inc., 44 Innovation Blvd, Saskatoon, SK, S7N 2V3, Canada
| | - Mikolaj Cieslak
- Department of Computer Science, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Paula Elomaa
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, PO Box 27, Helsinki, 00014, Finland
| | | |
Collapse
|
3
|
Indore NS, Karunakaran C, Jayas DS, Stobbs J, Vu M, Tu K, Marinos O. Characterization of spring and durum wheat using non-destructive synchrotron phase contrast X-ray microtomography during storage. NPJ Sci Food 2024; 8:29. [PMID: 38762600 PMCID: PMC11102443 DOI: 10.1038/s41538-024-00271-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 04/30/2024] [Indexed: 05/20/2024] Open
Abstract
Post-harvest losses during cereal grain storage are a big concern in both developing and developed countries, where spring and durum wheat are staple food grains. Varieties under these classes behave differently under storage, which affects their end storage life. High resolution imaging data of dry as well as spoiled seed are not available for any class of wheat; therefore, an attempt was made to generate 3D data for better understanding of seed structure and changes due to spoilage. Six wheat varieties (3 varieties for each class of wheat) were stored for 5 week at 17% moisture content (wb) before scanning. Seeds were also stored in a freezer (-18 °C) for further scanning to determine if any changes occur in the structure of seeds due to freezing. Spring varieties of wheat performed better than durum varieties and freezing did not affect seed structure. Data could also help plant breeders to develop varieties that do not easily spoil, adjust grain processing techniques, and develop post-harvest recommendations for other wheat varieties.
Collapse
Affiliation(s)
- Navanth S Indore
- Biosystems Engineering, University of Manitoba, Winnipeg, MB, Canada
| | | | - Digvir S Jayas
- Biosystems Engineering, University of Manitoba, Winnipeg, MB, Canada.
- President's Office, A762 University Hall, University of Lethbridge, Lethbridge, AB, Canada.
| | | | - Miranda Vu
- Canadian Light Source Inc., Saskatoon, SK, Canada
| | - Kaiyang Tu
- Canadian Light Source Inc., Saskatoon, SK, Canada
| | - Omar Marinos
- Canadian Light Source Inc., Saskatoon, SK, Canada
| |
Collapse
|
4
|
Indore NS, Karunakaran C, Jayas DS, Bondici VF, Vu M, Tu K, Muir D. Mapping biochemical and nutritional changes in durum wheat due to spoilage during storage. Heliyon 2023; 9:e22139. [PMID: 38045167 PMCID: PMC10692805 DOI: 10.1016/j.heliyon.2023.e22139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/21/2023] [Accepted: 11/05/2023] [Indexed: 12/05/2023] Open
Abstract
Synchrotron X-ray imaging and spectroscopy techniques were used for studying changes during post-harvest storage of food grains. Three varieties (AAC Spitfire, CDC Defy, and AAC Stronghold) of the Canada Western Amber Durum (CWAD) wheat class were stored for five weeks at 17 % moisture content (wb). Control (dry) and stored moistened seeds were analyzed for biochemical and nutritional changes using synchrotron bulk X-ray fluorescence spectroscopy (SR-XRF), X-ray fluorescence imaging (SR-XFI), and mid-infrared (mid-IR) spectroscopy at the Canadian Light Source (CLS), Saskatoon, SK. All varieties of durum wheat were spoiled at the end of five week, and AAC Spitfire and CDC Defy varieties were most affected in nutritional composition and their distribution than AAC Stronghold. Variable response to changes in biochemical and nutrition were found in all three spoiled varieties of the same durum wheat class.
Collapse
Affiliation(s)
- Navnath S. Indore
- Biosystems Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada
| | - Chithra Karunakaran
- Biosystems Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada
- Canadian Light Source Inc., Saskatoon, SK S7N 2V3, Canada
| | - Digvir S. Jayas
- Biosystems Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada
- President's Office, A762 University Hall, University of Lethbridge, Lethbridge, AB T1K 3M4 Canada
| | | | - Miranda Vu
- Canadian Light Source Inc., Saskatoon, SK S7N 2V3, Canada
| | - Kaiyang Tu
- Canadian Light Source Inc., Saskatoon, SK S7N 2V3, Canada
| | - David Muir
- Canadian Light Source Inc., Saskatoon, SK S7N 2V3, Canada
| |
Collapse
|
5
|
Indore NS, Jayas DS, Karunakaran C, Stobbs J, Bondici VF, Vu M, Tu K, Marinos O. Study of Microstructural, Nutritional, and Biochemical Changes in Hulled and Hulless Barley during Storage Using X-ray and Infrared Techniques. Foods 2023; 12:3935. [PMID: 37959054 PMCID: PMC10650746 DOI: 10.3390/foods12213935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/18/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Four varieties of barley (Esma, AC Metacalf, Tradition, and AB Cattlelac), representing four Canadian barley classes, were stored at 17% moisture content (mc) for 8 week. Stored barely was characterized using synchrotron X-ray phase contrast microcomputed tomography, synchrotron X-ray fluorescence imaging, and mid-infrared spectroscopy at the Canadian Light Source, Saskatoon. The deterioration was observed in all the selected varieties of barley at the end of 8 week of storage. Changes due to spoilage over time were observed in the grain microstructure and its nutrient distribution and composition. This study underscores the critical importance of the initial condition of barley grain microstructure in determining its storage life, particularly under unfavorable conditions. The hulled barley varieties showed more deterioration in microstructure than the hulless varieties of barley, where a direct correlation between microstructural changes and alterations in nutritional content was found. All selected barley classes showed changes in the distribution of nutrients (Ca, Fe, K, Mn, Cu, and Zn), but the two-row AC Metcalf variety exhibited more substantial variations in their nutrient distribution (Zn and Mn) than the other three varieties during storage. The two-row class barley varieties showed more changes in biochemical components (protein, lipids, and carbohydrates) than the six-row class varieties.
Collapse
Affiliation(s)
- Navnath S. Indore
- Biosystems Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada; (N.S.I.); (C.K.)
| | - Digvir S. Jayas
- Biosystems Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada; (N.S.I.); (C.K.)
- President’s Office, A762 University Hall, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Chithra Karunakaran
- Biosystems Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada; (N.S.I.); (C.K.)
- Canadian Light Source Inc., Saskatoon, SK S7N 2V3, Canada; (J.S.); (V.F.B.); (M.V.); (K.T.); (O.M.)
| | - Jarvis Stobbs
- Canadian Light Source Inc., Saskatoon, SK S7N 2V3, Canada; (J.S.); (V.F.B.); (M.V.); (K.T.); (O.M.)
| | - Viorica F. Bondici
- Canadian Light Source Inc., Saskatoon, SK S7N 2V3, Canada; (J.S.); (V.F.B.); (M.V.); (K.T.); (O.M.)
| | - Miranda Vu
- Canadian Light Source Inc., Saskatoon, SK S7N 2V3, Canada; (J.S.); (V.F.B.); (M.V.); (K.T.); (O.M.)
| | - Kaiyang Tu
- Canadian Light Source Inc., Saskatoon, SK S7N 2V3, Canada; (J.S.); (V.F.B.); (M.V.); (K.T.); (O.M.)
| | - Omar Marinos
- Canadian Light Source Inc., Saskatoon, SK S7N 2V3, Canada; (J.S.); (V.F.B.); (M.V.); (K.T.); (O.M.)
| |
Collapse
|
6
|
Cota-Sánchez JH, Falconer DJ, de Almeida OJG, Stobbs JA, Vera-Vélez R, Rice RS, Belliveau NA. Synchrotron micro-computed tomography unveils the three-dimensional structure and origin of staminodes in the Plains Prickly Pear Cactus Opuntia polyacantha Haw. (Cactaceae). PROTOPLASMA 2023; 260:1303-1312. [PMID: 36890289 PMCID: PMC9995257 DOI: 10.1007/s00709-023-01846-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Floral appendages display an array of shapes and sizes. Among these organs, staminodes are morphologically diverse structures that have lost the ability to produce pollen, but in some instances, they produce fertile pollen grains. In the family Cactaceae staminodes are uncommon and range from simple linear to flat to spatulate structures, but studies describing their structural attributes are scanty. This study highlights the advantages of synchrotron radiation for sample preparation and as a research tool for plant biology. It describes the internal morphology of floral parts, particularly stamen, tepal, and staminode in the Plains Prickly Pear Cactus, Opuntia polyacantha, using synchrotron radiation micro-computed tomography (SR-μCT). It also shows the different anatomical features in reconstructed three-dimensional imaging of reproductive parts and discuss the advantages of the segmentation method to detect and characterize the configuration and intricate patterns of vascular networks and associated structures of tepal and androecial parts applying SR-μCT. This powerful technology led to substantial improvements in terms of resolution allowing a more comprehensive understanding of the anatomical organization underlying the vasculature of floral parts and inception of staminodes in O. polyacantha. Tepal and androecial parts have uniseriate epidermis enclosing loose mesophyll with mucilage secretory ducts, lumen, and scattered vascular bundles. Cryptic underlying structural attributes provide evidence of a vascularized pseudo-anther conjoint with tepals. The undefined contours of staminodial appendages (pseudo-anther) amalgamated to the tepals' blurred boundaries suggest that staminodes originate from tepals, a developmental pattern supporting the fading border model of floral organ identity for angiosperms.
Collapse
Affiliation(s)
- J Hugo Cota-Sánchez
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK, S7N 5E2, Canada.
| | - Denver J Falconer
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK, S7N 5E2, Canada
| | - Odair J G de Almeida
- Universidade Estadual Paulista, Campos do Litoral Paulista, São Vicente, SP, 11380-972, Brazil
| | - Jarvis A Stobbs
- Canadian Light Source Inc, 44 Innovation Boulevard, Saskatoon, SK, S7N 2V3, Canada
| | - Roy Vera-Vélez
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK, S7N 5E2, Canada
- Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, S7N 5A8, Canada
| | - Ryan S Rice
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK, S7N 5E2, Canada
| | - Nicholas A Belliveau
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK, S7N 5E2, Canada
| |
Collapse
|
7
|
Sivakumar C, Findlay CRJ, Karunakaran C, Paliwal J. Non-destructive characterization of pulse flours-A review. Compr Rev Food Sci Food Saf 2023; 22:1613-1632. [PMID: 36880584 DOI: 10.1111/1541-4337.13123] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/16/2022] [Accepted: 01/26/2023] [Indexed: 03/08/2023]
Abstract
The consumption of plant-based proteins sourced from pulses is sustainable from the perspective of agriculture, environment, food security, and nutrition. Increased incorporation of high-quality pulse ingredients into foods such as pasta and baked goods is poised to produce refined food products to satisfy consumer demand. However, a better understanding of pulse milling processes is required to optimize the blending of pulse flours with wheat flour and other traditional ingredients. A thorough review of the state-of-the-art on pulse flour quality characterization reveals that research is required to elucidate the relationships between the micro- and nanoscale structures of these flours and their milling-dependent properties, such as hydration, starch and protein quality, components separation, and particle size distribution. With advances in synchrotron-enabled material characterization techniques, there exist a few options that have the potential to fill knowledge gaps. To this end, we conducted a comprehensive review of four high-resolution nondestructive techniques (i.e., scanning electron microscopy, synchrotron X-ray microtomography, synchrotron small-angle X-ray scattering, and Fourier-transformed infrared spectromicroscopy) and a comparison of their suitability for characterizing pulse flours. Our detailed synthesis of the literature concludes that a multimodal approach to fully characterize pulse flours will be vital to predicting their end-use suitability. A holistic characterization will help optimize and standardize the milling methods, pretreatments, and post-processing of pulse flours. Millers/processors will benefit by having a range of well-understood pulse flour fractions to incorporate into food formulations.
Collapse
Affiliation(s)
- Chitra Sivakumar
- Biosystems Engineering, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | | - Jitendra Paliwal
- Biosystems Engineering, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
8
|
Indore NS, Karunakaran C, Jayas DS. Synchrotron tomography applications in agriculture and food sciences research: a review. PLANT METHODS 2022; 18:101. [PMID: 35964094 PMCID: PMC9375343 DOI: 10.1186/s13007-022-00932-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/01/2022] [Indexed: 05/28/2023]
Abstract
Synchrotron imaging is widely used for research in many scientific disciplines. This article introduces the characteristics of synchrotron X-ray imaging and its applications in agriculture and food science research. The agriculture and food sector are a vast area that comprises of plants, seeds, animals, food and their products; soils with thriving microbial communities; and natural resources such as water, fertilizers, and organic matter. These entities have unique internal features, structures and compositions which differentiate them from each other in varieties, species, grades, and types. The use of a bright and tuneable monochromatic source of synchrotron imaging techniques enables researchers to study the internal features and compositions of plants, seeds, soil and food in a quick and non-destructive way to enhance their use, conservation and productivity. Synchrotron's different X-ray imaging techniques offer a wide domain of applications, which make them perfect to enhance the understanding of structures of raw and processed food products to promote food safety and security. Therefore, this paper summarizes the results of major experiments carried out with seeds, plants, soil, food and relevant areas of agricultural sciences with more emphasis on two synchrotron X-ray imaging techniques: absorption and phase-contrast imaging and computed tomography.
Collapse
Affiliation(s)
- Navnath S Indore
- Biosystem Engineering, University of Manitoba, Winnipeg, MB, R3T 5V6, Canada
| | - Chithra Karunakaran
- Biosystem Engineering, University of Manitoba, Winnipeg, MB, R3T 5V6, Canada
- Canadian Light Source Inc., Saskatoon, SK, S7N 2V3, Canada
| | - Digvir S Jayas
- Biosystem Engineering, University of Manitoba, Winnipeg, MB, R3T 5V6, Canada.
| |
Collapse
|
9
|
Fatima A, Kataria S, Prajapati R, Jain M, Agrawal AK, Singh B, Kashyap Y, Tripathi DK, Singh VP, Gadre R. Magnetopriming effects on arsenic stress-induced morphological and physiological variations in soybean involving synchrotron imaging. PHYSIOLOGIA PLANTARUM 2021; 173:88-99. [PMID: 32915504 DOI: 10.1111/ppl.13211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/26/2020] [Accepted: 09/06/2020] [Indexed: 06/11/2023]
Abstract
This study investigates the effect of static magnetic field (SMF) pre-treatment in ameliorating arsenic (As) toxicity in soybean plants in relation to growth, photosynthesis and water transport through leaf venation. Soybean (Glycine max variety JS-9560) seeds pre-treated with SMF (200 mT for 1 h) were grown in four levels of arsenate-polluted soil (As(V); 0, 5, 10 and 50 mg kg-1 ) in order to find out the impact of magnetopriming on plant tolerance against As toxicity. Quantitative image analysis of soybean leaf venation showed a narrowing in the width of midrib with increasing As(V) contamination in non-primed seeds. The morphological variations are also supported by the physiological parameters such as reduction in efficiency of photosystem II, plant performance index, stomatal conductance and photosynthetic rate in the presence of As(V) for non-primed seeds. However, remarkable increase was observed in all the measured parameters by SMF pre-treatment at all the concentrations of As(V) used. Even for the highest concentration of As(V) (50 mg kg-1 soil), SMF pre-treatment caused significant enhancement in plant height (40%), area of third trifoliate leaves (40%), along with increase in width of the midrib (17%) and minor vein (13%), contributing to increase in the water uptake, that resulted in higher primary photochemistry of PSII (12%), performance index (50%), stomatal conductance (57%) and photosynthetic rate (33%) as compared to non-primed ones. Consequently, magnetopriming of dry seeds can be effectively used as pretreatment for reduction of As toxicity in soybean plants.
Collapse
Affiliation(s)
- Anis Fatima
- Technical Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Sunita Kataria
- School of Biochemistry, Devi Ahilya Vishwavidyalaya, Khandwa Road, Indore, M.P., 452001, India
| | - Rajkumar Prajapati
- School of Biochemistry, Devi Ahilya Vishwavidyalaya, Khandwa Road, Indore, M.P., 452001, India
| | - Meeta Jain
- School of Biochemistry, Devi Ahilya Vishwavidyalaya, Khandwa Road, Indore, M.P., 452001, India
| | - Ashish K Agrawal
- Technical Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Balwant Singh
- Technical Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Yogesh Kashyap
- Technical Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Durgesh Kumar Tripathi
- Amity Institute of Organic Ariculture, Amity University Uttar Pradesh, Noida, 201313, India
| | - Vijay Pratap Singh
- Plant Physiology Lab, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj, 211002, India
| | - Rekha Gadre
- School of Biochemistry, Devi Ahilya Vishwavidyalaya, Khandwa Road, Indore, M.P., 452001, India
| |
Collapse
|
10
|
Van Eeckhout A, Garcia-Caurel E, Garnatje T, Escalera JC, Durfort M, Vidal J, Gil JJ, Campos J, Lizana A. Polarimetric imaging microscopy for advanced inspection of vegetal tissues. Sci Rep 2021; 11:3913. [PMID: 33594126 PMCID: PMC7887219 DOI: 10.1038/s41598-021-83421-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/03/2021] [Indexed: 01/30/2023] Open
Abstract
Optical microscopy techniques for plant inspection benefit from the fact that at least one of the multiple properties of light (intensity, phase, wavelength, polarization) may be modified by vegetal tissues. Paradoxically, polarimetric microscopy although being a mature technique in biophotonics, is not so commonly used in botany. Importantly, only specific polarimetric observables, as birefringence or dichroism, have some presence in botany studies, and other relevant metrics, as those based on depolarization, are underused. We present a versatile method, based on a representative selection of polarimetric observables, to obtain and to analyse images of plants which bring significant information about their structure and/or the spatial organization of their constituents (cells, organelles, among other structures). We provide a thorough analysis of polarimetric microscopy images of sections of plant leaves which are compared with those obtained by other commonly used microscopy techniques in plant biology. Our results show the interest of polarimetric microscopy for plant inspection, as it is non-destructive technique, highly competitive in economical and time consumption, and providing advantages compared to standard non-polarizing techniques.
Collapse
Affiliation(s)
- Albert Van Eeckhout
- Grup D'Òptica, Physics Department, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
| | - Enrique Garcia-Caurel
- LPICM, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91120, Palaiseau, France
| | - Teresa Garnatje
- Botanical Institute of Barcelona (IBB, CSIC-ICUB), 08038, Barcelona, Spain
| | - Juan Carlos Escalera
- Grup D'Òptica, Physics Department, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Mercè Durfort
- Departament de Biologia Cellular, Fisiologia & Immunologia. Facultat de Biologia, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Josep Vidal
- Grup D'Òptica, Physics Department, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - José J Gil
- Department of Applied Physics, University of Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Juan Campos
- Grup D'Òptica, Physics Department, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Angel Lizana
- Grup D'Òptica, Physics Department, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| |
Collapse
|
11
|
Scotson CP, van Veelen A, Williams KA, Koebernick N, McKay Fletcher D, Roose T. Developing a system for in vivo imaging of maize roots containing iodinated contrast media in soil using synchrotron XCT and XRF. PLANT AND SOIL 2020; 460:647-665. [PMID: 34720206 PMCID: PMC8550435 DOI: 10.1007/s11104-020-04784-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/25/2020] [Indexed: 06/13/2023]
Abstract
AIMS We sought to develop a novel experimental system which enabled application of iodinated contrast media to in vivo plant roots intact in soil and was compatible with time-resolved synchrotron X-ray computed tomography imaging. The system was developed to overcome issues of low contrast to noise within X-ray computed tomography images of plant roots and soil environments, the latter of which can complicate image processing and result in the loss of anatomical information. METHODS To demonstrate the efficacy of the system we employ the novel use of both synchrotron X-ray computed tomography and synchrotron X-ray fluorescence mapping to capture the translocation of the contrast media through root vasculature into the leaves. RESULTS With the application of contrast media we identify fluid flow in root vasculature and visualise anatomical features, which are otherwise often only observable in ex vivo microscopy, including: the xylem, metaxylem, pith, fibres in aerenchyma and leaf venation. We are also able to observe interactions between aerenchyma cross sectional area and solute transport in the root vasculature with depth. CONCLUSIONS Our novel system was capable of successfully delivering sufficient contrast media into root and leaf tissues such that anatomical features could be visualised and internal fluid transport observed. We propose that our system could be used in future to study internal plant transport mechanisms and parameterise models for fluid flow in plants. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s11104-020-04784-x.
Collapse
Affiliation(s)
- Callum P. Scotson
- Bioengineering Sciences Research Group, Department of Mechanical Engineering, School of Engineering, Faculty of Engineering and Physical Sciences, University of Southampton, University Road, Southampton, SO17 1BJ UK
| | - Arjen van Veelen
- Bioengineering Sciences Research Group, Department of Mechanical Engineering, School of Engineering, Faculty of Engineering and Physical Sciences, University of Southampton, University Road, Southampton, SO17 1BJ UK
- Material Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 USA
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025 USA
| | - Katherine A. Williams
- Bioengineering Sciences Research Group, Department of Mechanical Engineering, School of Engineering, Faculty of Engineering and Physical Sciences, University of Southampton, University Road, Southampton, SO17 1BJ UK
| | - Nicolai Koebernick
- Bioengineering Sciences Research Group, Department of Mechanical Engineering, School of Engineering, Faculty of Engineering and Physical Sciences, University of Southampton, University Road, Southampton, SO17 1BJ UK
- Soil Science and Soil Protection, Martin Luther University Halle-Wittenberg, Von-Seckendorff-Platz 3, 06120 Halle (Saale), Germany
| | - Dan McKay Fletcher
- Bioengineering Sciences Research Group, Department of Mechanical Engineering, School of Engineering, Faculty of Engineering and Physical Sciences, University of Southampton, University Road, Southampton, SO17 1BJ UK
| | - Tiina Roose
- Bioengineering Sciences Research Group, Department of Mechanical Engineering, School of Engineering, Faculty of Engineering and Physical Sciences, University of Southampton, University Road, Southampton, SO17 1BJ UK
| |
Collapse
|
12
|
Abstract
Recent developments within micro-computed tomography (μCT) imaging have combined to extend our capacity to image tissue in three (3D) and four (4D) dimensions at micron and sub-micron spatial resolutions, opening the way for virtual histology, live cell imaging, subcellular imaging and correlative microscopy. Pivotal to this has been the development of methods to extend the contrast achievable for soft tissue. Herein, we review the new capabilities within the field of life sciences imaging, and consider how future developments in this field could further benefit the life sciences community.
Collapse
Affiliation(s)
- Shelley D Rawson
- The Henry Royce Institute and School of Materials, The University of Manchester, Manchester, M13 9PL, UK
| | - Jekaterina Maksimcuka
- The Henry Royce Institute and School of Materials, The University of Manchester, Manchester, M13 9PL, UK
| | - Philip J Withers
- The Henry Royce Institute and School of Materials, The University of Manchester, Manchester, M13 9PL, UK
| | - Sarah H Cartmell
- The Henry Royce Institute and School of Materials, The University of Manchester, Manchester, M13 9PL, UK.
| |
Collapse
|
13
|
Willick IR, Stobbs J, Karunakaran C, Tanino KK. Phenotyping Plant Cellular and Tissue Level Responses to Cold with Synchrotron-Based Fourier-Transform Infrared Spectroscopy and X-Ray Computed Tomography. Methods Mol Biol 2020; 2156:141-159. [PMID: 32607980 DOI: 10.1007/978-1-0716-0660-5_11] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Despite the extensive use of synchrotron radiation in material and biomedical sciences, it has only recently been utilized to expand our understanding of plant responses to environmental stress. Recent advances have led to the development of phenotyping platforms to identify chemical and morphological differences in breeding plant material. While these methodologies are applicable for and tested with a variety of abiotic and biotic stresses, they are particularly useful as a first step to identify cold-induced chemical and morphological changes in plants. Here, we describe two methods to determine cold acclimation-induced changes at the cellular and tissue levels. First, we illustrate how to quantify and visualize changes in tissue chemistry using Fourier-transform infrared spectroscopy. Second, we describe how to nondestructively prepare, analyze, and interpret X-ray phase contrast images and render this data as two- or three-dimensional models. While these techniques utilize synchrotron radiation, the methodology and standard practices are applicable for handheld and laboratory bench-top equipment operating with conventional light sources.
Collapse
Affiliation(s)
- Ian R Willick
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | | | | | - Karen K Tanino
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
14
|
Strock CF, Schneider HM, Galindo-Castañeda T, Hall BT, Van Gansbeke B, Mather DE, Roth MG, Chilvers MI, Guo X, Brown K, Lynch JP. Laser ablation tomography for visualization of root colonization by edaphic organisms. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5327-5342. [PMID: 31199461 PMCID: PMC6793448 DOI: 10.1093/jxb/erz271] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 06/05/2019] [Indexed: 05/03/2023]
Abstract
Soil biota have important effects on crop productivity, but can be difficult to study in situ. Laser ablation tomography (LAT) is a novel method that allows for rapid, three-dimensional quantitative and qualitative analysis of root anatomy, providing new opportunities to investigate interactions between roots and edaphic organisms. LAT was used for analysis of maize roots colonized by arbuscular mycorrhizal fungi, maize roots herbivorized by western corn rootworm, barley roots parasitized by cereal cyst nematode, and common bean roots damaged by Fusarium. UV excitation of root tissues affected by edaphic organisms resulted in differential autofluorescence emission, facilitating the classification of tissues and anatomical features. Samples were spatially resolved in three dimensions, enabling quantification of the volume and distribution of fungal colonization, western corn rootworm damage, nematode feeding sites, tissue compromised by Fusarium, and as well as root anatomical phenotypes. Owing to its capability for high-throughput sample imaging, LAT serves as an excellent tool to conduct large, quantitative screens to characterize genetic control of root anatomy and interactions with edaphic organisms. Additionally, this technology improves interpretation of root-organism interactions in relatively large, opaque root segments, providing opportunities for novel research investigating the effects of root anatomical phenes on associations with edaphic organisms.
Collapse
Affiliation(s)
- Christopher F Strock
- Department of Plant Science, Pennsylvania State University, University Park, PA, USA
| | - Hannah M Schneider
- Department of Plant Science, Pennsylvania State University, University Park, PA, USA
| | | | - Benjamin T Hall
- Lasers for Innovative Solutions, LLC, State College, PA, USA
| | - Bart Van Gansbeke
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, PMB, Glen Osmond, SA, Australia
| | - Diane E Mather
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, PMB, Glen Osmond, SA, Australia
| | - Mitchell G Roth
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | - Martin I Chilvers
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | - Xiangrong Guo
- Department of Plant Science, Pennsylvania State University, University Park, PA, USA
| | - Kathleen Brown
- Department of Plant Science, Pennsylvania State University, University Park, PA, USA
| | - Jonathan P Lynch
- Department of Plant Science, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
15
|
Brar GS, Karunakaran C, Bond T, Stobbs J, Liu N, Hucl PJ, Kutcher HR. Showcasing the application of synchrotron-based X-ray computed tomography in host-pathogen interactions: The role of wheat rachilla and rachis nodes in Type-II resistance to Fusarium graminearum. PLANT, CELL & ENVIRONMENT 2019; 42:509-526. [PMID: 30160775 DOI: 10.1111/pce.13431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 08/14/2018] [Accepted: 08/20/2018] [Indexed: 05/10/2023]
Abstract
Fusarium head blight, caused primarily by Fusarium graminearum (Fg), is one of the most devastating diseases of wheat. Host resistance in wheat is classified into five types (Type-I to Type-V), and a majority of moderately resistant genotypes carry Type-II resistance (resistance to pathogen spread in the rachis) alleles, mainly from the Chinese cultivar Sumai 3. Histopathological studies in the past failed to identify the key tissue in the spike conferring resistance to pathogen spread, and most of the studies used destructive techniques, potentially damaging the tissue(s) under study. In the present study, nondestructive synchrotron-based phase contrast X-ray imaging and computed tomography techniques were used to confirm the part of the wheat spike conferring Type-II resistance to Fg spread, thus showcasing the application of synchrotron-based techniques to image host-pathogen interactions. Seven wheat genotypes of moderate resistance to Fusarium head blight were studied for changes in the void space volume fraction and grayscale/voxel intensity following Fg inoculation. Cell-wall biopolymeric compounds were quantified using Fourier-transform midinfrared spectroscopy for all genotype-treatment combinations. The study revealed that the rachilla and rachis nodes together are structurally important in conferring Type-II resistance. The structural reinforcement was not necessarily observed from lignin deposition but rather from an unknown mechanism.
Collapse
Affiliation(s)
- Gurcharn S Brar
- Crop Development Centre, Department of Plant Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | - Toby Bond
- Canadian Light Source, Saskatoon, Saskatchewan, Canada
| | - Jarvis Stobbs
- Canadian Light Source, Saskatoon, Saskatchewan, Canada
| | - Na Liu
- Canadian Light Source, Saskatoon, Saskatchewan, Canada
| | - Pierre J Hucl
- Crop Development Centre, Department of Plant Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Hadley R Kutcher
- Crop Development Centre, Department of Plant Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
16
|
Jiang Y, Lahlali R, Karunakaran C, Warkentin TD, Davis AR, Bueckert RA. Pollen, ovules, and pollination in pea: Success, failure, and resilience in heat. PLANT, CELL & ENVIRONMENT 2019; 42:354-372. [PMID: 30136298 DOI: 10.1111/pce.13427] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 08/03/2018] [Accepted: 08/15/2018] [Indexed: 05/08/2023]
Abstract
Field pea (Pisum sativum), a major grain legume crop, is autogamous and adapted to temperate climates. The objectives of this study were to investigate effects of high temperature stress on stamen chemical composition, anther dehiscence, pollen viability, pollen interactions with pistil and ovules, and ovule growth and viability. Two cultivars ("CDC Golden" and "CDC Sage") were exposed to 24/18°C (day/night) continually or to 35/18°C for 4 or 7 days. Heat stress altered stamen chemical composition, with lipid composition of "CDC Sage" being more stable compared with "CDC Golden." Heat stress reduced pollen viability and the proportion of ovules that received a pollen tube. After 4 days at 35°C, pollen viability in flower buds decreased in "CDC Golden," but not in "CDC Sage." After 7 days, partial to full failure of anthers to dehisce resulted in subnormal pollen loads on stigmas. Although growth (ovule size) of fertilized ovules was stimulated by 35°C, heat stress tended to decrease ovule viability. Pollen appears susceptible to stress, but not many grains are needed for successful fertilization. Ovule fertilization and embryos are less susceptible to heat, but further research is warranted to link the exact degree of resilience to stress intensity.
Collapse
Affiliation(s)
- Yunfei Jiang
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Rachid Lahlali
- Canadian Light Source Inc., Saskatoon, Saskatchewan, Canada
| | | | - Thomas D Warkentin
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Crop Development Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Arthur R Davis
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Rosalind A Bueckert
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
17
|
Valdiani A, Hansen OK, Nielsen UB, Johannsen VK, Shariat M, Georgiev MI, Omidvar V, Ebrahimi M, Tavakoli Dinanai E, Abiri R. Bioreactor-based advances in plant tissue and cell culture: challenges and prospects. Crit Rev Biotechnol 2018; 39:20-34. [PMID: 30431379 DOI: 10.1080/07388551.2018.1489778] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 05/29/2018] [Accepted: 06/04/2018] [Indexed: 12/13/2022]
Abstract
Bioreactors are engineered systems capable of supporting a biologically active situation for conducting aerobic or anaerobic biochemical processes. Stability, operational ease, improved nutrient uptake capacity, time- and cost-effectiveness, and large quantities of biomass production, make bioreactors suitable alternatives to conventional plant tissue and cell culture (PTCC) methods. Bioreactors are employed in a wide range of plant research, and have evolved over time. Such technological progress, has led to remarkable achievements in the field of PTCC. Since the classification of bioreactors has been extensively reviewed in numerous reviews, the current article avoids repeating the same material. Alternatively, it aims to highlight the principal advances in the bioreactor hardware s used in PTCC rather than classical categorization. Furthermore, our review summarizes the most significant steps as well as current state-of-the-art of PTCC carried out in various types of bioreactor.
Collapse
Affiliation(s)
- Alireza Valdiani
- a Department of Geosciences and Natural Resource Management, Section for Forest, Nature and Biomass, Faculty of Science , University of Copenhagen , Frederiksberg C 1958 , Denmark
| | - Ole Kim Hansen
- a Department of Geosciences and Natural Resource Management, Section for Forest, Nature and Biomass, Faculty of Science , University of Copenhagen , Frederiksberg C 1958 , Denmark
| | - Ulrik Braüner Nielsen
- a Department of Geosciences and Natural Resource Management, Section for Forest, Nature and Biomass, Faculty of Science , University of Copenhagen , Frederiksberg C 1958 , Denmark
| | - Vivian Kvist Johannsen
- a Department of Geosciences and Natural Resource Management, Section for Forest, Nature and Biomass, Faculty of Science , University of Copenhagen , Frederiksberg C 1958 , Denmark
| | - Maryam Shariat
- b Department of Food Science, Faculty of Food Science and Technology , Universiti Putra Malaysia , Serdang , Selangor 43400 UPM , Malaysia
| | - Milen I Georgiev
- c Institute of Microbiology , Bulgarian Academy of Sciences , Plovdiv 4000 , Bulgaria
| | - Vahid Omidvar
- d Department of Plant Pathology , University of Minnesota , St Paul , MN 55108 , USA
| | - Mortaza Ebrahimi
- e Department of Plant Tissue Culture , Agriculture Biotechnology Research Institute of Iran - Central Region Branch , Isfahan , Iran
| | | | - Rambod Abiri
- g Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences , Universiti Putra Malaysia , Serdang , Selangor DE 43400 UPM , Malaysia
| |
Collapse
|
18
|
3D Reconstruction of Lipid Droplets in the Seed of Brassica napus. Sci Rep 2018; 8:6560. [PMID: 29700334 PMCID: PMC5920073 DOI: 10.1038/s41598-018-24812-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 04/10/2018] [Indexed: 12/11/2022] Open
Abstract
Rapeseed is one of the most important and widely cultured oilseed crops for food and nonfood purposes worldwide. Neutral lipids are stored in lipid droplets (LDs) as fuel for germination and subsequent seedling growth. Most of the LD detection in seeds was still in 2D levels, and some of the details might have been lost in previous studies. In the present work, the configuration of LDs in seeds was obtained by confocal imaging combined with 3D reconstruction technology in Brassica napus. The size and shape of LDs, LD numbers, cell interval spaces and cell size were observed and compared at 3D levels in the seeds of different materials with high and low oil content. It was also revealed that different cells located in the same tissue exhibited various oil contents according to the construction at the 3D level, which was not previously reported in B. napus. The present work provides a new way to understand the differential in cell populations and enhance the seed oil content at the single cell level within seeds.
Collapse
|
19
|
Mathers AW, Hepworth C, Baillie AL, Sloan J, Jones H, Lundgren M, Fleming AJ, Mooney SJ, Sturrock CJ. Investigating the microstructure of plant leaves in 3D with lab-based X-ray computed tomography. PLANT METHODS 2018; 14:99. [PMID: 30455724 PMCID: PMC6231253 DOI: 10.1186/s13007-018-0367-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/03/2018] [Indexed: 05/18/2023]
Abstract
BACKGROUND Leaf cellular architecture plays an important role in setting limits for carbon assimilation and, thus, photosynthetic performance. However, the low density, fine structure, and sensitivity to desiccation of plant tissue has presented challenges to its quantification. Classical methods of tissue fixation and embedding prior to 2D microscopy of sections is both laborious and susceptible to artefacts that can skew the values obtained. Here we report an image analysis pipeline that provides quantitative descriptors of plant leaf intercellular airspace using lab-based X-ray computed tomography (microCT). We demonstrate successful visualisation and quantification of differences in leaf intercellular airspace in 3D for a range of species (including both dicots and monocots) and provide a comparison with a standard 2D analysis of leaf sections. RESULTS We used the microCT image pipeline to obtain estimates of leaf porosity and mesophyll exposed surface area (Smes) for three dicot species (Arabidopsis, tomato and pea) and three monocot grasses (barley, oat and rice). The imaging pipeline consisted of (1) a masking operation to remove the background airspace surrounding the leaf, (2) segmentation by an automated threshold in ImageJ and then (3) quantification of the extracted pores using the ImageJ 'Analyze Particles' tool. Arabidopsis had the highest porosity and lowest Smes for the dicot species whereas barley had the highest porosity and the highest Smes for the grass species. Comparison of porosity and Smes estimates from 3D microCT analysis and 2D analysis of sections indicates that both methods provide a comparable estimate of porosity but the 2D method may underestimate Smes by almost 50%. A deeper study of porosity revealed similarities and differences in the asymmetric distribution of airspace between the species analysed. CONCLUSIONS Our results demonstrate the utility of high resolution imaging of leaf intercellular airspace networks by lab-based microCT and provide quantitative data on descriptors of leaf cellular architecture. They indicate there is a range of porosity and Smes values in different species and that there is not a simple relationship between these parameters, suggesting the importance of cell size, shape and packing in the determination of cellular parameters proposed to influence leaf photosynthetic performance.
Collapse
Affiliation(s)
- Andrew W. Mathers
- Division of Agricultural and Environmental Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD UK
| | - Christopher Hepworth
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, S10 2TN UK
| | - Alice L. Baillie
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, S10 2TN UK
| | - Jen Sloan
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, S10 2TN UK
| | - Hannah Jones
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, S10 2TN UK
| | - Marjorie Lundgren
- Lancaster Environment Centre, Lancaster University, LEC 2 Yellow Zone B43, Lancaster, LA1 4YQ UK
| | - Andrew J. Fleming
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, S10 2TN UK
| | - Sacha J. Mooney
- Division of Agricultural and Environmental Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD UK
| | - Craig J. Sturrock
- Division of Agricultural and Environmental Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD UK
| |
Collapse
|
20
|
Jin K, White PJ, Whalley WR, Shen J, Shi L. Shaping an Optimal Soil by Root-Soil Interaction. TRENDS IN PLANT SCIENCE 2017; 22:823-829. [PMID: 28803694 DOI: 10.1016/j.tplants.2017.07.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 07/06/2017] [Accepted: 07/16/2017] [Indexed: 05/23/2023]
Abstract
Crop production depends on the availability of water and mineral nutrients, and increased yields might be facilitated by a greater focus on roots-soil interactions. Soil properties affecting plant growth include drought, compaction, nutrient deficiency, mineral toxicity, salinity, and submergence. Plant roots respond to the soil environment both spatially and temporally by avoiding stressful soil environments and proliferating in more favorable environments. We observe that crops can be bred for specific root architectural and biochemical traits that facilitate soil exploration and resource acquisition, enabling greater crop yields. These root traits affect soil physical and chemical properties and might be utilized to improve the soil for subsequent crops. We argue that optimizing root-soil interactions is a prerequisite for future food security.
Collapse
Affiliation(s)
- Kemo Jin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Philip J White
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | | | - Jianbo Shen
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China
| | - Lei Shi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
21
|
In-Field, In Situ, and In Vivo 3-Dimensional Elemental Mapping for Plant Tissue and Soil Analysis Using Laser-Induced Breakdown Spectroscopy. SENSORS 2016; 16:s16101764. [PMID: 27782074 PMCID: PMC5087548 DOI: 10.3390/s16101764] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/14/2016] [Accepted: 10/19/2016] [Indexed: 11/16/2022]
Abstract
Sensing and mapping element distributions in plant tissues and its growth environment has great significance for understanding the uptake, transport, and accumulation of nutrients and harmful elements in plants, as well as for understanding interactions between plants and the environment. In this study, we developed a 3-dimensional elemental mapping system based on laser-induced breakdown spectroscopy that can be deployed in- field to directly measure the distribution of multiple elements in living plants as well as in the soil. Mapping is performed by a fast scanning laser, which ablates a micro volume of a sample to form a plasma. The presence and concentration of specific elements are calculated using the atomic, ionic, and molecular spectral characteristics of the plasma emission spectra. Furthermore, we mapped the pesticide residues in maize leaves after spraying to demonstrate the capacity of this method for trace elemental mapping. We also used the system to quantitatively detect the element concentrations in soil, which can be used to further understand the element transport between plants and soil. We demonstrate that this method has great potential for elemental mapping in plant tissues and soil with the advantages of 3-dimensional and multi-elemental mapping, in situ and in vivo measurement, flexible use, and low cost.
Collapse
|
22
|
Rousseau D, Widiez T, Di Tommaso S, Rositi H, Adrien J, Maire E, Langer M, Olivier C, Peyrin F, Rogowsky P. Fast virtual histology using X-ray in-line phase tomography: application to the 3D anatomy of maize developing seeds. PLANT METHODS 2015; 11:55. [PMID: 26688690 PMCID: PMC4684619 DOI: 10.1186/s13007-015-0098-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 11/26/2015] [Indexed: 05/20/2023]
Abstract
BACKGROUND Despite increasing demand, imaging the internal structure of plant organs or tissues without the use of transgenic lines expressing fluorescent proteins remains a challenge. Techniques such as magnetic resonance imaging, optical projection tomography or X-ray absorption tomography have been used with various success, depending on the size and physical properties of the biological material. RESULTS X-ray in-line phase tomography was applied for the imaging of internal structures of maize seeds at early stages of development, when the cells are metabolically fully active and water is the main cell content. This 3D imaging technique with histology-like spatial resolution is demonstrated to reveal the anatomy of seed compartments with unequalled contrast by comparison with X-ray absorption tomography. An associated image processing pipeline allowed to quantitatively segment in 3D the four compartments of the seed (embryo, endosperm, nucellus and pericarp) from 7 to 21 days after pollination. CONCLUSION This work constitutes an innovative quantitative use of X-ray in-line phase tomography as a non-destructive fast method to perform virtual histology and extends the developmental stages accessible by this technique which had previously been applied in seed biology to more mature samples.
Collapse
Affiliation(s)
- David Rousseau
- />Laboratoire CREATIS, Université de Lyon, CNRS, UMR5220, INSERM, U1044, Université Lyon 1 INSA-Lyon, Villeurbanne, France
| | - Thomas Widiez
- />Unite Reproduction et Developpement des Plantes, INRA, UMR 879, CNRS, UMR 5667, Université Lyon 1, École Normale Supérieure UMR20, 69364 Lyon, France
| | - Sylvaine Di Tommaso
- />Laboratoire CREATIS, Université de Lyon, CNRS, UMR5220, INSERM, U1044, Université Lyon 1 INSA-Lyon, Villeurbanne, France
| | - Hugo Rositi
- />Laboratoire CREATIS, Université de Lyon, CNRS, UMR5220, INSERM, U1044, Université Lyon 1 INSA-Lyon, Villeurbanne, France
| | - Jerome Adrien
- />MATEIS, UMR CNRS 5510, Université Lyon 1, INSA-Lyon, 69621 Lyon, France
| | - Eric Maire
- />MATEIS, UMR CNRS 5510, Université Lyon 1, INSA-Lyon, 69621 Lyon, France
| | - Max Langer
- />Laboratoire CREATIS, Université de Lyon, CNRS, UMR5220, INSERM, U1044, Université Lyon 1 INSA-Lyon, Villeurbanne, France
| | - Cécile Olivier
- />Laboratoire CREATIS, Université de Lyon, CNRS, UMR5220, INSERM, U1044, Université Lyon 1 INSA-Lyon, Villeurbanne, France
| | - Françoise Peyrin
- />Laboratoire CREATIS, Université de Lyon, CNRS, UMR5220, INSERM, U1044, Université Lyon 1 INSA-Lyon, Villeurbanne, France
| | - Peter Rogowsky
- />Unite Reproduction et Developpement des Plantes, INRA, UMR 879, CNRS, UMR 5667, Université Lyon 1, École Normale Supérieure UMR20, 69364 Lyon, France
| |
Collapse
|