1
|
Dong XM, Zhang W, Tu M, Zhang SB. Spatial and Temporal Regulation of Flower Coloration in Cymbidium lowianum. PLANT, CELL & ENVIRONMENT 2025; 48:3844-3860. [PMID: 39834034 DOI: 10.1111/pce.15398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/22/2025]
Abstract
Flower color is a crucial trait that attracts pollinators and determines the ornamental value of floral crops. Cymbidium lowianum, one of the most important breeding parent of Cymbidium hybrids, has two flower morphs (normal and albino) that differ in flower lip color. However, the molecular mechanisms underlying flower color formation in C. lowianum are not well understood. In this study, comparative metabolomic analysis between normal and albino flower lip tissues indicated that cyanidin-3-O-glucoside content was significantly higher in red epichiles than in other lip tissues. This finding suggests that cyanidin-3-O-glucoside is responsible for color variation and differentiation in the lip in C. lowianum. We also found that red coloration in C. lowianum flower is correlated with high levels of F3'H expression; further, anthocyanins, carotenoids and chlorophyll coordinate to influence sepal and petal coloration during flower development. In transgenic Arabidopsis lines, overexpression of F3'H increased anthocyanin concentration, overexpression of BCH increased carotenoid concentration, whereas overexpression of HEMG and CHLI both increased chlorophyll concentration. Identification and assessment of several transcription factors revealed that MYB308-1 activates BCH, MYB111 and PIF4-2 activate HEMG and CHLI expression during flower development. Importantly, MYB14-1 shows interaction with PIF4-2, and appears to act as a connector between anthocyanin and chlorophyll biosynthesis by either activating F3'H expression or inhibiting CHLI expression. These results indicate that, in C. lowianum, variation in flower color and differentiation of lip color patterns are primarily regulated by the types and concentrations of flavonoids; further, carotenoids and chlorophyll also influence flower coloration during development.
Collapse
Affiliation(s)
- Xiu-Mei Dong
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory for Wild Plant Resources, Kunming, Yunnan, China
| | - Wei Zhang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory for Wild Plant Resources, Kunming, Yunnan, China
| | - Mengling Tu
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory for Wild Plant Resources, Kunming, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shi-Bao Zhang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory for Wild Plant Resources, Kunming, Yunnan, China
| |
Collapse
|
2
|
Si J, Zhou X, Chen X, Ming H, Liu H, Hui M. Identification and characterization of a key gene controlling purple leaf coloration in non-heading Chinese cabbage (Brassica rapa). PLANTA 2025; 261:80. [PMID: 40048003 DOI: 10.1007/s00425-025-04630-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 01/18/2025] [Indexed: 03/29/2025]
Abstract
MAIN CONCLUSION Chalcone isomerase (BraCHI, BraA03g059660.3C) is the candidate gene controlling purple leaf coloration in non-heading Chinese cabbage. A 10-bp deletion in its promoter enhances gene expression in purple plants, likely by disrupting MYB transcription factor binding, leading to anthocyanin accumulation. Leaf color is a critical trait influencing the commercial and nutritional value of leafy vegetables, with purple-leafed varieties prized for their high anthocyanin content. In this study, we investigated the genetic basis of purple leaf coloration in non-heading Chinese cabbage (Brassica rapa). Using a recombinant inbred line (RIL) population derived from a cross between purple-leafed S45P and green-leafed S45G lines, bulked segregant analysis sequencing (BSA-seq) and fine mapping were performed. The analysis identified BraP2, a locus on chromosome A03 associated with purple leaf coloration. Within the 65.31 kb candidate region, BraA03g059660.3C, encoding chalcone isomerase (CHI), was identified as the strongest candidate gene. Quantitative real-time PCR (qRT-PCR) revealed significantly higher expression of BraA03g059660.3C in purple-leafed S45P plants compared to green-leafed S45G plants. Further sequence analysis uncovered a 10-bp deletion in the promoter region of BraA03g059660.3C in S45P plants. This deletion likely disrupts a MYB transcription factor binding site, enhancing gene expression and promoting anthocyanin accumulation. Our findings demonstrate that BraA03g059660.3C plays a pivotal role in controlling purple leaf coloration in non-heading Chinese cabbage. This discovery advances the understanding of anthocyanin biosynthesis regulation and provides valuable genetic resources for breeding Brassica crops with improved esthetic and nutritional qualities.
Collapse
Affiliation(s)
- Jia Si
- Vegetables Engineering and Technology Research Center of Shaanxi Province, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Xiaoqing Zhou
- Vegetables Engineering and Technology Research Center of Shaanxi Province, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Xinyu Chen
- Vegetables Engineering and Technology Research Center of Shaanxi Province, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Huilin Ming
- Vegetables Engineering and Technology Research Center of Shaanxi Province, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hanqiang Liu
- Vegetables Engineering and Technology Research Center of Shaanxi Province, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Maixia Hui
- Department of Vegetable Science, College of Horticulture, Northwest A&F University, No. 3 Taicheng Road, Yangling Demonstration Zone, Xianyang, Shaanxi, China.
| |
Collapse
|
3
|
Yang L, Tian L, Shi J, Wei A. Transcriptome and Metabolome Profiling Provide Insights into Flavonoid Biosynthesis and the Mechanism of Color Formation in Zanthoxylum bungeanum Maxim. PLANTS (BASEL, SWITZERLAND) 2025; 14:558. [PMID: 40006817 PMCID: PMC11858979 DOI: 10.3390/plants14040558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/07/2024] [Accepted: 12/09/2024] [Indexed: 02/27/2025]
Abstract
The color of Zanthoxylum bungeanum Maxim. (Z. bungeanum) is a key quality indicator and a factor limiting the development of its industry. However, the underlying mechanisms governing color formation remain largely unexplored. In this study, an integrative analysis of transcriptome and metabolome profiles was conducted across four developmental stages to elucidate the color formation mechanism in Z. bungeanum. A total of 137 flavonoids were identified as the fruits ripened, with high levels of differentially accumulated metabolites (DAMs), including tricetin and (-)-epigallocatechin, which were strongly associated with color formation. This suggests their significant contribution to the pigmentation process. Nine differentially expressed genes (DEGs) were identified as candidate genes involved in color development. Additionally, 15 transcription factors (TFs) (12 MYB and 3 bHLH) exhibited expression patterns similar to those of structural genes in the flavonoid biosynthetic pathway, indicating their role in regulating flavonoid synthesis. The bioinformatics analysis of three key flavonoid synthesis genes-ZbCHI, ZbFLS, and ZbANR-revealed that all three proteins exhibit hydrophobic structures without transmembrane domains. Among them, ZbANR possesses signal peptide regions, whereas ZbCHI and ZbFLS do not. Subcellular localization predictions suggest that ZbCHI is most likely localized in the chloroplast, ZbFLS in the cytoplasm, and ZbANR in the membrane. Functional analyses revealed that their transient expression in Nicotiana benthamiana (N. benthamiana) increased the flavonoid content, with ZbANR overexpression producing a distinct white phenotype in the plants. This study enriches transcriptomic data and provides a comprehensive understanding of flavonoid metabolism and the molecular basis of color formation in Z. bungeanum, offering a valuable theoretical foundation for future breeding programs.
Collapse
Affiliation(s)
- Lin Yang
- College of Forestry, Northwest A&F University, Yangling 712100, China; (L.Y.); (L.T.)
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, China
| | - Lu Tian
- College of Forestry, Northwest A&F University, Yangling 712100, China; (L.Y.); (L.T.)
| | - Jingwei Shi
- College of Forestry, Northwest A&F University, Yangling 712100, China; (L.Y.); (L.T.)
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, China
| | - Anzhi Wei
- College of Forestry, Northwest A&F University, Yangling 712100, China; (L.Y.); (L.T.)
| |
Collapse
|
4
|
Hu Y, Wang X, Wu H, Yao Y. The nuclear and cytoplasmic colocalization of MdGST12 regulated by MdWRKY26 and MdHY5 promotes anthocyanin accumulation by forming homodimers and interact with MdUFGT and MdDFR under light conditions in Malus. Int J Biol Macromol 2025; 289:138666. [PMID: 39689790 DOI: 10.1016/j.ijbiomac.2024.138666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 11/28/2024] [Accepted: 12/10/2024] [Indexed: 12/19/2024]
Abstract
The glutathione S-transferase (GST) gene family participates in the sequestration of anthocyanins into vacuoles. In this study, MdGST12 was identified as a candidate gene during light-induced anthocyanin accumulation. The methylation levels of the MdGST12 promoter exhibited marked differences among apple fruit treated with different light intensities. Interestingly, it was revealed that MdGST12 was localized in both the cytoplasm and nucleus. Moreover, MdHY5 and MdWRKY26 bind to the G-box and W-box cis-elements within the MdGST12 promoter, respectively. Instantaneous and stable transformation in plantlets, fruit, and calli, confirmed the role of MdGST12 and MdWRKY26 in promoting anthocyanin accumulation in apples. Moreover, the silencing of MdGST12 or MdWRKY26 by RNA interference significantly damaged the anthocyanin accumulation. Surprisingly, we found that MdGST12 could act as a transactivator and that the interaction between MdGST12 and MdDFR further enhances transcriptional activation of the MdDFR promoter. Moreover, MdGST12 also interacts with MdUFGT. Further study revealed that MdGST12 could interact with itself forming homodimers in the nucleus. Taken together, our study first revealed that MdGST12 regulated by MdWRKY26 and MdHY5 interacts with MdDFR and enters the nucleus, enhancing the transcriptional level of MdDFR and promoting anthocyanin accumulation in Malus under light conditions. It first revealed the complexity of GST's function in addition to the function of transferases and transporters in plants.
Collapse
Affiliation(s)
- Yujing Hu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, China; College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China; Beijing Key Laboratory for Agricultural Application and New Technique, Beijing 102206, China.
| | - Xingsui Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, China; College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China; Beijing Key Laboratory for Agricultural Application and New Technique, Beijing 102206, China
| | - Haofan Wu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, China; College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China; Beijing Key Laboratory for Agricultural Application and New Technique, Beijing 102206, China
| | - Yuncong Yao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, China; College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China; Beijing Key Laboratory for Agricultural Application and New Technique, Beijing 102206, China.
| |
Collapse
|
5
|
Chen LZ, Tian XC, Feng YQ, Qiao HL, Wu AY, Li X, Hou YJ, Ma ZH. The Genome-Wide Identification of the Dihydroflavonol 4-Reductase (DFR) Gene Family and Its Expression Analysis in Different Fruit Coloring Stages of Strawberry. Int J Mol Sci 2024; 25:9911. [PMID: 39337399 PMCID: PMC11432397 DOI: 10.3390/ijms25189911] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Dihydroflavonol 4-reductase (DFR) significantly influences the modification of flower color. To explore the role of DFR in the synthesis of strawberry anthocyanins, in this study, we downloaded the CDS sequences of the DFR gene family from the Arabidopsis genome database TAIR; the DFR family of forest strawberry was compared; then, a functional domain screen was performed using NCBI; the selected strawberry DFR genes were analyzed; and the expression characteristics of the family members were studied by qRT-PCR. The results showed that there are 57 members of the DFR gene family in strawberry, which are mainly expressed in the cytoplasm and chloroplast; most of them are hydrophilic proteins; and the secondary structure of the protein is mainly composed of α-helices and random coils. The analysis revealed that FvDFR genes mostly contain light, hormone, abiotic stress, and meristem response elements. From the results of the qRT-PCR analysis, the relative expression of each member of the FvDFR gene was significantly different, which was expressed throughout the process of fruit coloring. Most genes had the highest expression levels in the full coloring stage (S4). The expression of FvDFR30, FvDFR54, and FvDFR56 during the S4 period was 8, 2.4, and 2.4 times higher than during the S1 period, indicating that the DFR gene plays a key role in regulating the fruit coloration of strawberry. In the strawberry genome, 57 members of the strawberry DFR gene family were identified. The higher the DFR gene expression, the higher the anthocyanin content, and the DFR gene may be the key gene in anthocyanin synthesis. Collectively, the DFR gene is closely related to fruit coloring, which lays a foundation for further exploring the function of the DFR gene family.
Collapse
Affiliation(s)
- Li-Zhen Chen
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China;
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (X.-C.T.); (Y.-Q.F.); (H.-L.Q.); (A.-Y.W.); (X.L.); (Y.-J.H.)
| | - Xue-Chun Tian
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (X.-C.T.); (Y.-Q.F.); (H.-L.Q.); (A.-Y.W.); (X.L.); (Y.-J.H.)
| | - Yong-Qing Feng
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (X.-C.T.); (Y.-Q.F.); (H.-L.Q.); (A.-Y.W.); (X.L.); (Y.-J.H.)
| | - Hui-Lan Qiao
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (X.-C.T.); (Y.-Q.F.); (H.-L.Q.); (A.-Y.W.); (X.L.); (Y.-J.H.)
| | - Ai-Yuan Wu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (X.-C.T.); (Y.-Q.F.); (H.-L.Q.); (A.-Y.W.); (X.L.); (Y.-J.H.)
| | - Xin Li
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (X.-C.T.); (Y.-Q.F.); (H.-L.Q.); (A.-Y.W.); (X.L.); (Y.-J.H.)
| | - Ying-Jun Hou
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (X.-C.T.); (Y.-Q.F.); (H.-L.Q.); (A.-Y.W.); (X.L.); (Y.-J.H.)
| | - Zong-Huan Ma
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China;
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (X.-C.T.); (Y.-Q.F.); (H.-L.Q.); (A.-Y.W.); (X.L.); (Y.-J.H.)
| |
Collapse
|
6
|
Wang T, Zhang J, Zhang S, Gong Y, Wang N, Zhang Z, Chen X. Auxin responsive factor MdARF17 promotes ethylene synthesis in apple fruits by activating MdERF003 expression. PLANT CELL REPORTS 2024; 43:212. [PMID: 39127969 DOI: 10.1007/s00299-024-03293-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024]
Abstract
KEY MESSAGE Auxin (AUX) promotion of apple fruit ripening is ethylene-dependent, and AUX-MdARF17-MdERF003 plays a role in AUX-promoted ethylene synthesis in apple. Phytohormones play important roles in plant growth and fleshy fruit ripening, and the phytohormone auxin (AUX) can either promote or inhibit the ripening of fleshy fruits. Although AUX can influence ethylene (ETH) synthesis in apple (Malus domestica) fruits by affecting ETH system II, this mechanism remains to be explored. Here, we identified an ETH response factor (ERF) family transcription factor, MdERF003, whose expression could be activated by naphthalene acetic acid. The transient silencing of MdERF003 inhibited ETH synthesis in fruits, and MdERF003 could bind to the MdACS1 promoter. To explore the upstream target genes of MdERF003, we screened the MdARF family members by yeast one-hybrid assays of the MdERF003 promoter, and found that the transcription factor MdARF17, which showed AUX-promoted expression, could bind to the MdERF003 promoter and promote its expression. Finally, we silenced MdERF003 in apple fruits overexpressing MdARF17 and found that MdERF003 plays a role in MdARF17-promoted ETH synthesis in apple. Thus, AUX-MdARF17-MdERF003 promotes ETH synthesis in apple fruits.
Collapse
Affiliation(s)
- Tong Wang
- College of Horticulture Sciences, Shandong Agricultural University, No. 61 Daizong Road, Tai'an, 271018, Shandong, China
| | - Jing Zhang
- College of Horticulture Sciences, Shandong Agricultural University, No. 61 Daizong Road, Tai'an, 271018, Shandong, China
| | - Shuhui Zhang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shanxi, China
| | - Yunfu Gong
- Jiushan Town Agricultural Comprehensive Service Center, Weifang, 262608, Shandong, China
| | - Nan Wang
- College of Horticulture Sciences, Shandong Agricultural University, No. 61 Daizong Road, Tai'an, 271018, Shandong, China
| | - Zongying Zhang
- College of Horticulture Sciences, Shandong Agricultural University, No. 61 Daizong Road, Tai'an, 271018, Shandong, China.
| | - Xuesen Chen
- College of Horticulture Sciences, Shandong Agricultural University, No. 61 Daizong Road, Tai'an, 271018, Shandong, China.
| |
Collapse
|
7
|
Hong Y, Wei R, Li C, Cai H, Chen E, Pan X, Zhang W. Establishment of virus-induced gene-silencing system in Juglans sigillata Dode and functional analysis of JsFLS2 and JsFLS4. Gene 2024; 913:148385. [PMID: 38493973 DOI: 10.1016/j.gene.2024.148385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
Juglans sigillata Dode is one of the important tree species in southwest China, and it has significant economic and ecological value. However, there is still a lack of effective methods to identify the functional genes of J. sigillata. By verifying the model plant tobacco, the pTRV2::JsPDS vector was able to cause photobleaching. This study showed that photobleaching occurred 24 and 30 d after the silencing vector was infected with aseptic seedlings and fruits of J. sigillata, respectively. When the OD600 was 0.6, and the injection dose was 500 μL, the gene silencing efficiency of aseptic seedlings was the highest at 16.7 %, significantly better than other treatments. Moreover, when the OD600 was 0.8, and the injection dose was 500 μL, the gene silencing efficiency in the walnut fruit was the highest (20 %). In addition, the VIGS system was successfully used to silence JsFLS2 and JsFLS4 genes in J. sigillata. This study also showed that the flavonol content and gene expression in the treatment group were decreased compared to the control group. In addition, the proteins transcribed and translated from the JsFLS4 gene may have higher catalytic activity for dihydroquercetin. The above results indicate that the TRV-mediated VIGS system can be an ideal tool for studying J. sigillata gene function.
Collapse
Affiliation(s)
- Yanyang Hong
- College of Agriculture, Guizhou University, Jiaxiu South Road, Guiyang, Guizhou 550025, China; Guizhou Engineering Research Center for Fruit Crops, Guizhou University, Jiaxiu South Road, Guiyang, Guizhou 550025, China
| | - Rong Wei
- College of Agriculture, Guizhou University, Jiaxiu South Road, Guiyang, Guizhou 550025, China; Guizhou Engineering Research Center for Fruit Crops, Guizhou University, Jiaxiu South Road, Guiyang, Guizhou 550025, China
| | - Chunxiang Li
- College of Agriculture, Guizhou University, Jiaxiu South Road, Guiyang, Guizhou 550025, China; Guizhou Engineering Research Center for Fruit Crops, Guizhou University, Jiaxiu South Road, Guiyang, Guizhou 550025, China
| | - Hu Cai
- College of Agriculture, Guizhou University, Jiaxiu South Road, Guiyang, Guizhou 550025, China; Guizhou Engineering Research Center for Fruit Crops, Guizhou University, Jiaxiu South Road, Guiyang, Guizhou 550025, China
| | - Erjuan Chen
- College of Agriculture, Guizhou University, Jiaxiu South Road, Guiyang, Guizhou 550025, China
| | - Xuejun Pan
- College of Agriculture, Guizhou University, Jiaxiu South Road, Guiyang, Guizhou 550025, China; Guizhou Engineering Research Center for Fruit Crops, Guizhou University, Jiaxiu South Road, Guiyang, Guizhou 550025, China.
| | - Wen'e Zhang
- College of Agriculture, Guizhou University, Jiaxiu South Road, Guiyang, Guizhou 550025, China.
| |
Collapse
|
8
|
Wang Y, Liu W, Li W, Wang C, Dai H, Xu R, Zhang Y, Zhang L. Integrative analysis of metabolome and transcriptome reveals regulatory mechanisms of flavonoid biosynthesis in soybean under salt stress. FRONTIERS IN PLANT SCIENCE 2024; 15:1415867. [PMID: 38957602 PMCID: PMC11217524 DOI: 10.3389/fpls.2024.1415867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/03/2024] [Indexed: 07/04/2024]
Abstract
Introduction Salt stress is a major environmental factor that constrains soybean growth, development, and productivity. Flavonoids are key secondary metabolites that play a crucial role in enhancing plant resistance to both biotic and abiotic stress. However, a comprehensive understanding of the regulatory mechanisms underlying flavonoid biosynthesis under salt stress in soybean is lacking. Methods In this study, an integrative analysis of soybean metabolome and transcriptome was conducted using two soybean lines, FQ03 (salt-sensitive, SS) and FQ07 (salt-tolerant, ST). Results A total of 650 significantly changed metabolites were identified in SS and ST after salt stress treatment. Among them, 151 flavonoids were categorized into nine classes, with flavones and flavonols being the predominant flavonoid types in soybean. Heatmap analysis showed higher contents of most flavonoid metabolites in ST than in SS under salt stress, and the total flavonoid content in ST was significantly higher than that in SS. In addition, transcriptome analysis revealed a higher number of differentially expressed genes (DEGs) in ST than in SS under salt stress. KEGG enrichment analysis revealed that DEGs were mainly enriched in pathways related to phenylpropanoid biosynthesis, isoflavonoid biosynthesis, flavonoid biosynthesis, as well as flavone and flavonol biosynthesis. Notably, 55 DEGs that were mapped to the flavonoid biosynthetic pathway were identified, with most showing higher expression levels in ST than in SS. Weighted gene correlation network analysis identified eight structural genes and six transcription factor genes as key regulators of flavonoid biosynthesis within the blue module. Furthermore, qRT-PCR results confirmed the accuracy of the transcriptomic data and reliability of the identified candidate genes. Discussion This study provides insights into the regulatory mechanisms underlying salt stress responses in soybean and highlights hub genes as potential targets for developing salt-tolerant soybean varieties.
Collapse
Affiliation(s)
- Yubin Wang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
- Shandong Engineering Laboratory of Featured Crops, Jinan, Shandong, China
| | - Wei Liu
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
- Shandong Engineering Laboratory of Featured Crops, Jinan, Shandong, China
| | - Wei Li
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
- Shandong Engineering Laboratory of Featured Crops, Jinan, Shandong, China
| | - Caijie Wang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
- Shandong Engineering Laboratory of Featured Crops, Jinan, Shandong, China
| | - Haiying Dai
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
- Shandong Engineering Laboratory of Featured Crops, Jinan, Shandong, China
| | - Ran Xu
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
- Shandong Engineering Laboratory of Featured Crops, Jinan, Shandong, China
| | - Yanwei Zhang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
- Shandong Engineering Laboratory of Featured Crops, Jinan, Shandong, China
| | - Lifeng Zhang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
- Shandong Engineering Laboratory of Featured Crops, Jinan, Shandong, China
| |
Collapse
|
9
|
Li H, Zhai X, Peng H, Qing Y, Deng Y, Zhou S, Bei T, Tian J, Zhang J, Hu Y, Qin X, Lu Y, Yao Y, Wang S, Zheng Y. Chromosomal level genome assemblies of two Malus crabapple cultivars Flame and Royalty. Sci Data 2024; 11:201. [PMID: 38351118 PMCID: PMC10864326 DOI: 10.1038/s41597-024-03049-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/05/2024] [Indexed: 02/16/2024] Open
Abstract
Malus hybrid 'Flame' and Malus hybrid 'Royalty' are representative ornamental crabapples, rich in flavonoids and serving as the preferred materials for studying the coloration mechanism. We generated two sets of high-quality chromosome-level and haplotype-resolved genome of 'Flame' with sizes of 688.2 Mb and 675.7 Mb, and those of 'Royalty' with sizes of 674.1 Mb and 663.6 Mb, all anchored to 17 chromosomes and with a high BUSCO completeness score nearly 99.0%. A total of 47,833 and 47,307 protein-coding genes were annotated in the two haplotype genomes of 'Flame', and the numbers of 'Royalty' were 46,305 and 46,920 individually. The assembled high-quality genomes offer new resources for studying the origin and adaptive evolution of crabapples and the molecular basis of the accumulation of flavonoids and anthocyanins, facilitating molecular breeding of Malus plants.
Collapse
Affiliation(s)
- Hua Li
- Beijing Key Laboratory for Agriculture Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
- Bioinformatics Center, Beijing University of Agriculture, Beijing, 102206, China
| | - Xuyang Zhai
- Beijing Key Laboratory for Agriculture Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
- Bioinformatics Center, Beijing University of Agriculture, Beijing, 102206, China
| | - Haixu Peng
- Beijing Key Laboratory for Agriculture Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
- Bioinformatics Center, Beijing University of Agriculture, Beijing, 102206, China
| | - You Qing
- Beijing Key Laboratory for Agriculture Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
- Bioinformatics Center, Beijing University of Agriculture, Beijing, 102206, China
| | - Yulin Deng
- Beijing Key Laboratory for Agriculture Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
- Bioinformatics Center, Beijing University of Agriculture, Beijing, 102206, China
| | - Shijie Zhou
- Beijing Key Laboratory for Agriculture Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
- Bioinformatics Center, Beijing University of Agriculture, Beijing, 102206, China
| | - Tairui Bei
- Bioinformatics Center, Beijing University of Agriculture, Beijing, 102206, China
| | - Ji Tian
- Beijing Key Laboratory for Agriculture Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Jie Zhang
- Beijing Key Laboratory for Agriculture Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Yujing Hu
- Beijing Key Laboratory for Agriculture Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Xiaoxiao Qin
- Beijing Key Laboratory for Agriculture Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Yanfen Lu
- Beijing Key Laboratory for Agriculture Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Yuncong Yao
- Beijing Key Laboratory for Agriculture Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Sen Wang
- Beijing Key Laboratory for Agriculture Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China.
- Bioinformatics Center, Beijing University of Agriculture, Beijing, 102206, China.
| | - Yi Zheng
- Beijing Key Laboratory for Agriculture Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China.
- Bioinformatics Center, Beijing University of Agriculture, Beijing, 102206, China.
| |
Collapse
|
10
|
Zhou P, Lei S, Zhang X, Wang Y, Guo R, Yan S, Jin G, Zhang X. Genome sequencing revealed the red-flower trait candidate gene of a peach landrace. HORTICULTURE RESEARCH 2023; 10:uhad210. [PMID: 38023475 PMCID: PMC10681006 DOI: 10.1093/hr/uhad210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023]
Abstract
Peach (Prunus persica) is an economically important fruit crop globally and an excellent material for genomic studies. While considerable progress has been made in unveiling trait-associated genes within cultivars and wild relatives, certain novel genes controlling valuable traits in peach landraces, such as the red-flowering gene, remained unclear. In this study, we sequenced and assembled the diploid genome of the red-flower landrace 'Yingzui' (abbreviated as 'RedY'). Multi-omics profiling of red petals of 'RedY' revealed the intensified red coloration associated with anthocyanins accumulation and concurrent decline in flavonols. This phenomenon is likely attributed to a natural variant of Flavonol Synthase (FLS) harboring a 9-bp exonic insertion. Intriguingly, the homozygous allelic configurations of this FLS variant were only observed in red-flowered peaches. Furthermore, the 9-bp sequence variation tightly associated with pink/red petal color in genome-wide association studies (GWAS) of collected peach germplasm resources. Functional analyses of the FLS variant, purified from procaryotic expression system, demonstrated its diminished enzymatic activity in flavonols biosynthesis, impeccably aligning with the cardinal trait of red flowers. Therefore, the natural FLS variant was proposed as the best candidate gene for red-flowering trait in peach. The pioneering unveiling of the red-flowered peach genome, coupled with the identification of the candidate gene, expanded the knowledge boundaries of the genetic basis of peach traits and provided valuable insights for future peach breeding efforts.
Collapse
Affiliation(s)
- Ping Zhou
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
- Research Centre for Engineering Technology of Fujian Deciduous Fruits, Fuzhou 350013, China
| | - Siru Lei
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Xiaodan Zhang
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA
| | - Yinghao Wang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Rui Guo
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
- Research Centre for Engineering Technology of Fujian Deciduous Fruits, Fuzhou 350013, China
| | - Shaobin Yan
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
- Research Centre for Engineering Technology of Fujian Deciduous Fruits, Fuzhou 350013, China
| | - Guang Jin
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
- Research Centre for Engineering Technology of Fujian Deciduous Fruits, Fuzhou 350013, China
| | - Xingtan Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| |
Collapse
|
11
|
Lewis JA, Zhang B, Harza R, Palmer N, Sarath G, Sattler SE, Twigg P, Vermerris W, Kang C. Structural Similarities and Overlapping Activities among Dihydroflavonol 4-Reductase, Flavanone 4-Reductase, and Anthocyanidin Reductase Offer Metabolic Flexibility in the Flavonoid Pathway. Int J Mol Sci 2023; 24:13901. [PMID: 37762209 PMCID: PMC10531346 DOI: 10.3390/ijms241813901] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Flavonoids are potent antioxidants that play a role in defense against pathogens, UV-radiation, and the detoxification of reactive oxygen species. Dihydroflavonol 4-reductase (DFR) and flavanone 4-reductase (FNR) reduce dihydroflavonols and flavanones, respectively, using NAD(P)H to produce flavan-(3)-4-(di)ols in flavonoid biosynthesis. Anthocyanidin reductase (ANR) reduces anthocyanidins to flavan-3-ols. In addition to their sequences, the 3D structures of recombinant DFR, FNR and ANR from sorghum and switchgrass showed a high level of similarity. The catalytic mechanism, substrate-specificity and key residues of three reductases were deduced from crystal structures, site-directed mutagenesis, molecular docking, kinetics, and thermodynamic ana-lyses. Although DFR displayed its highest activity against dihydroflavonols, it also showed activity against flavanones and anthocyanidins. It was inhibited by the flavonol quercetin and high concentrations of dihydroflavonols/flavonones. SbFNR1 and SbFNR2 did not show any activity against dihydroflavonols. However, SbFNR1 displayed activity against flavanones and ANR activity against two anthocyanidins, cyanidin and pelargonidin. Therefore, SbFNR1 and SbFNR2 could be specific ANR isozymes without delphinidin activity. Sorghum has high concentrations of 3-deoxyanthocyanidins in vivo, supporting the observed high activity of SbDFR against flavonols. Mining of expression data indicated substantial induction of these three reductase genes in both switchgrass and sorghum in response to biotic stress. Key signature sequences for proper DFR/ANR classification are proposed and could form the basis for future metabolic engineering of flavonoid metabolism.
Collapse
Affiliation(s)
- Jacob A. Lewis
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA; (J.A.L.); (B.Z.)
| | - Bixia Zhang
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA; (J.A.L.); (B.Z.)
| | - Rishi Harza
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA; (J.A.L.); (B.Z.)
| | - Nathan Palmer
- Wheat, Sorghum, Forage Research Unit, U.S. Department of Agriculture—Agricultural Research Service, Lincoln, NE 68583, USA; (N.P.); (G.S.); (S.E.S.)
| | - Gautam Sarath
- Wheat, Sorghum, Forage Research Unit, U.S. Department of Agriculture—Agricultural Research Service, Lincoln, NE 68583, USA; (N.P.); (G.S.); (S.E.S.)
| | - Scott E. Sattler
- Wheat, Sorghum, Forage Research Unit, U.S. Department of Agriculture—Agricultural Research Service, Lincoln, NE 68583, USA; (N.P.); (G.S.); (S.E.S.)
| | - Paul Twigg
- Biology Department, University of Nebraska at Kearney, Kearney, NE 68849, USA;
| | - Wilfred Vermerris
- Department of Microbiology & Cell Science and UF Genetics Institute, University of Florida, Gainesville, FL 32610, USA;
| | - ChulHee Kang
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA; (J.A.L.); (B.Z.)
| |
Collapse
|
12
|
Kou M, Li C, Song W, Shen Y, Tang W, Zhang Y, Wang X, Yan H, Gao R, Ahmad MQ, Li Q. Identification and functional characterization of a flavonol synthase gene from sweet potato [ Ipomoea batatas (L.) Lam.]. FRONTIERS IN PLANT SCIENCE 2023; 14:1181173. [PMID: 37235006 PMCID: PMC10206235 DOI: 10.3389/fpls.2023.1181173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/17/2023] [Indexed: 05/28/2023]
Abstract
Flavonol synthase (FLS) is a key enzyme of the flavonoid biosynthetic pathway, which catalyzes the conversion of dihydroflavonols into flavonols. In this study, the FLS gene IbFLS1 was cloned and characterized from sweet potato. The resulting IbFLS1 protein showed a high similarity with other plant FLSs. The conserved amino acids (HxDxnH motifs) binding ferrous iron and residues (RxS motifs) binding 2-oxoglutarate were found in IbFLS1 at conserved positions, as in other FLSs, suggesting that IbFLS1 belongs to the 2-oxoglutarate-dependent dioxygenases (2-ODD) superfamily. qRT-PCR analysis showed an organ-specific pattern of expression of the IbFLS1 gene, which was predominantly expressed in young leaves. The recombinant IbFLS1 protein could catalyze the conversion of dihydrokaempferol and dihydroquercetin to kaempferol and quercetin, respectively. The results of subcellular localization studies indicated that IbFLS1 was found mainly in the nucleus and cytomembrane. Furthermore, silencing the IbFLS gene in sweet potato changed the color of the leaves to purple, substantially inhibiting the expression of IbFLS1 and upregulating the expression of genes involved in the downstream pathway of anthocyanin biosynthesis (i.e., DFR, ANS, and UFGT). The total anthocyanin content in the leaves of the transgenic plants was dramatically increased, whereas the total flavonol content was significantly reduced. Thus, we conclude that IbFLS1 is involved in the flavonol biosynthetic pathway and is a potential candidate gene of color modification in sweet potato.
Collapse
Affiliation(s)
- Meng Kou
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweet Potato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweet Potato, Ministry of Agriculture and Rural Affairs, Xuzhou, China
| | - Chen Li
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweet Potato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweet Potato, Ministry of Agriculture and Rural Affairs, Xuzhou, China
| | - Weihan Song
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweet Potato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweet Potato, Ministry of Agriculture and Rural Affairs, Xuzhou, China
| | - Yifan Shen
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweet Potato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweet Potato, Ministry of Agriculture and Rural Affairs, Xuzhou, China
| | - Wei Tang
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweet Potato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweet Potato, Ministry of Agriculture and Rural Affairs, Xuzhou, China
| | - Yungang Zhang
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweet Potato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweet Potato, Ministry of Agriculture and Rural Affairs, Xuzhou, China
| | - Xin Wang
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweet Potato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweet Potato, Ministry of Agriculture and Rural Affairs, Xuzhou, China
| | - Hui Yan
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweet Potato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweet Potato, Ministry of Agriculture and Rural Affairs, Xuzhou, China
| | - Runfei Gao
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweet Potato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweet Potato, Ministry of Agriculture and Rural Affairs, Xuzhou, China
| | - Muhammad Qadir Ahmad
- Department of Plant Breeding and Genetics, Bahauddin Zakariya University, Multan, Pakistan
| | - Qiang Li
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweet Potato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweet Potato, Ministry of Agriculture and Rural Affairs, Xuzhou, China
| |
Collapse
|
13
|
Lei T, Huang J, Ruan H, Qian W, Fang Z, Gu C, Zhang N, Liang Y, Wang Z, Gao L, Wang Y. Competition between FLS and DFR regulates the distribution of flavonols and proanthocyanidins in Rubus chingii Hu. FRONTIERS IN PLANT SCIENCE 2023; 14:1134993. [PMID: 36968391 PMCID: PMC10031046 DOI: 10.3389/fpls.2023.1134993] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Rubus chingii Hu is a berry plant of the genus Rubus of the Rosaceae family, which has high nutritional and medicinal value and is rich in flavonoids. Flavonol synthase (FLS) and dihydroflavonol 4-reductase (DFR) compete for the common substrate dihydroflavonols to regulate the metabolic flux of flavonoids. However, the competition between FLS and DFR based on enzyme is rarely reported. Here, we isolated and identified two FLS genes (RcFLS1 and RcFLS2) and one DFR gene (RcDFR) from Rubus chingii Hu. RcFLSs and RcDFR were highly expressed in stems, leaves, and flowers, although the flavonol accumulation in these organs was significantly higher than that of proanthocyanidins (PAs). The recombinant RcFLSs demonstrated bifunctional activities via hydroxylation and desaturation at the C-3α position having a lower Michaelis constant (Km) for dihydroflavonols than RcDFR. We also found that a low concentration of flavonols could significantly inhibit RcDFR activity. To investigate the competitive relationship between RcFLSs and RcDFR, we used a prokaryotic expression system (E. coli) to co-express these proteins. The transgenic cells expressing recombinant proteins were incubated with substrates, and the reaction products were analyzed. Furthermore, two transient expression systems (tobacco leaves and strawberry fruits) and a stable genetic system (Arabidopsis thaliana) were used to co-express these proteins in vivo. The results showed that RcFLS1 was dominant in the competition with RcDFR. Our results demonstrated that the competition between FLS and DFR regulated the metabolic flux distribution of flavonols and PAs, which will be of great significance for the molecular breeding of Rubus plants.
Collapse
Affiliation(s)
- Ting Lei
- School of Life Science, Anhui Agricultural University, Hefei Anhui, China
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei Anhui, China
| | - Jun Huang
- School of Life Science, Anhui Agricultural University, Hefei Anhui, China
| | - Haixiang Ruan
- School of Life Science, Anhui Agricultural University, Hefei Anhui, China
| | - Wei Qian
- School of Life Science, Anhui Agricultural University, Hefei Anhui, China
| | - Zhou Fang
- School of Life Science, Anhui Agricultural University, Hefei Anhui, China
| | - Chunyang Gu
- School of Life Science, Anhui Agricultural University, Hefei Anhui, China
| | - Niuniu Zhang
- School of Life Science, Anhui Agricultural University, Hefei Anhui, China
| | - Yaxuan Liang
- School of Life Science, Anhui Agricultural University, Hefei Anhui, China
| | - Ziyun Wang
- School of Life Science, Anhui Agricultural University, Hefei Anhui, China
| | - Liping Gao
- School of Life Science, Anhui Agricultural University, Hefei Anhui, China
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei Anhui, China
| | - Yunsheng Wang
- School of Life Science, Anhui Agricultural University, Hefei Anhui, China
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei Anhui, China
| |
Collapse
|
14
|
Liu Y, Li Y, Liu Z, Wang L, Lin-Wang K, Zhu J, Bi Z, Sun C, Zhang J, Bai J. Integrative analysis of metabolome and transcriptome reveals a dynamic regulatory network of potato tuber pigmentation. iScience 2023; 26:105903. [PMID: 36818280 PMCID: PMC9932491 DOI: 10.1016/j.isci.2022.105903] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/12/2022] [Accepted: 12/26/2022] [Indexed: 12/30/2022] Open
Abstract
Potatoes consist of flavonoids that provide health benefits for human consumers. To learn more about how potato tuber flavonoid accumulation and flesh pigmentation are controlled, we analyzed the transcriptomic and metabolomic profile of potato tubers from three colored potato clones at three developmental phases using an integrated approach. From the 72 flavonoids identified in pigmented flesh, differential abundance was noted for anthocyanins, flavonols, and flavones. Weighted gene co-expression network analysis further allowed modules and candidate genes that positively or negatively regulate flavonoid biosynthesis to be identified. Furthermore, an R2R3-MYB repressor StMYB3 and an R3-MYB repressor StMYBATV involved in the modulation of anthocyanin biosynthesis during tuber development were identified. Both StMYB3 and StMYBATV could interact with the cofactor StbHLH1 and repress anthocyanin biosynthesis. Our results indicate a feedback regulatory mechanism of a coordinated MYB activator-repressor network on fine-tuning of potato tuber pigmentation during tuber development.
Collapse
Affiliation(s)
- Yuhui Liu
- State Key Laboratory of Aridland Crop Science/Agronomy College, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuanming Li
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhen Liu
- State Key Laboratory of Aridland Crop Science/Agronomy College, Gansu Agricultural University, Lanzhou 730070, China
| | - Lei Wang
- Potato Research Center, Hebei North University, Zhangjiakou 075000, China
| | - Kui Lin-Wang
- The New Zealand Institute for Plant and Food Research Limited, Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland 1142, New Zealand
| | - Jinyong Zhu
- State Key Laboratory of Aridland Crop Science/Agronomy College, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhenzhen Bi
- State Key Laboratory of Aridland Crop Science/Agronomy College, Gansu Agricultural University, Lanzhou 730070, China
| | - Chao Sun
- State Key Laboratory of Aridland Crop Science/Agronomy College, Gansu Agricultural University, Lanzhou 730070, China
| | - Junlian Zhang
- State Key Laboratory of Aridland Crop Science/Agronomy College, Gansu Agricultural University, Lanzhou 730070, China
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Jiangping Bai
- State Key Laboratory of Aridland Crop Science/Agronomy College, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
15
|
Wang X, Chai X, Gao B, Deng C, Günther CS, Wu T, Zhang X, Xu X, Han Z, Wang Y. Multi-omics analysis reveals the mechanism of bHLH130 responding to low-nitrogen stress of apple rootstock. PLANT PHYSIOLOGY 2023; 191:1305-1323. [PMID: 36417197 PMCID: PMC9922409 DOI: 10.1093/plphys/kiac519] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Nitrogen is critical for plant growth and development. With the increase of nitrogen fertilizer application, nitrogen use efficiency decreases, resulting in wasted resources. In apple (Malus domestica) rootstocks, the potential molecular mechanism for improving nitrogen uptake efficiency to alleviate low-nitrogen stress remains unclear. We utilized multi-omics approaches to investigate the mechanism of nitrogen uptake in two apple rootstocks with different responses to nitrogen stress, Malus hupehensis and Malus sieversii. Under low-nitrogen stress, Malus sieversii showed higher efficiency in nitrogen uptake. Multi-omics analysis revealed substantial differences in the expression of genes involved in flavonoid and lignin synthesis pathways between the two materials, which were related to the corresponding metabolites. We discovered that basic helix-loop-helix 130 (bHLH130) transcription factor was highly negatively associated with the flavonoid biosynthetic pathway. bHLH130 may directly bind to the chalcone synthase gene (CHS) promoter and inhibit its expression. Overexpressing CHS increased flavonoid accumulation and nitrogen uptake. Inhibiting bHLH130 increased flavonoid biosynthesis while decreasing lignin accumulation, thus improving nitrogen uptake efficiency. These findings revealed the molecular mechanism by which bHLH130 regulates flavonoid and lignin biosyntheses in apple rootstocks under low-nitrogen stress.
Collapse
Affiliation(s)
- Xiaona Wang
- College of Horticulture, China Agricultural University, Beijing 100193, P.R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), the Ministry of Agriculture and Rural Affairs, Beijing 100193, P.R. China
| | - Xiaofen Chai
- College of Horticulture, China Agricultural University, Beijing 100193, P.R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), the Ministry of Agriculture and Rural Affairs, Beijing 100193, P.R. China
| | - Beibei Gao
- College of Horticulture, China Agricultural University, Beijing 100193, P.R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), the Ministry of Agriculture and Rural Affairs, Beijing 100193, P.R. China
| | - Cecilia Deng
- The New Zealand Institute for Plant and Food Research Ltd, 120 Mt Albert Road, 1025 Auckland, New Zealand
| | - Catrin S Günther
- The New Zealand Institute for Plant and Food Research Ltd, Ruakura Research Campus, Bisley Road, 3216 Hamilton, New Zealand
| | - Ting Wu
- College of Horticulture, China Agricultural University, Beijing 100193, P.R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), the Ministry of Agriculture and Rural Affairs, Beijing 100193, P.R. China
| | - Xinzhong Zhang
- College of Horticulture, China Agricultural University, Beijing 100193, P.R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), the Ministry of Agriculture and Rural Affairs, Beijing 100193, P.R. China
| | - Xuefeng Xu
- College of Horticulture, China Agricultural University, Beijing 100193, P.R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), the Ministry of Agriculture and Rural Affairs, Beijing 100193, P.R. China
| | - Zhenhai Han
- College of Horticulture, China Agricultural University, Beijing 100193, P.R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), the Ministry of Agriculture and Rural Affairs, Beijing 100193, P.R. China
| | - Yi Wang
- College of Horticulture, China Agricultural University, Beijing 100193, P.R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), the Ministry of Agriculture and Rural Affairs, Beijing 100193, P.R. China
| |
Collapse
|
16
|
Mikulic-Petkovsek M, Ivancic A, Gacnik S, Veberic R, Hudina M, Marinovic S, Molitor C, Halbwirth H. Biochemical Characterization of Black and Green Mutant Elderberry during Fruit Ripening. PLANTS (BASEL, SWITZERLAND) 2023; 12:504. [PMID: 36771589 PMCID: PMC9918921 DOI: 10.3390/plants12030504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/22/2022] [Accepted: 01/16/2023] [Indexed: 05/22/2023]
Abstract
The content of sugars, organic acids, phenolic compounds and selected enzyme activities in the anthocyanin pathway were analyzed in NIGRA (Sambucus nigra var. nigra-black fruits) and VIRIDIS (S. nigra var. viridis-green fruits) fruits over four stages of ripening. The share of glucose and fructose in green fruits was higher than in colored fruits, and the sugar content increased significantly until the third developmental stage. Ripe NIGRA berries had 47% flavonol glycosides, 34% anthocyanins, 3% hydroxycinnamic acids and 14% flavanols, whereas the major phenolic group in the VIRIDIS fruits, making up 88% of the total analyzed polyphenols, was flavonols. NIGRA fruits were rich in anthocyanins (6020 µg g-1 FW), showing strong activation of the late anthocyanin pathway (dihydroflavonol 4-reductase, anthocyanidin synthase). In both color types, phenylalanine ammonia lyase and chalcone synthase/chalcone isomerase activities were highest in the first stage and decreased during ripening. In VIRIDIS fruit, no anthocyanins and only one flavanol (procyanidin dimer) were found. This was most likely caused by a lack of induction of the late anthocyanin pathway in the last period of fruit ripening. The VIRIDIS genotype may be useful in studying the regulatory structures of anthocyanin biosynthesis and the contribution of distinct flavonoid classes to the health benefits of elderberries.
Collapse
Affiliation(s)
- Maja Mikulic-Petkovsek
- Chair for Fruit Growing, Viticulture and Vegetable Growing, Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Anton Ivancic
- 2 Chair for Genetics, Faculty of Agriculture and Life Sciences, University of Maribor, Pivola 10, SI-2311 Hoce, Slovenia
| | - Sasa Gacnik
- Chair for Fruit Growing, Viticulture and Vegetable Growing, Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Robert Veberic
- Chair for Fruit Growing, Viticulture and Vegetable Growing, Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Metka Hudina
- Chair for Fruit Growing, Viticulture and Vegetable Growing, Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Silvija Marinovic
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Getreidemarkt 9, A-1060 Vienna, Austria
| | - Christian Molitor
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Getreidemarkt 9, A-1060 Vienna, Austria
| | - Heidi Halbwirth
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Getreidemarkt 9, A-1060 Vienna, Austria
| |
Collapse
|
17
|
Xiong Y, He J, Li M, Du K, Lang H, Gao P, Xie Y. Integrative Analysis of Metabolome and Transcriptome Reveals the Mechanism of Color Formation in Yellow-Fleshed Kiwifruit. Int J Mol Sci 2023; 24:ijms24021573. [PMID: 36675098 PMCID: PMC9867141 DOI: 10.3390/ijms24021573] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
During the development of yellow-fleshed kiwifruit (Actinidia chinensis), the flesh appeared light pink at the initial stage, the pink faded at the fastest growth stage, and gradually changed into green. At the maturity stage, it showed bright yellow. In order to analyze the mechanism of flesh color change at the metabolic and gene transcription level, the relationship between color and changes of metabolites and key enzyme genes was studied. In this study, five time points (20 d, 58 d, 97 d, 136 d, and 175 d) of yellow-fleshed kiwifruit were used for flavonoid metabolites detection and transcriptome, and four time points (20 d, 97 d, 136 d, and 175 d) were used for targeted detection of carotenoids. Through the analysis of the content changes of flavonoid metabolites, it was found that the accumulation of pelargonidin and cyanidin and their respective anthocyanin derivatives was related to the pink flesh of young fruit, but not to delphinidin and its derivative anthocyanins. A total of 140 flavonoid compounds were detected in the flesh, among which anthocyanin and 76% of the flavonoid compounds had the highest content at 20 d, and began to decrease significantly at 58 d until 175 d, resulting in the pale-pink fading of the flesh. At the mature stage of fruit development (175 d), the degradation of chlorophyll and the increase of carotenoids jointly led to the change of flesh color from green to yellow, in addition to chlorophyll degradation. In kiwifruit flesh, 10 carotenoids were detected, with none of them being linear carotenoids. During the whole development process of kiwifruit, the content of β-carotene was always higher than that of α-carotene. In addition, β-cryptoxanthin was the most-accumulated pigment in the kiwifruit at 175 d. Through transcriptome analysis of kiwifruit flesh, seven key transcription factors for flavonoid biosynthesis and ten key transcription factors for carotenoid synthesis were screened. This study was the first to analyze the effect of flavonoid accumulation on the pink color of yellow-fleshed kiwifruit. The high proportion of β-cryptoxanthin in yellow-fleshed kiwifruit was preliminarily found. This provides information on metabolite accumulation for further revealing the pink color of yellow-fleshed kiwifruit, and also provides a new direction for the study of carotenoid biosynthesis and regulation in yellow-fleshed kiwifruit.
Collapse
Affiliation(s)
- Yun Xiong
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Junya He
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Mingzhang Li
- Key Laboratory of Breeding and Utilization of Kiwifruit in Sichuan Province, Sichuan Provincial Academy of Natural Resource Sciences, Chengdu 610065, China
| | - Kui Du
- Key Laboratory of Breeding and Utilization of Kiwifruit in Sichuan Province, Sichuan Provincial Academy of Natural Resource Sciences, Chengdu 610065, China
| | - Hangyu Lang
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Ping Gao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yue Xie
- Key Laboratory of Breeding and Utilization of Kiwifruit in Sichuan Province, Sichuan Provincial Academy of Natural Resource Sciences, Chengdu 610065, China
- Correspondence:
| |
Collapse
|
18
|
Bioactive Substances and Biological Functions in Malus hupehensis: A Review. Molecules 2023; 28:molecules28020658. [PMID: 36677713 PMCID: PMC9866576 DOI: 10.3390/molecules28020658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/31/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Malus hupehensis (MH), as a natural resource, contains various active ingredients such as polyphenols, polysaccharides, proteins, amino acids, volatile substances, and other components. Increasingly, studies have indicated that MH showed a variety of biological activities, including antioxidant, hypoglycemic, hypolipidemic, anti-cancer, anti-inflammatory activities, and other activities. Hence, MH has attracted wide interest because of its high medical and nutritional value. It is necessary to review the active components and biological activities of MH. This paper systematically reviewed the chemical substances, biological activities, and potential problems of MH to further promote the related research of MH and provide an important reference for its application and development in medicine and food.
Collapse
|
19
|
Sharma M, Bhushan S, Sharma D, Kaul S, Dhar MK. A Brief Review of Plant Cell Transfection, Gene Transcript Expression, and Genotypic Integration for Enhancing Compound Production. Methods Mol Biol 2023; 2575:153-179. [PMID: 36301475 DOI: 10.1007/978-1-0716-2716-7_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Plants possess a plethora of important secondary metabolites, which are unique sources of natural pigments, pharmaceutical compounds, food additives, natural pesticides, and other industrial components. The commercial significance of such metabolites/compounds has directed the research toward their production and exploration of methods for enhancement of production. Biotechnological tools are critical in selecting, integrating, multiplying, improving, and analyzing medicinal plants for secondary metabolite production. Out of many techniques that are being explored to enhance secondary metabolite production, "plant cell transfection" is the latest tool to achieve maximum output from the plant source. It is based upon the introduction of foreign DNA into the plant cell relying on physical treatment such as electroporation, cell squeezing, sonoporation, optical transfection nanoparticles, magnetofection, and chemical treatment or biological treatment that depends upon carrier. One of the promising tools that have been exploited is CRISPR-Cas9. Overall, the abovementioned tools focus on the stable transfection of desired gene transcripts. Since the integration and continuous expression of transfected gene of particular trait represents stable transfection of host cell genome, resulting from transfer of required trait to daughter cells ultimately leading to enhanced production of secondary metabolites of interest. This chapter will review a set of biotechnological tools that are candidates for achieving the enhanced bioactive compound production indicated here to be used for drug discovery.
Collapse
Affiliation(s)
- Munish Sharma
- Department of Plant Sciences, Central University of Himachal Pradesh, Shahpur, Kangra, Himachal Pradesh, India.
| | - Sakshi Bhushan
- Department of Botany, Central University of Jammu, Jammu, Jammu and Kashmir, India
| | - Deepak Sharma
- Genome Research Laboratory, School of Biotechnology, University of Jammu, Jammu, Jammu and Kashmir, India
| | - Sanjana Kaul
- Genome Research Laboratory, School of Biotechnology, University of Jammu, Jammu, Jammu and Kashmir, India
| | - Manoj K Dhar
- Genome Research Laboratory, School of Biotechnology, University of Jammu, Jammu, Jammu and Kashmir, India
| |
Collapse
|
20
|
Jo NY, Lee J, Byeon JE, Park HJ, Ryoo JW, Hwang SG. Elevated CO 2 concentration induces changes in plant growth, transcriptome, and antioxidant activity in fennel ( Foeniculum vulgare Mill.). FRONTIERS IN PLANT SCIENCE 2022; 13:1067713. [PMID: 36570891 PMCID: PMC9780672 DOI: 10.3389/fpls.2022.1067713] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
INTRODUCTION Fennel (Foeniculum vulgare Mill.) is widely used to produce natural bio-materials. Elevated CO2 (eCO2) concentrations in the atmosphere improve the net photosynthesis of plants. METHODS The aim of the present study was to investigate distinct changes in fennel growth characteristics and phytonutrient contents under different CO2 concentrations. The effects of 400 and 800 ppm concentrations on plant growth and antioxidant activity were observed under hydroponics. RESULTS AND DISCUSSION Plant growth was improved by eCO2 concentrations. We also observed diverse changes in nutrient solution (pH, electrical conductivity, and dissolved oxygen) and environmental factors (temperature and humidity) in greenhouse under light or dark conditions. Electrical conductivity increased under dark and eCO2 conditions, whereas the pH decreased. Additionally, we performed transcriptome analysis and identified CO2-responsive differentially expressed genes. In the 800 ppm group, genes involved in photosynthesis and Karrikin response were upregulated whereas those involved in syncytium formation were downregulated. Four upregulated differentially expressed genes involved in flavonoid biosynthesis and total flavonoid content were relatively increased under the 800 ppm CO2 condition. In contrast, antioxidant activity, including total phenolic content, scavenging activity, ferric ion reducing antioxidant power, and reducing power were decreased in fennel under relatively high eCO2 concentrations. Moreover, different light intensities of 12 or 24 lx did not affect the growth and antioxidant activity of fennel, suggesting eCO2 has a stronger effect on plant improvement than light intensity. The results of the present study enhance our understanding of the positive effects of CO2 on the growth and antioxidant activity of fennel.
Collapse
Affiliation(s)
- Na-Yeon Jo
- College of Life and Environment Science, Sangji University, Wonju-si, South Korea
| | - Junkyung Lee
- College of Life and Environment Science, Sangji University, Wonju-si, South Korea
| | - Ji-Eun Byeon
- College of Life and Environment Science, Sangji University, Wonju-si, South Korea
| | - Hong-Jin Park
- Department of computer and Engineering, Sangji University, Wonju-si, South Korea
| | - Jong-Won Ryoo
- College of Life and Environment Science, Sangji University, Wonju-si, South Korea
| | - Sun-Goo Hwang
- College of Life and Environment Science, Sangji University, Wonju-si, South Korea
| |
Collapse
|
21
|
Pereira AG, Guzmán-Rodriguez S, Freitas LB. Phylogenetic Analyses of Some Key Genes Provide Information on Pollinator Attraction in Solanaceae. Genes (Basel) 2022; 13:2278. [PMID: 36553545 PMCID: PMC9778481 DOI: 10.3390/genes13122278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/22/2022] [Accepted: 12/01/2022] [Indexed: 12/07/2022] Open
Abstract
Floral syndromes are known by the conserved morphological traits in flowers associated with pollinator attraction, such as corolla shape and color, aroma emission and composition, and rewards, especially the nectar volume and sugar concentration. Here, we employed a phylogenetic approach to investigate sequences of genes enrolled in the biosynthetic pathways responsible for some phenotypes that are attractive to pollinators in Solanaceae genomes. We included genes involved in visible color, UV-light response, scent emission, and nectar production to test the hypothesis that these essential genes have evolved by convergence under pollinator selection. Our results refuted this hypothesis as all four studied genes recovered the species' phylogenetic relationships, even though some sites were positively selected. We found differences in protein motifs among genera in Solanaceae that were not necessarily associated with the same floral syndrome. Although it has had a crucial role in plant diversification, the plant-pollinator interaction is complex and still needs further investigation, with genes evolving not only under the influence of pollinators, but by the sum of several evolutionary forces along the speciation process in Solanaceae.
Collapse
Affiliation(s)
| | | | - Loreta B. Freitas
- Laboratory of Molecular Evolution, Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, RS, Brazil
| |
Collapse
|
22
|
Song S, Tao Y, Gao L, Liang H, Tang D, Lin J, Wang Y, Gmitter FG, Li C. An Integrated Metabolome and Transcriptome Analysis Reveal the Regulation Mechanisms of Flavonoid Biosynthesis in a Purple Tea Plant Cultivar. FRONTIERS IN PLANT SCIENCE 2022; 13:880227. [PMID: 35665157 PMCID: PMC9161209 DOI: 10.3389/fpls.2022.880227] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/15/2022] [Indexed: 06/15/2023]
Abstract
Purple tea plant cultivars, enrich with flavonoids and anthocyanins, are valuable materials for manufacturing tea with unique color and flavor. Researchers found that 'Zijuan' leaves changed from purple to green mainly caused by the decreased flavonoids and anthocyanins concentrations. The mechanism of flavonoids and anthocyanin biosynthesis has been studied in many purple tea plant cultivars and the key genes which regulated the biosynthesis of flavonoid and anthocyanins in different purple tea plant cultivars were quite different. Also, the molecular regulation mechanism underlying the flavonoids and anthocyanins biosynthesis during leaves development and color changes is less-thoroughly understood. In this study, an integrative analysis of transcriptome and metabolome was performed on the purple leaves and green leaves of 'Zijuan' tea plant to reveal the regulatory networks correlated to flavonoid biosynthesis and to identify key regulatory genes. Our results indicated that the 'Zijuan' new shoots leaves were purple might be due to the copigmentation of quercetin and kaempferol derivatives. In 'Zijuan' tea plant cultivar, flavonoids metabolites concentrations in purple leaves and green leaves were significantly influenced by the genes involved in flavonoid biosynthesis, transcriptional regulation, transport, and hormone response. Transcription factors including NAC008, MYB23, and bHLH96 and transporters such as ABC transporter I might be responsible for the flavonoid and anthocyanins accumulation in purple leaves. This study provides a new insight into the metabolism and molecular mechanisms underlying flavonoid and anthocyanin biosynthesis in tea plant.
Collapse
Affiliation(s)
- SaSa Song
- College of Tea Science and Tea Culture, Zhejiang A&F University, Hangzhou, China
| | - Yu Tao
- College of Tea Science and Tea Culture, Zhejiang A&F University, Hangzhou, China
| | - LongHan Gao
- College of Tea Science and Tea Culture, Zhejiang A&F University, Hangzhou, China
| | - HuiLing Liang
- College of Tea Science and Tea Culture, Zhejiang A&F University, Hangzhou, China
| | - DeSong Tang
- College of Tea Science and Tea Culture, Zhejiang A&F University, Hangzhou, China
| | - Jie Lin
- College of Tea Science and Tea Culture, Zhejiang A&F University, Hangzhou, China
| | - YuChun Wang
- College of Tea Science and Tea Culture, Zhejiang A&F University, Hangzhou, China
| | - Frederick G. Gmitter
- Institute of Food and Agricultural Sciences, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
| | - ChunFang Li
- College of Tea Science and Tea Culture, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
23
|
Qiu L, Zheng T, Liu W, Zhuo X, Li P, Wang J, Cheng T, Zhang Q. Integration of Transcriptome and Metabolome Reveals the Formation Mechanism of Red Stem in Prunus mume. FRONTIERS IN PLANT SCIENCE 2022; 13:884883. [PMID: 35599903 PMCID: PMC9120947 DOI: 10.3389/fpls.2022.884883] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 03/25/2022] [Indexed: 06/15/2023]
Abstract
Prunus mume var. purpurea, commonly known as "Red Bone", is a special variety with pink or purple-red xylem. It is famous due to gorgeous petals and delightful aromas, playing important roles in urban landscaping. The regulation mechanism of color formation in P. mume var. purpurea stem development is unclear. Here, we conducted a comprehensive analysis of transcriptome and metabolome in WYY ('Wuyuyu' accession, red stem) and FLE ('Fei Lve' accession, green stem), and found a total of 256 differential metabolites. At least 14 anthocyanins were detected in WYY, wherein cyanidin 3,5-O-diglucoside and peonidin3-O-glucoside were significantly accumulated through LC-MS/MS analysis. Transcriptome data showed that the genes related to flavonoid-anthocyanin biosynthesis pathways were significantly enriched in WYY. The ratio of dihydroflavonol 4-reductase (DFR) and flavonol synthase (FLS) expression levels may affect metabolic balance in WYY, suggesting a vital role in xylem color formation. In addition, several transcription factors were up-regulated, which may be the key factors contributing to transcriptional changes in anthocyanin synthesis. Overall, the results provide a reference for further research on the molecular mechanism of xylem color regulation in P. mume and lay a theoretical foundation for cultivating new varieties.
Collapse
Affiliation(s)
| | - Tangchun Zheng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | | | | | | | | | | | - Qixiang Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| |
Collapse
|
24
|
Germano TA, de Oliveira MFR, Aziz S, Oliveira AER, da Cruz Saraiva KD, Dos Santos CP, Moura CFH, Costa JH. Transcriptome profiling of cashew apples (Anacardium occidentale) genotypes reveals specific genes linked to firmness and color during pseudofruit development. PLANT MOLECULAR BIOLOGY 2022; 109:83-100. [PMID: 35332428 DOI: 10.1007/s11103-022-01257-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
We found 34 and 71 key genes potentially involved in flavonoid biosynthesis and cell wall disassembly, respectively, which could be associated with specific peel coloration and softening of each genotype. Cashew apple (Anacardium occidentale) has a great economic importance worldwide due to its high nutritional value, peculiar flavor and aroma. During ripening, the peduncle develops different peel color and becomes quickly fragile due to its oversoftening, impacting its consumers' acceptance. In view of this, the understanding about its transcriptional dynamics throughout ripening is imperative. In this study, we performed a transcriptome sequencing of two cashew apple genotypes (CCP 76 and BRS 265), presenting different firmness and color peel, in the immature and ripe stages. Comparative transcriptome analysis between immature and ripe cashew apple revealed 4374 and 3266 differentially expressed genes (DEGs) to CCP 76 and BRS 265 genotypes, respectively. These genes included 71 and 34 GDEs involved in the cell wall disassembly and flavonoid biosynthesis, respectively, which could be associated with firmness loss and anthocyanin accumulation during cashew apple development. Then, softer peduncle of CCP 76 could be justified by down-regulated EXP and up-regulation of genes involved in pectin degradation (PG, PL and PAE) and in cell wall biosynthesis. Moreover, genes related to flavonoid biosynthesis (PAL, C4H and CHS) could be associated with early high accumulation of anthocyanin in red-peel peduncle of BRS 265. Finally, expression patterns of the selected genes were tested by real-time quantitative PCR (qRT-PCR), and the qRT-PCR results were consistent with transcriptome data. The information generated in this work will provide insights into transcriptome responses to cashew apple ripening and hence, it will be helpful for cashew breeding programs aimed at developing genotypes with improved quality traits.
Collapse
Affiliation(s)
- Thais Andrade Germano
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Campus do Pici, Fortaleza, CE, CEP 60440-554, Brazil
| | - Matheus Finger Ramos de Oliveira
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Campus do Pici, Fortaleza, CE, CEP 60440-554, Brazil
| | - Shahid Aziz
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Campus do Pici, Fortaleza, CE, CEP 60440-554, Brazil
| | - Antonio Edson Rocha Oliveira
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP, CEP 05508-900, Brazil
| | - Kátia Daniella da Cruz Saraiva
- Ciência e Tecnologia da Paraíba, Instituto Federal de Educação, Campus Princesa Isabel, Princesa Isabel, PB, CEP 58755-000, Brazil
| | - Clesivan Pereira Dos Santos
- Departamento de Química, Universidade Estadual de Ponta Grossa, Campus Uvaranas, Ponta Grossa, PR, CEP 84030-900, Brazil
| | | | - José Hélio Costa
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Campus do Pici, Fortaleza, CE, CEP 60440-554, Brazil.
| |
Collapse
|
25
|
PpMYB39 Activates PpDFR to Modulate Anthocyanin Biosynthesis during Peach Fruit Maturation. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8040332] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Anthocyanins are a class of water-soluble flavonoids widely present in fruits and vegetablesresponsible for the red flesh formation of peach fruit. Previously, several genes of the MYB family have been reported as transcriptional regulators of the anthocyanin biosynthetic pathway of structural genes in plants. In this study, through comparative transcriptome analysis of the white and red flesh peach cultivars of Harrow Blood and Asama Hakuto, a predicted transcription factor of the R2R3MYB family, PpMYB39, was identified to be associated with anthocyanin biosynthesis in peach fruit. In red-fleshed peach cultivars, the maximum amount of anthocyanin accumulated 95 days after full bloom (DAFB), at full maturity near ripening. Our results showed that, at this stage, PpMYB39 had the highest expression level among the 13 differentially expressed genes (DEGs) found in both red- and white-fleshed fruits, as well as a high correlation with total anthocyanin content throughout fruit development. Moreover, the expression analysis of the structural genes of the anthocyanin biosynthetic pathway in peach fruit revealed that Prunus persica Dihydroflavonol-4-reductase (PpDFR) was co-expressed and up-regulated with PpMYB39 at 95 DAFB, suggesting its possible role as a transcriptional activator of MYB39. This was further confirmed by a yeast one-hybrid assay and a dual luciferase reporter assay. Our results will be helpful in the breeding of peach cultivars and the identification and significance of color in peaches and related fruit species, in addition to providing an understanding of color formation in peach fruit for future research.
Collapse
|
26
|
Hu Y, Han Z, Wang T, Li H, Li Q, Wang S, Tian J, Wang Y, Zhang X, Xu X, Han Z, Lü P, Wu T. Ethylene response factor MdERF4 and histone deacetylase MdHDA19 suppress apple fruit ripening through histone deacetylation of ripening-related genes. PLANT PHYSIOLOGY 2022; 188:2166-2181. [PMID: 35088866 PMCID: PMC8968277 DOI: 10.1093/plphys/kiac016] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 12/09/2021] [Indexed: 05/12/2023]
Abstract
Histone deacetylase enzymes participate in the regulation of many aspects of plant development. However, the genome-level targets of histone deacetylation during apple (Malus domestica) fruit development have not been resolved in detail, and the mechanisms of regulation of such a process are unknown. We previously showed that the complex of ethylene response factor 4 (MdERF4) and the TOPLESS co-repressor (MdTPL4; MdERF4-MdTPL4) is constitutively active during apple fruit development (Hu et al., 2020), but whether this transcriptional repression complex is coupled to chromatin modification is unknown. Here, we show that a histone deacetylase (MdHDA19) is recruited to the MdERF4-MdTPL4 complex, thereby impacting fruit ethylene biosynthesis. Transient suppression of MdHDA19 expression promoted fruit ripening and ethylene production. To identify potential downstream target genes regulated by MdHDA19, we conducted chromatin immunoprecipitation (ChIP) sequencing of H3K9 and ChIP-quantitative polymerase chain reaction assays. We found that MdHDA19 affects ethylene production by facilitating H3K9 deacetylation and forms a complex with MdERF4-MdTPL4 to directly repress MdACS3a expression by decreasing the degree of acetylation. We demonstrate that an early-maturing-specific acetylation H3K9ac peak in MdACS3a and expression of MdACS3a were specifically up-regulated in fruit of an early-maturing, but not a late-maturing, cultivar. We provide evidence that a C-to-G mutation in the ethylene-responsive element binding factor-associated amphiphilic repression motif of MdERF4 reduces the repression of MdACS3a by the MdERF4-MdTPL4-MdHDA19 complex. Taken together, our results reveal that the MdERF4-MdTPL-MdHDA19 repressor complex participates in the epigenetic regulation of apple fruit ripening.
Collapse
Affiliation(s)
| | | | - Ting Wang
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Hua Li
- College of Horticulture, FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 35002, China
| | - Qiqi Li
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Shuai Wang
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Ji Tian
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Yi Wang
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xinzhong Zhang
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xuefeng Xu
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Zhenhai Han
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | | | | |
Collapse
|
27
|
Yuan L, Niu H, Yun Y, Tian J, Lao F, Liao X, Gao Z, Ren D, Zhou L. Analysis of coloration characteristics of Tunisian soft-seed pomegranate arils based on transcriptome and metabolome. Food Chem 2022; 370:131270. [PMID: 34788951 DOI: 10.1016/j.foodchem.2021.131270] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 01/10/2023]
Abstract
In this study, combining metabolome and transcriptome, color related attributes and phenolic compositions of Tunisian pomegranate arils from 7 Chinese regions at same developing stage were studied. The total anthocyanin (TAC), flavonoids, and percent polymeric color (PPC) were ranged at 8.93-28.41 mg/100 g arils, 37.55-69.72 mg/100 g arils, and 3.38-21.96%, respectively. In total, 51 phenolic compounds were characterized, most of which were markedly higher in reddish-purple pomegranate arils than those levels in reddish pomegranate arils. In contrast, the accumulation of tannins was significantly higher in reddish pomegranate arils. Among the 49 differentially expressed genes, 8 and 5 genes were matched to β-glucosidase and peroxidase, respectively. Correlation analysis showed that PPC was negatively correlated with 10 phenolic metabolites and TAC, positively correlated with L*, polymeric color, and 1 gene (|r| > 0.7, p < 0.01). Our results provide new insights for understanding the difference in coloration of pomegranate arils.
Collapse
Affiliation(s)
- Lei Yuan
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China
| | - Huihui Niu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China
| | - Yurou Yun
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China
| | - Jun Tian
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China
| | - Fei Lao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zhengqing Gao
- Yunnan Institute of Horticultural Crops, Yunnan Academy of Agricultural Sciences, Kunming 650205, Yunnan Province, China
| | - Dabing Ren
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China
| | - Linyan Zhou
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China.
| |
Collapse
|
28
|
Yu T, Han G, Luan Z, Zhu C, Zhao J, Sheng Y. Functional Analysis of Genes GlaDFR1 and GlaDFR2 Encoding Dihydroflavonol 4-Reductase (DFR) in Gentiana lutea L. Var. Aurantiaca (M. Laínz) M. Laínz. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1382604. [PMID: 35047628 PMCID: PMC8763498 DOI: 10.1155/2022/1382604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/17/2021] [Indexed: 11/29/2022]
Abstract
Anthocyanins are important pigments for flower color, determining the ornamental and economic values of horticultural plants. As a key enzyme in the biosynthesis of anthocyanidins, dihydroflavonol 4-reductase (DFR) catalyzes the reduction of dihydroflavonols to generate the precursors for anthocyanidins (i.e., leucoanthocyanidins) and anthocyanins. To investigate the functions of DFRs in plants, we cloned the GlaDFR1 and GlaDFR2 genes from the petals of Gentiana lutea var. aurantiaca and transformed both genes into Nicotiana tabacum by Agrobacterium-mediated leaf disc method. We further investigated the molecular and phenotypic characteristics of T1 generation transgenic tobacco plants selected based on the hygromycin resistance and verified by both PCR and semiquantitative real-time PCR analyses. The phenotypic segregation was observed in the flower color of the transgenic tobacco plants, showing petals darker than those in the wild-type (WT) plants. Results of high-performance liquid chromatography (HPLC) analysis showed that the contents of gentiocyanin derivatives were decreased in the petals of transgenic plants in comparison to those of WT plants. Ours results revealed the molecular functions of GlaDFR1 and GlaDFR2 in the formation of coloration, providing solid theoretical foundation and candidate genes for further genetic improvement in flower color of plants.
Collapse
Affiliation(s)
- Tingting Yu
- School of Life Sciences, Changchun Normal University, Changchun 130031, China
| | - Guojun Han
- School of Life Sciences, Changchun Normal University, Changchun 130031, China
| | - Zhihui Luan
- School of Life Sciences, Changchun Normal University, Changchun 130031, China
| | - Changfu Zhu
- School of Life Sciences, Changchun Normal University, Changchun 130031, China
| | - Jinghua Zhao
- School of Life Sciences, Changchun Normal University, Changchun 130031, China
| | - Yanmin Sheng
- School of Life Sciences, Changchun Normal University, Changchun 130031, China
| |
Collapse
|
29
|
Osorio-Guarín JA, Gopaulchan D, Quanckenbush C, Lennon AM, Umaharan P, Cornejo OE. Comparative transcriptomic analysis reveals key components controlling spathe color in Anthurium andraeanum (Hort.). PLoS One 2021; 16:e0261364. [PMID: 34890418 PMCID: PMC8664202 DOI: 10.1371/journal.pone.0261364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 11/30/2021] [Indexed: 11/18/2022] Open
Abstract
Anthurium andraeanum (Hort.) is an important ornamental in the tropical cut-flower industry. However, there is currently insufficient information to establish a clear connection between the genetic model(s) proposed and the putative genes involved in the differentiation between colors. In this study, 18 cDNA libraries related to the spathe color and developmental stages of A. andraeanum were characterized by transcriptome sequencing (RNA-seq). For the de novo transcriptome, a total of 114,334,082 primary sequence reads were obtained from the Illumina sequencer and were assembled into 151,652 unigenes. Approximately 58,476 transcripts were generated and used for comparative transcriptome analysis between three cultivars that differ in spathe color (‘Sasha’ (white), ‘Honduras’ (red), and ‘Rapido’ (purple)). A large number of differentially expressed genes (8,324), potentially involved in multiple biological and metabolic pathways, were identified, including genes in the flavonoid and anthocyanin biosynthetic pathways. Our results showed that the chalcone isomerase (CHI) gene presented the strongest evidence for an association with differences in color and the highest correlation with other key genes (flavanone 3-hydroxylase (F3H), flavonoid 3’5’ hydroxylase (F3’5’H)/ flavonoid 3’-hydroxylase (F3’H), and leucoanthocyanidin dioxygenase (LDOX)) in the anthocyanin pathway. We also identified a differentially expressed cytochrome P450 gene in the late developmental stage of the purple spathe that appeared to determine the difference between the red- and purple-colored spathes. Furthermore, transcription factors related to putative MYB-domain protein that may control anthocyanin pathway were identified through a weighted gene co-expression network analysis (WGCNA). The results provided basic sequence information for future research on spathe color, which have important implications for this ornamental breeding strategies.
Collapse
Affiliation(s)
- Jaime A. Osorio-Guarín
- Centro de Investigación Tibaitatá, Corporación Colombiana de Investigación Agropecuaria–Agrosavia, Mosquera, Cundinamarca, Colombia
| | - David Gopaulchan
- Faculty of Science and Technology, Department of Life Sciences, The University of the West Indies, St. Augustine, Republic of Trinidad and Tobago
| | - Corey Quanckenbush
- Division of Molecular and Translational Sciences, U. S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD, United States of America
| | - Adrian M. Lennon
- Faculty of Science and Technology, Department of Life Sciences, The University of the West Indies, St. Augustine, Republic of Trinidad and Tobago
| | - Pathmanathan Umaharan
- Faculty of Science and Technology, Department of Life Sciences, The University of the West Indies, St. Augustine, Republic of Trinidad and Tobago
| | - Omar E. Cornejo
- School of Biological Sciences, Washington State University, Pullman, Washington, United States of America
- * E-mail:
| |
Collapse
|
30
|
Wang Y, Shi Y, Li K, Yang D, Liu N, Zhang L, Zhao L, Zhang X, Liu Y, Gao L, Xia T, Wang P. Roles of the 2-Oxoglutarate-Dependent Dioxygenase Superfamily in the Flavonoid Pathway: A Review of the Functional Diversity of F3H, FNS I, FLS, and LDOX/ANS. Molecules 2021; 26:molecules26216745. [PMID: 34771153 PMCID: PMC8588099 DOI: 10.3390/molecules26216745] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 11/25/2022] Open
Abstract
The 2-oxoglutarate-dependent dioxygenase (2-OGD) superfamily is one of the largest protein families in plants. The main oxidation reactions they catalyze in plants are hydroxylation, desaturation, demethylation, epimerization, and halogenation. Four members of the 2-OGD superfamily, i.e., flavonone 3β-hydroxylase (F3H), flavones synthase I (FNS I), flavonol synthase (FLS), and anthocyanidin synthase (ANS)/leucoanthocyanidin dioxygenase (LDOX), are present in the flavonoid pathway, catalyzing hydroxylation and desaturation reactions. In this review, we summarize the recent research progress on these proteins, from the discovery of their enzymatic activity, to their functional verification, to the analysis of the response they mediate in plants towards adversity. Substrate diversity analysis indicated that F3H, FNS Ⅰ, ANS/LDOX, and FLS perform their respective dominant functions in the flavonoid pathway, despite the presence of functional redundancy among them. The phylogenetic tree classified two types of FNS Ⅰ, one mainly performing FNS activity, and the other, a new type of FNS present in angiosperms, mainly involved in C-5 hydroxylation of SA. Additionally, a new class of LDOXs is highlighted, which can catalyze the conversion of (+)-catechin to cyanidin, further influencing the starter and extension unit composition of proanthocyanidins (PAs). The systematical description of the functional diversity and evolutionary relationship among these enzymes can facilitate the understanding of their impacts on plant metabolism. On the other hand, it provides molecular genetic evidence of the chemical evolution of flavonoids from lower to higher plants, promoting plant adaptation to harsh environments.
Collapse
Affiliation(s)
- Yueyue Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China; (Y.W.); (K.L.); (D.Y.); (N.L.); (L.Z.); (X.Z.)
| | - Yufeng Shi
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China;
| | - Kaiyuan Li
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China; (Y.W.); (K.L.); (D.Y.); (N.L.); (L.Z.); (X.Z.)
| | - Dong Yang
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China; (Y.W.); (K.L.); (D.Y.); (N.L.); (L.Z.); (X.Z.)
| | - Nana Liu
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China; (Y.W.); (K.L.); (D.Y.); (N.L.); (L.Z.); (X.Z.)
| | - Lingjie Zhang
- School of Life Science, Anhui Agricultural University, Hefei 230036, China; (L.Z.); (Y.L.)
| | - Lei Zhao
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China; (Y.W.); (K.L.); (D.Y.); (N.L.); (L.Z.); (X.Z.)
| | - Xinfu Zhang
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China; (Y.W.); (K.L.); (D.Y.); (N.L.); (L.Z.); (X.Z.)
| | - Yajun Liu
- School of Life Science, Anhui Agricultural University, Hefei 230036, China; (L.Z.); (Y.L.)
| | - Liping Gao
- School of Life Science, Anhui Agricultural University, Hefei 230036, China; (L.Z.); (Y.L.)
- Correspondence: (L.G.); (T.X.); (P.W.)
| | - Tao Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China;
- Correspondence: (L.G.); (T.X.); (P.W.)
| | - Peiqiang Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China; (Y.W.); (K.L.); (D.Y.); (N.L.); (L.Z.); (X.Z.)
- Correspondence: (L.G.); (T.X.); (P.W.)
| |
Collapse
|
31
|
Sun C, Li G, Li H, Lyu Y, Yu S, Zhou J. Enhancing Flavan-3-ol Biosynthesis in Saccharomyces cerevisiae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:12763-12772. [PMID: 34694796 DOI: 10.1021/acs.jafc.1c04489] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Flavan-3-ols are a group of flavonoids that exert beneficial effects. This study aimed to enhance key metabolic processes related to flavan-3-ols biosynthesis. The engineered Saccharomyces cerevisiae strain E32 that produces naringenin from glucose was further engineered for de novo production of two basic flavan-3-ols, afzelechin (AFZ) and catechin (CAT). Through introduction of flavonoid 3-hydroxylase, flavonoid 3'-hydroxylase, dihydroflavonol 4-reductase (DFR), and leucoanthocyanidin reductase (LAR), de novo production of AFZ and CAT can be achieved. The combination of FaDFR from Fragaria × ananassa and VvLAR from Vitis vinifera was optimal. (GGGGS)2 and (EAAAK)2 linkers between DFR and LAR proved optimal for the production of AFZ and CAT, respectively. Optimization of promoters and the enhanced supply of NADPH further increased the production. By combining the best engineering strategies, the optimum strains produced 500.5 mg/L AFZ and 321.3 mg/L CAT, respectively, after fermentation for 90 h in a 5 L bioreactor. The strategies presented could be applied for a more efficient production of flavan-3-ols by various microorganisms.
Collapse
Affiliation(s)
- Chengcheng Sun
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Guangjian Li
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Hongbiao Li
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yunbin Lyu
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Shiqin Yu
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| |
Collapse
|
32
|
Li F, Wu B, Yan L, Qin X, Lai J. Metabolome and transcriptome profiling of Theobroma cacao provides insights into the molecular basis of pod color variation. JOURNAL OF PLANT RESEARCH 2021; 134:1323-1334. [PMID: 34420146 DOI: 10.1007/s10265-021-01338-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
The Theobroma cacao presents a wide diversity in pod color among different cultivars. Although flavonoid biosynthesis has been studied in many plants, molecular mechanisms governing the diversity of coloration in cacao pods are largely unknown. The flavonoid metabolite profiles and flavonoid biosynthetic gene expression in the pod exocarps of light green pod 'TAS 410' (GW), green pod 'TAS 166' (GF), and mauve pod 'TAS 168' (PF) were determined. Changes in flavonoid metabolites, particularly the anthocyanins (cyanidin 3-O-galactoside, cyanidin 3-O-glucoside, and cyanidin O-syringic acid) were significantly up-accumulated in the mauve phenotype (PF) compared to the light green or green phenotypes, endowing the pod color change from light green or green to mauve. Consistently, the PF phenotype showed different expression patterns of flavonoid biosynthetic structural genes in comparison with GW/GF phenotypes. The expression level of LAR and ANR in GW/GF was significantly higher than PF, while the expression level of UFGT in GW/GF was lower than PF. These genes likely generated more anthocyanins in the exocarps samples of PF than that of GW/GF. Simultaneously, colorless flavan-3-ols (catechin, epicatechin and proanthocyanidin) content in the exocarp samples of PF was lower than GW/GF. Additionally, MYB (gene18079) and bHLH (gene5045 and gene21575) may participate in the regulation of the pod color. This study sheds light on the molecular basis of cacao pod color variation, which will contribute to breeding cacao varieties with enhanced flavonoid profiles for nutritional applications.
Collapse
Affiliation(s)
- Fupeng Li
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, 571533, Hainan, China
- Key Laboratory of Genetic Resources Utilization of Spice and Beverage Crops, Ministry of Agriculture and Rural Affairs, Wanning, 571533, Hainan, China
| | - Baoduo Wu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, 571533, Hainan, China
- Key Laboratory of Genetic Resources Utilization of Spice and Beverage Crops, Ministry of Agriculture and Rural Affairs, Wanning, 571533, Hainan, China
| | - Lin Yan
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, 571533, Hainan, China
- Key Laboratory of Genetic Resources Utilization of Spice and Beverage Crops, Ministry of Agriculture and Rural Affairs, Wanning, 571533, Hainan, China
| | - Xiaowei Qin
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, 571533, Hainan, China
- Key Laboratory of Genetic Resources Utilization of Spice and Beverage Crops, Ministry of Agriculture and Rural Affairs, Wanning, 571533, Hainan, China
| | - Jianxiong Lai
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, 571533, Hainan, China.
- Key Laboratory of Genetic Resources Utilization of Spice and Beverage Crops, Ministry of Agriculture and Rural Affairs, Wanning, 571533, Hainan, China.
| |
Collapse
|
33
|
Kang JN, Lee WH, Won SY, Chang S, Hong JP, Oh TJ, Lee SM, Kang SH. Systemic Expression of Genes Involved in the Plant Defense Response Induced by Wounding in Senna tora. Int J Mol Sci 2021; 22:ijms221810073. [PMID: 34576236 PMCID: PMC8469979 DOI: 10.3390/ijms221810073] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 02/05/2023] Open
Abstract
Wounds in tissues provide a pathway of entry for pathogenic fungi and bacteria in plants. Plants respond to wounding by regulating the expression of genes involved in their defense mechanisms. To analyze this response, we investigated the defense-related genes induced by wounding in the leaves of Senna tora using RNA sequencing. The genes involved in jasmonate and ethylene biosynthesis were strongly induced by wounding, as were a large number of genes encoding transcription factors such as ERFs, WRKYs, MYBs, bHLHs, and NACs. Wounding induced the expression of genes encoding pathogenesis-related (PR) proteins, such as PR-1, chitinase, thaumatin-like protein, cysteine proteinase inhibitor, PR-10, and plant defensin. Furthermore, wounding led to the induction of genes involved in flavonoid biosynthesis and the accumulation of kaempferol and quercetin in S. tora leaves. All these genes were expressed systemically in leaves distant from the wound site. These results demonstrate that mechanical wounding can lead to a systemic defense response in the Caesalpinioideae, a subfamily of the Leguminosae. In addition, a co-expression analysis of genes induced by wounding provides important information about the interactions between genes involved in plant defense responses.
Collapse
Affiliation(s)
- Ji-Nam Kang
- Genomics Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea; (J.-N.K.); (S.Y.W.); (S.C.); (J.-P.H.)
| | - Woo-Haeng Lee
- Department of Life Science and Biochemical Engineering, Sun Moon University, Asan 31460, Korea; (W.-H.L.); (T.-J.O.)
| | - So Youn Won
- Genomics Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea; (J.-N.K.); (S.Y.W.); (S.C.); (J.-P.H.)
| | - Saemin Chang
- Genomics Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea; (J.-N.K.); (S.Y.W.); (S.C.); (J.-P.H.)
| | - Jong-Pil Hong
- Genomics Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea; (J.-N.K.); (S.Y.W.); (S.C.); (J.-P.H.)
| | - Tae-Jin Oh
- Department of Life Science and Biochemical Engineering, Sun Moon University, Asan 31460, Korea; (W.-H.L.); (T.-J.O.)
| | - Si Myung Lee
- Genomics Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea; (J.-N.K.); (S.Y.W.); (S.C.); (J.-P.H.)
- Correspondence: (S.M.L.); (S.-H.K.)
| | - Sang-Ho Kang
- Genomics Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea; (J.-N.K.); (S.Y.W.); (S.C.); (J.-P.H.)
- Correspondence: (S.M.L.); (S.-H.K.)
| |
Collapse
|
34
|
Lu J, Zhang Q, Lang L, Jiang C, Wang X, Sun H. Integrated metabolome and transcriptome analysis of the anthocyanin biosynthetic pathway in relation to color mutation in miniature roses. BMC PLANT BIOLOGY 2021; 21:257. [PMID: 34088264 PMCID: PMC8176584 DOI: 10.1186/s12870-021-03063-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 05/24/2021] [Indexed: 06/01/2023]
Abstract
BACKGROUND Roses are famous ornamental plants worldwide. Floral coloration is one of the most prominent traits in roses and is mainly regulated through the anthocyanin biosynthetic pathway. In this study, we investigated the key genes and metabolites of the anthocyanin biosynthetic pathway involved in color mutation in miniature roses. A comparative metabolome and transcriptome analysis was carried out on the Neptune King rose and its color mutant, Queen rose, at the blooming stage. Neptune King rose has light pink colored petals while Queen rose has deep pink colored petals. RESULT A total of 190 flavonoid-related metabolites and 38,551 unique genes were identified. The contents of 45 flavonoid-related metabolites, and the expression of 15 genes participating in the flavonoid pathway, varied significantly between the two cultivars. Seven anthocyanins (cyanidin 3-O-glucosyl-malonylglucoside, cyanidin O-syringic acid, cyanidin 3-O-rutinoside, cyanidin 3-O-galactoside, cyanidin 3-O-glucoside, peonidin 3-O-glucoside chloride, and pelargonidin 3-O-glucoside) were found to be the major metabolites, with higher abundance in the Queen rose. Thirteen anthocyanin biosynthetic related genes showed an upregulation trend in the mutant flower, which may favor the higher levels of anthocyanins in the mutant. Besides, eight TRANSPARENT TESTA 12 genes were found upregulated in Queen rose, probably contributing to a high vacuolar sequestration of anthocyanins. Thirty transcription factors, including two MYB and one bHLH, were differentially expressed between the two cultivars. CONCLUSIONS This study provides important insights into major genes and metabolites of the anthocyanin biosynthetic pathway modulating flower coloration in miniature rose. The results will be conducive for manipulating the anthocyanin pathways in order to engineer novel miniature rose cultivars with specific colors.
Collapse
Affiliation(s)
- Jiaojiao Lu
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
- Liaoning Academy of Agricultural Sciences, Shenyang, 110161, China
| | - Qing Zhang
- Liaoning Academy of Agricultural Sciences, Shenyang, 110161, China
| | - Lixin Lang
- Liaoning Academy of Agricultural Sciences, Shenyang, 110161, China
| | - Chuang Jiang
- Liaoning Academy of Agricultural Sciences, Shenyang, 110161, China
| | - Xiaofeng Wang
- Liaoning Academy of Agricultural Sciences, Shenyang, 110161, China
| | - Hongmei Sun
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
35
|
Zhang J, Zhao J, Tan Q, Qiu X, Mei S. Comparative transcriptome analysis reveals key genes associated with pigmentation in radish (Raphanus sativus L.) skin and flesh. Sci Rep 2021; 11:11434. [PMID: 34075070 PMCID: PMC8169917 DOI: 10.1038/s41598-021-90633-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 05/12/2021] [Indexed: 02/04/2023] Open
Abstract
Radish (Raphanus sativus) is an important vegetable worldwide that exhibits different flesh and skin colors. The anthocyanins responsible for the red and purple coloring in radishes possess nutritional value and pharmaceutical potential. To explore the structural and regulatory networks related to anthocyanin biosynthesis and identify key genes, we performed comparative transcriptome analyses of the skin and flesh of six colored radish accessions. The transcript profiles showed that each accession had a species-specific transcript profile. For radish pigmentation accumulation, the expression levels of anthocyanin biosynthetic genes (RsTT4, RsC4H, RsTT7, RsCCOAMT, RsDFR, and RsLDOX) were significantly upregulated in the red- and purple-colored accessions, but were downregulated or absent in the white and black accessions. The correlation test, combined with metabolome (PCC > 0.95), revealed five structural genes (RsTT4, RsDFR, RsCCOAMT, RsF3H, and RsBG8L) and three transcription factors (RsTT8-1, RsTT8-2, and RsPAR1) to be significantly correlated with flavonoids in the skin of the taproot. Four structural genes (RsBG8L, RsDFR, RsCCOAMT, and RsLDOX) and nine transcription factors (RsTT8-1, RsTT8-2, RsMYB24L, RsbHLH57, RsPAR2L, RsbHLH113L, RsOGR3L, RsMYB24, and RsMYB34L) were found to be significantly correlated with metabolites in the flesh of the taproot. This study provides a foundation for future studies on the gene functions and genetic diversity of radish pigmentation and should aid in the cultivation of new valuable radish varieties.
Collapse
Affiliation(s)
- Jifang Zhang
- grid.464342.3Institute of Bast Fiber Crops, Chinese Academy of Agricultural Science, Changsha, China ,Center for Southern Economic Crops, Chinese Academy of Agricultural Science, Changsha, China
| | - Jian Zhao
- grid.410753.4Novogene Bioinformatics Institute, Beijing, China
| | - Qunyun Tan
- grid.464342.3Institute of Bast Fiber Crops, Chinese Academy of Agricultural Science, Changsha, China ,Center for Southern Economic Crops, Chinese Academy of Agricultural Science, Changsha, China
| | - Xiaojun Qiu
- grid.464342.3Institute of Bast Fiber Crops, Chinese Academy of Agricultural Science, Changsha, China ,Center for Southern Economic Crops, Chinese Academy of Agricultural Science, Changsha, China
| | - Shiyong Mei
- grid.464342.3Institute of Bast Fiber Crops, Chinese Academy of Agricultural Science, Changsha, China ,Center for Southern Economic Crops, Chinese Academy of Agricultural Science, Changsha, China
| |
Collapse
|
36
|
Kim S, Van den Broeck L, Karre S, Choi H, Christensen SA, Wang G, Jo Y, Cho WK, Balint‐Kurti P. Analysis of the transcriptomic, metabolomic, and gene regulatory responses to Puccinia sorghi in maize. MOLECULAR PLANT PATHOLOGY 2021; 22:465-479. [PMID: 33641256 PMCID: PMC7938627 DOI: 10.1111/mpp.13040] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/22/2020] [Accepted: 01/25/2021] [Indexed: 05/22/2023]
Abstract
Common rust, caused by Puccinia sorghi, is a widespread and destructive disease of maize. The Rp1-D gene confers resistance to the P. sorghi IN2 isolate, mediating a hypersensitive cell death response (HR). To identify differentially expressed genes (DEGs) and metabolites associated with the compatible (susceptible) interaction and with Rp1-D-mediated resistance in maize, we performed transcriptomics and targeted metabolome analyses of P. sorghi IN2-infected leaves from the near-isogenic lines H95 and H95:Rp1-D, which differed for the presence of Rp1-D. We observed up-regulation of genes involved in the defence response and secondary metabolism, including the phenylpropanoid, flavonoid, and terpenoid pathways. Metabolome analyses confirmed that intermediates from several transcriptionally up-regulated pathways accumulated during the defence response. We identified a common response in H95:Rp1-D and H95 with an additional H95:Rp1-D-specific resistance response observed at early time points at both transcriptional and metabolic levels. To better understand the mechanisms underlying Rp1-D-mediated resistance, we inferred gene regulatory networks occurring in response to P. sorghi infection. A number of transcription factors including WRKY53, BHLH124, NKD1, BZIP84, and MYB100 were identified as potentially important signalling hubs in the resistance-specific response. Overall, this study provides a novel and multifaceted understanding of the maize susceptible and resistance-specific responses to P. sorghi.
Collapse
Affiliation(s)
- Saet‐Byul Kim
- Department of Entomology and Plant PathologyNC State UniversityRaleighNorth CarolinaUSA
| | - Lisa Van den Broeck
- Department of Plant and Microbial BiologyNC State UniversityRaleighNorth CarolinaUSA
| | - Shailesh Karre
- Department of Entomology and Plant PathologyNC State UniversityRaleighNorth CarolinaUSA
| | - Hoseong Choi
- Research Institute of Agriculture and Life SciencesCollege of Agriculture and Life SciencesSeoul National UniversitySeoulRepublic of Korea
| | - Shawn A. Christensen
- Chemistry Research UnitDepartment of Agriculture–Agricultural Research Service (USDA‐ARS)Center for Medical, Agricultural, and Veterinary EntomologyGainesvilleFloridaUSA
| | - Guan‐Feng Wang
- Department of Entomology and Plant PathologyNC State UniversityRaleighNorth CarolinaUSA
- The Key Laboratory of Plant Development and Environmental Adaptation BiologyMinistry of EducationSchool of Life SciencesShandong UniversityQingdaoChina
| | - Yeonhwa Jo
- Research Institute of Agriculture and Life SciencesCollege of Agriculture and Life SciencesSeoul National UniversitySeoulRepublic of Korea
| | - Won Kyong Cho
- Research Institute of Agriculture and Life SciencesCollege of Agriculture and Life SciencesSeoul National UniversitySeoulRepublic of Korea
| | - Peter Balint‐Kurti
- Department of Entomology and Plant PathologyNC State UniversityRaleighNorth CarolinaUSA
- Plant Science Research Unit USDA‐ARSRaleighNorth CarolinaUSA
| |
Collapse
|
37
|
Genome-Wide Investigation of Major Enzyme-Encoding Genes in the Flavonoid Metabolic Pathway in Tartary Buckwheat (Fagopyrum tataricum). J Mol Evol 2021; 89:269-286. [PMID: 33760965 DOI: 10.1007/s00239-021-10004-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 03/10/2021] [Indexed: 10/21/2022]
Abstract
Key enzymes play a vital role in plant growth and development. However, the evolutionary relationships between genes encoding key enzymes in the metabolic pathway of Tartary buckwheat flavonoids are poorly understood. Based on the published Tartary buckwheat genome sequence and related Tartary buckwheat transcriptome data, 48 key enzyme-encoding genes involved in flavonoid metabolism were screened from the Tartary buckwheat genome in this study; the chromosome localization, gene structure and promoter elements of these enzyme-encoding gene were also investigated. Gene structure analysis revealed relatively conserved 5' exon sequences among the 48 genes, indicating that the structural diversity of key enzyme-encoding genes is low in Tartary buckwheat. Through promoter analysis, these key enzyme-encoding genes were found to contain a large number of light-response elements and hormone-response elements. In addition, some genes could bind MYB transcription factors, participating in the regulation of flavonoid biosynthesis. The transcription level of the 48 key enzyme-encoding gene varied greatly among tissues. In this study, we identified 48 key enzyme-encoding genes involved in flavonoid metabolic pathways, and elucidated the structure, evolution and tissue-specific expression patterns of these genes. These results lay a foundation for further understanding the functional characteristics and evolutionary relationships of key enzyme-encoding genes involved in the flavonoid metabolic pathway in Tartary buckwheat.
Collapse
|
38
|
Wu Y, Guo J, Wang T, Cao F, Wang G. Metabolomic and transcriptomic analyses of mutant yellow leaves provide insights into pigment synthesis and metabolism in Ginkgo biloba. BMC Genomics 2020; 21:858. [PMID: 33267778 PMCID: PMC7709416 DOI: 10.1186/s12864-020-07259-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 11/19/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ginkgo (Ginkgo biloba L.) is an excellent landscape species. Its yellow-green leaf mutants are ideal materials for research on pigment synthesis, but the regulatory mechanism of leaf coloration in these ginkgo mutants remains unclear. RESULTS We compared the metabolomes and transcriptomes of green and mutant yellow leaves of ginkgo over the same period in this study. The results showed that the chlorophyll content of normal green leaves was significantly higher than that of mutant yellow leaves of ginkgo. We obtained 931.52M clean reads from different color leaves of ginkgo. A total of 283 substances in the metabolic profiles were finally detected, including 50 significantly differentially expressed metabolites (DEMs). We identified these DEMs and 1361 differentially expressed genes (DEGs), with 37, 4, 3 and 13 DEGs involved in the photosynthesis, chlorophyll, carotenoid, and flavonoid biosynthesis pathways, respectively. Moreover, integrative analysis of the metabolomes and transcriptomes revealed that the flavonoid pathway contained the upregulated DEM (-)-epicatechin. Fourteen DEGs from the photosynthesis pathway were positively or negatively correlated with the DEMs. CONCLUSIONS Our findings suggest a complex metabolic network in mutant yellow leaves. This study will provide a basis for studies of leaf color variation and regulation.
Collapse
Affiliation(s)
- Yaqiong Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China.,Department of Forest and Conservation Sciences, Faculty of Forestry, The University of British Columbia, Vancouver, V6T 1Z4, Canada.,Research Center for Pomology, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Qian Hu Hou Cun No.1, Nanjing, 210014, China
| | - Jing Guo
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China.,Department of Forest and Conservation Sciences, Faculty of Forestry, The University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Tongli Wang
- Department of Forest and Conservation Sciences, Faculty of Forestry, The University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Fuliang Cao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China
| | - Guibin Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China.
| |
Collapse
|
39
|
Zheng C, Shen F, Wang Y, Wu T, Xu X, Zhang X, Han Z. Intricate genetic variation networks control the adventitious root growth angle in apple. BMC Genomics 2020; 21:852. [PMID: 33261554 PMCID: PMC7709433 DOI: 10.1186/s12864-020-07257-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 11/19/2020] [Indexed: 12/20/2022] Open
Abstract
Background The root growth angle (RGA) typically determines plant rooting depth, which is significant for plant anchorage and abiotic stress tolerance. Several quantitative trait loci (QTLs) for RGA have been identified in crops. However, the underlying mechanisms of the RGA remain poorly understood, especially in apple rootstocks. The objective of this study was to identify QTLs, validate genetic variation networks, and develop molecular markers for the RGA in apple rootstock. Results Bulked segregant analysis by sequencing (BSA-seq) identified 25 QTLs for RGA using 1955 hybrids of the apple rootstock cultivars ‘Baleng Crab’ (Malus robusta Rehd., large RGA) and ‘M9’ (M. pumila Mill., small RGA). With RNA sequencing (RNA-seq) and parental resequencing, six major functional genes were identified and constituted two genetic variation networks for the RGA. Two single nucleotide polymorphisms (SNPs) of the MdLAZY1 promoter damaged the binding sites of MdDREB2A and MdHSFB3, while one SNP of MdDREB2A and MdIAA1 affected the interactions of MdDREB2A/MdHSFB3 and MdIAA1/MdLAZY1, respectively. A SNP within the MdNPR5 promoter damaged the interaction between MdNPR5 and MdLBD41, while one SNP of MdLBD41 interrupted the MdLBD41/MdbHLH48 interaction that affected the binding ability of MdLBD41 on the MdNPR5 promoter. Twenty six SNP markers were designed on candidate genes in each QTL interval, and the marker effects varied from 0.22°-26.11°. Conclusions Six diagnostic markers, SNP592, G122, b13, Z312, S1272, and S1288, were used to identify two intricate genetic variation networks that control the RGA and may provide new insights into the accuracy of the molecular markers. The QTLs and SNP markers can potentially be used to select deep-rooted apple rootstocks.
Collapse
Affiliation(s)
- Caixia Zheng
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Fei Shen
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yi Wang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Ting Wu
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xuefeng Xu
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xinzhong Zhang
- College of Horticulture, China Agricultural University, Beijing, 100193, China.
| | - Zhenhai Han
- College of Horticulture, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
40
|
Wang L, Dossou SSK, Wei X, Zhang Y, Li D, Yu J, Zhang X. Transcriptome Dynamics during Black and White Sesame ( Sesamum indicum L.) Seed Development and Identification of Candidate Genes Associated with Black Pigmentation. Genes (Basel) 2020; 11:genes11121399. [PMID: 33255784 PMCID: PMC7768470 DOI: 10.3390/genes11121399] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/11/2020] [Accepted: 11/24/2020] [Indexed: 12/20/2022] Open
Abstract
Seed coat color is a crucial agronomic trait in sesame (Sesamum indicum L.) since it is strongly linked to seed oil, proteins, and lignans contents, and also influences consumer preferences. In East Asia, black sesame seed is used in the treatment and the prevention of various diseases. However, in sesame, little is known about the establishment of the seed coat color, and only one gene has been reported to control black pigmentation. This study provides an overview of developing seeds transcriptome of two varieties of sesame "Zhongfengzhi No.1" (white seed) and "Zhongzhi No.33" (black seed) and shed light on genes involving in black seed formation. Until eight days post-anthesis (DPA), both the seeds of the two varieties were white. The black sesame seed turned to yellow between 9 and 11 DPA and then black between 12 and 14 DPA. The black and white sesame showed similar trend-expressed genes with the numbers increased at the early stages of seed development. The differentially expressed genes (DEGs) number increased with seed development in the two sesame varieties. We examined the DEGs and uncovered that more were up-regulated at the early stages. The DEGs between the black and white sesame were mainly enriched in 37 metabolic pathways, among which the flavonoid biosynthesis and biosynthesis of secondary metabolites were dominants. Furthermore, we identified 20 candidate genes associated with pigment biosynthesis in black sesame seed, among which 10 were flavonoid biosynthesis and regulatory genes. These genes also include isochorismate and polyphenol oxidase genes. By comparing the phenotypes and genes expressions of the black and white sesame seed at different development stages, this work revealed the important role of 8-14 DPA in black pigment biosynthesis and accumulation. Moreover, it unfolded candidate genes associated with black pigmentation in sesame. These findings provide a vast transcriptome dataset and list of genes that will be targeted for functional studies related to the molecular mechanism involved in biosynthesis and regulation of seed coat color in sesame.
Collapse
Affiliation(s)
- Linhai Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (L.W.); (S.S.K.D.); (Y.Z.); (D.L.); (J.Y.)
| | - Senouwa Segla Koffi Dossou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (L.W.); (S.S.K.D.); (Y.Z.); (D.L.); (J.Y.)
| | - Xin Wei
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China;
| | - Yanxin Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (L.W.); (S.S.K.D.); (Y.Z.); (D.L.); (J.Y.)
| | - Donghua Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (L.W.); (S.S.K.D.); (Y.Z.); (D.L.); (J.Y.)
| | - Jingyin Yu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (L.W.); (S.S.K.D.); (Y.Z.); (D.L.); (J.Y.)
| | - Xiurong Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (L.W.); (S.S.K.D.); (Y.Z.); (D.L.); (J.Y.)
- Correspondence:
| |
Collapse
|
41
|
Jiang L, Fan Z, Tong R, Zhou X, Li J, Yin H. Functional Diversification of the Dihydroflavonol 4-Reductase from Camellia nitidissima Chi. in the Control of Polyphenol Biosynthesis. Genes (Basel) 2020; 11:E1341. [PMID: 33198369 PMCID: PMC7696568 DOI: 10.3390/genes11111341] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 01/09/2023] Open
Abstract
Plant secondary metabolism is complex in its diverse chemical composition and dynamic regulation of biosynthesis. How the functional diversification of enzymes contributes to the diversity is largely unknown. In the flavonoids pathway, dihydroflavonol 4-reductase (DFR) is a key enzyme mediating dihydroflavanol into anthocyanins biosynthesis. Here, the DFR homolog was identified from Camellia nitidissima Chi. (CnDFR) which is a unique species of the genus Camellia with golden yellow petals. Sequence analysis showed that CnDFR possessed not only conserved catalytic domains, but also some amino acids peculiar to Camellia species. Gene expression analysis revealed that CnDFR was expressed in all tissues and the expression of CnDFR was positively correlated with polyphenols but negatively with yellow coloration. The subcellular localization of CnDFR by the tobacco infiltration assay showed a likely dual localization in the nucleus and cell membrane. Furthermore, overexpression transgenic lines were generated in tobacco to understand the molecular function of CnDFR. The analyses of metabolites suggested that ectopic expression of CnDFR enhanced the biosynthesis of polyphenols, while no accumulation of anthocyanins was detected. These results indicate a functional diversification of the reductase activities in Camellia plants and provide molecular insights into the regulation of floral color.
Collapse
Affiliation(s)
- Lina Jiang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (L.J.); (Z.F.); (R.T.)
- Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Zhengqi Fan
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (L.J.); (Z.F.); (R.T.)
- Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Ran Tong
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (L.J.); (Z.F.); (R.T.)
| | - Xingwen Zhou
- College of Biology and Pharmacy, Yulin Normal University, Yulin 537000, China;
| | - Jiyuan Li
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (L.J.); (Z.F.); (R.T.)
| | - Hengfu Yin
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (L.J.); (Z.F.); (R.T.)
- Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| |
Collapse
|
42
|
Jiao F, Zhao L, Wu X, Song Z, Li Y. Metabolome and transcriptome analyses of the molecular mechanisms of flower color mutation in tobacco. BMC Genomics 2020; 21:611. [PMID: 32894038 PMCID: PMC7487631 DOI: 10.1186/s12864-020-07028-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/27/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Anthocyanins determinate the flower color of many plants. Tobacco is a model plant for studying the molecular regulation of flower coloration. We investigated the mechanism underlying flower coloration in tobacco by profiling flavonoid metabolites,expression of anthocyanin biosynthetic structural genes and their regulator genes in the pink-flowered tobacco cultivar Yunyan 87 and white-flowered Yunyan 87 mutant. RESULT Significant down-accumulation of anthocyanins, including cyanidin 3-O-glucoside, cyanin, cyanidin 3-O-rutinoside, pelargonidin 3-O-beta-D-glucoside, cyanidin O-syringic acid, pelargonin, and pelargonidin 3-O-malonylhexoside (log2 fold change < - 10), endowed the flower color mutation in Yunyan 87 mutant. Transcriptome analysis showed that the coordinately down-regulated anthocyanin biosynthetic genes including chalcone isomerase, naringenin 3-dioxygenase, dihydroflavonol 4-reductase and UDP-glucose:flavonoid 3-O-glucosyltransferase played critical roles in suppressing the formation of the aforesaid anthocyanins. Several genes encoding MYB and bHLH transcription factors were also found down-regulated, and probably the reason for the suppression of structural genes. CONCLUSION This is the first study of tobacco flower coloration combining metabolome and transcriptome analyses, and the results shed a light on the systematic regulation mechanisms of flower coloration in tobacco. The obtained information will aid in developing strategies to modify flower color through genetic transformation.
Collapse
Affiliation(s)
- Fangchan Jiao
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, Yunnan, China
- National Center for Tobacco Gene Engineering, Kunming, 650021, Yunnan, China
| | - Lu Zhao
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, Yunnan, China
- National Center for Tobacco Gene Engineering, Kunming, 650021, Yunnan, China
| | - Xingfu Wu
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, Yunnan, China
- National Center for Tobacco Gene Engineering, Kunming, 650021, Yunnan, China
| | - Zhongbang Song
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, Yunnan, China.
- National Center for Tobacco Gene Engineering, Kunming, 650021, Yunnan, China.
| | - Yongping Li
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, Yunnan, China.
- National Center for Tobacco Gene Engineering, Kunming, 650021, Yunnan, China.
| |
Collapse
|
43
|
Hu Y, Han Z, Sun Y, Wang S, Wang T, Wang Y, Xu K, Zhang X, Xu X, Han Z, Wu T. ERF4 affects fruit firmness through TPL4 by reducing ethylene production. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:937-950. [PMID: 32564488 DOI: 10.1111/tpj.14884] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 05/28/2020] [Accepted: 06/05/2020] [Indexed: 05/23/2023]
Abstract
The firmness of fleshy fruit crops has a significant effect on their quality, consumer preference, shelf life and transportability. In a combined quantitative trait locus and genome-wide association studies study of apple fruit texture, we identified a mutation (C-G) in the ethylene response factor-associated amphiphilic repression (EAR) motif in the coding region of the apple ETHYLENE RESPONSE FACTOR4 (ERF4) gene. Chromatin immunoprecipitation sequencing showed that ERF4 binds to the promoter of ERF3, which is involved in regulation of ethylene biosynthesis. The EAR mutation in ERF4 results in reduced repression of ERF3 expression, which is turn promotes ethylene production and loss of fruit firmness. ERF4 acts as a transcriptional repressor whose activity is modulated by a TOPLESS co-repressor 4 (TPL4)-binding EAR repression motif. Biolayer interferometry analysis showed that the mutation in the EAR motif causes a reduction in the interaction with TPL4. Suppression of ERF4 or TPL4 promoted fruit ripening and ethylene production. Taken together, our results provide insights into how ERF4 allelic variation underlies an important fruit quality trait.
Collapse
Affiliation(s)
- Yanan Hu
- College of Horticulture, China Agricultural University, Beijing, 100193, P. R. China
| | - Zhenyun Han
- College of Horticulture, China Agricultural University, Beijing, 100193, P. R. China
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
| | - Yaqiang Sun
- College of Horticulture, China Agricultural University, Beijing, 100193, P. R. China
| | - Shuai Wang
- College of Horticulture, China Agricultural University, Beijing, 100193, P. R. China
| | - Ting Wang
- College of Horticulture, China Agricultural University, Beijing, 100193, P. R. China
| | - Yi Wang
- College of Horticulture, China Agricultural University, Beijing, 100193, P. R. China
| | - Kenong Xu
- Horticulture Section, School of Integrative Plant Science, Cornell University, New York State Agricultural Experiment Station, Geneva, NY, 14456, USA
| | - Xinzhong Zhang
- College of Horticulture, China Agricultural University, Beijing, 100193, P. R. China
| | - Xuefeng Xu
- College of Horticulture, China Agricultural University, Beijing, 100193, P. R. China
| | - Zhenhai Han
- College of Horticulture, China Agricultural University, Beijing, 100193, P. R. China
| | - Ting Wu
- College of Horticulture, China Agricultural University, Beijing, 100193, P. R. China
| |
Collapse
|
44
|
Chen X, Liu W, Huang X, Fu H, Wang Q, Wang Y, Cao J. Arg-type dihydroflavonol 4-reductase genes from the fern Dryopteris erythrosora play important roles in the biosynthesis of anthocyanins. PLoS One 2020; 15:e0232090. [PMID: 32357153 PMCID: PMC7194404 DOI: 10.1371/journal.pone.0232090] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 04/07/2020] [Indexed: 12/11/2022] Open
Abstract
Dihydroflavonol 4-reductase (DFR), a key enzyme involved in the biosynthesis of anthocyanins, has been cloned from various species. However, little research has been conducted on this enzyme in ferns, which occupy a unique evolutionary position. In this study, we isolated two novel DFR genes from the fern Dryopteris erythrosora. In vitro enzymatic analysis revealed that DeDFR1 and DeDFR2 enzymes can catalyze dihydrokaempferol and dihydroquercetin but cannot catalyze dihydromyricetin. Amino acid sequence analysis showed that DeDFR1 and DeDFR2 have an arginine at the same substrate-specificity-determining site as that in the ferns Salvinia cucullata and Azolla filiculoides. Thus, we speculate that the Arg-type DFR is a new DFR functional type. To further verify the substrate preferences of the Arg-type DFR, an amino acid substitution assay was conducted. When N133 was mutated to R133, Arabidopsis DFR protein completely lost its catalytic activity for dihydromyricetin, as observed for DeDFR1 and DeDFR2. Additionally, heterologous expression of DeDFR2 in the Arabidopsis tt3-1 mutant resulted in increasing anthocyanin accumulation. In summary, DeDFR1 and DeDFR2 are considered to be a new type of DFR with unique structures and functions. The discovery of the Arg-type DFR provides new insights into the anthocyanin biosynthesis pathway in ferns.
Collapse
Affiliation(s)
- Xuefei Chen
- College of Life Science, East China Normal University, Shanghai, China
- College of Life Science, Shanghai Normal University, Shanghai, China
| | - Wenli Liu
- College of Life Science, Shanghai Normal University, Shanghai, China
| | - Xianyan Huang
- College of Life Science, Shanghai Normal University, Shanghai, China
| | - Huanhuan Fu
- College of Life Science, Shanghai Normal University, Shanghai, China
| | - Quanxi Wang
- College of Life Science, Shanghai Normal University, Shanghai, China
- Shanghai Key Laboratory of Plant Functional Genomics and Resource, Shanghai Chenshan Botanical Garden, Shanghai, China
| | - Youfang Wang
- College of Life Science, East China Normal University, Shanghai, China
| | - Jianguo Cao
- College of Life Science, Shanghai Normal University, Shanghai, China
| |
Collapse
|
45
|
Xia H, Zhu L, Zhao C, Li K, Shang C, Hou L, Wang M, Shi J, Fan S, Wang X. Comparative transcriptome analysis of anthocyanin synthesis in black and pink peanut. PLANT SIGNALING & BEHAVIOR 2020; 15:1721044. [PMID: 32009540 PMCID: PMC7053958 DOI: 10.1080/15592324.2020.1721044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/18/2019] [Accepted: 12/22/2019] [Indexed: 06/01/2023]
Abstract
In recent years, black testa peanut (Arachis hypogaea L.) has been favored because of its nutritional value and health function. To explore the genetic basis of peanut testa color, high-throughput sequencing technology was used to sequence the transcriptome of black testa peanut 'ZH9' and pink testa peanut 'ZH8.' Over 18 million high-quality reads were assembled into 49,404-52,578 genes for these two cultivars using a combined assembly strategy. Totally, 4,122 differentially expressed genes (DEGs) were identified between ZH8 and ZH9, among which 1317 (32%) were up-regulated and 2805 (68%) were down-regulated. KEGG analysis showed that the pathways of anthocyanin biosynthesis, isoflavonoid biosynthesis, flavone and flavonol biosynthesis, and phenylpropanoid biosynthesis were in the top 20 differentially expressed genes enriched pathways. Further analysis showed that the formation of the black color of ZH9 testa was mainly due to the reduction of lignin biosynthesis and isoflavonoid biosynthesis, and as a result, more substrate flow to anthocyanin biosynthesis. The up-regulation of all genes associated with DFR, a key enzyme determining flavonoid synthesis or anthocyanin synthesis in the flavonoid metabolic pathway, is also a strategy for increasing dihydroflavonol, a substrate for anthocyanin and flavonol biosynthesis. In addition, we identified three up-regulated R2R3MYB transcription factors associated with anthocyanin biosynthesis in ZH9. Finally, we verified the expressions of 15 genes that encode key enzymes and transcription factors using quantitative real-time PCR (qRT-PCR).
Collapse
Affiliation(s)
- Han Xia
- College of Life Sciences, Shandong Normal University, Ji’nan, China
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Ji’nan, China
| | - Lin Zhu
- College of Life Sciences, Shandong Normal University, Ji’nan, China
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Ji’nan, China
| | - Chuanzhi Zhao
- College of Life Sciences, Shandong Normal University, Ji’nan, China
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Ji’nan, China
| | - Ke Li
- College of Life Sciences, Shandong Normal University, Ji’nan, China
| | - Caili Shang
- College of Life Sciences, Shandong Normal University, Ji’nan, China
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Ji’nan, China
| | - Lei Hou
- College of Life Sciences, Shandong Normal University, Ji’nan, China
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Ji’nan, China
| | - Mingxiao Wang
- College of Life Sciences, Shandong Normal University, Ji’nan, China
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Ji’nan, China
| | - Jing Shi
- College of Life Sciences, Shandong Normal University, Ji’nan, China
| | - Shoujin Fan
- College of Life Sciences, Shandong Normal University, Ji’nan, China
| | - Xingjun Wang
- College of Life Sciences, Shandong Normal University, Ji’nan, China
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Ji’nan, China
| |
Collapse
|
46
|
Tang Y, Fang Z, Liu M, Zhao D, Tao J. Color characteristics, pigment accumulation and biosynthetic analyses of leaf color variation in herbaceous peony ( Paeonia lactiflora Pall.). 3 Biotech 2020; 10:76. [PMID: 32051809 PMCID: PMC6987280 DOI: 10.1007/s13205-020-2063-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 01/08/2020] [Indexed: 01/26/2023] Open
Abstract
Herbaceous peony (Paeonia lactiflora Pall.) is one of the color-leaved ornamental spring plants, with graceful appearance and splendid color. However, the underlying mechanism of this coloration variation from purple to green has not been studied in P. lactiflora. In th study, the leaves in purple, purple-green, and green stages were compared in terms of anatomical, physiological, and molecular. We found that the variation of leaf color from purple to green was mainly determined by the change in pigments distributed in the leaf surface. Physiological experiments showed a significant increase in chlorophyll contents and a notable reduction in anthocyanin contents in leaves from the purple to green stages. We further found that the anthocyanin biosynthesis-related dihydroflavonol 4-reductase (DFR) gene and anthocyanin synthase (ANS) gene as well as chlorophyll biosynthesis-related glutamyl-tRNA reductase (HEMA) gene showed a decreased trend in leaves from purple to green stages, whereas the chlorophyll degradation-related chlorophyll b reductase (NYC) gene showed a rising trend. Alteration of DFR and ANS gene expression might reduce anthocyanin accumulation, whereas increased HEMA gene expression would enhance chlorophyll biosynthesis and reduced NYC gene expression would inhibit chlorophyll degradation. Consequently, reduction in anthocyanins and enhanced deposition of chlorophylls resulted in leaf coloration variation from purple to green in P. lactiflora, which could improve our understanding of its mechanism for further studies.
Collapse
Affiliation(s)
- Yuhan Tang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009 People’s Republic of China
- Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009 Jiangsu People’s Republic of China
| | - Ziwen Fang
- Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009 Jiangsu People’s Republic of China
| | - Mi Liu
- Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009 Jiangsu People’s Republic of China
| | - Daqiu Zhao
- Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009 Jiangsu People’s Republic of China
| | - Jun Tao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009 People’s Republic of China
- Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009 Jiangsu People’s Republic of China
| |
Collapse
|
47
|
Li H, Li Y, Yu J, Wu T, Zhang J, Tian J, Yao Y. MdMYB8 is associated with flavonol biosynthesis via the activation of the MdFLS promoter in the fruits of Malus crabapple. HORTICULTURE RESEARCH 2020; 7:19. [PMID: 32025322 PMCID: PMC6994661 DOI: 10.1038/s41438-020-0238-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 12/10/2019] [Indexed: 05/20/2023]
Abstract
Flavonols are polyphenolic compounds that play important roles in plant stress resistance and development. They are also valuable components of the human diet. The Malus crabapple cultivar 'Flame' provides an excellent model for studying flavonol biosynthesis due to the high flavonol content of its fruit peel. To obtain a more detailed understanding of the flavonol regulatory network involved in fruit development, the transcriptomes of the fruit of the Malus cv. 'Flame' from five continuous developmental stages were analyzed using RNA sequencing. A flavonol-related gene module was identified through weighted gene coexpression network analysis (WGCNA), and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that phytohormones are involved in regulating flavonol biosynthesis during fruit development. A putative transcription factor, MdMYB8, was selected for further study through hub gene correlation network analysis and yeast one-hybrid assays. Stable overexpression or RNAi knockdown of MdMYB8 in transgenic 'Orin' apple calli resulted in a higher or lower flavonol content, respectively, suggesting that MdMYB8 is a regulator of flavonol biosynthesis. This transcriptome analysis provides valuable data for future studies of flavonol synthesis and regulation.
Collapse
Affiliation(s)
- Hua Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China
- Department of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Yu Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China
- Department of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Jiaxuan Yu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China
- Department of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Ting Wu
- College of Horticulture, China Agricultural University, Beijing, China
| | - Jie Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China
- Department of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Ji Tian
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China
- Department of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Yuncong Yao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China
- Department of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
48
|
Phytochemical Shift from Condensed Tannins to Flavonoids in Transgenic Betula pendula Decreases Consumption and Growth but Improves Growth Efficiency of Epirrita autumnata Larvae. J Chem Ecol 2019; 46:217-231. [PMID: 31879865 PMCID: PMC7056695 DOI: 10.1007/s10886-019-01134-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/31/2019] [Accepted: 12/09/2019] [Indexed: 11/16/2022]
Abstract
Despite active research, antiherbivore activity of specific plant phenolics remains largely unresolved. We constructed silver birch (Betula pendula) lines with modified phenolic metabolism to study the effects of foliar flavonoids and condensed tannins on consumption and growth of larvae of a generalist herbivore, the autumnal moth (Epirrita autumnata). We conducted a feeding experiment using birch lines in which expression of dihydroflavonol reductase (DFR), anthocyanidin synthase (ANS) or anthocyanidin reductase (ANR) had been decreased by RNA interference. Modification-specific effects on plant phenolics, nutrients and phenotype, and on larval consumption and growth were analyzed using uni- and multivariate methods. Inhibiting DFR expression increased the concentration of flavonoids at the expense of condensed tannins, and silencing DFR and ANR decreased leaf and plant size. E. autumnata larvae consumed on average 82% less of DFRi plants than of unmodified controls, suggesting that flavonoids or glandular trichomes deter larval feeding. However, larval growth efficiency was highest on low-tannin DFRi plants, indicating that condensed tannins (or their monomers) are physiologically more harmful than non-tannin flavonoids for E. autumnata larvae. Our results show that genetic manipulation of the flavonoid pathway in plants can effectively be used to produce altered phenolic profiles required for elucidating the roles of low-molecular weight phenolics and condensed tannins in plant–herbivore relationships, and suggest that phenolic secondary metabolites participate in regulation of plant growth.
Collapse
|
49
|
Integrated Metabolome and Transcriptome Analysis Uncovers the Role of Anthocyanin Metabolism in Michelia maudiae. Int J Genomics 2019; 2019:4393905. [PMID: 31781588 PMCID: PMC6874964 DOI: 10.1155/2019/4393905] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 07/10/2019] [Accepted: 08/23/2019] [Indexed: 12/05/2022] Open
Abstract
Michelia maudiae Dunn is one of the important ornamental plants in the Magnoliaceae family, and the color of its flowers usually appears naturally pure white. The discovery of a rubellis flower named M. maudiae Dunn var. rubicunda provides an opportunity to reveal the metabolism of the flavonoids and anthocyanins of this “early angiosperm” plant. Combined metabolome and transcriptome analyses were applied using white and rubellis mutant tepals. Seven stages have been divided for flower development, and forty-eight differentially altered metabolites were identified between white and rubellis tepals at a later stage. The major anthocyanins including peonidin O-hexoside, cyanidin O-syringic acid, cyanidin 3,5-O-diglucoside, cyanidin 3-O-glucoside, and pelargonidin 3-O-glucoside were upregulated over 157-fold in the mutant. Conversely, the highly significant accumulation of the colorless procyanidin or the slightly yellow epicatechin and catechin was found in white flowers. Putative homologues of color-related genes involved in the phenylpropanoid and flavonoid biosynthesis pathway were identified in the transcriptome. The increasing expression of dihydroflavonol 4-reductase (DFR) might play an important role in the occurrence of rubellis pigments, while the overexpression of anthocyanidin reductase (ANR) in white flowers may promote the biosynthesis of proanthocyanidins. Additionally, several coloration-related repressor R2R3-MYB transcription factors showed different expression levels in the tepals of the rubellis mutant. This study provides a comprehensive analysis relating color compounds to gene expression profiles of the Magnoliids plant M. maudiae. The newly generated information will provide a profound effect on horticultural applications of Magnoliaceae.
Collapse
|
50
|
Li H, Tian J, Yao YY, Zhang J, Song TT, Li KT, Yao YC. Identification of leucoanthocyanidin reductase and anthocyanidin reductase genes involved in proanthocyanidin biosynthesis in Malus crabapple plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 139:141-151. [PMID: 30889479 DOI: 10.1016/j.plaphy.2019.03.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/18/2019] [Accepted: 03/04/2019] [Indexed: 05/20/2023]
Abstract
Proanthocyanidins (PAs) from plants are a nutritionally valuable component of the human diet and play important roles in defense against pests and diseases. PAs are products of the flavonoid pathway, which also leads to the production of anthocyanins and flavonols. The enzymes leucoanthocyanidin reductase (LAR) and anthocyanidin reductase (ANR) are involved in PA biosynthesis. The PA biosynthetic pathway has been characterized in several plant species, but the relationship between its expression and PA accumulation in Malus crabapple remains unclear. Here, we cloned the LAR genes MrLAR1, 2, and the ANR genes MrANR1, 2, from the red leaved Malus crabapple cultivar 'Royalty'. The contents of PAs and the expression levels of the LAR and ANR genes were investigated in different organs of the two crabapple cultivars. The transcript levels of two LAR genes and two ANR genes correlated with the contents of the catechin and epicatechin, which are proanthocyanidin precursors. Over-expression of the MrLAR1, 2 and MrANR1, 2 in tobacco (Nicotiana tabacum) promoted the accumulation of PAs, while transient silencing of their expression in crabapple resulted in reduced PA levels. In addition, a negative correlation between quercetin, anthocyanin, and PA biosynthesis was also found during crabapple leaf and fruit peel development. We also found that MrLAR1 and 2 may contribute to epicatechin biosynthesis. In summary, the LAR and ANR genes are critical factors in PA biosynthesis, and there is competition between the quercetin, anthocyanin, and PA biosynthetic pathways during leaf and fruit peel development in Malus crabapple.
Collapse
Affiliation(s)
- Hua Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China; Plant Science and Technology College, Beijing University of Agriculture, Beijing, China; Beijing Collaborative Innovation Center for Eco-environmental Improvement with Forestry and Fruit Trees, Beijing, China
| | - Ji Tian
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China; Plant Science and Technology College, Beijing University of Agriculture, Beijing, China; Beijing Collaborative Innovation Center for Eco-environmental Improvement with Forestry and Fruit Trees, Beijing, China
| | - Yu-Yan Yao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China; Plant Science and Technology College, Beijing University of Agriculture, Beijing, China; Beijing Collaborative Innovation Center for Eco-environmental Improvement with Forestry and Fruit Trees, Beijing, China
| | - Jie Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China; Plant Science and Technology College, Beijing University of Agriculture, Beijing, China; Beijing Collaborative Innovation Center for Eco-environmental Improvement with Forestry and Fruit Trees, Beijing, China
| | - Ting-Ting Song
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China; Plant Science and Technology College, Beijing University of Agriculture, Beijing, China; Beijing Collaborative Innovation Center for Eco-environmental Improvement with Forestry and Fruit Trees, Beijing, China
| | - Ke-Ting Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China; Plant Science and Technology College, Beijing University of Agriculture, Beijing, China; Beijing Collaborative Innovation Center for Eco-environmental Improvement with Forestry and Fruit Trees, Beijing, China
| | - Yun-Cong Yao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China; Plant Science and Technology College, Beijing University of Agriculture, Beijing, China; Beijing Collaborative Innovation Center for Eco-environmental Improvement with Forestry and Fruit Trees, Beijing, China.
| |
Collapse
|