1
|
Kosová K, Nešporová T, Vítámvás P, Vítámvás J, Klíma M, Ovesná J, Prášil IT. How to survive mild winters: Cold acclimation, deacclimation, and reacclimation in winter wheat and barley. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109541. [PMID: 39862458 DOI: 10.1016/j.plaphy.2025.109541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/09/2025] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
Cold acclimation and vernalization represent the major evolutionary adaptive responses to ensure winter survival of temperate plants. Due to climate change, mild winters can paradoxically worsen plant winter survival due to cold deacclimation induced by warm periods during winter. It seems that the ability of cold reacclimation in overwintering Triticeae cereals is limited, especially in vernalized plants. In the present review, the major factors determining cold acclimation (CA), deacclimation (DA) and reacclimation (RA) processes in winter-type Triticeae, namely wheat and barley, are discussed. Recent knowledge on cold sensing and signaling is briefly summarized. The impacts of chilling temperatures, photoperiod and light spectrum quality as the major environmental factors, and the roles of soluble proteins and sugars (carbohydrates) as well as cold stress memory molecular mechanisms as the major plant-based factors determining CA, DA, and RA processes are discussed. The roles of plant stress memory mechanisms and development processes, namely vernalization, in winter Triticeae reacclimation are elucidated. Recent findings about the role of O-glucose N-acetylation of target proteins during vernalization and their impacts on the expression of VRN1 gene and other target proteins resulting in cold-responsive modules reprogramming are presented.
Collapse
Affiliation(s)
- Klára Kosová
- Laboratory of Plant Stress Biology and Biotechnology, Department of Plant Genetics and Crop Breeding, Czech Agrifood Research Center, Drnovská 507, 161 06, Prague 6, Ruzyně, Czech Republic.
| | - Tereza Nešporová
- Laboratory of Plant Stress Biology and Biotechnology, Department of Plant Genetics and Crop Breeding, Czech Agrifood Research Center, Drnovská 507, 161 06, Prague 6, Ruzyně, Czech Republic; Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czech Republic
| | - Pavel Vítámvás
- Laboratory of Plant Stress Biology and Biotechnology, Department of Plant Genetics and Crop Breeding, Czech Agrifood Research Center, Drnovská 507, 161 06, Prague 6, Ruzyně, Czech Republic
| | - Jan Vítámvás
- Laboratory of Plant Stress Biology and Biotechnology, Department of Plant Genetics and Crop Breeding, Czech Agrifood Research Center, Drnovská 507, 161 06, Prague 6, Ruzyně, Czech Republic; Faculty of Forestry and Wood Science, Czech University of Life Sciences, Prague, Czech Republic
| | - Miroslav Klíma
- Laboratory of Plant Stress Biology and Biotechnology, Department of Plant Genetics and Crop Breeding, Czech Agrifood Research Center, Drnovská 507, 161 06, Prague 6, Ruzyně, Czech Republic
| | - Jaroslava Ovesná
- Laboratory of Plant Stress Biology and Biotechnology, Department of Plant Genetics and Crop Breeding, Czech Agrifood Research Center, Drnovská 507, 161 06, Prague 6, Ruzyně, Czech Republic
| | - Ilja Tom Prášil
- Laboratory of Plant Stress Biology and Biotechnology, Department of Plant Genetics and Crop Breeding, Czech Agrifood Research Center, Drnovská 507, 161 06, Prague 6, Ruzyně, Czech Republic
| |
Collapse
|
2
|
He Y, Zhang Y, Li J, Ren Z, Zhang W, Zuo X, Zhao W, Xing M, You J, Chen X. Transcriptome dynamics in Artemisia annua provides new insights into cold adaptation and de-adaptation. FRONTIERS IN PLANT SCIENCE 2024; 15:1412416. [PMID: 39268001 PMCID: PMC11390472 DOI: 10.3389/fpls.2024.1412416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/25/2024] [Indexed: 09/15/2024]
Abstract
Plants adapt to cold stress through a tightly regulated process involving metabolic reprogramming and tissue remodeling to enhance tolerance within a short timeframe. However, the precise differences and interconnections among various organs during cold adaptation remain poorly understood. This study employed dynamic transcriptomic and metabolite quantitative analyses to investigate cold adaptation and subsequent de-adaptation in Artemisia annua, a species known for its robust resistance to abiotic stress. Our findings revealed distinct expression patterns in most differentially expressed genes (DEGs) encoding transcription factors and components of the calcium signal transduction pathway within the two organs under cold stress. Notably, the long-distance transport of carbon sources from source organs (leaves) to sink organs (roots) experienced disruption followed by resumption, while nitrogen transport from roots to leaves, primarily in the form of amino acids, exhibited acceleration. These contrasting transport patterns likely contribute to the observed differences in cold response between the two organs. The transcriptomic analysis further indicated that leaves exhibited increased respiration, accumulated anti-stress compounds, and initiated the ICE-CBF-COR signaling pathway earlier than roots. Differential expression of genes associated with cell wall biosynthesis suggests that leaves may undergo cell wall thickening while roots may experience thinning. Moreover, a marked difference was observed in phenylalanine metabolism between the two organs, with leaves favoring lignin production and roots favoring flavonoid synthesis. Additionally, our findings suggest that the circadian rhythm is crucial in integrating temperature fluctuations with the plant's internal rhythms during cold stress and subsequent recovery. Collectively, these results shed light on the coordinated response of different plant organs during cold adaptation, highlighting the importance of inter-organ communication for successful stress tolerance.
Collapse
Affiliation(s)
- Yunxiao He
- National and Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Yujiao Zhang
- National and Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Sciences, Jilin University, Changchun, Jilin, China
- Yanbian Korean Autonomous Prefecture Academy of Agricultural Sciences, Yanbian, Jilin, China
| | - Jiangnan Li
- National and Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Zhiyi Ren
- National and Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Wenjing Zhang
- National and Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Xianghua Zuo
- National and Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Wei Zhao
- National and Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Ming Xing
- National and Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Jian You
- National and Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Xia Chen
- National and Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Sciences, Jilin University, Changchun, Jilin, China
| |
Collapse
|
3
|
Garcia-Molina A, Pastor V. Systemic analysis of metabolome reconfiguration in Arabidopsis after abiotic stressors uncovers metabolites that modulate defense against pathogens. PLANT COMMUNICATIONS 2024; 5:100645. [PMID: 37403356 PMCID: PMC10811363 DOI: 10.1016/j.xplc.2023.100645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/06/2023]
Abstract
Understanding plant immune responses is complex because of the high interdependence among biological processes in homeostatic networks. Hence, the integration of environmental cues causes network rewiring that interferes with defense responses. Similarly, plants retain molecular signatures configured under abiotic stress periods to rapidly respond to recurrent stress, and these can alter immunity. Metabolome changes imposed by abiotic stressors are persistent, although their impact on defense remains to be clarified. In this study, we profiled metabolomes of Arabidopsis plants under several abiotic stress treatments applied individually or simultaneously to capture temporal trajectories in metabolite composition during adverse conditions and recovery. Further systemic analysis was performed to address the relevance of metabolome changes and extract central features to be tested in planta. Our results demonstrate irreversibility in major fractions of metabolome changes as a general pattern in response to abiotic stress periods. Functional analysis of metabolomes and co-abundance networks points to convergence in the reconfiguration of organic acid and secondary metabolite metabolism. Arabidopsis mutant lines for components related to these metabolic pathways showed altered defense capacities against different pathogens. Collectively, our data suggest that sustained metabolome changes configured in adverse environments can act as modulators of immune responses and provide evidence for a new layer of regulation in plant defense.
Collapse
Affiliation(s)
- Antoni Garcia-Molina
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, C/Vall Moronta, Edifici CRAG, 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Spain.
| | - Victoria Pastor
- Department of Biology, Biochemistry, and Natural Sciences, School of Technology and Experimental Sciences, Universitat Jaume I, 12006 Castelló de la Plana, Spain
| |
Collapse
|
4
|
Wójcik-Jagła M, Rapacz M. Freezing tolerance and tolerance to de-acclimation of European accessions of winter and facultative barley. Sci Rep 2023; 13:19931. [PMID: 37968280 PMCID: PMC10651919 DOI: 10.1038/s41598-023-47318-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 11/12/2023] [Indexed: 11/17/2023] Open
Abstract
Due to global warming, winter hardiness may seem to become less important for plant survival and yield. However, this is a superficial assumption, as probably only the most important factors locally affecting plant overwintering will change. For example, the frequency, degree, and length of extreme winter warming events may increase, leading to de-acclimation of plants. This study aimed to investigate existing variability in de-acclimation tolerance in Polish winter barley breeding materials and European winter and facultative barley cultivars, and to identify accessions with the highest and the lowest tolerance to de-acclimation by means of visual estimation of regrowth after freezing, measurements of electrolyte leakage and chlorophyll fluorescence, and LT50 assessment. The results of this study showed that freezing tolerance and tolerance to de-acclimation are independent traits, and even highly freezing tolerant plants can be susceptible to de-acclimation. Our results highlight the role of photosynthetic apparatus in de-acclimation, proving that chlorophyll fluorescence parameters, especially ET0/CS, can be useful indicators of tolerance to de-acclimation. This study also confirmed that although the mechanisms of response to de-acclimation seem to be common for susceptible barley accessions, the mechanisms of tolerance are different, and may be related to the accession's origin.
Collapse
Affiliation(s)
- Magdalena Wójcik-Jagła
- Department of Plant Breeding, Physiology and Seed Science, University of Agriculture, Krakow, Poland.
| | - Marcin Rapacz
- Department of Plant Breeding, Physiology and Seed Science, University of Agriculture, Krakow, Poland
| |
Collapse
|
5
|
López D, Larama G, Sáez PL, Bravo LA. Transcriptome Analysis of Diurnal and Nocturnal-Warmed Plants, the Molecular Mechanism Underlying Cold Deacclimation Response in Deschampsia antarctica. Int J Mol Sci 2023; 24:11211. [PMID: 37446390 DOI: 10.3390/ijms241311211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/05/2023] [Accepted: 05/07/2023] [Indexed: 07/15/2023] Open
Abstract
Warming in the Antarctic Peninsula is one of the fastest on earth, and is predicted to become more asymmetric in the near future. Warming has already favored the growth and reproduction of Antarctic plant species, leading to a decrease in their freezing tolerance (deacclimation). Evidence regarding the effects of diurnal and nocturnal warming on freezing tolerance-related gene expression in D. antarctica is negligible. We hypothesized that freezing tolerance-related gene (such as CBF-regulon) expression is reduced mainly by nocturnal warming rather than diurnal temperature changes in D. antarctica. The present work aimed to determine the effects of diurnal and nocturnal warming on cold deacclimation and its associated gene expression in D. antarctica, under laboratory conditions. Fully cold-acclimated plants (8 °C/0 °C), with 16h/8h thermoperiod and photoperiod duration, were assigned to four treatments for 14 days: one control (8 °C/0 °C) and three with different warming conditions (diurnal (14 °C/0 °C), nocturnal (8 °C/6 °C), and diurnal-nocturnal (14 °C/6 °C). RNA-seq was performed and differential gene expression was analyzed. Nocturnal warming significantly down-regulated the CBF transcription factors expression and associated cold stress response genes and up-regulated photosynthetic and growth promotion genes. Consequently, nocturnal warming has a greater effect than diurnal warming on the cold deacclimation process in D. antarctica. The eco-physiological implications are discussed.
Collapse
Affiliation(s)
- Dariel López
- Departamento de Ciencias Agronómicas y Recursos Naturales, Facultad de Ciencias Agropecuarias y Medioambiente and Center of Plant, Soil Interactions and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile
| | - Giovanni Larama
- Biocontrol Research Laboratory and Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile
| | - Patricia L Sáez
- Departamento de Ciencias Agronómicas y Recursos Naturales, Facultad de Ciencias Agropecuarias y Medioambiente and Center of Plant, Soil Interactions and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile
| | - León A Bravo
- Departamento de Ciencias Agronómicas y Recursos Naturales, Facultad de Ciencias Agropecuarias y Medioambiente and Center of Plant, Soil Interactions and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile
| |
Collapse
|
6
|
López D, Sanhueza C, Salvo-Garrido H, Bascunan-Godoy L, Bravo LA. How Does Diurnal and Nocturnal Warming Affect the Freezing Resistance of Antarctic Vascular Plants? PLANTS (BASEL, SWITZERLAND) 2023; 12:806. [PMID: 36840154 PMCID: PMC9966323 DOI: 10.3390/plants12040806] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/24/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
The Antarctic Peninsula has rapidly warmed up in past decades, and global warming has exhibited an asymmetric trend; therefore, it is interesting to understand whether nocturnal or diurnal warming is the most relevant for plant cold deacclimation. This study aimed to evaluate the effect of diurnal and nocturnal warming on Antarctic vascular plant's freezing resistance under laboratory conditions. This was studied by measuring the lethal temperature for 50% of tissue (LT50), ice nucleation temperature (INT), and freezing point (FP) on Deschampsia antarctica and Colobanthus quitensis plants. Additionally, soluble carbohydrates content and dehydrin levels were analyzed during nocturnal and diurnal temperatures increase. Nocturnal warming led to a 7 °C increase in the LT50 of D. antarctica and reduced dehydrin-like peptide expression. Meanwhile, C. quitensis warmed plants reduce their LT50 to about 3.6 °C. Both species reduce their sucrose content by more than 28% in warming treatments. Therefore, nocturnal warming leads to cold deacclimation in both plant species, while C. quitensis plants are also cold-deacclimated upon warm days. This suggests that even when the remaining freezing resistance of both species allows them to tolerate summer freezing events, C. quitensis can reach its boundaries of freezing vulnerability in the near future if warming in the Antarctic Peninsula progress.
Collapse
Affiliation(s)
- Dariel López
- Departamento de Ciencias Agronómicas y Recursos Naturales, Facultad de Ciencias Agropecuarias y Medioambiente and Center of Plant, Soil Interactions and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile
| | - Carolina Sanhueza
- Laboratorio de Fisiología Vegetal, Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción 4030000, Chile
| | - Haroldo Salvo-Garrido
- Centro de Genómica Nutricional Agroacuícola, Ciencia en Plantas, Temuco 4781158, Chile
| | - Luisa Bascunan-Godoy
- Laboratorio de Fisiología Vegetal, Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción 4030000, Chile
| | - León A. Bravo
- Departamento de Ciencias Agronómicas y Recursos Naturales, Facultad de Ciencias Agropecuarias y Medioambiente and Center of Plant, Soil Interactions and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile
| |
Collapse
|
7
|
Kutsuno T, Chowhan S, Kotake T, Takahashi D. Temporal cell wall changes during cold acclimation and deacclimation and their potential involvement in freezing tolerance and growth. PHYSIOLOGIA PLANTARUM 2023; 175:e13837. [PMID: 36461890 PMCID: PMC10107845 DOI: 10.1111/ppl.13837] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 11/16/2022] [Accepted: 11/25/2022] [Indexed: 05/19/2023]
Abstract
Plants adapt to freezing stress through cold acclimation, which is induced by nonfreezing low temperatures and accompanied by growth arrest. A later increase in temperature after cold acclimation leads to rapid loss of freezing tolerance and growth resumption, a process called deacclimation. Appropriate regulation of the trade-off between freezing tolerance and growth is necessary for efficient plant development in a changing environment. The cell wall, which mainly consists of polysaccharide polymers, is involved in both freezing tolerance and growth. Still, it is unclear how the balance between freezing tolerance and growth is affected during cold acclimation and deacclimation by the changes in cell wall structure and what role is played by its monosaccharide composition. Therefore, to elucidate the regulatory mechanisms controlling freezing tolerance and growth during cold acclimation and deacclimation, we investigated cell wall changes in detail by sequential fractionation and monosaccharide composition analysis in the model plant Arabidopsis thaliana, for which a plethora of information and mutant lines are available. We found that arabinogalactan proteins and pectic galactan changed in close coordination with changes in freezing tolerance and growth during cold acclimation and deacclimation. On the other hand, arabinan and xyloglucan did not return to nonacclimation levels after deacclimation but stabilized at cold acclimation levels. This indicates that deacclimation does not completely restore cell wall composition to the nonacclimated state but rather changes it to a specific novel composition that is probably a consequence of the loss of freezing tolerance and provides conditions for growth resumption.
Collapse
Affiliation(s)
- Tatsuya Kutsuno
- Graduate School of Science & EngineeringSaitama UniversitySaitamaJapan
| | - Sushan Chowhan
- Graduate School of Science & EngineeringSaitama UniversitySaitamaJapan
| | - Toshihisa Kotake
- Graduate School of Science & EngineeringSaitama UniversitySaitamaJapan
| | - Daisuke Takahashi
- Graduate School of Science & EngineeringSaitama UniversitySaitamaJapan
| |
Collapse
|
8
|
Seiml-Buchinger V, Reifschneider E, Bittner A, Baier M. Ascorbate peroxidase postcold regulation of chloroplast NADPH dehydrogenase activity controls cold memory. PLANT PHYSIOLOGY 2022; 190:1997-2016. [PMID: 35946757 PMCID: PMC9614503 DOI: 10.1093/plphys/kiac355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Exposure of Arabidopsis (Arabidopsis thaliana) to 4°C imprints a cold memory that modulates gene expression in response to a second (triggering) stress stimulus applied several days later. Comparison of plastid transcriptomes of cold-primed and control plants directly before they were exposed to the triggering stimulus showed downregulation of several subunits of chloroplast NADPH dehydrogenase (NDH) and regulatory subunits of ATP synthase. NDH is, like proton gradient 5 (PGR5)-PGR5-like1 (PGRL1), a thylakoid-embedded, ferredoxin-dependent plastoquinone reductase that protects photosystem I and stabilizes ATP synthesis by cyclic electron transport (CET). Like PGRL1A and PGRL1B transcript levels, ndhA and ndhD transcript levels decreased during the 24-h long priming cold treatment. PGRL1 transcript levels were quickly reset in the postcold phase, but expression of ndhA remained low. The transcript abundances of other ndh genes decreased within the next days. Comparison of thylakoid-bound ascorbate peroxidase (tAPX)-free and transiently tAPX-overexpressing or tAPX-downregulating Arabidopsis lines demonstrated that ndh expression is suppressed by postcold induction of tAPX. Four days after cold priming, when tAPX protein accumulation was maximal, NDH activity was almost fully lost. Lack of the NdhH-folding chaperonin Crr27 (Cpn60β4), but not lack of the NDH activity modulating subunits NdhM, NdhO, or photosynthetic NDH subcomplex B2 (PnsB2), strengthened priming regulation of zinc finger of A. thaliana 10, which is a nuclear-localized target gene of the tAPX-dependent cold-priming pathway. We conclude that cold-priming modifies chloroplast-to-nucleus stress signaling by tAPX-mediated suppression of NDH-dependent CET and that plastid-encoded NdhH, which controls subcomplex A assembly, is of special importance for memory stabilization.
Collapse
Affiliation(s)
- Victoria Seiml-Buchinger
- Plant Physiology, Freie Universität Berlin, Dahlem Centre of Plant Sciences, Berlin 14195,Germany
| | - Elena Reifschneider
- Plant Physiology, Freie Universität Berlin, Dahlem Centre of Plant Sciences, Berlin 14195,Germany
| | - Andras Bittner
- Plant Physiology, Freie Universität Berlin, Dahlem Centre of Plant Sciences, Berlin 14195,Germany
| | - Margarete Baier
- Plant Physiology, Freie Universität Berlin, Dahlem Centre of Plant Sciences, Berlin 14195,Germany
| |
Collapse
|
9
|
Kaplenig D, Bertel C, Arc E, Villscheider R, Ralser M, Kolář F, Wos G, Hülber K, Kranner I, Neuner G. Repeated colonization of alpine habitats by Arabidopsis arenosa viewed through freezing resistance and ice management strategies. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:939-949. [PMID: 35833328 PMCID: PMC9804731 DOI: 10.1111/plb.13454] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 06/15/2022] [Indexed: 05/17/2023]
Abstract
Success or failure of plants to cope with freezing temperatures can critically influence plant distribution and adaptation to new habitats. Especially in alpine environments, frost is a likely major selective force driving adaptation. In Arabidopsis arenosa (L.) Lawalrée, alpine populations have evolved independently in different mountain ranges, enabling studying mechanisms of acclimation and adaptation to alpine environments. We tested for heritable, parallel differentiation in freezing resistance, cold acclimation potential and ice management strategies using eight alpine and eight foothill populations. Plants from three European mountain ranges (Niedere Tauern, Făgăraș and Tatra Mountains) were grown from seeds of tetraploid populations in four common gardens, together with diploid populations from the Tatra Mountains. Freezing resistance was assessed using controlled freezing treatments and measuring effective quantum yield of photosystem II, and ice management strategies by infrared video thermography and cryomicroscopy. The alpine ecotype had a higher cold acclimation potential than the foothill ecotype, whereby this differentiation was more pronounced in tetraploid than diploid populations. However, no ecotypic differentiation was found in one region (Făgăraș), where the ancient lineage had a different evolutionary history. Upon freezing, an ice lens within a lacuna between the palisade and spongy parenchyma tissues was formed by separation of leaf tissues, a mechanism not previously reported for herbaceous species. The dynamic adjustment of freezing resistance to temperature conditions may be particularly important in alpine environments characterized by large temperature fluctuations. Furthermore, the formation of an extracellular ice lens may be a useful strategy to avoid tissue damage during freezing.
Collapse
Affiliation(s)
- D. Kaplenig
- Department of BotanyUniversity of InnsbruckInnsbruckAustria
| | - C. Bertel
- Department of BotanyUniversity of InnsbruckInnsbruckAustria
| | - E. Arc
- Department of BotanyUniversity of InnsbruckInnsbruckAustria
| | | | - M. Ralser
- Department of BotanyUniversity of InnsbruckInnsbruckAustria
| | - F. Kolář
- Department of BotanyUniversity of InnsbruckInnsbruckAustria
- Department of BotanyCharles University of PraguePragueCzech Republic
| | - G. Wos
- Department of BotanyCharles University of PraguePragueCzech Republic
| | - K. Hülber
- Department of Botany and Biodiversity ResearchUniversity of ViennaViennaAustria
| | - I. Kranner
- Department of BotanyUniversity of InnsbruckInnsbruckAustria
| | - G. Neuner
- Department of BotanyUniversity of InnsbruckInnsbruckAustria
| |
Collapse
|
10
|
Rathore N, Kumar P, Mehta N, Swarnkar MK, Shankar R, Chawla A. Time-series RNA-Seq transcriptome profiling reveals novel insights about cold acclimation and de-acclimation processes in an evergreen shrub of high altitude. Sci Rep 2022; 12:15553. [PMID: 36114408 PMCID: PMC9481616 DOI: 10.1038/s41598-022-19834-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/05/2022] [Indexed: 11/09/2022] Open
Abstract
The high-altitude alpine regions are characterized by highly variable and harsh environmental conditions. However, relatively little is known about the diverse mechanisms adopted by alpine plants to adapt to these stressful conditions. Here, we studied variation in transcriptome and physiological adjustments occurring across the year at high elevation environments in the leaf tissue of Rhododendron anthopogon, an evergreen shrub of Himalaya. The samples were collected at 12 different time-points, from August until snowfall in November 2017, and then from June to September 2018. It was observed that with a drop in both ambient air temperature and photoperiod towards onset of winter, the freezing resistance of plants increased, resulting in 'cold acclimation'. Further, 'de-acclimation' was associated with a decrease in freezing resistance and increase in photosynthetic efficiency of leaves during spring. A considerable amount of variation was observed in the transcriptome in a time-dependent sequential manner, with a total of 9,881 differentially expressed genes. Based on gene expression profiles, the time-points could be segregated into four clusters directly correlating with the distinct phases of acclimation: non-acclimation (22-August-2017, 14-August-2018, 31-August-2018), early cold acclimation (12-September-2017, 29-September-2017), late cold acclimation (11-October-2017, 23-October-2017, 04-November-2017, 18-September-2018) and de-acclimation (15-June-2018, 28-June-2018, 14-July-2018). Cold acclimation was a gradual process, as indicated by presence of an intermediate stage (early acclimation). However, the plants can by-pass this stage when sudden decrease in temperature is encountered. The maximum variation in expression levels of genes occurred during the transition to de-acclimation, hence was 'transcriptionally' the most active phase. The similar or higher expression levels of genes during de-acclimation in comparison to non-acclimation suggested that molecular functionality is re-initiated after passing through the harsh winter conditions.
Collapse
Affiliation(s)
- Nikita Rathore
- Environmental Technology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, H.P, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Prakash Kumar
- Biotechnology Division, CSIR-IHBT, Palampur, H.P, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.,Studio of Computational Biology and Bioinformatics, The Himalayan Centre for High-Throughput Computational Biology (HiCHiCoB, A BIC of Department of Biotechnology, Govt. of India), CSIR-IHBT, Palampur, H.P, India
| | - Nandita Mehta
- Environmental Technology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, H.P, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | | | - Ravi Shankar
- Biotechnology Division, CSIR-IHBT, Palampur, H.P, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India. .,Studio of Computational Biology and Bioinformatics, The Himalayan Centre for High-Throughput Computational Biology (HiCHiCoB, A BIC of Department of Biotechnology, Govt. of India), CSIR-IHBT, Palampur, H.P, India.
| | - Amit Chawla
- Environmental Technology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, H.P, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
11
|
Griebel T, Schütte D, Ebert A, Nguyen HH, Baier M. Cold Exposure Memory Reduces Pathogen Susceptibility in Arabidopsis Based on a Functional Plastid Peroxidase System. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:627-637. [PMID: 35345887 DOI: 10.1094/mpmi-11-21-0283-fi] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Chloroplasts serve as cold priming hubs modulating the transcriptional response of Arabidopsis thaliana to a second cold stimulus for several days by postcold accumulation of thylakoid ascorbate peroxidases (tAPX). In an attempt to investigate cross-priming effects of cold on plant pathogen protection, we show here that such a single 24-h cold treatment at 4°C decreased the susceptibility of Arabidopsis to virulent Pseudomonas syringae pv. tomato DC3000 but did not alter resistance against the avirulent P. syringae pv. tomato avRPM1 and P. syringae pv. tomato avrRPS4 strains or the effector-deficient P. syringae pv. tomato strain hrcC-. The effect of cold priming against P. syringae pv. tomato was active immediately after cold exposure and memorized for at least 5 days. The priming benefit was established independent of the immune regulator Enhanced Disease Susceptibility 1 (EDS1) or activation of the immune-related genes NHL10, FRK1, ICS1 and PR1 but required thylakoid-bound as well as stromal ascorbate peroxidase activities because the effect was absent or weak in corresponding knock-out-lines. Suppression of tAPX postcold regulation in a conditional-inducible tAPX-RNAi line led to increased bacterial growth numbers. This highlights that the plant immune system benefits from postcold regeneration of the protective chloroplast peroxidase system.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Thomas Griebel
- Plant Physiology, Dahlem Center of Plant Sciences, Freie Universität Berlin, Königin-Luise-Straße 12-16, 14195 Berlin, Germany
| | - Dominic Schütte
- Plant Physiology, Dahlem Center of Plant Sciences, Freie Universität Berlin, Königin-Luise-Straße 12-16, 14195 Berlin, Germany
| | - Alina Ebert
- Plant Physiology, Dahlem Center of Plant Sciences, Freie Universität Berlin, Königin-Luise-Straße 12-16, 14195 Berlin, Germany
| | - H Hung Nguyen
- Plant Physiology, Dahlem Center of Plant Sciences, Freie Universität Berlin, Königin-Luise-Straße 12-16, 14195 Berlin, Germany
| | - Margarete Baier
- Plant Physiology, Dahlem Center of Plant Sciences, Freie Universität Berlin, Königin-Luise-Straße 12-16, 14195 Berlin, Germany
| |
Collapse
|
12
|
Boinot M, Karakas E, Koehl K, Pagter M, Zuther E. Cold stress and freezing tolerance negatively affect the fitness of Arabidopsis thaliana accessions under field and controlled conditions. PLANTA 2022; 255:39. [PMID: 35032192 PMCID: PMC8761124 DOI: 10.1007/s00425-021-03809-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 12/08/2021] [Indexed: 05/15/2023]
Abstract
Higher acclimated freezing tolerance improved winter survival, but reduced reproductive fitness of Arabidopsis thaliana accessions under field and controlled conditions. Low temperature is one of the most important abiotic factors influencing plant fitness and geographical distribution. In addition, cold stress is known to influence crop yield and is therefore of great economic importance. Increased freezing tolerance can be acquired by the process of cold acclimation, but this may be associated with a fitness cost. To assess the influence of cold stress on the fitness of plants, long-term field trials over 5 years were performed with six natural accessions of Arabidopsis thaliana ranging from very tolerant to very sensitive to freezing. Fitness parameters, as seed yield and 1000 seed mass, were measured and correlation analyses with temperature and freezing tolerance data performed. The results were compared with fitness parameters from controlled chamber experiments over 3 years with application of cold priming and triggering conditions. Winter survival and seed yield per plant were positively correlated with temperature in field experiments. In addition, winter survival and 1000 seed mass were correlated with the cold-acclimated freezing tolerance of the selected Arabidopsis accessions. The results provide strong evidence for a trade-off between higher freezing tolerance and reproductive fitness in A. thaliana, which might have ecological impacts in the context of global warming.
Collapse
Affiliation(s)
- Maximilian Boinot
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476, Potsdam, Germany
| | - Esra Karakas
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476, Potsdam, Germany
| | - Karin Koehl
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476, Potsdam, Germany
| | - Majken Pagter
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476, Potsdam, Germany
- Department of Chemistry and Bioscience, Aalborg University, 9220, Aalborg East, Denmark
| | - Ellen Zuther
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476, Potsdam, Germany.
| |
Collapse
|
13
|
Rathore N, Thakur D, Kumar D, Chawla A, Kumar S. Time-series eco-metabolomics reveals extensive reshuffling in metabolome during transition from cold acclimation to de-acclimation in an alpine shrub. PHYSIOLOGIA PLANTARUM 2021; 173:1824-1840. [PMID: 34379811 DOI: 10.1111/ppl.13524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
Recording environmentally induced variations in the metabolome in plants can be a promising approach for understanding the complex patterns of metabolic regulation and their eco-physiological consequences. Here, we studied metabolome-wide changes and eco-physiological adjustments occurring across the year at high elevation environments in the leaf tissue of Rhododendron anthopogon, an alpine evergreen shrub of the Himalaya. New leaves of R. anthopogon appear after the snow-melt and remain intact even when the plants get covered under snow (November-June). During this whole period, they may undergo several physiological and biochemical adjustments in response to fluctuating temperatures and light conditions. To understand these changes, we analyzed eco-physiological traits, that is, freezing resistance, dry matter content and % of nitrogen and the overall metabolome across 10 different time-points, from August until the snowfall in November 2017, and then from June to August 2018. As anticipated, the freezing resistance increased toward the onset of winters. The leaf tissues exhibited a complete reshuffling of the metabolome during the growth cycle and time-points segregated into four clusters directly correlating with distinct phases of acclimation: non-acclimation (August 22, 2017; August 14, 2018), early cold acclimation (September 12, September 29, October 11, 2017), late cold acclimation (October 23, November 4, 2017), and de-acclimation (June 15, June 28, July 14, 2018). Cold acclimation involved metabolic progression (101 metabolites) with an increase of up to 19.4-fold (gentiobiose), whereas de-acclimation showed regression (120 metabolites) with a decrease of up to 30-fold (sucrose). The changes in the metabolome during de-acclimation were maximum and were not just a reversal of cold acclimation. Our results provided insights into the direction and magnitude of physiological changes in Rhododendron anthopogon that occurred across the year.
Collapse
Affiliation(s)
- Nikita Rathore
- Environmental Technology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Dinesh Thakur
- Environmental Technology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Dinesh Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Chemical Technology Division, CSIR-IHBT, Palampur, India
| | - Amit Chawla
- Environmental Technology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sanjay Kumar
- Biotechnology Division, CSIR-IHBT, Palampur, India
| |
Collapse
|
14
|
Bittner A, Hause B, Baier M. Cold-priming causes dampening of oxylipin biosynthesis and signalling during the early cold- and light-triggering response of Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:7163-7179. [PMID: 34185054 PMCID: PMC8547158 DOI: 10.1093/jxb/erab314] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/27/2021] [Indexed: 05/21/2023]
Abstract
Cold-priming uncouples cold and light regulation of otherwise tightly co-regulated genes. In this study, we focused on the early regulatory processes in Arabidopsis within the first 2 h in cold and in high light after a 5-d lag-phase at 20 °C and 24 h cold-priming at 4 °C. Priming quickly modified gene expression in a trigger-specific manner. In the early stress-response phase during cold and high-light triggering, it reduced the regulatory amplitudes of many up- and down-regulated genes. A third of the priming-regulated genes were jasmonate-sensitive, including the full set of genes required for oxylipin biosynthesis. Analysis of wild-type and mutant plants based on qPCR demonstrated that biosynthesis of the jasmonic acid (JA) precursor 12-oxo phytenoic acid (OPDA) relative to the availability of JA dampened the response of the genes for oxylipin biosynthesis. In oxylipin biosynthetic mutants, cold-priming more strongly affected genes involved in the biosynthesis of OPDA than in its conversion to JA. In addition, priming-dependent dampening of the triggering response was more linked to OPDA than to regulation of the JA concentration. Spray application of OPDA prior to triggering counteracted the priming effect. Regulation of the oxylipin hub was controlled by modulation of the oxylipin-sensitivity of the genes for OPDA biosynthesis, but it was insensitive to priming-induced accumulation of thylakoid ascorbate peroxidase, thus identifying a parallel-acting cold-priming pathway.
Collapse
Affiliation(s)
- Andras Bittner
- Plant Physiology, Freie Universität Berlin, Dahlem Centre of Plant Sciences, Königin-Luise-Straße 12–16, 14195 Berlin, Germany
| | - Bettina Hause
- Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle, Germany
| | - Margarete Baier
- Plant Physiology, Freie Universität Berlin, Dahlem Centre of Plant Sciences, Königin-Luise-Straße 12–16, 14195 Berlin, Germany
| |
Collapse
|
15
|
Vilchez AC, Peppino Margutti M, Reyna M, Wilke N, Villasuso AL. Recovery from chilling modulates the acyl-editing of phosphatidic acid molecular species in barley roots (Hordeum vulgare L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:862-873. [PMID: 34536899 DOI: 10.1016/j.plaphy.2021.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
In plants, lipid metabolism and remodelling are key mechanisms for survival under temperature stress. The present study attempted to compare the lipid profile in barley roots both under chilling stress treatment and in the subsequent recovery to stress. Lipids were obtained through a single-extraction method with a polar solvent mixture, followed by mass spectrometry analysis. The results indicate that lipid metabolism was significantly affected by chilling. Most of the glycerolipids analysed returned to control values during short- and long-term recovery, whereas several representative phosphatidic acid (PA) molecular species were edited during long-term recovery. Most of the PA molecular species that increased in the long-term had the same acyl chains as the phosphatidylcholine (PC) species that decreased. C34:2 and C36:4 underwent the most remarkable changes. Given that the mechanisms underlying the acyl-editing of PC in barley roots remain elusive, we also evaluated the contribution of lysophosphatidylcholine acyltransferases (HvLPCAT) and phospholipase A (HvPLA). In line with the aforementioned results, the expression of the HvLPCAT and HvPLA genes was up-regulated during recovery from chilling. The differential acyl-editing of PA during recovery, which involves the remodelling of PC, might therefore be a regulatory mechanism of cold tolerance in barley.
Collapse
Affiliation(s)
- Ana Carolina Vilchez
- Universidad Nacional de Río Cuarto, FCEFQyN, Departamento de Biología Molecular, Río Cuarto, Córdoba, Argentina; CONICET, Universidad Nacional de Río Cuarto, Instituto de Biotecnología Ambiental y Salud, (INBIAS), Río Cuarto, Córdoba, Argentina
| | - Micaela Peppino Margutti
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Biológica Ranwel Caputto, Córdoba, Argentina; CONICET, Universidad Nacional de Córdoba, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
| | - Mercedes Reyna
- Universidad Nacional de Río Cuarto, FCEFQyN, Departamento de Biología Molecular, Río Cuarto, Córdoba, Argentina; CONICET, Universidad Nacional de Río Cuarto, Instituto de Biotecnología Ambiental y Salud, (INBIAS), Río Cuarto, Córdoba, Argentina
| | - Natalia Wilke
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Biológica Ranwel Caputto, Córdoba, Argentina; CONICET, Universidad Nacional de Córdoba, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
| | - Ana Laura Villasuso
- Universidad Nacional de Río Cuarto, FCEFQyN, Departamento de Biología Molecular, Río Cuarto, Córdoba, Argentina; CONICET, Universidad Nacional de Río Cuarto, Instituto de Biotecnología Ambiental y Salud, (INBIAS), Río Cuarto, Córdoba, Argentina.
| |
Collapse
|
16
|
Determining the ROS and the Antioxidant Status of Leaves During Cold Acclimation. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2156:241-254. [PMID: 32607985 DOI: 10.1007/978-1-0716-0660-5_16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Cold slows down Calvin cycle activity stronger than photosynthetic electron transport, which supports production of reactive oxygen species (ROS). Even under extreme temperature conditions, most ROS are detoxified by the combined action of low-molecular weight antioxidants and antioxidant enzymes. Subsequent regeneration of the low-molecular weight antioxidants by NAD(P)H and thioredoxin/thiol-dependent pathways relaxes the electron pressure in the photosynthetic electron transport chain. In general, the chloroplast antioxidant system protects plants from severe damage of enzymes, metabolites, and cellular structures by both ROS detoxification and antioxidant recycling. Various methods have been developed to quantify ROS and antioxidant levels in photosynthetic tissues. Here, we summarize a series of exceptionally fast and easily applicable methods that show local ROS accumulation and provide information on the overall availability of reducing sugars, mainly ascorbate, and of thiols.
Collapse
|
17
|
Thalhammer A, Pagter M, Hincha DK, Zuther E. Measuring Freezing Tolerance of Leaves and Rosettes: Electrolyte Leakage and Chlorophyll Fluorescence Assays. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2156:9-21. [PMID: 32607971 DOI: 10.1007/978-1-0716-0660-5_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Quantitative assessment of freezing tolerance is essential to unravel plant adaptations to cold temperatures. Not only the survival of whole plants, but also impairment of detached leaves or small rosettes after a freeze-thaw cycle can be used to accurately quantify plant freezing tolerance in terms of LT50 values. Here we describe two methods to determine the freezing tolerance of detached leaves or rosettes using a full or selected set of freezing temperatures and an additional method using chlorophyll fluorescence as a different physiological parameter. Firstly, we illustrate how to assess the integrity of (predominantly) the plasma membrane during freezing using an electrolyte leakage assay. Secondly, we provide a chlorophyll fluorescence imaging protocol to determine the freezing tolerance of the photosynthetic apparatus.
Collapse
Affiliation(s)
- Anja Thalhammer
- Physikalische Biochemie, Universität Potsdam, Potsdam, Germany
| | - Majken Pagter
- Department of Chemistry and Bioscience, Aalborg University, Aalborg East, Denmark
| | - Dirk K Hincha
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam, Germany
| | - Ellen Zuther
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam, Germany.
| |
Collapse
|
18
|
Mayer BF, Charron J. Transcriptional memories mediate the plasticity of cold stress responses to enable morphological acclimation in Brachypodium distachyon. THE NEW PHYTOLOGIST 2021; 229:1615-1634. [PMID: 32966623 PMCID: PMC7820978 DOI: 10.1111/nph.16945] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 09/04/2020] [Indexed: 05/03/2023]
Abstract
Plants that successfully acclimate to stress can resume growth under stressful conditions. The grass Brachypodium distachyon can grow a cold-adaptive morphology during cold acclimation. Studies on transcriptional memory (TM) have revealed that plants can be primed for stress by adjusting their transcriptional responses, but the function of TM in stress acclimation is not well understood. We investigated the function of TM during cold acclimation in B. distachyon. Quantitative polymerase chain reaction (qPCR), RNA-seq and chromatin immunoprecipitation qPCR analyses were performed on plants exposed to repeated episodes of cold to characterize the presence and stability of TM during the stress and growth responses of cold acclimation. Transcriptional memory mainly dampened stress responses as growth resumed and as B. distachyon became habituated to cold stress. Although permanent on vernalization gene VRN1, TMs were short-term and reversible on cold-stress genes. Growing under cold conditions also coincided with the acquisition of new and targeted cold-induced transcriptional responses. Overall, TM provided plasticity to cold stress responses during cold acclimation in B. distachyon, leading to stress habituation, acquired stress responses, and resumed growth. Our study shows that chromatin-associated TMs are involved in tuning plant responses to environmental change and, as such, regulate both stress and developmental components that characterize cold-climate adaptation in B. distachyon.
Collapse
Affiliation(s)
- Boris F. Mayer
- Department of Plant ScienceMcGill University21, 111 LakeshoreSainte‐Anne‐de‐BellevueCanada
| | - Jean‐Benoit Charron
- Department of Plant ScienceMcGill University21, 111 LakeshoreSainte‐Anne‐de‐BellevueCanada
| |
Collapse
|
19
|
Identification of the Genetic Basis of Response to De-Acclimation in Winter Barley. Int J Mol Sci 2021; 22:ijms22031057. [PMID: 33494371 PMCID: PMC7865787 DOI: 10.3390/ijms22031057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 12/28/2022] Open
Abstract
Mechanisms involved in the de-acclimation of herbaceous plants caused by warm periods during winter are poorly understood. This study identifies the genes associated with this mechanism in winter barley. Seedlings of eight accessions (four tolerant and four susceptible to de-acclimation cultivars and advanced breeding lines) were cold acclimated for three weeks and de-acclimated at 12 °C/5 °C (day/night) for one week. We performed differential expression analysis using RNA sequencing. In addition, reverse-transcription quantitative real-time PCR and enzyme activity analyses were used to investigate changes in the expression of selected genes. The number of transcripts with accumulation level changed in opposite directions during acclimation and de-acclimation was much lower than the number of transcripts with level changed exclusively during one of these processes. The de-acclimation-susceptible accessions showed changes in the expression of a higher number of functionally diverse genes during de-acclimation. Transcripts associated with stress response, especially oxidoreductases, were the most abundant in this group. The results provide novel evidence for the distinct molecular regulation of cold acclimation and de-acclimation. Upregulation of genes controlling developmental changes, typical for spring de-acclimation, was not observed during mid-winter de-acclimation. Mid-winter de-acclimation seems to be perceived as an opportunity to regenerate after stress. Unfortunately, it is competitive to remain in the cold-acclimated state. This study shows that the response to mid-winter de-acclimation is far more expansive in de-acclimation-susceptible cultivars, suggesting that a reduced response to the rising temperature is crucial for de-acclimation tolerance.
Collapse
|
20
|
Horvath DP, Zhang J, Chao WS, Mandal A, Rahman M, Anderson JV. Genome-Wide Association Studies and Transcriptome Changes during Acclimation and Deacclimation in Divergent Brassica napus Varieties. Int J Mol Sci 2020; 21:ijms21239148. [PMID: 33266351 PMCID: PMC7730164 DOI: 10.3390/ijms21239148] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023] Open
Abstract
Information concerning genes and signals regulating cold acclimation processes in plants is abundant; however, less is known about genes and signals regulating the deacclimation process. A population of primarily winter B. napus varieties was used to conduct a genome-wide association study and to compare the transcriptomes from two winter B. napus varieties showing time-dependent differences in response to cold acclimation and deacclimation treatments. These studies helped to identify loci, candidate genes, and signaling processes impacting deacclimation in B. napus. GWAS identified polymorphisms at five different loci associated with freezing tolerance following deacclimation. Local linkage decay rates near these polymorphisms identified 38 possible candidate genes. Several of these genes have been reported as differentially regulated by cold stress in arabidopsis (Arabidopsis thaliana), including a calcium-binding EF-hand family protein (encoded by BnaCnng10250D) that was also differentially expressed during deacclimation in this study. Thousands of other genes differentially expressed during the acclimation and deacclimation treatments implicated processes involving oxidative stress, photosynthesis, light-regulated diurnal responses, and growth regulation. Generally, responses observed during acclimation were reversed within one week of deacclimation. The primary differences between the two winter B. napus varieties with differential deacclimation responses involved protection from oxidative stress and the ability to maintain photosynthesis.
Collapse
Affiliation(s)
- David P. Horvath
- USDA-ARS, Sunflower and Plant Biology Research Unit, Edward T. Schafer Agricultural Research Center, 1616 Albrecht Blvd., N., Fargo, ND 58102-2765 1, USA; (W.S.C.); (J.V.A.)
- Correspondence: ; Tel.: +1-701-239-1255
| | - Jiaping Zhang
- Physiology and Molecular Biology Laboratory of Ornamental Plants, Institute of Landscape Architecture, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang Province, China;
| | - Wun S. Chao
- USDA-ARS, Sunflower and Plant Biology Research Unit, Edward T. Schafer Agricultural Research Center, 1616 Albrecht Blvd., N., Fargo, ND 58102-2765 1, USA; (W.S.C.); (J.V.A.)
| | - Ashok Mandal
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58104 3, USA; (A.M.); (M.R.)
| | - Mukhlesur Rahman
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58104 3, USA; (A.M.); (M.R.)
| | - James V. Anderson
- USDA-ARS, Sunflower and Plant Biology Research Unit, Edward T. Schafer Agricultural Research Center, 1616 Albrecht Blvd., N., Fargo, ND 58102-2765 1, USA; (W.S.C.); (J.V.A.)
| |
Collapse
|
21
|
Garcia-Molina A, Kleine T, Schneider K, Mühlhaus T, Lehmann M, Leister D. Translational Components Contribute to Acclimation Responses to High Light, Heat, and Cold in Arabidopsis. iScience 2020; 23:101331. [PMID: 32679545 PMCID: PMC7364123 DOI: 10.1016/j.isci.2020.101331] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/26/2020] [Accepted: 06/28/2020] [Indexed: 12/27/2022] Open
Abstract
Plant metabolism is broadly reprogrammed during acclimation to abiotic changes. Most previous studies have focused on transitions from standard to single stressful conditions. Here, we systematically analyze acclimation processes to levels of light, heat, and cold stress that subtly alter physiological parameters and assess their reversibility during de-acclimation. Metabolome and transcriptome changes were monitored at 11 different time points. Unlike transcriptome changes, most alterations in metabolite levels did not readily return to baseline values, except in the case of cold acclimation. Similar regulatory networks operate during (de-)acclimation to high light and cold, whereas heat and high-light responses exhibit similar dynamics, as determined by surprisal and conditional network analyses. In all acclimation models tested here, super-hubs in conditional transcriptome networks are enriched for components involved in translation, particularly ribosomes. Hence, we suggest that the ribosome serves as a common central hub for the control of three different (de-)acclimation responses.
Collapse
Affiliation(s)
- Antoni Garcia-Molina
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhadernerstraße 2-4, 82152 Planegg-Martinsried, Germany
| | - Tatjana Kleine
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhadernerstraße 2-4, 82152 Planegg-Martinsried, Germany
| | - Kevin Schneider
- Computational Systems Biology, TU Kaiserslautern, Paul-Ehrlich-Straße 23, 67663 Kaiserslautern, Germany
| | - Timo Mühlhaus
- Computational Systems Biology, TU Kaiserslautern, Paul-Ehrlich-Straße 23, 67663 Kaiserslautern, Germany
| | - Martin Lehmann
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhadernerstraße 2-4, 82152 Planegg-Martinsried, Germany
| | - Dario Leister
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhadernerstraße 2-4, 82152 Planegg-Martinsried, Germany.
| |
Collapse
|
22
|
Bittner A, van Buer J, Baier M. Cold priming uncouples light- and cold-regulation of gene expression in Arabidopsis thaliana. BMC PLANT BIOLOGY 2020; 20:281. [PMID: 32552683 PMCID: PMC7301481 DOI: 10.1186/s12870-020-02487-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 06/10/2020] [Indexed: 05/20/2023]
Abstract
BACKGROUND The majority of stress-sensitive genes responds to cold and high light in the same direction, if plants face the stresses for the first time. As shown recently for a small selection of genes of the core environmental stress response cluster, pre-treatment of Arabidopsis thaliana with a 24 h long 4 °C cold stimulus modifies cold regulation of gene expression for up to a week at 20 °C, although the primary cold effects are reverted within the first 24 h. Such memory-based regulation is called priming. Here, we analyse the effect of 24 h cold priming on cold regulation of gene expression on a transcriptome-wide scale and investigate if and how cold priming affects light regulation of gene expression. RESULTS Cold-priming affected cold and excess light regulation of a small subset of genes. In contrast to the strong gene co-regulation observed upon cold and light stress in non-primed plants, most priming-sensitive genes were regulated in a stressor-specific manner in cold-primed plant. Furthermore, almost as much genes were inversely regulated as co-regulated by a 24 h long 4 °C cold treatment and exposure to heat-filtered high light (800 μmol quanta m- 2 s- 1). Gene ontology enrichment analysis revealed that cold priming preferentially supports expression of genes involved in the defence against plant pathogens upon cold triggering. The regulation took place on the cost of the expression of genes involved in growth regulation and transport. On the contrary, cold priming resulted in stronger expression of genes regulating metabolism and development and weaker expression of defence genes in response to high light triggering. qPCR with independently cultivated and treated replicates confirmed the trends observed in the RNASeq guide experiment. CONCLUSION A 24 h long priming cold stimulus activates a several days lasting stress memory that controls cold and light regulation of gene expression and adjusts growth and defence regulation in a stressor-specific manner.
Collapse
Affiliation(s)
- Andras Bittner
- Plant Physiology, Freie Universität Berlin, Dahlem Centre of Plant Sciences, Königin-Luise-Straße 12-16, 14195 Berlin, Germany
| | - Jörn van Buer
- Plant Physiology, Freie Universität Berlin, Dahlem Centre of Plant Sciences, Königin-Luise-Straße 12-16, 14195 Berlin, Germany
| | - Margarete Baier
- Plant Physiology, Freie Universität Berlin, Dahlem Centre of Plant Sciences, Königin-Luise-Straße 12-16, 14195 Berlin, Germany
| |
Collapse
|
23
|
Bertrand A, Rocher S, Claessens A, Bipfubusa M, Papadopoulos Y, Castonguay Y. Biochemical and molecular responses during overwintering of red clover populations recurrently selected for improved freezing tolerance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 292:110388. [PMID: 32005393 DOI: 10.1016/j.plantsci.2019.110388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/27/2019] [Accepted: 12/22/2019] [Indexed: 06/10/2023]
Abstract
Low freezing tolerance reduces the persistence of red clover under northern climate. The incidence of winter damages in perennial crops could increase in the future due to the adverse effects of the predicted warmer fall temperature on plant cold acclimation. To accelerate breeding progress, two cultivars of red clover Christie (C-TF0) and Endure (E-TF0) were exposed to a recurrent selection protocol for freezing tolerance performed indoor. New populations were obtained after five (C-TF5 and E-TF5), six (C-TF6 and E-TF6), and seven (C-TF7 and E-TF7) cycles of recurrent selection. These populations were overwintered under natural conditions and monitored for freezing tolerance and cold-induced molecular traits. Freezing tolerance was improved by up to 6 °C in recurrently selected populations when compared to initial cultivars confirming that further progress are achieved with advanced cycles of selection. Monthly analysis of biochemical changes shows that higher starch concentrations at the onset of the fall hardening period are contributing to the acquisition of superior freezing tolerance through its impact on sucrose accumulation. They also contribute to the vigor of spring regrowth by sustaining more pinitol and proline synthesis. Larger concentrations of these metabolites in populations with higher levels of freezing tolerance (TF7) hint at their involvement in winter survival of red clover. Among genes differentially expressed in response to both cold acclimation and recurrent selection, a concomitant cold induction of APPR9 and cold repression of 1-aminocyclopropane-carboxylate synthase suggests a link between the repression of a pathway regulated by ethylene and the improvement of freezing tolerance in red clover.
Collapse
Affiliation(s)
| | - Solen Rocher
- Agriculture and Agri-Food Canada, Québec City, Canada
| | | | - Marie Bipfubusa
- Centre de Recherche Sur Les Grains Inc. (CÉROM), Beloeil, Canada
| | | | | |
Collapse
|
24
|
Acclimation, priming and memory in the response of Arabidopsis thaliana seedlings to cold stress. Sci Rep 2020; 10:689. [PMID: 31959824 PMCID: PMC6971231 DOI: 10.1038/s41598-019-56797-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/28/2019] [Indexed: 11/16/2022] Open
Abstract
Because stress experiences are often recurrent plants have developed strategies to remember a first so-called priming stress to eventually respond more effectively to a second triggering stress. Here, we have studied the impact of discontinuous or sustained cold stress (4 °C) on in vitro grown Arabidopsis thaliana seedlings of different age and their ability to get primed and respond differently to a later triggering stress. Cold treatment of 7-d-old seedlings induced the expression of cold response genes but did not cause a significantly enhanced freezing resistance. The competence to increase the freezing resistance in response to cold was associated with the formation of true leaves. Discontinuous exposure to cold only during the night led to a stepwise modest increase in freezing tolerance provided that the intermittent phase at ambient temperature was less than 32 h. Seedlings exposed to sustained cold treatment developed a higher freezing tolerance which was further increased in response to a triggering stress during three days after the priming treatment had ended indicating cold memory. Interestingly, in all scenarios the primed state was lost as soon as the freezing tolerance had reached the level of naïve plants indicating that an effective memory was associated with an altered physiological state. Known mutants of the cold stress response (cbfs, erf105) and heat stress memory (fgt1) did not show an altered behaviour indicating that their roles do not extend to memory of cold stress in Arabidopsis seedlings.
Collapse
|
25
|
Vyse K, Penzlin J, Sergeant K, Hincha DK, Arora R, Zuther E. Repair of sub-lethal freezing damage in leaves of Arabidopsis thaliana. BMC PLANT BIOLOGY 2020; 20:35. [PMID: 31959104 PMCID: PMC6971927 DOI: 10.1186/s12870-020-2247-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 01/14/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND The detrimental effects of global climate change direct more attention to the survival and productivity of plants during periods of highly fluctuating temperatures. In particular in temperate climates in spring, temperatures can vary between above-zero and freezing temperatures, even during a single day. Freeze-thaw cycles cause cell membrane lesions that can lead to tissue damage and plant death. Whereas the processes of cold acclimation and freeze-thaw injury are well documented, not much is known about the recovery of plants after a freezing event. We therefore addressed the following questions: i. how does the severity of freezing damage influence repair; ii. how are respiration and content of selected metabolites influenced during the repair process; and iii. how do transcript levels of selected genes respond during repair? RESULTS We have investigated the recovery from freezing to sub-lethal temperatures in leaves of non-acclimated and cold acclimated Arabidopsis thaliana plants over a period of 6 days. Fast membrane repair and recovery of photosynthesis were observed 1 day after recovery (1D-REC) and continued until 6D-REC. A substantial increase in respiration accompanied the repair process. In parallel, concentrations of sugars and proline, acting as compatible solutes during freezing, remained unchanged or declined, implicating these compounds as carbon and nitrogen sources during recovery. Similarly, cold-responsive genes were mainly down regulated during recovery of cold acclimated leaves. In contrast, genes involved in cell wall remodeling and ROS scavenging were induced during recovery. Interestingly, also the expression of genes encoding regulatory proteins, such as 14-3-3 proteins, was increased suggesting their role as regulators of repair processes. CONCLUSIONS Recovery from sub-lethal freezing comprised membrane repair, restored photosynthesis and increased respiration rates. The process was accompanied by transcriptional changes including genes encoding regulatory proteins redirecting the previous cold response to repair processes, e.g. to cell wall remodeling, maintenance of the cellular proteome and to ROS scavenging. Understanding of processes involved in repair of freeze-thaw injury increases our knowledge on plant survival in changing climates with highly fluctuating temperatures.
Collapse
Affiliation(s)
- Kora Vyse
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Johanna Penzlin
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Kjell Sergeant
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 5 Avenue des Hauts-Fourneaux, L-4362, Esch/Alzette, Luxembourg
| | - Dirk K Hincha
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Rajeev Arora
- Department of Horticulture, Iowa State University, Ames, Iowa, 50010, USA
| | - Ellen Zuther
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam, Germany.
| |
Collapse
|
26
|
Abstract
This introductory chapter provides a brief overview of plant freezing tolerance, cold acclimation, including subzero acclimation, and the subsequent deacclimation when plants return to warm conditions favoring growth and development. We describe the basic concepts and approaches that are currently followed to investigate these phenomena. We highlight the multidisciplinary nature of these investigations and the necessity to use methodologies from different branches of science, such as ecology, genetics, physiology, cell biology, biochemistry, and biophysics to gain a complete understanding of the complex adaptive mechanisms ultimately underlying plant winter survival.
Collapse
Affiliation(s)
- Dirk K Hincha
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam, Germany.
| | - Ellen Zuther
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam, Germany
| |
Collapse
|
27
|
Keller B, Matsubara S, Rascher U, Pieruschka R, Steier A, Kraska T, Muller O. Genotype Specific Photosynthesis x Environment Interactions Captured by Automated Fluorescence Canopy Scans Over Two Fluctuating Growing Seasons. FRONTIERS IN PLANT SCIENCE 2019; 10:1482. [PMID: 31998328 PMCID: PMC6962999 DOI: 10.3389/fpls.2019.01482] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/25/2019] [Indexed: 05/19/2023]
Abstract
Photosynthesis reacts dynamic and in different time scales to changing conditions. Light and temperature acclimation balance photosynthetic processes in a complex interplay with the fluctuating environment. However, due to limitations in the measurements techniques, these acclimations are often described under steady-state conditions leading to inaccurate photosynthesis estimates in the field. Here we analyze the photosynthetic interaction with the fluctuating environment and canopy architecture over two seasons using a fully automated phenotyping system. We acquired over 700,000 chlorophyll fluorescence transients and spectral measurements under semi-field conditions in four crop species including 28 genotypes. As expected, the quantum efficiency of the photosystem II (Fv/Fm in the dark and Fq'/Fm' in the light) was determined by light intensity. It was further significantly affected by spectral indices representing canopy structure effects. In contrast, a newly established parameter, monitoring the efficiency of electron transport (Fr2/Fv in the dark respective Fr2'/Fq' in the light), was highly responsive to temperature (R2 up to 0.75). This parameter decreased with temperature and enabled the detection of cold tolerant species and genotypes. We demonstrated the ability to capture and model the dynamic photosynthesis response to the environment over entire growth seasons. The improved linkage of photosynthetic performance to canopy structure, temperature and cold tolerance offers great potential for plant breeding and crop growth modeling.
Collapse
Affiliation(s)
- Beat Keller
- IBG-2: Plant Sciences, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Shizue Matsubara
- IBG-2: Plant Sciences, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Uwe Rascher
- IBG-2: Plant Sciences, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Roland Pieruschka
- IBG-2: Plant Sciences, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Angelina Steier
- IBG-2: Plant Sciences, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Thorsten Kraska
- Field Lab Campus Klein-Altendorf, University of Bonn, Rheinbach, Germany
| | - Onno Muller
- IBG-2: Plant Sciences, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| |
Collapse
|
28
|
Vyse K, Pagter M, Zuther E, Hincha DK. Deacclimation after cold acclimation-a crucial, but widely neglected part of plant winter survival. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4595-4604. [PMID: 31087096 PMCID: PMC6760304 DOI: 10.1093/jxb/erz229] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/07/2019] [Indexed: 05/05/2023]
Abstract
Temperate and boreal plants show natural low temperature acclimation during autumn. This cold acclimation process results in increased freezing tolerance. Global climate change is leading to increasing spring and autumn temperatures that can trigger deacclimation and loss of freezing tolerance, making plants susceptible to both late-autumn and late-spring freezing events. In particular, spring frosts can have devastating effects on whole ecosystems and can significantly reduce the yield of crop plants. Although the timing and speed of deacclimation are clearly of crucial importance for plant winter survival, the molecular basis of this process is still largely unknown. The regulation of deacclimation is, however, not only related to freezing tolerance, but also to the termination of dormancy, and the initiation of growth and development. In this paper, we provide an overview of what is known about deacclimation in both woody and herbaceous plants. We use publicly available transcriptome data to identify a core set of deacclimation-related genes in Arabidopsis thaliana that highlight physiological determinants of deacclimation, and suggest important directions for future research in this area.
Collapse
Affiliation(s)
- Kora Vyse
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam, Germany
| | - Majken Pagter
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej, Aalborg East, Denmark
| | - Ellen Zuther
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam, Germany
| | - Dirk K Hincha
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam, Germany
- Correspondence:
| |
Collapse
|
29
|
Kjaer KH, Winde J, Petersen KK, Yde CC, Pagter M. Cold deacclimation mechanisms and reacclimation potential in flower buds of blackcurrant (Ribes nigrum). PHYSIOLOGIA PLANTARUM 2019; 167:111-126. [PMID: 30421426 DOI: 10.1111/ppl.12873] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 10/26/2018] [Accepted: 06/08/2018] [Indexed: 05/22/2023]
Abstract
As a consequence of global climate change, cold acclimation and deacclimation cycles are becoming increasingly frequent during winter in temperate regions. However, little is known about plant deacclimation and in particular reacclimation mechanisms, although deacclimation resistance and the ability to reacclimate may have wide-ranging consequences regarding plant productivity in a changing climate. Here, we report time-dependent responses of freezing tolerance, respiration rates, metabolite contents (high-resolution magic angle spinning NMR) and fatty acid levels (gas chromatography) in flower buds of two ecodormant Ribes nigrum cultivars exposed to three different deacclimation temperatures followed by a reacclimation treatment at 4°C. The data reveal that despite differences in the progression of deacclimation, the capacity of blackcurrant flower buds to reharden in late winter is virtually non-existing, implying that increasingly irregular temperature patterns is critical for blackcurrant fruit yield. The early phase of deacclimation is associated with a transient increase in respiration and decreasing contents of amino acids, tricarboxylic acid (TCA) cycle intermediates and sugars, indicating an increased need for carbon sources and respiratory energy production for the activation of growth. Decreasing sugar levels may additionally cause loss of freezing tolerance. Deacclimation also involves desaturation of membrane lipids, which likely also contributes to decreased freezing tolerance but may also reflect biosynthesis of signaling molecules stimulating growth and floral organ differentiation. These data provide new insights into the under-researched deacclimation mechanisms and the ability of blackcurrant to reacclimate following different advancements of deacclimation and contribute to our understanding of plant responses to increasingly irregular temperature patterns.
Collapse
Affiliation(s)
- Katrine H Kjaer
- Department of Food Science, Aarhus University, DK-5792, Aarslev, Denmark
| | - Jacob Winde
- Department of Food Science, Aarhus University, DK-5792, Aarslev, Denmark
| | - Karen K Petersen
- Department of Food Science, Aarhus University, DK-5792, Aarslev, Denmark
| | - Christian C Yde
- Department of Food Science, Aarhus University, DK-5792, Aarslev, Denmark
| | - Majken Pagter
- Department of Chemistry and Bioscience, Aalborg University, DK-9220, Aalborg East, Denmark
| |
Collapse
|
30
|
Oberländer J, Lortzing V, Hilker M, Kunze R. The differential response of cold-experienced Arabidopsis thaliana to larval herbivory benefits an insect generalist, but not a specialist. BMC PLANT BIOLOGY 2019; 19:338. [PMID: 31375063 PMCID: PMC6679549 DOI: 10.1186/s12870-019-1943-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/23/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND In native environments plants frequently experience simultaneous or sequential unfavourable abiotic and biotic stresses. The plant's response to combined stresses is usually not the sum of the individual responses. Here we investigated the impact of cold on plant defense against subsequent herbivory by a generalist and specialist insect. RESULTS We determined transcriptional responses of Arabidopsis thaliana to low temperature stress (4 °C) and subsequent larval feeding damage by the lepidopteran herbivores Mamestra brassicae (generalist), Pieris brassicae (specialist) or artificial wounding. Furthermore, we compared the performance of larvae feeding upon cold-experienced or untreated plants. Prior experience of cold strongly affected the plant's transcriptional anti-herbivore and wounding response. Feeding by P. brassicae, M. brassicae and artificial wounding induced transcriptional changes of 1975, 1695, and 2239 genes, respectively. Of these, 125, 360, and 681 genes were differentially regulated when cold preceded the tissue damage. Overall, prior experience of cold mostly reduced the transcriptional response of genes to damage. The percentage of damage-responsive genes, which showed attenuated transcriptional regulation when cold preceded the tissue damage, was highest in M. brassicae damaged plants (98%), intermediate in artificially damaged plants (89%), and lowest in P. brassicae damaged plants (69%). Consistently, the generalist M. brassicae performed better on cold-treated than on untreated plants, whereas the performance of the specialist P. brassicae did not differ. CONCLUSIONS The transcriptional defense response of Arabidopsis leaves to feeding by herbivorous insects and artificial wounding is attenuated by a prior exposure of the plant to cold. This attenuation correlates with improved performance of the generalist herbivore M. brassicae, but not the specialist P. brassicae, a herbivore of the same feeding guild.
Collapse
Affiliation(s)
- Jana Oberländer
- Freie Universität Berlin, Institute of Biology - Applied Genetics, Dahlem Centre of Plant Sciences, Albrecht-Thaer-Weg 6, 14195 Berlin, Germany
- Present address: University of Bern, Molecular Plant Physiology, Altenbergrain 21, CH-3013 Bern, Switzerland
| | - Vivien Lortzing
- Freie Universität Berlin, Institute of Biology - Applied Zoology / Animal Ecology, Dahlem Centre of Plant Sciences, Haderslebener Str. 9, 12163 Berlin, Germany
| | - Monika Hilker
- Freie Universität Berlin, Institute of Biology - Applied Zoology / Animal Ecology, Dahlem Centre of Plant Sciences, Haderslebener Str. 9, 12163 Berlin, Germany
| | - Reinhard Kunze
- Freie Universität Berlin, Institute of Biology - Applied Genetics, Dahlem Centre of Plant Sciences, Albrecht-Thaer-Weg 6, 14195 Berlin, Germany
| |
Collapse
|
31
|
Ye S, Badhiwala KN, Robinson JT, Cho WH, Siemann E. Thermal plasticity of a freshwater cnidarian holobiont: detection of trans-generational effects in asexually reproducing hosts and symbionts. THE ISME JOURNAL 2019; 13:2058-2067. [PMID: 31015561 PMCID: PMC6775974 DOI: 10.1038/s41396-019-0413-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/16/2019] [Accepted: 03/15/2019] [Indexed: 11/08/2022]
Abstract
Understanding factors affecting the susceptibility of organisms to thermal stress is of enormous interest in light of our rapidly changing climate. When adaptation is limited, thermal acclimation and deacclimation abilities of organisms are critical for population persistence through a period of thermal stress. Holobionts (hosts plus associated symbionts) are key components of various ecosystems, such as coral reefs, yet the contributions of their two partners to holobiont thermal plasticity are poorly understood. Here, we tested thermal plasticity of the freshwater cnidarian Hydra viridissima (green hydra) using individual behavior and population responses. We found that algal presence initially reduced hydra thermal tolerance. Hydra with algae (symbiotic hydra) had comparable acclimation rates, deacclimation rates, and thermal tolerance after acclimation to those without algae (aposymbiotic hydra) but they had higher acclimation capacity. Acclimation of the host (hydra) and/or symbiont (algae) to elevated temperatures increased holobiont thermal tolerance and these effects persisted for multiple asexual generations. In addition, acclimated algae presence enhanced hydra fitness under prolonged sublethal thermal stress, especially when food was limited. Our study indicates while less intense but sublethal stress may favor symbiotic organisms by allowing them to acclimate, sudden large, potentially lethal fluctuations in climate stress likely favor aposymbiotic organisms. It also suggests that thermally stressed colonies of holobionts could disperse acclimated hosts and/or symbionts to other colonies, thereby reducing their vulnerability to climate change.
Collapse
Affiliation(s)
- Siao Ye
- Department of Biosciences, Rice University, Houston, TX, 77005, USA.
| | | | - Jacob T Robinson
- Bioengineering Department, Rice University, Houston, TX, 77005, USA
- Electrical and Computer Engineering Department, Rice University, Houston, TX, 77005, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Won Hee Cho
- Department of Biosciences, Rice University, Houston, TX, 77005, USA
| | - Evan Siemann
- Department of Biosciences, Rice University, Houston, TX, 77005, USA
| |
Collapse
|
32
|
Baier M, Bittner A, Prescher A, van Buer J. Preparing plants for improved cold tolerance by priming. PLANT, CELL & ENVIRONMENT 2019; 42:782-800. [PMID: 29974962 DOI: 10.1111/pce.13394] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/21/2018] [Accepted: 06/25/2018] [Indexed: 05/26/2023]
Abstract
Cold is a major stressor, which limits plant growth and development in many parts of the world, especially in the temperate climate zones. A large number of experimental studies has demonstrated that not only acclimation and entrainment but also the experience of single short stress events of various abiotic or biotic kinds (priming stress) can improve the tolerance of plants to chilling temperatures. This process, called priming, depends on a stress "memory". It does not change cold sensitivity per se but beneficially modifies the response to cold and can last for days, months, or even longer. Elicitor factors and antagonists accumulate due to increased biosynthesis or decreased degradation either during or after the priming stimulus. Comparison of priming studies investigating improved tolerance to chilling temperatures highlighted key regulatory functions of ROS/RNS and antioxidant enzymes, plant hormones, especially jasmonates, salicylates, and abscisic acid, and signalling metabolites, such as β- and γ-aminobutyric acid (BABA and GABA) and melatonin. We conclude that these elicitors and antagonists modify local and systemic cold tolerance by integration into cold-induced signalling cascades.
Collapse
Affiliation(s)
- Margarete Baier
- Plant Physiology, Dahlem Centre of Plant Sciences, Free University of Berlin, Berlin, Germany
| | - Andras Bittner
- Plant Physiology, Dahlem Centre of Plant Sciences, Free University of Berlin, Berlin, Germany
| | - Andreas Prescher
- Plant Physiology, Dahlem Centre of Plant Sciences, Free University of Berlin, Berlin, Germany
| | - Jörn van Buer
- Plant Physiology, Dahlem Centre of Plant Sciences, Free University of Berlin, Berlin, Germany
| |
Collapse
|
33
|
van Buer J, Prescher A, Baier M. Cold-priming of chloroplast ROS signalling is developmentally regulated and is locally controlled at the thylakoid membrane. Sci Rep 2019; 9:3022. [PMID: 30816299 PMCID: PMC6395587 DOI: 10.1038/s41598-019-39838-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 01/29/2019] [Indexed: 12/31/2022] Open
Abstract
24 h exposure to 4 °C primes Arabidopsis thaliana in the pre-bolting rosette stage for several days against full cold activation of the ROS responsive genes ZAT10 and BAP1 and causes stronger cold-induction of pleiotropically stress-regulated genes. Transient over-expression of thylakoid ascorbate peroxidase (tAPX) at 20 °C mimicked and tAPX transcript silencing antagonized cold-priming of ZAT10 expression. The tAPX effect could not be replaced by over-expression of stromal ascorbate peroxidase (sAPX) demonstrating that priming is specific to regulation of tAPX availability and, consequently, regulated locally at the thylakoid membrane. Arabidopsis acquired cold primability in the early rosette stage between 2 and 4 weeks. During further rosette development, primability was widely maintained in the oldest leaves. Later formed and later maturing leaves were not primable demonstrating that priming is stronger regulated with plant age than with leaf age. In 4-week-old plants, which were strongest primable, the memory was fully erasable and lost seven days after priming. In summary, we conclude that cold-priming of chloroplast-to-nucleus ROS signalling by transient post-stress induction of tAPX transcription is a strategy to modify cell signalling for some time without affecting the alertness for activation of cold acclimation responses.
Collapse
Affiliation(s)
- Jörn van Buer
- Plant Physiology, Freie Universität Berlin, Dahlem Centre of Plant Sciences, Königin-Luise-Straße 12-16, 14195, Berlin, Germany
| | - Andreas Prescher
- Plant Physiology, Freie Universität Berlin, Dahlem Centre of Plant Sciences, Königin-Luise-Straße 12-16, 14195, Berlin, Germany
| | - Margarete Baier
- Plant Physiology, Freie Universität Berlin, Dahlem Centre of Plant Sciences, Königin-Luise-Straße 12-16, 14195, Berlin, Germany.
| |
Collapse
|
34
|
Schwachtje J, Whitcomb SJ, Firmino AAP, Zuther E, Hincha DK, Kopka J. Induced, Imprinted, and Primed Responses to Changing Environments: Does Metabolism Store and Process Information? FRONTIERS IN PLANT SCIENCE 2019; 10:106. [PMID: 30815006 PMCID: PMC6381073 DOI: 10.3389/fpls.2019.00106] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 01/23/2019] [Indexed: 05/21/2023]
Abstract
Metabolism is the system layer that determines growth by the rate of matter uptake and conversion into biomass. The scaffold of enzymatic reaction rates drives the metabolic network in a given physico-chemical environment. In response to the diverse environmental stresses, plants have evolved the capability of integrating macro- and micro-environmental events to be prepared, i.e., to be primed for upcoming environmental challenges. The hierarchical view on stress signaling, where metabolites are seen as final downstream products, has recently been complemented by findings that metabolites themselves function as stress signals. We present a systematic concept of metabolic responses that are induced by environmental stresses and persist in the plant system. Such metabolic imprints may prime metabolic responses of plants for subsequent environmental stresses. We describe response types with examples of biotic and abiotic environmental stresses and suggest that plants use metabolic imprints, the metabolic changes that last beyond recovery from stress events, and priming, the imprints that function to prepare for upcoming stresses, to integrate diverse environmental stress histories. As a consequence, even genetically identical plants should be studied and understood as phenotypically plastic organisms that continuously adjust their metabolic state in response to their individually experienced local environment. To explore the occurrence and to unravel functions of metabolic imprints, we encourage researchers to extend stress studies by including detailed metabolic and stress response monitoring into extended recovery phases.
Collapse
Affiliation(s)
- Jens Schwachtje
- Department of Molecular Physiology, Applied Metabolome Analysis, Max-Planck-Institute of Molecular Plant Physiology, Potsdam, Germany
| | | | | | | | | | | |
Collapse
|
35
|
Miki Y, Takahashi D, Kawamura Y, Uemura M. Temporal proteomics of Arabidopsis plasma membrane during cold- and de-acclimation. J Proteomics 2018; 197:71-81. [PMID: 30447334 DOI: 10.1016/j.jprot.2018.11.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/27/2018] [Accepted: 11/09/2018] [Indexed: 01/19/2023]
Abstract
Freezing stress is one of the most important limiting factors of plant survival. Plants have developed a freezing adaptation mechanism upon sensing low temperatures (cold acclimation). Compositional changes in the plasma membrane, one of the initial sites of freezing injury, is prerequisite of achieving cold acclimation and have been investigated in several plant species. Conversely, the cold dehardening process at elevated temperatures (de-acclimation) has not yet been fully characterized and few studies have addressed the importance of the plasma membrane in the de-acclimation process. In the present study, we conducted shotgun proteomics with label-free semiquantification on plasma membrane fractions of Arabidopsis leaves during cold acclimation and de-acclimation. We consequently obtained a list of 873 proteins with significantly changed proteins in response to the two processes. Although the cold-acclimation-responsive proteins were globally returned to non-acclimated levels by de-acclimation, several representative cold-acclimation-responsive proteins tended to remain at higher abundance during de-acclimation process. Taken together, our results suggest plants deharden right after cold acclimation to restart growth and development but some cold-acclimation-induced changes of the plasma membrane may be maintained under de-acclimation to cope with the threat of sudden freezing during de-acclimation process. SIGNIFICANCE: Plant freezing tolerance can be enhanced by low temperature treatment (cold acclimation), while elevated temperatures right after cold acclimation can result in the dehardening of freezing tolerance (de-acclimation). However, the de-acclimation process, particularly its relevance to the plasma membrane as the primary site of freezing injury, has not been elucidated. In the present study, a comprehensive proteomic analysis of the plasma membrane during cold acclimation and de-acclimation was carried out as a first step to elucidating how plants respond to rising temperatures. Cold acclimation induced a number of proteomic changes as reported in previous studies, but most proteins, in general, immediately returned to NA levels during de-acclimation treatment for two days. However, the abundances of stress-related proteins (e.g. LTI29, COR78 and TIL) decreased slower than other functional proteins during de-acclimation. Therefore, plants harden during cold acclimation by aborting growth and development and accumulating stress-responsive proteins but seem to deharden quickly under subsequent elevated temperature to resume these processes while guarding against the threat of sudden temperature drops.
Collapse
Affiliation(s)
- Yushi Miki
- Department of Plant-bioscience, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| | - Daisuke Takahashi
- United Graduate School of Agricultural Sciences, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan; Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, Potsdam D-14476, Germany
| | - Yukio Kawamura
- Department of Plant-bioscience, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan; United Graduate School of Agricultural Sciences, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| | - Matsuo Uemura
- Department of Plant-bioscience, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan; United Graduate School of Agricultural Sciences, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan.
| |
Collapse
|
36
|
Weiszmann J, Fürtauer L, Weckwerth W, Nägele T. Vacuolar sucrose cleavage prevents limitation of cytosolic carbohydrate metabolism and stabilizes photosynthesis under abiotic stress. FEBS J 2018; 285:4082-4098. [DOI: 10.1111/febs.14656] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 08/22/2018] [Accepted: 09/07/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Jakob Weiszmann
- Department of Ecogenomics and Systems Biology University of Vienna Austria
- Vienna Metabolomics Center (ViMe) University of Vienna Austria
| | - Lisa Fürtauer
- Department Biology I Ludwig‐Maximilians‐Universität München Planegg‐Martinsried Germany
| | - Wolfram Weckwerth
- Department of Ecogenomics and Systems Biology University of Vienna Austria
- Vienna Metabolomics Center (ViMe) University of Vienna Austria
| | - Thomas Nägele
- Department Biology I Ludwig‐Maximilians‐Universität München Planegg‐Martinsried Germany
| |
Collapse
|
37
|
Arisz SA, Heo JY, Koevoets IT, Zhao T, van Egmond P, Meyer AJ, Zeng W, Niu X, Wang B, Mitchell-Olds T, Schranz ME, Testerink C. DIACYLGLYCEROL ACYLTRANSFERASE1 Contributes to Freezing Tolerance. PLANT PHYSIOLOGY 2018; 177:1410-1424. [PMID: 29907701 PMCID: PMC6084661 DOI: 10.1104/pp.18.00503] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 06/06/2018] [Indexed: 05/18/2023]
Abstract
Freezing limits plant growth and crop productivity, and plant species in temperate zones have the capacity to develop freezing tolerance through complex modulation of gene expression affecting various aspects of metabolism and physiology. While many components of freezing tolerance have been identified in model species under controlled laboratory conditions, little is known about the mechanisms that impart freezing tolerance in natural populations of wild species. Here, we performed a quantitative trait locus (QTL) study of acclimated freezing tolerance in seedlings of Boechera stricta, a highly adapted relative of Arabidopsis (Arabidopsis thaliana) native to the Rocky Mountains. A single QTL was identified that contained the gene encoding ACYL-COENZYME A:DIACYLGLYCEROL ACYLTRANSFERASE1 (BstDGAT1), whose expression is highly cold responsive. The primary metabolic enzyme DGAT1 catalyzes the final step in assembly of triacylglycerol (TAG) by acyl transfer from acyl-CoA to diacylglycerol. Freezing tolerant plants showed higher DGAT1 expression during cold acclimation than more sensitive plants, and this resulted in increased accumulation of TAG in response to subsequent freezing. Levels of oligogalactolipids that are produced by SFR2 (SENSITIVE TO FREEZING2), an indispensable element of freezing tolerance in Arabidopsis, were also higher in freezing-tolerant plants. Furthermore, overexpression of AtDGAT1 led to increased freezing tolerance. We propose that DGAT1 confers freezing tolerance in plants by supporting SFR2-mediated remodeling of chloroplast membranes.
Collapse
Affiliation(s)
- Steven A Arisz
- Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1090GE Amsterdam, The Netherlands
| | - Jae-Yun Heo
- Biosystematics Group, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Iko T Koevoets
- Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1090GE Amsterdam, The Netherlands
- Laboratory of Plant Physiology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Tao Zhao
- Biosystematics Group, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Pieter van Egmond
- Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1090GE Amsterdam, The Netherlands
| | - A Jessica Meyer
- Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1090GE Amsterdam, The Netherlands
| | | | | | - Baosheng Wang
- Department of Biology, Duke University, Durham, North Carolina 27708
| | | | - M Eric Schranz
- Biosystematics Group, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Christa Testerink
- Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1090GE Amsterdam, The Netherlands
- Laboratory of Plant Physiology, Wageningen University, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
38
|
Takahashi D, Uemura M, Kawamura Y. Freezing Tolerance of Plant Cells: From the Aspect of Plasma Membrane and Microdomain. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1081:61-79. [PMID: 30288704 DOI: 10.1007/978-981-13-1244-1_4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Freezing stress is accompanied by a state change from water to ice and has multiple facets causing dehydration; consequently, hyperosmotic and mechanical stresses coupled with unfavorable chilling stress act in a parallel way. Freezing tolerance varies widely among plant species, and, for example, most temperate plants can overcome deleterious effects caused by freezing temperatures in winter. Destabilization and dysfunction of the plasma membrane are tightly linked to freezing injury of plant cells. Plant freezing tolerance increases upon exposure to nonfreezing low temperatures (cold acclimation). Recent studies have unveiled pleiotropic responses of plasma membrane lipids and proteins to cold acclimation. In addition, advanced techniques have given new insights into plasma membrane structural non-homogeneity, namely, microdomains. This chapter describes physiological implications of plasma membrane responses enhancing freezing tolerance during cold acclimation, with a focus on microdomains.
Collapse
Affiliation(s)
- Daisuke Takahashi
- Central Infrastructure Group Genomics and Transcript Profiling, Max-Planck-Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Matsuo Uemura
- United Graduate School of Agricultural Sciences and Department of Plant-biosciences, Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Yukio Kawamura
- Cryobiofrontier Research Center and Department of Plant-biosciences, and United Graduate School of Agricultural Sciences, Iwate University, Morioka, Iwate, Japan.
| |
Collapse
|
39
|
Takeuchi M, Kasuga J. Bark cells and xylem cells in Japanese white birch twigs initiate deacclimation at different temperatures. Cryobiology 2017; 80:96-100. [PMID: 29169970 DOI: 10.1016/j.cryobiol.2017.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 11/15/2017] [Accepted: 11/19/2017] [Indexed: 01/08/2023]
Abstract
Appropriate timing of cold deacclimation is an important component of winter survival of perennial plants, such as trees, in temperate and boreal zones. Recently, concerns about predicted global climate change disturbing deacclimation timing have been increasing. The relationship between ambient temperatures and the manner by which cells' freezing resistance changes is essential for forecasting the timing of deacclimation. In this study, Japanese white birch twigs that underwent deacclimation treatment at a constant temperature of -2, 0, 4, 10, or 20 °C were separated into bark in which cells adapted to subfreezing temperatures by extracellular freezing and xylem in which cells adapted to subfreezing temperatures by deep supercooling, and the freezing resistance of cells in each tissue type was investigated by measuring percentage electrolyte leakage. Birch cells deacclimated in a different manner according to tissue type. Within 7 days under deacclimation treatment, xylem cells decreased their freezing resistance significantly at a high subfreezing temperature (-2 °C). In contrast, bark cells required a temperature of 10 or 20 °C for a detectable decrease in freezing resistance to occur within the same period. At a temperature lower than 0 °C, bark cells did not decrease their freezing resistance, even after 28 days of treatment. The difference in freezing behavior of cells might involve the difference in how deacclimation occurred in bark and xylem cells.
Collapse
Affiliation(s)
- Maya Takeuchi
- Obihiro University of Agricultural and Veterinary Medicine, Nishi 2-11, Inada, Obihiro, Hokkaido 080-8555, Japan
| | - Jun Kasuga
- Obihiro University of Agricultural and Veterinary Medicine, Nishi 2-11, Inada, Obihiro, Hokkaido 080-8555, Japan.
| |
Collapse
|
40
|
Pagter M, Alpers J, Erban A, Kopka J, Zuther E, Hincha DK. Rapid transcriptional and metabolic regulation of the deacclimation process in cold acclimated Arabidopsis thaliana. BMC Genomics 2017; 18:731. [PMID: 28915789 PMCID: PMC5602955 DOI: 10.1186/s12864-017-4126-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 09/06/2017] [Indexed: 11/20/2022] Open
Abstract
Background During low temperature exposure, temperate plant species increase their freezing tolerance in a process termed cold acclimation. This is accompanied by dampened oscillations of circadian clock genes and disrupted oscillations of output genes and metabolites. During deacclimation in response to warm temperatures, cold acclimated plants lose freezing tolerance and resume growth and development. While considerable effort has been directed toward understanding the molecular and metabolic basis of cold acclimation, much less information is available about the regulation of deacclimation. Results We report metabolic (gas chromatography-mass spectrometry) and transcriptional (microarrays, quantitative RT-PCR) responses underlying deacclimation during the first 24 h after a shift of Arabidopsis thaliana (Columbia-0) plants cold acclimated at 4 °C back to warm temperature (20 °C). The data reveal a faster response of the transcriptome than of the metabolome and provide evidence for tightly regulated temporal responses at both levels. Metabolically, deacclimation is associated with decreasing contents of sugars, amino acids, glycolytic and TCA cycle intermediates, indicating an increased need for carbon sources and respiratory energy production for the activation of growth. The early phase of deacclimation also involves extensive down-regulation of protein synthesis and changes in the metabolism of lipids and cell wall components. Hormonal regulation appears particularly important during deacclimation, with extensive changes in the expression of genes related to auxin, gibberellin, brassinosteroid, jasmonate and ethylene metabolism. Members of several transcription factor families that control fundamental aspects of morphogenesis and development are significantly regulated during deacclimation, emphasizing that loss of freezing tolerance and growth resumption are transcriptionally highly interrelated processes. Expression patterns of some clock oscillator components resembled those under warm conditions, indicating at least partial re-activation of the circadian clock during deacclimation. Conclusions This study provides the first combined metabolomic and transcriptomic analysis of the regulation of deacclimation in cold acclimated plants. The data indicate cascades of rapidly regulated genes and metabolites that underlie the developmental switch resulting in reduced freezing tolerance and the resumption of growth. They constitute a large-scale dataset of genes, metabolites and pathways that are crucial during the initial phase of deacclimation. The data will be an important reference for further analyses of this and other important but under-researched stress deacclimation processes. Electronic supplementary material The online version of this article (10.1186/s12864-017-4126-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Majken Pagter
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam, Germany.,Present address: Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, DK-9220, Aalborg East, Denmark
| | - Jessica Alpers
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam, Germany
| | - Alexander Erban
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam, Germany
| | - Joachim Kopka
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam, Germany
| | - Ellen Zuther
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam, Germany
| | - Dirk K Hincha
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam, Germany.
| |
Collapse
|
41
|
Cvetkovic J, Müller K, Baier M. The effect of cold priming on the fitness of Arabidopsis thaliana accessions under natural and controlled conditions. Sci Rep 2017; 7:44055. [PMID: 28276450 PMCID: PMC5343467 DOI: 10.1038/srep44055] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 02/02/2017] [Indexed: 12/14/2022] Open
Abstract
Priming improves an organism's performance upon a future stress. To test whether cold priming supports protection in spring and how it is affected by cold acclimation, we compared seven Arabidopsis accessions with different cold acclimation potentials in the field and in the greenhouse for growth, photosynthetic performance and reproductive fitness in March and May after a 14 day long cold-pretreatment at 4 °C. In the plants transferred to the field in May, the effect of the cold pretreatment on the seed yield correlated with the cold acclimation potential of the accessions. In the March transferred plants, the reproductive fitness was most supported by the cold pretreatment in the accessions with the weakest cold acclimation potential. The fitness effect was linked to long-term effects of the cold pretreatment on photosystem II activity stabilization and leaf blade expansion. The study demonstrated that cold priming stronger impacts on plant fitness than cold acclimation in spring in accessions with intermediate and low cold acclimation potential.
Collapse
Affiliation(s)
- Jelena Cvetkovic
- Dahlem Center of Plant Sciences, Plant Physiology, Freie Universität Berlin, 14195 Berlin, Germany
| | - Klaus Müller
- Meterology, Freie Universität Berlin, 12165 Berlin, Germany
| | - Margarete Baier
- Dahlem Center of Plant Sciences, Plant Physiology, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|
42
|
Rapacz M, Jurczyk B, Sasal M. Deacclimation may be crucial for winter survival of cereals under warming climate. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 256:5-15. [PMID: 28167038 DOI: 10.1016/j.plantsci.2016.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/18/2016] [Accepted: 11/20/2016] [Indexed: 05/28/2023]
Abstract
Climate warming can change the winter weather patterns. Warmer temperatures during winter result in a lower risk of extreme freezing events. On the other hand the predicted warm gaps during winter will decrease their freezing tolerance. Both contradict effects will affect winter survival but their resultant effect is unclear. In this paper, we demonstrate that climate warming may result in a decrease in winter survival of plants. A field study of winterhardiness of common wheat and triticale was established at 11 locations and repeated during three subsequent winters. The freezing tolerance of the plants was studied after controlled cold acclimation and de-acclimation using both plant survival analysis and chlorophyll fluorescence measurements. Cold deacclimation resistance was shown to be independent from cold acclimation ability. Further, cold deacclimation resistance appeared to be crucial for overwintering when deacclimation conditions occurred in the field. The shortening of uninterrupted cold acclimation may increase cold deacclimation efficiency, which could threaten plant survival during warmer winters. Measurements of chlorophyll fluorescence transient showed some differences triggered by freezing before and after deacclimation. We conclude that cold deacclimation resistance should be considered in the breeding of winter cereals and in future models of winter damage risk.
Collapse
Affiliation(s)
- Marcin Rapacz
- University of Agriculture in Kraków, Faculty of Agriculture and Economics, Department of Plant Physiology, Podłużna 3, 30-239 Kraków, Poland.
| | - Barbara Jurczyk
- University of Agriculture in Kraków, Faculty of Agriculture and Economics, Department of Plant Physiology, Podłużna 3, 30-239 Kraków, Poland
| | - Monika Sasal
- University of Agriculture in Kraków, Faculty of Agriculture and Economics, Department of Plant Physiology, Podłużna 3, 30-239 Kraków, Poland
| |
Collapse
|
43
|
Kovi MR, Ergon Å, Rognli OA. Freezing tolerance revisited-effects of variable temperatures on gene regulation in temperate grasses and legumes. CURRENT OPINION IN PLANT BIOLOGY 2016; 33:140-146. [PMID: 27479037 DOI: 10.1016/j.pbi.2016.07.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 07/13/2016] [Accepted: 07/14/2016] [Indexed: 05/11/2023]
Abstract
Climate change creates new patterns of seasonal climate variation with higher temperatures, longer growth seasons and more variable winter climates. This is challenging the winter survival of perennial herbaceous plants. In this review, we focus on the effects of variable temperatures during autumn/winter/spring, and its interactions with light, on the development and maintenance of freezing tolerance. Cold temperatures induce changes at several organizational levels in the plant (cold acclimation), leading to the development of freezing tolerance, which can be reduced/lost during warm spells (deacclimation) in winters, and attained again during cold spells (reacclimation). We summarize how temperature interacts with components of the light regime (photoperiod, PSII excitation pressure, irradiance, and light quality) in determining changes in the transcriptome, proteome and metabolome.
Collapse
Affiliation(s)
- Mallikarjuna Rao Kovi
- Department of Plant Sciences, Norwegian University of Life Sciences, NO-1432 Ås, Norway
| | - Åshild Ergon
- Department of Plant Sciences, Norwegian University of Life Sciences, NO-1432 Ås, Norway
| | - Odd Arne Rognli
- Department of Plant Sciences, Norwegian University of Life Sciences, NO-1432 Ås, Norway.
| |
Collapse
|
44
|
van Buer J, Cvetkovic J, Baier M. Cold regulation of plastid ascorbate peroxidases serves as a priming hub controlling ROS signaling in Arabidopsis thaliana. BMC PLANT BIOLOGY 2016; 16:163. [PMID: 27439459 PMCID: PMC4955218 DOI: 10.1186/s12870-016-0856-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 07/15/2016] [Indexed: 05/19/2023]
Abstract
BACKGROUND Short cold periods comprise a challenge to plant growth and development. Series of cold stresses improve plant performance upon a future cold stress. This effect could be provoked by priming, training or acclimation dependent hardening. Here, we compared the effect of 24 h (short priming stimulus) and of 2 week long cold-pretreatment (long priming stimulus) on the response of Arabidopsis thaliana to a single 24 h cold stimulus (triggering) after a 5 day long lag-phase, to test Arabidopsis for cold primability. RESULTS Three types of pretreatment dependent responses were observed: (1) The CBF-regulon controlled gene COR15A was stronger activated only after long-term cold pretreatment. (2) The non-chloroplast specific stress markers PAL1 and CHS were more induced by cold after long-term and slightly stronger expressed after short-term cold priming. (3) The chloroplast ROS signaling marker genes ZAT10 and BAP1 were less activated by the triggering stimulus in primed plants. The effects on ZAT10 and BAP1 were more pronounced in 24 h cold-primed plants than in 14 day long cold-primed ones demonstrating independence of priming from induction and persistence of primary cold acclimation responses. Transcript and protein abundance analysis and studies in specific knock-out lines linked the priming-specific regulation of ZAT10 and BAP1 induction to the priming-induced long-term regulation of stromal and thylakoid-bound ascorbate peroxidase (sAPX and tAPX) expression. CONCLUSION The plastid antioxidant system, especially, plastid ascorbate peroxidase regulation, transmits information on a previous cold stress over time without the requirement of establishing cold-acclimation. We hypothesize that the plastid antioxidant system serves as a priming hub and that priming-dependent regulation of chloroplast-to-nucleus ROS signaling is a strategy to prepare plants under unstable environmental conditions against unpredictable stresses by supporting extra-plastidic stress protection.
Collapse
Affiliation(s)
- Jörn van Buer
- Dahlem Center of Plant Sciences, Plant Physiology, Freie Universität Berlin, Königin-Luise-Straße 12-16, 14195 Berlin, Germany
| | - Jelena Cvetkovic
- Dahlem Center of Plant Sciences, Plant Physiology, Freie Universität Berlin, Königin-Luise-Straße 12-16, 14195 Berlin, Germany
| | - Margarete Baier
- Dahlem Center of Plant Sciences, Plant Physiology, Freie Universität Berlin, Königin-Luise-Straße 12-16, 14195 Berlin, Germany
| |
Collapse
|
45
|
Firtzlaff V, Oberländer J, Geiselhardt S, Hilker M, Kunze R. Pre-exposure of Arabidopsis to the abiotic or biotic environmental stimuli "chilling" or "insect eggs" exhibits different transcriptomic responses to herbivory. Sci Rep 2016; 6:28544. [PMID: 27329974 PMCID: PMC4916510 DOI: 10.1038/srep28544] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 06/03/2016] [Indexed: 12/28/2022] Open
Abstract
Plants can retain information about environmental stress and thus, prepare themselves for impending stress. In nature, it happens that environmental stimuli like ‘cold’ and ‘insect egg deposition’ precede insect herbivory. Both these stimuli are known to elicit transcriptomic changes in Arabidposis thaliana. It is unknown, however, whether they affect the plant’s anti-herbivore defence and feeding-induced transcriptome when they end prior to herbivory. Here we investigated the transcriptomic response of Arabidopsis to feeding by Pieris brassicae larvae after prior exposure to cold or oviposition. The transcriptome of plants that experienced a five-day-chilling period (4 °C) was not fully reset to the pre-chilling state after deacclimation (20 °C) for one day and responded differently to herbivory than that of chilling-inexperienced plants. In contrast, when after a five-day-lasting oviposition period the eggs were removed, one day later the transcriptome and, consistently, also its response to herbivory resembled that of egg-free plants. Larval performance was unaffected by previous exposure of plants to cold and to eggs, thus indicating P. brassicae tolerance to cold-mediated plant transcriptomic changes. Our results show strong differences in the persistence of the plant’s transcriptomic state after removal of different environmental cues, and consequently differential effects on the transcriptomic response to later herbivory.
Collapse
Affiliation(s)
- Vivien Firtzlaff
- Institute of Biology-Applied Zoology/Animal Ecology, Freie Universität Berlin, Haderslebener Str. 9, D-12163 Berlin, Germany
| | - Jana Oberländer
- Institute of Biology-Applied Genetics/Dahlem Centre of Plant Sciences, Freie Universität Berlin, Albrecht-Thaer-Weg 6, D-14195 Berlin, Germany
| | - Sven Geiselhardt
- Institute of Biology-Applied Zoology/Animal Ecology, Freie Universität Berlin, Haderslebener Str. 9, D-12163 Berlin, Germany
| | - Monika Hilker
- Institute of Biology-Applied Zoology/Animal Ecology, Freie Universität Berlin, Haderslebener Str. 9, D-12163 Berlin, Germany
| | - Reinhard Kunze
- Institute of Biology-Applied Genetics/Dahlem Centre of Plant Sciences, Freie Universität Berlin, Albrecht-Thaer-Weg 6, D-14195 Berlin, Germany
| |
Collapse
|
46
|
Liu C, Ding F, Hao F, Yu M, Lei H, Wu X, Zhao Z, Guo H, Yin J, Wang Y, Tang H. Reprogramming of Seed Metabolism Facilitates Pre-harvest Sprouting Resistance of Wheat. Sci Rep 2016; 6:20593. [PMID: 26860057 PMCID: PMC4748292 DOI: 10.1038/srep20593] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 01/07/2016] [Indexed: 12/14/2022] Open
Abstract
Pre-harvest sprouting (PHS) is a worldwide problem for wheat production and transgene antisense-thioredoxin-s (anti-trx-s) facilitates outstanding resistance. To understand the molecular details of PHS resistance, we analyzed the metabonomes of the transgenic and wild-type (control) wheat seeds at various stages using NMR and GC-FID/MS. 60 metabolites were dominant in these seeds including sugars, organic acids, amino acids, choline metabolites and fatty acids. At day-20 post-anthesis, only malate level in transgenic wheat differed significantly from that in controls whereas at day-30 post-anthesis, levels of amino acids and sucrose were significantly different between these two groups. For mature seeds, most metabolites in glycolysis, TCA cycle, choline metabolism, biosynthesis of proteins, nucleotides and fatty acids had significantly lower levels in transgenic seeds than in controls. After 30-days post-harvest ripening, most metabolites in transgenic seeds had higher levels than in controls including amino acids, sugars, organic acids, fatty acids, choline metabolites and NAD+. These indicated that anti-trx-s lowered overall metabolic activities of mature seeds eliminating pre-harvest sprouting potential. Post-harvest ripening reactivated the metabolic activities of transgenic seeds to restore their germination vigor. These findings provided essential molecular phenomic information for PHS resistance of anti-trx-s and a credible strategy for future developing PHS resistant crops.
Collapse
Affiliation(s)
- Caixiang Liu
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, the Chinese Academy of Sciences, Wuhan 430071, China
| | - Feng Ding
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Fuhua Hao
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, the Chinese Academy of Sciences, Wuhan 430071, China
| | - Men Yu
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, the Chinese Academy of Sciences, Wuhan 430071, China.,Wuhan Zhongke Metaboss Ltd, 128 Guang-Gu-Qi-Lu, Wuhan 430074, China
| | - Hehua Lei
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, the Chinese Academy of Sciences, Wuhan 430071, China
| | - Xiangyu Wu
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, the Chinese Academy of Sciences, Wuhan 430071, China
| | - Zhengxi Zhao
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongxiang Guo
- National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou 450002, China
| | - Jun Yin
- National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou 450002, China
| | - Yulan Wang
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, the Chinese Academy of Sciences, Wuhan 430071, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310058, China
| | - Huiru Tang
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, the Chinese Academy of Sciences, Wuhan 430071, China.,State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Developmental Biology, Metabonomics and Systems Biology Laboratory, School of Life Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|
47
|
Juszczak I, Cvetkovic J, Zuther E, Hincha DK, Baier M. Natural Variation of Cold Deacclimation Correlates with Variation of Cold-Acclimation of the Plastid Antioxidant System in Arabidopsis thaliana Accessions. FRONTIERS IN PLANT SCIENCE 2016; 7:305. [PMID: 27014325 PMCID: PMC4794505 DOI: 10.3389/fpls.2016.00305] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 02/26/2016] [Indexed: 05/21/2023]
Abstract
Temperature variations impact on the balance between photosynthetic electron transport and electron-consuming assimilation reactions and transiently increase generation of reactive oxygen species (ROS). Previous studies demonstrated that the expression of C-repeat binding factors (CBFs), which activate cold acclimation reactions, respond to chloroplast ROS signals and that cold deacclimation is partly halted for days after the transfer of acclimated plants to optimal growth conditions in four Arabidopsis accessions from cold-continental habitats. We hypothesized that these accessions differ from others in the regulation of the plastid antioxidant system (PAS). In the present study, we compared the expression intensity of the 12 most prominent PAS genes for peroxidases, superoxide dismutase and low molecular weight antioxidant regenerating enzymes in 10 Arabidopsis accessions with regulation of CBF and COR (cold regulated genes) transcript levels and cold-regulated metabolite levels prior to cold, after 2 week long cold acclimation and during the first 3 days of deacclimation. In the accessions with prolonged activation of cold responses, by trend, weaker induction of various cold-inducible PAS genes and stronger decreases in the expression of negatively cold-regulated PAS genes were observed. Low PAS gene expression delayed the post-cold decrease in H2O2 levels after transfer of the plants from cold to optimal growth conditions. We conclude that weaker expression of various PAS genes in the cold is an adapted strategy of the Arabidopsis accessions N14, N13, Ms-0, and Kas-1 to avoid full inactivation of cold-responses in the first days after the end of the cold period.
Collapse
Affiliation(s)
- Ilona Juszczak
- Plant Physiology, Dahlem Center of Plant Sciences, Free University of BerlinBerlin, Germany
- Molecular Physiology, Institute of Molecular Physiology and Biotechnology of Plants, University of BonnBonn, Germany
| | - Jelena Cvetkovic
- Plant Physiology, Dahlem Center of Plant Sciences, Free University of BerlinBerlin, Germany
| | - Ellen Zuther
- Max-Planck-Institute of Molecular Plant PhysiologyPotsdam, Germany
| | - Dirk K. Hincha
- Max-Planck-Institute of Molecular Plant PhysiologyPotsdam, Germany
| | - Margarete Baier
- Plant Physiology, Dahlem Center of Plant Sciences, Free University of BerlinBerlin, Germany
- *Correspondence: Margarete Baier
| |
Collapse
|