1
|
Takahashi K, Sato E, Yamakoshi S, Ogane M, Sekimoto A, Ishikawa T, Kisu K, Oe Y, Okamoto K, Miyazaki M, Tanaka T, Takahashi N. Nicotinamide ameliorates podocyte injury and albuminuria in adriamycin-induced nephropathy. Am J Physiol Renal Physiol 2025; 328:F501-F516. [PMID: 40033940 DOI: 10.1152/ajprenal.00297.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/06/2024] [Accepted: 02/26/2025] [Indexed: 03/05/2025] Open
Abstract
Podocytes are key components of the glomerular filtration barrier, and their injury leads to proteinuria, chronic kidney disease (CKD), and nephrotic syndrome. Effective treatments for these conditions are not well established, and prevention of podocyte injury is a crucial challenge. Nicotinamide (NAM), a form of vitamin B3, has been reported to exert beneficial effects in various renal disease models due to its antioxidant and anti-inflammatory properties and its ability to replenish nicotinamide adenine dinucleotide (NAD+). However, its impact on adriamycin (ADR)-induced nephropathy, a model of nephrotic syndrome caused by podocyte injury, remains unclear. We investigated the effects of NAM administration in a mouse model of ADR nephropathy. BALB/c mice were intravenously administered ADR to induce nephropathy. In the NAM-treated group, mice received 0.6% NAM in drinking water ad libitum starting 7 days before ADR administration. After 14 days, NAM treatment decreased albuminuria, glomerular sclerosis, and podocyte injury, and reduced inflammation and oxidative stress markers in the kidneys. NAM and NAD+ levels were decreased in ADR-treated kidneys, and the expression of the NAD+-consuming enzymes SIRT1 and poly(ADP-ribose) polymerase 1 (PARP-1) was decreased and increased, respectively. Nicotinamide N-methyltransferase expression was increased. NAM canceled these abnormalities. In cultured rat podocytes, NAD+ alleviated ADR-induced cytotoxicity, apoptosis, and inflammation. These findings suggest that NAM prevents ADR nephropathy and podocyte injury, likely through NAD+ replenishment.NEW & NOTEWORTHY Nephrotic syndrome can lead to end-stage kidney disease and cause severe complications. Currently, effective treatments for nephrotic syndrome have not been established, and new therapeutic approaches targeting podocyte injury are needed. Nicotinamide prevents podocyte injury in adriamycin-induced nephropathy in mice and ameliorates albuminuria, pathological changes, oxidative stress, and inflammation. Here, we provide evidence that pretreatment with nicotinamide can attenuate podocyte injury and subsequent nephropathy in mice.
Collapse
Affiliation(s)
- Kei Takahashi
- Department of Nephrology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Emiko Sato
- Department of Nephrology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Division of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai, Japan
| | - Seiko Yamakoshi
- Division of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai, Japan
| | - Mizuki Ogane
- Division of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai, Japan
| | - Akiyo Sekimoto
- Division of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai, Japan
| | - Takamasa Ishikawa
- Infinity Lab, Inc., Tsuruoka, Japan
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Kiyomi Kisu
- Department of Nephrology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuji Oe
- Department of Nephrology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Koji Okamoto
- Department of Nephrology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mariko Miyazaki
- Department of Nephrology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tetsuhiro Tanaka
- Department of Nephrology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Nobuyuki Takahashi
- Department of Nephrology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Division of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai, Japan
| |
Collapse
|
2
|
Lu C, Wei J, Gao C, Sun M, Dong D, Mu Z. Molecular signaling pathways in doxorubicin-induced nephrotoxicity and potential therapeutic agents. Int Immunopharmacol 2025; 144:113373. [PMID: 39566381 DOI: 10.1016/j.intimp.2024.113373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/07/2024] [Accepted: 10/07/2024] [Indexed: 11/22/2024]
Abstract
Doxorubicin (DOX), an anthracycline chemotherapeutic agent, is extensively utilized in the clinical management of both solid and hematological malignancies. Nevertheless, the clinical application of this treatment is significantly limited by adverse reactions and toxicity that may arise during or after administration. Its cytotoxic effects are multifaceted, with cardiotoxicity being the most prevalent side effect. Furthermore, it has the potential to adversely affect other organs, including the brain, kidneys, liver, and so on. Notably, it has been reported that DOX may cause renal failure in patients and there is currently no effective treatment for DOX-induced kidney damage, which has raised a high concern about DOX-induced nephrotoxicity (DIN). Although the precise molecular mechanisms underlying DIN remain incompletely elucidated, prior research has indicated that reactive oxygen species (ROS) are pivotal in this process, triggering a cascade of detrimental pathways including apoptosis, inflammation, dysregulated autophagic flux, and fibrosis. In light of these mechanisms, decades of research have uncovered several DIN-associated signaling pathways and found multiple potential therapeutic agents targeting them. Thus, this review intends to delineate the DIN associated signaling pathways, including AMPK, JAKs/STATs, TRPC6/RhoA/ROCK1, YAP/TEAD, SIRTs, Wnt/β-catenin, TGF-β/Smad, MAPK, Nrf2/ARE, NF-κB, and PI3K/AKT, and to summarize their potential regulatory agents, which provide a reference for the development of novel medicines against DIN.
Collapse
Affiliation(s)
- Changxu Lu
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, China; Department of Urology, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jinwen Wei
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Can Gao
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Mingli Sun
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, China.
| | - Dan Dong
- College of Basic Medical Science, China Medical University, Shenyang, Liaoning, China.
| | - Zhongyi Mu
- Department of Urology, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
3
|
Jia Y, Yao D, Bi H, Duan J, Liang W, Jing Z, Liu M. Salvia miltiorrhiza Bunge (Danshen) based nano-delivery systems for anticancer therapeutics. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155521. [PMID: 38489891 DOI: 10.1016/j.phymed.2024.155521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/01/2024] [Accepted: 03/07/2024] [Indexed: 03/17/2024]
Abstract
BACKGROUND The ancient Chinese herb Salvia miltiorrhiza Bunge (Danshen), plays the important role in cardiovascular and cerebrovascular disease. Furthermore, Danshen could also be used for curing carcinogenesis. Up to now, the anti-tumor effects of the main active constituents of Danshen have made great progress. However, the bioavailability of the active constituents of Danshen were restricted by their unique physical characteristics, like low oral bioavailability, rapid degradation in vivo and so on. PURPOSE With the leap development of nano-delivery systems, the shortcomings of the active constituents of Danshen have been greatly ameliorated. This review tried to summarize the recent progress of the active constituents of Danshen based delivery systems used for anti-tumor therapeutics. METHODS A systematic literature search was conducted using 5 databases (Embase, Google scholar, PubMed, Scopus and Web of Science databases) for the identification of relevant data published before September 2023. The words "Danshen", "Salvia miltiorrhiza", "Tanshinone", "Salvianolic acid", "Rosmarinic acid", "tumor", "delivery", "nanomedicine" and other active ingredients contained in Danshen were searched in the above databases to gather information about pharmaceutical decoration for the active constituents of Danshen used for anti-tumor therapeutics. RESULTS The main extracts of Danshen could inhibit the proliferation of tumor cells effectively and a great deal of studies were conducted to design drug delivery systems to ameliorate the anti-tumor effect of the active contents of Danshen through different ways, like improving bioavailability, increasing tumor targeting ability, enhancing biological barrier permeability and co-delivering with other active agents. CONCLUSION This review systematically represented recent progress of pharmaceutical decorations for the active constituents of Danshen used for anti-tumor therapeutics, revealing the diversity of nano-decoration skills and trying to inspire more designs of Danshen based nanodelivery systems, with the hope that bringing the nanomedicine of the active constituents of Danshen for anti-tumor therapeutics from bench to bedside in the near future.
Collapse
Affiliation(s)
- Yiyang Jia
- Department of Pharmacy, The Air Force Hospital of Eastern Theater Command, Nanjing, 210002, China
| | - Dandan Yao
- Department of Pharmacy, The Air Force Hospital of Eastern Theater Command, Nanjing, 210002, China
| | - Hui Bi
- Department of Pharmacy, The Air Force Hospital of Eastern Theater Command, Nanjing, 210002, China
| | - Jing Duan
- Department of Pharmacy, The Air Force Hospital of Eastern Theater Command, Nanjing, 210002, China
| | - Wei Liang
- Department of Traditional Chinese Medicine, The Air Force Hospital of Eastern Theater Command, Nanjing, 210002, China
| | - Ziwei Jing
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Mei Liu
- Department of Pharmacy, The Air Force Hospital of Eastern Theater Command, Nanjing, 210002, China.
| |
Collapse
|
4
|
Li X, Zhang Y, Xing X, Li M, Liu Y, Xu A, Zhang J. Podocyte injury of diabetic nephropathy: Novel mechanism discovery and therapeutic prospects. Biomed Pharmacother 2023; 168:115670. [PMID: 37837883 DOI: 10.1016/j.biopha.2023.115670] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/24/2023] [Accepted: 10/06/2023] [Indexed: 10/16/2023] Open
Abstract
Diabetic nephropathy (DN) is a severe complication of diabetes mellitus, posing significant challenges in terms of early prevention, clinical diagnosis, and treatment. Consequently, it has emerged as a major contributor to end-stage renal disease. The glomerular filtration barrier, composed of podocytes, endothelial cells, and the glomerular basement membrane, plays a vital role in maintaining renal function. Disruptions in podocyte function, including hypertrophy, shedding, reduced density, and apoptosis, can impair the integrity of the glomerular filtration barrier, resulting in elevated proteinuria, abnormal glomerular filtration rate, and increased creatinine levels. Hence, recent research has increasingly focused on the role of podocyte injury in DN, with a growing emphasis on exploring therapeutic interventions targeting podocyte injury. Studies have revealed that factors such as lipotoxicity, hemodynamic abnormalities, oxidative stress, mitochondrial dysfunction, and impaired autophagy can contribute to podocyte injury. This review aims to summarize the underlying mechanisms of podocyte injury in DN and provide an overview of the current research status regarding experimental drugs targeting podocyte injury in DN. The findings presented herein may offer potential therapeutic targets and strategies for the management of DN associated with podocyte injury.
Collapse
Affiliation(s)
- Xiandeng Li
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Ying Zhang
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Xiaodong Xing
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Mi Li
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yan Liu
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Ajing Xu
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| | - Jian Zhang
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
5
|
Wang Q, Li J, Chu X, Jiang X, Zhang C, Liu F, Zhang X, Li Y, Shen Q, Pang B. Potential chemoprotective effects of active ingredients in Salvia miltiorrhiza on doxorubicin-induced cardiotoxicity: a systematic review of in vitro and in vivo studies. Front Cardiovasc Med 2023; 10:1267525. [PMID: 37915739 PMCID: PMC10616797 DOI: 10.3389/fcvm.2023.1267525] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/03/2023] [Indexed: 11/03/2023] Open
Abstract
Background Recently, attention has been paid to the protective properties of active ingredients in Salvia miltiorrhiza (AISM) against organ toxicity induced by chemotherapy drugs. Purpose of the present systematic review is to evaluate the chemoprotective effects and mechanisms of AISM on in vitro and in vivo models of doxorubicin-induced cardiotoxicity (DIC). Methods According to the PRISMA guideline, the current systematic review was conducted in the Web of Science, PubMed, Embase, and the Cochrane Library to collect all relevant in vitro and in vivo studies on "the role of AISM on DIC" published up until May 2023. The SYRCLE's tool was used to identify potential risk of bias. Results Twenty-two eligible articles were included in this systematic review. Eleven types of active ingredients in Salvia miltiorrhiza were used for DIC, which have the following effects: improvement of physical signs and biochemical indicators, reduction of cardiac function damage caused by DIC, protection of heart tissue structure, enhancement of myocardial cell viability, prevention of cardiomyocyte apoptosis, increase of the chemosensitivity of cancer cells to Doxorubicin, etc. The cardioprotective mechanism of AISM involves inhibiting apoptosis, attenuating oxidative stress, suppressing endoplasmic reticulum (ER) stress, decreasing inflammation, improving mitochondrial structure and function, affecting cellular autophagy and calcium homeostasis. The quality scores of included studies ranged from 4 to 7 points (a total of 10 points), according to SYRCLE's risk of bias tool. Conclusion This systematic review demonstrated that AISM have chemoprotective effects on DIC in vivo and in vitro models through several main mechanisms such as anti-apoptosis, antioxidant effects, anti-ER stress, and anti-inflammatory.
Collapse
Affiliation(s)
- Qingqing Wang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Beijing Association of the Integrating of Traditional and Westem Medicine, Beijing, China
| | - Jiaxian Li
- Eye Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuelei Chu
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaochen Jiang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chuanlong Zhang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fudong Liu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiyuan Zhang
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Yi Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qian Shen
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bo Pang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
6
|
Fang H, Lin D, Li X, Wang L, Yang T. Therapeutic potential of Ganoderma lucidum polysaccharide peptide in Doxorubicin-induced nephropathy: modulation of renin-angiotensin system and proteinuria. Front Pharmacol 2023; 14:1287908. [PMID: 37841924 PMCID: PMC10570435 DOI: 10.3389/fphar.2023.1287908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 09/21/2023] [Indexed: 10/17/2023] Open
Abstract
Introduction: In the Doxorubicin (DOX)-induced nephropathy model, proteinuria is a manifestation of progressive kidney injury. The pathophysiology of renal illness is heavily influenced by the renin-angiotensin system (RAS). To reduce renal RAS activation and proteinuria caused by DOX, this study evaluated the effectiveness of Ganoderma lucidum polysaccharide peptide (GL-PP), a new glycopeptide produced from Ganoderma lucidum grown on grass. Methods: Three groups of BALB/c male mice were created: control, DOX, and DOX + GL-PP. GL-PP (100 mg/kg) was administered to mice by intraperitoneal injection for 4 weeks following a single intravenous injection of DOX (10 mg/kg via the tail vein). Results: After 4 weeks, full-length and soluble pro(renin) receptor (fPRR/sPRR) overexpression in DOX mouse kidneys, which is crucial for the RAS pathway, was dramatically inhibited by GL-PP therapy. Additionally, GL-PP successfully reduced elevation of urinary renin activity and angiotensin II levels, supporting the idea that GL-PP inhibits RAS activation. Moreover, GL-PP showed a considerable downregulation of nicotinamide adenine nucleotide phosphate oxidase 4 (NOX4) expression and a decrease in hydrogen peroxide (H2O2) levels. GL-PP treatment effectively reduced glomerular and tubular injury induced by DOX, as evidenced by decreased proteinuria, podocyte damage, inflammation, oxidative stress, apoptosis, and fibrosis. Discussion: GL-PP inhibits intrarenal PRR/sPRR-RAS activation and upregulation of NOX4 and H2O2, suggesting potential therapeutic approaches against DOX-induced nephropathy.
Collapse
Affiliation(s)
- Hui Fang
- Key Laboratory of Applied Pharmacology in Universities of Shandong, Department of Pharmacology, School of Pharmacy, Weifang Medical University, Weifang, Shandong, China
| | - Dongmei Lin
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Xinxuan Li
- Key Laboratory of Applied Pharmacology in Universities of Shandong, Department of Pharmacology, School of Pharmacy, Weifang Medical University, Weifang, Shandong, China
| | - Lianfu Wang
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Teng Yang
- Key Laboratory of Applied Pharmacology in Universities of Shandong, Department of Pharmacology, School of Pharmacy, Weifang Medical University, Weifang, Shandong, China
| |
Collapse
|
7
|
Ali A, Zafar MM, Farooq Z, Ahmed SR, Ijaz A, Anwar Z, Abbas H, Tariq MS, Tariq H, Mustafa M, Bajwa MH, Shaukat F, Razzaq A, Maozhi R. Breakthrough in CRISPR/Cas system: Current and future directions and challenges. Biotechnol J 2023; 18:e2200642. [PMID: 37166088 DOI: 10.1002/biot.202200642] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/12/2023]
Abstract
Targeted genome editing (GE) technology has brought a significant revolution in fictional genomic research and given hope to plant scientists to develop desirable varieties. This technology involves inducing site-specific DNA perturbations that can be repaired through DNA repair pathways. GE products currently include CRISPR-associated nuclease DNA breaks, prime editors generated DNA flaps, single nucleotide-modifications, transposases, and recombinases. The discovery of double-strand breaks, site-specific nucleases (SSNs), and repair mechanisms paved the way for targeted GE, and the first-generation GE tools, ZFNs and TALENs, were successfully utilized in plant GE. However, CRISPR-Cas has now become the preferred tool for GE due to its speed, reliability, and cost-effectiveness. Plant functional genomics has benefited significantly from the widespread use of CRISPR technology for advancements and developments. This review highlights the progress made in CRISPR technology, including multiplex editing, base editing (BE), and prime editing (PE), as well as the challenges and potential delivery mechanisms.
Collapse
Affiliation(s)
- Ahmad Ali
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | | | - Zunaira Farooq
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Syed Riaz Ahmed
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Science (PIEAS), Nilore, Pakistan
| | - Aqsa Ijaz
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Science (PIEAS), Nilore, Pakistan
| | - Zunaira Anwar
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Science (PIEAS), Nilore, Pakistan
| | - Huma Abbas
- Department of Plant Pathology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Sayyam Tariq
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Science (PIEAS), Nilore, Pakistan
| | - Hala Tariq
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Mahwish Mustafa
- Center of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Pakistan
| | | | - Fiza Shaukat
- Center of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Pakistan
| | - Abdul Razzaq
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Ren Maozhi
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Institute of, Urban Agriculture, Chinese Academy of Agriculture Science, Chengdu, China
| |
Collapse
|
8
|
Ma W, Rousseau Z, Slavkovic S, Shen C, Yousef GM, Ni H. Doxorubicin-Induced Platelet Activation and Clearance Relieved by Salvianolic Acid Compound: Novel Mechanism and Potential Therapy for Chemotherapy-Associated Thrombosis and Thrombocytopenia. Pharmaceuticals (Basel) 2022; 15:1444. [PMID: 36558895 PMCID: PMC9788583 DOI: 10.3390/ph15121444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/04/2022] [Accepted: 11/15/2022] [Indexed: 11/24/2022] Open
Abstract
Doxorubicin (Dox) is a widely utilized chemotherapeutic; however, it carries side effects, including drug-induced immune thrombocytopenia (DITP) and increased risk of venous thromboembolism (VTE). Currently, the mechanisms for Dox-associated DITP and VTE are poorly understood, and an effective inhibitor to relieve these complications remains to be developed. In this study, we found that Dox significantly induced platelet activation and enhanced platelet phagocytosis by macrophages and accelerated platelet clearance. Importantly, we determined that salvianolic acid C (SAC), a water-soluble compound derived from Danshen root traditionally used to treat cardiovascular diseases, inhibited Dox-induced platelet activation more effectively than current standard-of-care anti-platelet drugs aspirin and ticagrelor. Mechanism studies with tyrosine kinase inhibitors indicate contributions of phospholipase C, spleen tyrosine kinase, and protein kinase C signaling pathways in Dox-induced platelet activation. We further demonstrated that Dox enhanced platelet-cancer cell interaction, which was ameliorated by SAC. Taken together, these findings suggest SAC may be a promising therapy to reduce the risk of Dox-induced DITP, VTE, and the repercussions of amplified platelet-cancer interaction in the tumor microenvironment.
Collapse
Affiliation(s)
- Wenjing Ma
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A1, Canada
- Department of Laboratory Medicine, LKSKI-Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto Platelet Immunobiology Group, Toronto, ON M5B 1W8, Canada
| | - Zackary Rousseau
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A1, Canada
- Department of Laboratory Medicine, LKSKI-Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto Platelet Immunobiology Group, Toronto, ON M5B 1W8, Canada
| | - Sladjana Slavkovic
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A1, Canada
- Department of Laboratory Medicine, LKSKI-Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto Platelet Immunobiology Group, Toronto, ON M5B 1W8, Canada
| | - Chuanbin Shen
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A1, Canada
- Department of Laboratory Medicine, LKSKI-Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto Platelet Immunobiology Group, Toronto, ON M5B 1W8, Canada
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - George M. Yousef
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A1, Canada
- Department of Laboratory Medicine, LKSKI-Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto Platelet Immunobiology Group, Toronto, ON M5B 1W8, Canada
- Department of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Heyu Ni
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A1, Canada
- Department of Laboratory Medicine, LKSKI-Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto Platelet Immunobiology Group, Toronto, ON M5B 1W8, Canada
- Department of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
- Canadian Blood Services Centre for Innovation, Toronto, ON M5G 2M1, Canada
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A1, Canada
| |
Collapse
|
9
|
Yao L, Zhao R, He S, Feng Q, Qiao Y, Wang P, Li J. Effects of salvianolic acid A and salvianolic acid B in renal interstitial fibrosis via PDGF-C/PDGFR-α signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 106:154414. [PMID: 36057144 DOI: 10.1016/j.phymed.2022.154414] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 08/12/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Renal interstitial fibrosis (RIF) is the main pathological feature of end-stage renal disease (ESRD) caused by various chronic kidney diseases (CKD), and is closely related to renal dysfunction and patient prognosis. Salvianolic acid A (Sal A) and salvianolic acid B (Sal B), isolated from traditional Chinese medicine Salviae miltiorrhizae, have been confirmed to have anti-fibrotic effects on liver, cardiac and kidney. However, the precise molecular mechanism underlying the nephroprotective effects of Sal A and Sal B, and whether there is a difference between the two in RIF are still unclear. PURPOSE This study investigated the pharmacological effects of Sal A and Sal B in RIF and explore the underlying mechanisms by in vivo and in vitro experiments. METHODS The nephroprotective effects of Sal A, Sal B and Sal A+B were evaluated by assessing the parameters related to kidney function such as renal histology, renal function, urinary protein NAG, urinary β2 microglobulin. In addition, RIF-related markers such as CTCF and Par3 were also detected. Thereafter, the related protein or gene levels of PDGF-C/PDGFR-α signaling pathways, apoptosis and endoplasmic reticulum stress (ERS) were determined by western blot, real-time PCR, flow cytometry or immunofluorescence staining. RESULTS In vivo, the results showed that Sal A, Sal B and Sal A+B partially improved kidney dysfunction, increased the expression of Par-3 and reduced the expression of CTGF, PDGF-C and PDGFR-α. In vitro, the results also showed that Sal A, Sal B and Sal A+B reversed apoptosis and ERS in HSA-induced HK-2 cells via regulating PDGF-C/PDGFR-α signaling pathway. CONCLUSION This article revealed a novel mechanism linking PDGF-C/PDGFR-α signaling pathway to RIF and suggested that Sal A, Sal B and Sal A+B were considered as potential therapeutic agents for the amelioration of RIF.
Collapse
Affiliation(s)
- Lan Yao
- Blood Purification Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, China; Basic and Applied Laboratory of Traditional Chinese Medicine, the Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai 519000, China; Key Laboratory of Pharmacology, Zunyi Medical University, Zunyi 563000, China
| | - Renjie Zhao
- Basic and Applied Laboratory of Traditional Chinese Medicine, the Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai 519000, China; Key Laboratory of Pharmacology, Zunyi Medical University, Zunyi 563000, China; Department of Nephrology, the Affiliated Hospital of Chengdu University, Chengdu 610081, China
| | - Shiyang He
- Basic and Applied Laboratory of Traditional Chinese Medicine, the Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai 519000, China; Key Laboratory of Pharmacology, Zunyi Medical University, Zunyi 563000, China
| | - Qi Feng
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, China
| | - Yingjin Qiao
- Blood Purification Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, China
| | - Pei Wang
- Blood Purification Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, China.
| | - Jun Li
- Basic and Applied Laboratory of Traditional Chinese Medicine, the Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai 519000, China; Key Laboratory of Pharmacology, Zunyi Medical University, Zunyi 563000, China.
| |
Collapse
|
10
|
Yang MY, Song ZY, Gan HL, Zheng MH, Liu Q, Meng XT, Pan T, Li ZY, Peng RX, Liu K, Fan HY. Non-clinical safety evaluation of salvianolic acid A: acute, 4-week intravenous toxicities and genotoxicity evaluations. BMC Pharmacol Toxicol 2022; 23:83. [PMID: 36289546 PMCID: PMC9597988 DOI: 10.1186/s40360-022-00622-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 09/28/2022] [Accepted: 10/04/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Toxicological problem associated with herbal medicine is a significant public health problem. Hence, it is necessary to elaborate on the safety of herbal medicine. Salvianolic acid A (SAA) is a major active compound isolated from Danshen, a popular herbal drug and medicinal food plant in China. The aim of the present study was to explore the toxicological profile of SAA. METHODS The acute toxicity studies were performed in mice and Beagle dogs with single administration with SAA. A 4-week subchronic toxicity was test in dogs. SAA was intravenously administered at doses of 20, 80 and 300 mg/kg. Clinical observation, laboratory testing and necropsy and histopathological examination were performed. The genotoxic potential of SAA was evaluated by 2 types of genotoxicity tests: a reverse mutation test in bacteria and bone marrow micronucleus test in mice. RESULTS In acute toxicities, the LD50 of SAA is 1161.2 mg/kg in mice. The minimum lethal dose (MLD) and maximal non-lethal dose (MNLD) of SAA were 682 mg/kg and 455 mg/kg in dogs, respectively. The approximate lethal dose range was 455-682 mg/kg. In the study of 4-week repeated-dose toxicity in dogs, focal necrosis in liver and renal tubular epithelial cell, the decrease in relative thymus weight, as well as abnormal changes in biochemical parameters, were observed in SAA 80 or 300 mg/kg group. The no observed adverse effect level (NOAEL) of SAA was 20 mg/kg. Thymus, liver and kidneys were the toxic targets. These toxic effects were transient and reversible. These results indicated that it should note examination of liver and kidney function during the administration of SAA in clinic. Furthermore, SAA had no mutagenic effect at any tested doses. CONCLUSION These results provide new toxicological information of SAA for its clinical application and functional food consumption.
Collapse
Affiliation(s)
- Ming-Yan Yang
- grid.440761.00000 0000 9030 0162School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Ministry of Education, Yantai University, 264005 Yantai, PR China
| | - Ze-Yu Song
- grid.440761.00000 0000 9030 0162School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Ministry of Education, Yantai University, 264005 Yantai, PR China
| | - Hai-Lin Gan
- grid.440761.00000 0000 9030 0162School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Ministry of Education, Yantai University, 264005 Yantai, PR China
| | - Mei-Hua Zheng
- grid.440761.00000 0000 9030 0162School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Ministry of Education, Yantai University, 264005 Yantai, PR China
| | - Qian Liu
- grid.440761.00000 0000 9030 0162School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Ministry of Education, Yantai University, 264005 Yantai, PR China
| | - Xiang-Ting Meng
- grid.440761.00000 0000 9030 0162School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Ministry of Education, Yantai University, 264005 Yantai, PR China
| | - Tao Pan
- grid.440761.00000 0000 9030 0162School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Ministry of Education, Yantai University, 264005 Yantai, PR China
| | - Zhen-Yuan Li
- grid.440761.00000 0000 9030 0162School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Ministry of Education, Yantai University, 264005 Yantai, PR China
| | - Ruo-Xuan Peng
- grid.440761.00000 0000 9030 0162School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Ministry of Education, Yantai University, 264005 Yantai, PR China
| | - Ke Liu
- Shandong Boyuan Biomedicine Co. Ltd, 264005 Yantai, PR China ,Shandong Target Drug Research Co. Ltd, 264005 Yantai, PR China
| | - Hua-Ying Fan
- grid.440761.00000 0000 9030 0162School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Ministry of Education, Yantai University, 264005 Yantai, PR China ,grid.440761.00000 0000 9030 0162School of Pharmacy, Yantai University, No. 32 Qingquan Road, Laishan District, 264005 Yantai, Shandong Province China
| |
Collapse
|
11
|
Zhang B, Zhang Y, Dang W, Xing B, Yu C, Guo P, Pi J, Deng X, Qi D, Liu Z. The anti-tumor and renoprotection study of E-[c(RGDfK)2]/folic acid co-modified nanostructured lipid carrier loaded with doxorubicin hydrochloride/salvianolic acid A. J Nanobiotechnology 2022; 20:425. [PMID: 36153589 PMCID: PMC9509648 DOI: 10.1186/s12951-022-01628-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/24/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Poor in vivo targeting of tumors by chemotherapeutic drugs reduces their anti-cancer efficacy in the clinic. The discovery of over-expressed components on the tumor cell surface and their specific ligands provide a basis for targeting tumor cells. However, the differences in the expression levels of these receptors on the tumor cell surface limit the clinical application of anti-tumor preparations modified by a single ligand. Meanwhile, toxicity of chemotherapeutic drugs leads to poor tolerance to anti-tumor therapy. The discovery of natural active products antagonizing these toxic side effects offers an avenue for relieving cancer patients’ pain during the treatment process. Since the advent of nanotechnology, interventions, such as loading appropriate drug combinations into nano-sized carriers and multiple tumor-targeting functional modifications on the carrier surface to enhance the anti-tumor effect and reduce toxic and side effects, have been widely used for treating tumors.
Results
Nanocarriers containing doxorubicin hydrochloride (DOX) and salvianolic acid A (Sal A) are spherical with a diameter of about 18 nm; the encapsulation efficiency of both DOX and salvianolic acid A is greater than 80%. E-[c(RGDfK)2]/folic acid (FA) co-modification enabled nanostructured lipid carriers (NLC) to efficiently target a variety of tumor cells, including 4T1, MDA-MB-231, MCF-7, and A549 cells in vitro. Compared with other preparations (Sal A solution, NLC-Sal A, DOX solution, DOX injection, Sal A/DOX solution, NLC-DOX, NLC-Sal A/DOX, and E-[c(RGDfK)2]/FA-NLC-Sal A/DOX) in this experiment, the prepared E-[c(RGDfK)2]/FA-NLC-Sal A/DOX had the best anti-tumor effect. Compared with the normal saline group, it had the highest tumor volume inhibition rate (90.72%), the highest tumor weight inhibition rate (83.94%), led to the highest proportion of apoptosis among the tumor cells (61.30%) and the lowest fluorescence intensity of proliferation among the tumor cells (0.0083 ± 0.0011). Moreover, E-[c(RGDfK)2]/FA-NLC-Sal A/DOX had a low level of nephrotoxicity, with a low creatinine (Cre) concentration of 52.58 μmoL/L in the blood of mice, and no abnormalities were seen on pathological examination of the isolated kidneys at the end of the study. Sal A can antagonize the nephrotoxic effect of DOX. Free Sal A reduced the Cre concentration of the free DOX group by 61.64%. In NLC groups, Sal A reduced the Cre concentration of the DOX group by 42.47%. The E-[c(RGDfK)2]/FA modification reduced the side effects of the drug on the kidney, and the Cre concentration was reduced by 46.35% compared with the NLC-Sal A/DOX group. These interventions can potentially improve the tolerance of cancer patients to chemotherapy.
Conclusion
The E-[c(RGDfK)2]/FA co-modified DOX/Sal A multifunctional nano-drug delivery system has a good therapeutic effect on tumors and low nephrotoxicity and is a promising anti-cancer strategy.
Graphical Abstract
Collapse
|
12
|
Morsy S, Mansour MF, Abdo M, El‐Wazir Y. Can mobilization of bone marrow stem cells be an alternative regenerative therapy to stem cell injection in a rat model of chronic kidney disease? Physiol Rep 2022; 10:e15448. [PMID: 36065849 PMCID: PMC9446404 DOI: 10.14814/phy2.15448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/07/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023] Open
Abstract
Chronic kidney disease (CKD) is a priority health problem affecting 36% of Egyptians. Adipose-derived mesenchymal stem cells (ADMSCs) have multidifferentiation capacity and the ability to restore several types of cells including damaged renal cells. Granulocyte colony-stimulating factor (G-CSF) is known to mobilize hematopoietic stem cells from bone marrow to the peripheral circulation. The aim of this study was to compare the effect of endogenous CD34+ cells mobilization and exogenous ADMSCs administration in the treatment of a rat model of adriamycin (ADR)-induced CKD. A total of 48 male albino rats of the local strain (200 ± 50 g) were equally divided into four groups: control negative, ADR (control positive), ADMSCs group, and G-CSF group. Six rats from each group were sacrificed after 4 weeks and the other 6 after 12 weeks. Renal function was assessed frequently by measuring serum creatinine, albumin, urea, 24-h urinary protein level, and hemoglobin level throughout the study. Oxidative stress markers malondialdehyde (MDA) and total antioxidant (TAO) were measured on day 28. CD-34+ cell percentage was measured on day 9. After the sacrification of the rats, kidneys were removed for histopathological assessment. Results revealed that both ADMSCs and G-CSF significantly improved serum creatinine, albumin, urea, 24-h urinary protein level, and histopathological damage score, with the G-CSF-treated group showing better improvement in 24-h urinary protein level, serum albumin, and histopathological damage score compared with ADMSCs-treated group. The G-CSF group also had significantly higher levels of CD34+ cells. Oxidative stress markers (MDA and TAO) levels were significantly improved with both therapies. We conclude that mobilization of endogenous hematopoietic stem cells by G-CSF is more effective than exogenously injected ADMSCs in protecting the kidneys against AD-induced toxicity.
Collapse
Affiliation(s)
- Shereen Morsy
- Physiology Department, Faculty of MedicineSuez Canal UniversityIsmailiaEgypt
| | - Mona F. Mansour
- Physiology Department, Faculty of MedicineSuez Canal UniversityIsmailiaEgypt
- Centre of Excellence in Molecular and Cellular Medicine, Faculty of MedicineSuez Canal UniversityIsmailiaEgypt
| | - Mohamed Abdo
- Physiology Department, Faculty of MedicineSuez Canal UniversityIsmailiaEgypt
| | - Yasser El‐Wazir
- Physiology Department, Faculty of MedicineSuez Canal UniversityIsmailiaEgypt
- Centre of Excellence in Molecular and Cellular Medicine, Faculty of MedicineSuez Canal UniversityIsmailiaEgypt
| |
Collapse
|
13
|
Li Z, Liu J, Sun Z, Li Y, Yu B, Zhao F, Wang H, Xu H. Nanomicelles co-loaded with doxorubicin and salvianolic acid A for breast cancer chemotherapy. Cancer Nanotechnol 2022. [DOI: 10.1186/s12645-022-00127-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Abstract
Background
Multi-drug delivery system based on polymer carrier is emerging for alleviating dose-limiting toxicities of first-line cytotoxic anticancer drugs, such as doxorubicin (DOX) for breast cancer chemotherapy. By co-loading the premium natural antioxidant salvianolic acid A (SAA) through colloidal self-assembly of amphiphilic copolymer, we herein developed CPMSD, a complex polymeric micellar system to overcome cardiotoxicity associated with DOX.
Results
Optimal formulation was obtained by DOE study and CPMSD micelles were well constructed by using mPEG-PCL for entrapment at a drug–carrier mass ratio of 1:5 and DOX–SAA mass ratio of 1:4. Molecular dynamics simulation revealed the ratiometrical co-encapsulation of SAA into the hydrophobic cavity but DOX to ball-shaped surface of micelles due to hydrophilicity. Characterization study manifested favorable biopharmaceutical properties, such as small and uniform particle size, fairly high drug loading capacity, as well as good colloidal stability and controlled drug release. CPMSD maintained anticancer efficacy of DOX and the action mechanism, which did not be affected by co-administering SAA. More to the point, it was of great benefit to systemic safety and cardioprotective effect against oxidative stress injuries associated with DOX in tumor-bearing mice.
Conclusions
All the findings substantiated that CPMSD would be a promising multifunctional nanosystem of DOX for breast cancer chemotherapy.
Collapse
|
14
|
Feng D, Li XR, Wang ZY, Gu NN, Zhang SX, Li CF, Chen Y, Ma ZQ, Lin RC, Zhang HG, Zhao C. Integrated UPLC-MS and Network Pharmacology Approach to Explore the Active Components and the Potential Mechanism of Yiqi Huoxue Decoction for Treating Nephrotic Syndrome. Front Pharmacol 2022; 12:775745. [PMID: 35295738 PMCID: PMC8919777 DOI: 10.3389/fphar.2021.775745] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/09/2021] [Indexed: 01/16/2023] Open
Abstract
Background: Yiqi Huoxue Decoction (YQHXD) is a traditional Chinese medicine that promotes blood circulation, removes blood stasis, facilitates diuresis, and alleviates edema. It is composed of 10 herbal medicines and has extensive application in treating nephrotic syndrome (NS). However, the active components and the potential mechanism of YQHXD for treating NS remain unclear. Methods: We set up a sensitive and rapid method based on Ultra-High Performance Liquid Chromatograph-Mass (UPLC-MS) to identify the compounds in YQHXD and constituents absorbed into the blood. Disease genes were collected through GeneCards, DisGeNET, and OMIM database. Genes of compounds absorbed into blood were predicted by the TCMSP database. We constructed Disease-Drug-Ingredient-Gene (DDIG) network using Cytoscape, established a Protein-protein interaction (PPI) network using String, Gene biological process (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis was performed using DAVID. Cellular experiments were performed to validate the results of network pharmacology. Result: A total of 233 compounds in YQHXD and 50 constituents absorbed into the blood of rats were identified. The 36 core targets in the PPI network were clustered in the phosphatidylinositol 3 kinase-RAC serine/threonine-protein kinase (PI3K-AKT) and nuclear factor kappa-B (NF-κB) signaling pathways. Luteolin, Wogonin, Formononetin, and Calycosin were top-ranking components as potentially active compounds. Conclusion: The results of our studies show that YQHXD is able to enhance renal function, alleviate podocyte injury, and improve adriamycin nephrotic syndrome.
Collapse
Affiliation(s)
- Dan Feng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiang-Ri Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhao-Yi Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Nian-Nian Gu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Shuang-Xi Zhang
- First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Chao-Feng Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yang Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhi-Qiang Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Rui-Chao Lin
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Rui-Chao Lin, ; Hong-Gui Zhang, ; Chongjun Zhao,
| | - Hong-Gui Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Rui-Chao Lin, ; Hong-Gui Zhang, ; Chongjun Zhao,
| | - Chongjun Zhao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Rui-Chao Lin, ; Hong-Gui Zhang, ; Chongjun Zhao,
| |
Collapse
|
15
|
Li X, Qi D, Wang MY, Ji K, Xie QL, Wang Y, Du SH, Fan HY. Salvianolic acid A attenuates steroid resistant nephrotic syndrome through suPAR/uPAR-αvβ3 signaling Inhibition. JOURNAL OF ETHNOPHARMACOLOGY 2021; 279:114351. [PMID: 34157324 DOI: 10.1016/j.jep.2021.114351] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 06/06/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Salvianolic acid A (SAA) is extracted from traditional Chinese medicine Salvia miltiorrhiza and is the main water-soluble and the biologically active ingredient. SAA possesses a variety of pharmacological activities and has an excellent protective effect on kidney disease, especially steroid resistant nephrotic syndrome (SRNS), and has advantages in improving the efficacy of glucocorticoids, but its mechanism needs to be further explored. PURPOSE The study was designed to explore the effect of suPAR and uPAR in SRNS patients and evaluate the potential effect of SAA in improving podocyte steroid resistance and explore its mechanism. METHODS AND MATERIALS The ELISA kits were used to detect the levels of suPAR in the blood and urine of subjects. The levels of uPAR, GRα, and GRβ expression in renal tissues of SRNS patients was detected by immunohistochemistry and analyzed using the Pearson method. In vitro studies, steroid resistance model was induced by the TNF-α and IFN-γ. The protein and mRNA expression of Nephrin, GR, GRα and GRβ were analyzed using western blot and qRT-PCR. The activity of GR-DNA binding was detected by using TransAM™ GR kits. Adriamycin further induced steroid resistance podocyte. Flow cytometry was used to detect the effect of SAA on podocyte apoptosis. ELISA assay was used to detect the suPAR expression in the podocyte supernatant. Western blot and qRT-PCR were used to detect the protein and mRNA expression of uPAR and Nephrin in podocytes. RESULTS The serum and urine levels of suPAR were conspicuously higher in SRNS patients than healthy volunteers and SSNS patients, and the expression of uPAR in renal tissue of SRNS patients is negatively correlated with GRα, but positively correlated with GRβ. The combination of TNF-α and IFN-γ could conspicuously increase the GRβ expression and reduce GRα/GRβ, and induce steroid resistance in podocytes. Moreover, we found that SAA could reduce the apoptosis of podocytes and suppress the expression of suPAR/uPAR, and increase the expression of Nephrin. CONCLUSION The level of suPAR and uPAR expression may have important value in predicting glucocorticoids resistance in patients with idiopathic nephrotic syndrome (INS). The combination of TNF-α and IFN-γ induce podocytes can establish steroid resistance model in vitro. SAA could improve glucocorticoids resistance of podocyte which can be attributed in part to regulate the suPAR/uPAR-αvβ3 signaling pathway.
Collapse
Affiliation(s)
- Xin Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Dong Qi
- Department of Nephrology, Yu-Huang-Ding Hospital/Qingdao University, 264000, Yantai, Shandong, PR China.
| | - Meng-Ying Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Kai Ji
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Qun-Ling Xie
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Yu Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Shi-Hao Du
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Hua-Ying Fan
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China.
| |
Collapse
|
16
|
Salvianolic Acid A Suppresses DNCB-Induced Atopic Dermatitis-Like Symptoms in BALB/c Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:7902592. [PMID: 34691223 PMCID: PMC8531767 DOI: 10.1155/2021/7902592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 10/07/2021] [Indexed: 12/12/2022]
Abstract
Prevalence of atopic dermatitis (AD), a chronic, pruritic, and relapsing inflammatory skin disorder, is growing. Because available therapeutics is limited, immune regulators from natural resources could be helpful for treating AD symptoms. The root of Salvia miltiorrhiza Bunge (Lamiaceae) has been studied for the treatment of inflammatory diseases, including dermatologic disorders in Korea. This study examined the effect of salvianolic acid A on AD-like symptoms. Sensitization on the dorsal skin and repeated application on the ears with 2,4-dinitrochlorobenzene (DNCB) were performed in BALB/c mice to induce AD-like skin lesions. After induction of atopic dermatitis, salvianolic acid A (5 and 10 mg/kg) or dexamethasone (10 mg/kg) were administrated via intraperitoneal injection for 3 weeks. Salvianolic acid A suppressed DNCB-induced AD-like symptoms like ear skin hypertrophy and decreased mast cell infiltration into skin lesions. Salvianolic acid A not only reduced DNCB-induced increase of serum IgE but also lowered levels of the Th2 cytokines (IL-4 and IL-13), Th1 cytokine (interferon-γ), and Th17 cytokine (IL-17A). Furthermore, salvianolic acid A blocked DNCB-induced lymph node enlargement. In summary, these results suggest that salvianolic acid A might have a therapeutic potential for the treatment of AD.
Collapse
|
17
|
Dong Y, Gong L, Lu X, Ye M, Lin Y, Xie S, Zhang J, Zhou F, Tang L, Zou W, Liu M. Changes of Transporters and Drug-metabolizing Enzymes in Nephrotic Syndrome. Curr Drug Metab 2021; 21:368-378. [PMID: 32394830 DOI: 10.2174/1389200221666200512113731] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/19/2020] [Accepted: 03/16/2020] [Indexed: 01/17/2023]
Abstract
BACKGROUND Drug-metabolizing enzymes and transporters play key roles in drug disposition and drug interactions. The alterations of their expression will influence drug pharmacokinetics and pharmacodynamics. However, the changes in the expression of enzymes and transporters in the disease state are still unclear. OBJECTIVE Our study was to investigate the changes in the expression of main enzymes and drug transporters distributed in Adriamycin nephropathy rat liver, kidney, and intestine. METHODS An intravenous injection with a single dose of Adriamycin (6mg/kg) was made to establish Adriamycin nephropathy (AN) model and normal groups were injected with normal saline. Serum was collected for lipid metabolism, renal, and hepatic function measurement. The real-time PCR and western blot were applied to determine the mRNA and protein expression of drug enzymes and transporters. RESULTS In the kidney, a greater expression of Mdr1, Mrp2, Mrp4 Oat2 and Oct2 mRNA was found in AN rats as compared with control rats. In the liver, the expression of Bcrp mRNA was more doubled or tripled than control groups and downregulation of Mdr1, Mrp2, Mrp4 and Bsep gene expression was found in AN rats. Besides, we observed a downward trend of Cyp1a2, Cyp3a4 and Cyp2c9 mRNA levels in AN groups. In the duodenum, the expression of Mdr1 and Mrp3 mRNA level was decreased, while Bcrp and Mrp2 mRNA were increased. CONCLUSION The changes in drug-metabolizing enzymes and transporters expression in AN rats were clarified, which may be beneficial for understanding the altered pharmacokinetics and pharmacodynamics of clinical drugs and reduce unexpected clinical findings for nephropathy patients.
Collapse
Affiliation(s)
- Yaqian Dong
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Linna Gong
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Xianyuan Lu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Mingguang Ye
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Yu Lin
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Shuting Xie
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Jiaxing Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Fenghua Zhou
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Lan Tang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Wei Zou
- NHC Key Laboratory of Birth Defects Research, Prevention and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan 410008, China
| | - Menghua Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China
| |
Collapse
|
18
|
Fan HY, Wang XK, Li X, Ji K, Du SH, Liu Y, Kong LL, Xu JC, Yang GQ, Chen DQ, Qi D. Curcumin, as a pleiotropic agent, improves doxorubicin-induced nephrotic syndrome in rats. JOURNAL OF ETHNOPHARMACOLOGY 2020; 250:112502. [PMID: 31881321 DOI: 10.1016/j.jep.2019.112502] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/05/2019] [Accepted: 12/22/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Curcumin, a phenolic compound extracted from the rhizome of turmeric (Curcuma longa L.), has been reported to have broad biological functions including potent antioxidant and renoprotective effects. It has been reported that Curcumin has a certain protective effect on the kidney. However, its mechanism of action needs further study. AIM OF THE STUDY The present research aims at investigating the therapeutic effects and its underlying mechanism of curcumin on NS. MATERIALS AND METHODS The conditionally immortalized mouse podocyte cell line was utilized to evaluate the podocyte-protective effect of curcumin and its effects on NF-κB pathway and Nrf2/ARE pathway in podocyte in vitro. Furthermore, the DOX-induced NS rats were utilized to investigate the therapeutic effects and its underlying mechanism of curcumin against NS in vivo. RESULTS The consequences of this study revealed that curcumin activated Nrf2, inhibited NF-κB pathway and up-regulated podocin in DOX-induced podocyte. Further research results showed that curcumin can considerably alleviate proteinuria and improve hypoalbuminemia in NS rats, and lower blood lipid levels to alleviate hyperlipidemia in NS rats, indicating that curcumin has significant therapeutic effects on rat NS. Further observation by electron microscopy and detection showed that curcumin can improve renal function and podocyte injury, which may be related to the repairment of mRNA expression and podocin protein. Interestingly, the results of the blood rheology test showed that curcumin can effectively reduce whole blood viscosity (WBV) and plasma viscosity (PV), and reduce hematocrit (Hct). In addition, the oxidative stress state of kidney in NS rats was considerably reversed by curcumin, which may be achieved by activating Nrf2 and increasing the expression of antioxidant enzymes HO-1, NQO-1. We also found that NF-κB pathway is activated in the kidney of NS rats, and curcumin can inhibit the activation of NF-κB by down-regulating the expression of NF-κB p65, reducing the level of p-IκBα and up-regulating the expression of IκBα. CONCLUSION These findings suggest that curcumin, as a multifunctional agent, exerts a protective effect on DOX-induced nephrotic syndrome in rats, which provides a pharmacological basis for the further development of curcumin and also provides a basis for the advantages of multi-targeted drugs in the processing of NS.
Collapse
Affiliation(s)
- Hua-Ying Fan
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China.
| | - Xue-Kai Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Xin Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Kai Ji
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Shi-Hao Du
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Yu Liu
- Fushan District People's Hospital of Yantai City, 265500, Yantai, Shandong, PR China
| | - Lin-Lin Kong
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Jing-Chen Xu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Gang-Qiang Yang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China.
| | - Da-Quan Chen
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China.
| | - Dong Qi
- Department of Nephrology, Yu-Huang-Ding Hospital/Qingdao University, 264000, Yantai, Shandong, PR China.
| |
Collapse
|
19
|
Du G, Song J, Du L, Zhang L, Qiang G, Wang S, Yang X, Fang L. Chemical and pharmacological research on the polyphenol acids isolated from Danshen: A review of salvianolic acids. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2020; 87:1-41. [PMID: 32089230 DOI: 10.1016/bs.apha.2019.12.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Danshen, the dried root of Salvia miltiorrhiza Bge, is a common medicinal herb in Traditional Chinese Medicine, which has been used for the treatment of a number of diseases for thousands of years. More than 2000 years ago, the Chinese early pharmacy monograph "Shennong Materia Medica" recorded that Danshen could be used for the treatment of gastrointestinal diseases, cardiovascular diseases, certain gynecological diseases, etc. Since then, Danshen has been widely used clinically in many different prescriptions for many different diseases, especially for the treatment of cardiovascular diseases. Nowadays, many pharmacological studies about the water-soluble components from Danshen have been reported, especially salvianolic acids. It turned out that salvianolic acids showed strong anti-lipid peroxidation and anti-thrombic activities, and among them, SalAA and SalAB were the most potent. This review focused on the achievements in research of salvianolic acids regarding their bioactivities and pharmacological effects. These studies not only shed light on the water-soluble active components of Danshen and their mechanisms at the molecular level, but also provided theoretical information for the development of new medicines from Danshen for the treatment of cardiovascular and cerebrovascular diseases, inflammatory diseases, metabolic diseases, etc.
Collapse
Affiliation(s)
- Guanhua Du
- Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
| | - Junke Song
- Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Lida Du
- Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Li Zhang
- Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Guifen Qiang
- Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Shoubao Wang
- Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xiuying Yang
- Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Lianhua Fang
- Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
20
|
Therapeutic and antiproteinuric effects of salvianolic acid A in combined with low-dose prednisone in minimal change disease rats: Involvement of PPARγ/Angptl4 and Nrf2/HO-1 pathways. Eur J Pharmacol 2019; 858:172342. [DOI: 10.1016/j.ejphar.2019.04.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 04/06/2019] [Accepted: 04/08/2019] [Indexed: 12/20/2022]
|
21
|
Zhang QL, Jiang RH, Li XM, Ko JW, Kim CD, Zhu MJ, Lee JH. Inhibition of Poly(I:C)-Induced Inflammation by Salvianolic Acid A in Skin Keratinocytes. Ann Dermatol 2019; 31:279-285. [PMID: 33911592 PMCID: PMC7992737 DOI: 10.5021/ad.2019.31.3.279] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 11/15/2018] [Accepted: 11/17/2018] [Indexed: 01/01/2023] Open
Abstract
Background Skin keratinocytes participate actively in inducing immune responses when external pathogens are introduced, thereby contributing to elimination of pathogens. However, in condition where the excessive inflammation is occurred, chronic skin disease such as psoriasis can be provoked. Objective We tried to screen the putative therapeutics for inflammatory skin disease, and found that salvianolic acid A (SAA) has an inhibitory effect on keratinocyte inflammatory reaction. The aim of this study is to demonstrate the effects of SAA in poly(I:C)-induced inflammatory reaction in skin keratinocytes. Methods We pre-treated keratinocytes with SAA then stimulated with poly(I:C). Inflammatory reaction of keratinocytes was verified using real-time polymerase chain reaction, enzyme-linked immunosorbent assay and Western blot. Results When skin keratinocytes were pre-treated with SAA, it significantly inhibited poly (I:C)-induced expression of inflammatory cytokines including interleukin (IL)-1β, IL-6, IL-8, tumor necrosis factor-α, and CCL20. SAA inhibited poly(I:C)-induced activation of nuclear factor-κB signaling. And SAA also inhibited inflammasome activation, evidenced by decrease of IL-1β secretion. Finally, SAA markedly inhibited poly(I:C)-induced NLRP3 expression. Conclusion These results demonstrate that SAA has an inhibitory effect on poly(I:C)-induced inflammatory reaction of keratinocytes, suggesting that SAA can be developed for the treatment of inflammatory skin diseases such as psoriasis.
Collapse
Affiliation(s)
- Qing-Ling Zhang
- Department of Dermatology, China-Japan Union Hospital of Jilin University, Changchun, China.,Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Ri-Hua Jiang
- Department of Dermatology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xue Mei Li
- Department of Medical Science, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Jung-Woo Ko
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Chang Deok Kim
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Korea.,Department of Medical Science, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Ming Ji Zhu
- Department of Dermatology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jeung-Hoon Lee
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Korea.,Department of Medical Science, School of Medicine, Chungnam National University, Daejeon, Korea.,Skin Med Company, Daejeon, Korea
| |
Collapse
|
22
|
Salvianolic Acid A Protects the Kidney against Oxidative Stress by Activating the Akt/GSK-3 β/Nrf2 Signaling Pathway and Inhibiting the NF- κB Signaling Pathway in 5/6 Nephrectomized Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2853534. [PMID: 31011401 PMCID: PMC6442489 DOI: 10.1155/2019/2853534] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 12/12/2018] [Indexed: 12/12/2022]
Abstract
Salvianolic acid A (SAA) is a bioactive polyphenol extracted from Salviae miltiorrhizae Bunge, which possesses a variety of pharmacological activities. In our previous study, we have demonstrated that SAA effectively attenuates kidney injury and inflammation in an established animal model of 5/6 nephrectomized (5/6Nx) rats. However, there has been limited research regarding the antioxidative effects of SAA on chronic kidney disease (CKD). Here, we examined the antioxidative effects and underlying mechanisms of SAA in 5/6Nx rats. The rats were injected with SAA (2.5, 5, and 10 mg·kg−1·d−1, ip) for 28 days. Biochemical, flow cytometry, and Western blot analyses showed that SAA significantly increased the activities of total superoxide dismutase (T-SOD), glutathione peroxidase (GPx), and catalase (CAT) and lowered the levels of malondialdehyde (MDA), reactive oxygen species (ROS), and NADPH oxidase 4 (NOX-4) in a dose-dependent manner in 5/6Nx rats and in H2O2-induced HK-2 cells in vitro. Moreover, SAA enhanced the activation of the protein kinase B/glycogen synthase kinase-3β/nuclear factor-erythroid-2-related factor 2 (Akt/GSK-3β/Nrf2) signaling pathway in a dose-dependent manner and subsequently increased the expression of heme oxygenase-1 (HO-1) in the kidney of 5/6Nx rats, which were consistent with those obtained in H2O2-induced HK-2 cells in vitro shown by Western blot analysis. Furthermore, SAA significantly increased the expression of intranuclear Nrf2 and HO-1 proteins compared to HK-2 cells stimulated by LPS on the one hand, which can be enhanced by QNZ to some extent; on the other hand, SAA significantly lowered the expression of p-NF-κB p65 and ICAM-1 proteins compared to HK-2 cells stimulated by H2O2, which can be abrogated by ML385 to some extent. In conclusion, our results demonstrated that SAA effectively protects the kidney against oxidative stress in 5/6Nx rats. One of the pivotal mechanisms for the protective effects of SAA on kidney injury was mainly related with its antioxidative roles by activating the Akt/GSK-3β/Nrf2 signaling pathway and inhibiting the NF-κB signaling pathway.
Collapse
|
23
|
Heo JY, Im DS. Anti-allergic effects of salvianolic acid A and tanshinone IIA from Salvia miltiorrhiza determined using in vivo and in vitro experiments. Int Immunopharmacol 2018; 67:69-77. [PMID: 30537633 DOI: 10.1016/j.intimp.2018.12.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/03/2018] [Accepted: 12/04/2018] [Indexed: 12/20/2022]
Abstract
Salvia miltiorrhiza root has been used in Asian traditional medicine for the treatment of cardiovascular diseases, asthma, and other conditions. Salvianolic acid B from S. miltiorrhiza extracts has been shown to improve airway hyperresponsiveness. We investigated the effects of salvianolic acid A, tanshinone I, and tanshinone IIA from S. miltiorrhiza in allergic asthma by using rat RBL-2H3 mast cells and female Balb/c mice. Antigen-induced degranulation was assessed by measuring β-hexosaminidase activity in vitro. In addition, a murine ovalbumin-induced allergic asthma model was used to test the in vivo efficacy of salvianolic acid A and tanshinone IIA. Tanshinone I and tanshinone IIA inhibited antigen-induced degranulation of mast cells, but salvianolic acid A did not. Administration of salvianolic acid A and tanshinone IIA decreased the number of immune cells, particularly eosinophils in allergic asthma-induced mice. Histological studies showed that salvianolic acid A and tanshinone IIA reduced mucin production and inflammation in the lungs. Administration of salvianolic acid A and tanshinone IIA reduced the expression and secretion of Th2 cytokines (IL-4 and IL-13) in the bronchoalveolar lavage fluid and lung tissues of mice with ovalbumin-induced allergic asthma. These findings provide evidence that salvianolic acid A and tanshinone IIA may be potential anti-allergic therapeutics.
Collapse
Affiliation(s)
- Jae-Yeong Heo
- College of Pharmacy, Pusan National University, Busan 609-735, Republic of Korea
| | - Dong-Soon Im
- College of Pharmacy, Pusan National University, Busan 609-735, Republic of Korea.
| |
Collapse
|
24
|
Zhang HF, Wang YL, Gao C, Gu YT, Huang J, Wang JH, Wang JH, Zhang Z. Salvianolic acid A attenuates kidney injury and inflammation by inhibiting NF-κB and p38 MAPK signaling pathways in 5/6 nephrectomized rats. Acta Pharmacol Sin 2018; 39:1855-1864. [PMID: 29795135 PMCID: PMC6289371 DOI: 10.1038/s41401-018-0026-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 03/25/2018] [Accepted: 03/28/2018] [Indexed: 12/11/2022]
Abstract
Salvianolic acid A (SAA) is a minor phenolic carboxylic acid extracted from Salviae miltiorrhizae Bunge (Danshen). SAA exhibits a variety of pharmacological activities, such as antioxidative, anti-thrombotic, neuroprotective, and anti-fibrotic effects, as well as protection from myocardial ischemia and prevention of diabetes and other diseases. Furthermore, SAA has shown renal-protective effects in doxorubicin-induced nephropathy. However, there has been limited research regarding the effects of SAA and underlying mechanisms in chronic kidney disease (CKD). Here, we examined the effects and molecular mechanisms of SAA in an established animal model of 5/6 nephrectomized (5/6Nx) rats. The rats were injected with SAA (2.5, 5, and 10 mg/kg per day, intraperitoneally (ip)) for 28 days. SAA dose-dependently lowered the levels of urine protein, blood urea nitrogen, serum creatinine, plasma total cholesterol, and plasma triglycerides in 5/6Nx rats. Histological examination revealed that SAA dose-dependently attenuated renal pathological lesions, evidenced by reduced renal tubulointerstitial fibrosis by decreasing the expression levels of tumor growth factor-β1 and α-smooth muscle actin in 5/6Nx rats. Moreover, SAA dose-dependently inhibited the activation of nuclear factor-κB (NF-κB) and p38 mitogen-activated protein kinase (MAPK) signaling pathways, subsequently attenuating the secretion of tumor necrosis factor-α and interleukin-1β and inhibiting the expression of monocyte chemotactic protein-1, intercellular adhesion molecule-1, and vascular cell adhesion molecule-1 in kidneys of 5/6Nx rats. The above results were consistent with those obtained in lipopolysaccharide-induced HK-2 cells in vitro (a recognized in vitro inflammatory model). In conclusion, our results demonstrated that SAA effectively attenuates kidney injury in 5/6Nx rats. The therapeutic effects of SAA on kidney injury can be attributed to its anti-inflammatory activities through inhibition of the activation of the NF-κB and p38 MAPK signaling pathways.
Collapse
Affiliation(s)
- Hong-Feng Zhang
- Department of Physiology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yan-Li Wang
- Department of Medicinal Chemistry and Natural Medicine Chemistry, School of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Cheng Gao
- Department of Physiology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yan-Ting Gu
- Department of Physiology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jian Huang
- Department of Medicinal Chemistry and Natural Medicine Chemistry, School of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Jin-Hui Wang
- Department of Medicinal Chemistry and Natural Medicine Chemistry, School of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Jia-Hong Wang
- Department of Physiology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Zhou Zhang
- Department of Physiology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
25
|
Chen DQ, Hu HH, Wang YN, Feng YL, Cao G, Zhao YY. Natural products for the prevention and treatment of kidney disease. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 50:50-60. [PMID: 30466992 DOI: 10.1016/j.phymed.2018.09.182] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/18/2018] [Accepted: 09/17/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Chronic kidney disease (CKD) is one of the common causes resulting in a high morbidity and mortality. Renal fibrosis is the main pathological features of CKD. Natural products have begun to gain widely popularity worldwide for promoting healthcare and preventing CKD, and have been used as a conventional or complementary therapy for CKD treatment. PURPOSE The present paper reviewed the therapeutic effects of natural products on CKD and revealed the molecular mechanisms of their anti-fibrosis. METHODS All the available information on natural products against renal fibrosis was collected via a library and electronic search (using Web of Science, Pubmed, ScienceDirect, Splinker, etc.). RESULTS Accumulated evidence demonstrated that natural products exhibited the beneficial effects for CKD treatment and against renal fibrosis. This review presents an overview of the molecular mechanism of CKD and natural products against renal fibrosis, followed by an in-depth discussion of their molecular mechanism of natural products including isolated compounds and crude extracts against renal fibrosis in vitro and in vivo. A number of isolated compounds have been confirmed to retard renal fibrosis. CONCLUSION The review provides comprehensive insights into pathophysiological mechanisms of CKD and natural products against renal fibrosis. Particular challenges are presented and placed within the context of future applications of natural products against renal fibrosis.
Collapse
Affiliation(s)
- Dan-Qian Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Science, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - He-He Hu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Science, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Yan-Ni Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Science, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Ya-Long Feng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Science, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang 310053, China
| | - Ying-Yong Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Science, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China.
| |
Collapse
|
26
|
Song Y, Liu W, Ding Y, Jia Y, Zhao J, Wang F, Bai J, Cheng L, Gao K, Liu M, Yao M, Li L, Zhang Y, Wen A, He L. Salvianolic acid A ameliorates renal ischemia/reperfusion injury by activating Akt/mTOR/4EBP1 signaling pathway. Am J Physiol Renal Physiol 2018; 315:F254-F262. [PMID: 29384417 DOI: 10.1152/ajprenal.00508.2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Salvianolic acid A (Sal A) has been shown to prevent and treat ischemic cardiovascular, as well as cerebral vascular diseases. However, little is known about Sal A in renal ischemia/reperfusion (I/R) injury. In this study, a renal I/R injury model in rats and a hypoxia/reoxygenation (H/R) model to damage proximal renal tubular cells (HK-2) were used to assess whether Sal A halts the development and progression of renal I/R injury. As compared with vehicle treatment, Sal A significantly attenuated kidney injury after renal I/R injury, accompanied by decreases in plasma creatinine, blood urea nitrogen levels, the number of apoptosis-positive tubular cells, and kidney oxidative stress. Sal A also activated phosphorylated protein kinase B (p-Akt) and phosphorylated-mammalian target of rapamycin (p-mTOR) compared with vehicle-treated I/R injury rats. In H/R-injured HK-2 cells, Sal A can reduce the levels of reactive oxygen species in a dose-related manner. Similar to the results from in vivo experiments, in vitro Sal A also increased the protein expression of phosphorylated-eukaryotic initiation factor 4E binding protein 1 (p-4EBP1) compared with vehicle. Furthermore, the cytoprotective activity of Sal A was inhibited by LY294002 and rapamycin. These findings indicate that Sal A can ameliorate renal I/R injury and promote tubular cell survival partly via the Akt/mTOR/4EBP1pathway. Sal A could be a candidate compound to prevent ischemic tissue damage.
Collapse
Affiliation(s)
- Ying Song
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an, Shaanxi, Peopleʼs Republic of China
- Department of Pharmacy, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, Peopleʼs Republic of China
| | - Weihai Liu
- Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang Shaanxi, China
| | - Yi Ding
- Department of Pharmacy, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, Peopleʼs Republic of China
| | - Yanyan Jia
- Department of Pharmacy, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, Peopleʼs Republic of China
| | - Jinyi Zhao
- Department of Pharmacy, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, Peopleʼs Republic of China
| | - Fan Wang
- Department of Pharmacy, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, Peopleʼs Republic of China
| | - Juan Bai
- Department of Pharmacy, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, Peopleʼs Republic of China
| | - Lianghua Cheng
- Department of Pharmacy, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, Peopleʼs Republic of China
| | - Kai Gao
- Department of Pharmacy, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, Peopleʼs Republic of China
| | - Meiyou Liu
- Department of Pharmacy, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, Peopleʼs Republic of China
| | - Minna Yao
- Department of Pharmacy, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, Peopleʼs Republic of China
| | - Liang Li
- Department of Pharmacy, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, Peopleʼs Republic of China
| | - Yanmin Zhang
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an, Shaanxi, Peopleʼs Republic of China
| | - Aidong Wen
- Department of Pharmacy, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, Peopleʼs Republic of China
| | - Langchong He
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an, Shaanxi, Peopleʼs Republic of China
| |
Collapse
|
27
|
Zheng Y, Cai GY, He LQ, Lin HL, Cheng XH, Wang NS, Jian GH, Liu XS, Liu YN, Ni ZH, Fang JA, Ding HL, Guo W, He YN, Wang LH, Wang YP, Yang HT, Ye ZM, Yu RH, Zhao LJ, Zhou WH, Li WG, Mao HJ, Zhan YL, Hu Z, Yao C, Wei RB, Chen XM. Efficacy and Safety of Niaoduqing Particles for Delaying Moderate-to-severe Renal Dysfunction: A Randomized, Double-blind, Placebo-controlled, Multicenter Clinical Study. Chin Med J (Engl) 2018; 130:2402-2409. [PMID: 29052559 PMCID: PMC5684630 DOI: 10.4103/0366-6999.216407] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Background: Chronic kidney disease (CKD) with moderate-to-severe renal dysfunction usually exhibits an irreversible course, and available treatments for delaying the progression to end-stage renal disease are limited. This study aimed to assess the efficacy and safety of the traditional Chinese medicine, Niaoduqing particles, for delaying renal dysfunction in patients with stage 3b-4 CKD. Methods: The present study was a prospective, randomized, double-blind, placebo-controlled, multicenter clinical trial. From May 2013 to December 2013, 300 CKD patients with an estimated glomerular filtration rate (eGFR) between 20 and 45 ml·min−1·1.73 m−2, aged 18–70 years were recruited from 22 hospitals in 11 Chinese provinces. Patients were randomized in a 1:1 ratio to either a test group, which was administered Niaoduqing particles 5 g thrice daily and 10 g before bedtime for 24 weeks, or a control group, which was administered a placebo using the same methods. The primary endpoints were changes in baseline serum creatinine (Scr) and eGFR after completion of treatment. The primary endpoints were analyzed using Student's t-test or Wilcoxon's rank-sum test. The present study reported results based on an intention-to-treat (ITT) analysis. Results: A total of 292 participants underwent the ITT analysis. At 24 weeks, the median (interquartile range) change in Scr was 1.1 (−13.0–24.1) and 11.7 (−2.6–42.9) μmol/L for the test and control groups, respectively (Z = 2.642, P = 0.008), and the median change in eGFR was −0.2 (−4.3–2.7) and −2.2 (−5.7–0.8) ml·min−1·1.73 m−2, respectively (Z = −2.408, P = 0.016). There were no significant differences in adverse events between the groups. Conclusions: Niaoduqing particles safely and effectively delayed CKD progression in patients with stage 3b-4 CKD. This traditional Chinese medicine may be a promising alternative medication for patients with moderate-to-severe renal dysfunction. Trial Registration: Chinese Clinical Trial Register, ChiCTR-TRC-12002448; http://www.chictr.org.cn/showproj.aspx?proj=7102.
Collapse
Affiliation(s)
- Ying Zheng
- Department of Nephrology, Chinese People's Liberation Army General Hospital, Chinese People's Liberation Army Institute of Nephrology, State Key Laboratory of Kidney Diseases (2011DAV00088), National Clinical Research Center for Kidney Diseases, Beijing 100853, China
| | - Guang-Yan Cai
- Department of Nephrology, Chinese People's Liberation Army General Hospital, Chinese People's Liberation Army Institute of Nephrology, State Key Laboratory of Kidney Diseases (2011DAV00088), National Clinical Research Center for Kidney Diseases, Beijing 100853, China
| | - Li-Qun He
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200021, China
| | - Hong-Li Lin
- Department of Nephrology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, China
| | - Xiao-Hong Cheng
- Department of Nephrology, Shaanxi Traditional Chinese Medicine Hospital, Xi'an, Shaanxi 710003, China
| | - Nian-Song Wang
- Department of Nephrology and Rheumatology, Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, China
| | - Gui-Hua Jian
- Department of Nephrology and Rheumatology, Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, China
| | - Xu-Sheng Liu
- Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510120, China
| | - Yu-Ning Liu
- Department of Nephrology, Dongzhimen Hospital, The First Affiliated Hospital of Beijing University of Chinese Medicine, Beijing 100700, China
| | - Zhao-Hui Ni
- Department of Nephrology, Renji Hospital, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jing-Ai Fang
- Department of Nephrology, First Affiliated Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Han-Lu Ding
- Department of Nephrology, University of Electronic Science and Technology, Sichuan Academy of Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China
| | - Wang Guo
- Department of Nephrology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Ya-Ni He
- Department of Nephrology, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Li-Hua Wang
- Department of Nephrology, Second Affiliated Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Ya-Ping Wang
- Department of Nephrology, Army General Hospital, Beijing 100700, China
| | - Hong-Tao Yang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300192, China
| | - Zhi-Ming Ye
- Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510030, China
| | - Ren-Huan Yu
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Li-Juan Zhao
- Department of Nephrology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Wen-Hua Zhou
- Department of Nephrology, Second Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Wen-Ge Li
- Department of Nephrology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Hui-Juan Mao
- Department of Nephrology, Jiangsu Province Hospital, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yong-Li Zhan
- Department of Nephrology, Guang'anmen Hospital of China Academy of Traditional Chinese Medical Sciences, Beijing 100053, China
| | - Zhao Hu
- Department of Nephrology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Chen Yao
- Peking University Clinical Research Institute, Peking University, Beijing 100191, China
| | - Ri-Bao Wei
- Department of Nephrology, Chinese People's Liberation Army General Hospital, Chinese People's Liberation Army Institute of Nephrology, State Key Laboratory of Kidney Diseases (2011DAV00088), National Clinical Research Center for Kidney Diseases, Beijing 100853, China
| | - Xiang-Mei Chen
- Department of Nephrology, Chinese People's Liberation Army General Hospital, Chinese People's Liberation Army Institute of Nephrology, State Key Laboratory of Kidney Diseases (2011DAV00088), National Clinical Research Center for Kidney Diseases, Beijing 100853, China
| |
Collapse
|
28
|
Cheng Y, Li H, Mu Y, Ding S, Guo L, Wang X. Reaction Kinetics and Pathways for Salvianolic Acid B in High Temperature Water. ChemistrySelect 2018. [DOI: 10.1002/slct.201702553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yan Cheng
- Key Laboratory of TCM Quality Control Technology; Shandong Analysis and Test Center; Qilu University of Technology (Shandong Academy of Sciences); China
| | - Huaizhi Li
- Key Laboratory of TCM Quality Control Technology; Shandong Analysis and Test Center; Qilu University of Technology (Shandong Academy of Sciences); China
- College of Pharmacy; Shandong University of Traditional Chinese Medicine; China
| | - Yan Mu
- Key Laboratory of TCM Quality Control Technology; Shandong Analysis and Test Center; Qilu University of Technology (Shandong Academy of Sciences); China
| | - Shangzhi Ding
- Key Laboratory of TCM Quality Control Technology; Shandong Analysis and Test Center; Qilu University of Technology (Shandong Academy of Sciences); China
| | - Lanping Guo
- Key Laboratory of TCM Quality Control Technology; Shandong Analysis and Test Center; Qilu University of Technology (Shandong Academy of Sciences); China
| | - Xiao Wang
- Key Laboratory of TCM Quality Control Technology; Shandong Analysis and Test Center; Qilu University of Technology (Shandong Academy of Sciences); China
| |
Collapse
|
29
|
α-asarone reduce proteinuria by restoring antioxidant enzymes activities and regulating necrosis factor κB signaling pathway in doxorubicin-induced nephrotic syndrome. Biomed Pharmacother 2018; 98:318-324. [DOI: 10.1016/j.biopha.2017.12.051] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 12/09/2017] [Accepted: 12/13/2017] [Indexed: 12/11/2022] Open
|
30
|
Zhang Z, Qi D, Wang X, Gao Z, Li P, Liu W, Tian X, Liu Y, Yang M, Liu K, Fan H. Protective effect of Salvianolic acid A on ischaemia-reperfusion acute kidney injury in rats through protecting against peritubular capillary endothelium damages. Phytother Res 2017; 32:103-114. [DOI: 10.1002/ptr.5954] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 08/13/2017] [Accepted: 09/21/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Zuokai Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong; Yantai University; Yantai 264005 P.R. China
| | - Dong Qi
- Department of Nephrology; Yu-Huang-Ding Hospital/Qingdao University; 264000 Yantai Shandong P.R. China
| | - Xuekai Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong; Yantai University; Yantai 264005 P.R. China
| | - Zhenfang Gao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong; Yantai University; Yantai 264005 P.R. China
| | - Peng Li
- Department of Nephrology; Yu-Huang-Ding Hospital/Qingdao University; 264000 Yantai Shandong P.R. China
| | - Wenbo Liu
- Medical Research Center; Binzhou Medical University; 264003 Yantai Shandong China
| | - Xiao Tian
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong; Yantai University; Yantai 264005 P.R. China
| | - Yue Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong; Yantai University; Yantai 264005 P.R. China
| | - Mingyan Yang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong; Yantai University; Yantai 264005 P.R. China
| | - Ke Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong; Yantai University; Yantai 264005 P.R. China
| | - Huaying Fan
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong; Yantai University; Yantai 264005 P.R. China
| |
Collapse
|
31
|
Chen SJ, Cui MC. Systematic Understanding of the Mechanism of Salvianolic Acid A via Computational Target Fishing. Molecules 2017; 22:molecules22040644. [PMID: 28420179 PMCID: PMC6153743 DOI: 10.3390/molecules22040644] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/08/2017] [Accepted: 04/12/2017] [Indexed: 11/16/2022] Open
Abstract
Salvianolic acid A (SAA) is one of the most abundant water-soluble and potent anti-oxidative compounds isolated from Danshen, a traditional Chinese medicine. A systematic overview of its mechanism of action is yet to be performed. In the present study, the druggability of SAA was measured using the TCMSP server, and potential targets of SAA were identified by PharmMapper and DRAR-CPI. Intersecting targets were then assessed by GeneMANIA and GO pathway analysis, and drug-target-pathway networks were constructed to give a visual view. The results showed that SAA has good druggability, and 13 putative protein targets were identified. Network analysis showed that these targets were associated with cancer, metabolism and other physiological processes. In summary, SAA is predicted to target multiple proteins and pathways to form a network that exerts systematic pharmacological effects.
Collapse
Affiliation(s)
- Shao-Jun Chen
- Department of Traditional Chinese Medicine, Zhejiang Pharmaceutical College, 888 Yinxian Avenue Eastern Section, Ningbo 315100, China.
| | - Ming-Chao Cui
- Department of Traditional Chinese Medicine, Zhejiang Pharmaceutical College, 888 Yinxian Avenue Eastern Section, Ningbo 315100, China.
| |
Collapse
|
32
|
Evaluation of Efficacy and Safety of Dan'e-Fukang Soft Extract in the Treatment of Endometriosis: A Meta-Analysis of 39 Randomized Controlled Trials Enrolling 5442 Patients. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:9767391. [PMID: 28337228 PMCID: PMC5350406 DOI: 10.1155/2017/9767391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 12/20/2016] [Indexed: 11/28/2022]
Abstract
Objective. To systematically evaluate the efficacy and safety of Dan'e-fukang soft extract in endometriosis treatment. Method. PubMed, CNKI, Wanfang Database, VIP, SinoMed, and Cochrane Library were searched. Randomized controlled trials (RCTs) comparing the efficacy of Dan'e-fukang soft extract and conventional western medicines for endometriosis treatment were included. The data were extracted independently by two people and analyzed using RevMan 5.2.0 software. The relative risk (RR) and mean difference (MD) with 95% confidence intervals were considered as effective outcome indicators. Results. Thirty-nine papers including 5442 patients with endometriosis were included in this study. A meta-analysis revealed that Dan'e-fukang soft extract was more efficient than gestrinone in the treatment of endometriosis (RR = 1.08, 95% CI = 1.03 to 1.15, I2 = 71%, REM, 18 trials) and its efficacy was comparable to that of danazol and mifepristone. Dan'e-fukang soft extract was also as effective as gestrinone and mifepristone in terms of relapse rate and relieving dysmenorrhea. The incidence of adverse reactions was lower than that of conventional western medicines. Conclusions. The results of this study showed that Dan'e-fukang soft extract offers certain advantages in endometriosis treatment, but rigorously designed, strictly implemented RCTs are needed to further validate its efficacy.
Collapse
|
33
|
Mahmood Q, Wang GF, Wu G, Wang H, Zhou CX, Yang HY, Liu ZR, Han F, Zhao K. Salvianolic acid A inhibits calpain activation and eNOS uncoupling during focal cerebral ischemia in mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2017; 25:8-14. [PMID: 28190474 DOI: 10.1016/j.phymed.2016.12.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 10/21/2016] [Accepted: 12/11/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Salvianolic acid A (SAA) is obtained from Chinese herb Salviae Miltiorrhizae Bunge (Labiatae), has been reported to have the protective effects against cardiovascular and neurovascular diseases. HYPOTHESIS The aim of present study was to investigate the relationship between the effectiveness of SAA against neurovascular injury and its effects on calpain activation and endothelial nitric oxide synthase (eNOS) uncoupling. STUDY DESIGN SAA or vehicle was given to C57BL/6 male mice for seven days before the occlusion of middle cerebral artery (MCAO) for 60min. METHODS High-resolution positron emission tomography scanner (micro-PET) was used for small animal imaging to examine glucose metabolism. Rota-rod time and neurological deficit scores were calculated after 24h of reperfusion. The volume of infarction was determined by Nissl-staining. The calpain proteolytic activity and eNOS uncoupling were determined by western blot analysis. RESULTS SAA administration increased glucose metabolism and ameliorated neuronal damage after brain ischemia, paralleled with decreased neurological deficit and volume of infarction. In addition, SAA pretreatment inhibited eNOS uncoupling and calpain proteolytic activity. Furthermore, SAA inhibited peroxynitrite (ONOO-) generation and upregulates AKT, FKHR and ERK phosphorylation. CONCLUSION These findings strongly suggest that SAA elicits a neurovascular protective role through the inhibition of eNOS uncoupling and ONOO- formation. Moreover, SAA attenuates spectrin and calcineurin breakdown and therefore protects the brain against ischemic/reperfusion injury.
Collapse
Affiliation(s)
- Qaisar Mahmood
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Guang-Fa Wang
- Department of PET/CT Center, The First Affiliated Hospital, School of Medicine, Zhejiang University Zhejiang 310003, China
| | - Gang Wu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Huan Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Chang-Xin Zhou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Hong-Yu Yang
- Department of Pharmacy, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Zhi-Rong Liu
- Department of Neurology, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Feng Han
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Kui Zhao
- Department of PET/CT Center, The First Affiliated Hospital, School of Medicine, Zhejiang University Zhejiang 310003, China.
| |
Collapse
|
34
|
Jiao CX, Zhou H, Yang CX, Ma C, Yang YX, Mao RR, Xu L, Zhou QX. Protective efficacy of a single salvianolic acid A treatment on photothrombosis-induced sustained spatial memory impairments. Neuropsychiatr Dis Treat 2017; 13:1181-1192. [PMID: 28490880 PMCID: PMC5414628 DOI: 10.2147/ndt.s127094] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
With respect to the high burden of ischemic stroke and the absence of pharmacological treatment for promoting rehabilitation, promising candidates with specific effects on long-term functional recovery are highly desired. Candidates need reasonable experimental paradigms to evaluate the long-term functional outcome focused on ischemia-induced sensorimotor and memory deficits. "Danshen", a traditional Chinese herb, has long been used to treat coronary and cerebral vascular diseases as well as dementia. Salvianolic acid A (SAA), one of the major active ingredients of Danshen, was demonstrated to be effective in protecting against cerebral ischemic injury. Here, employing an experimental stroke model induced by photothrombosis in the unilateral frontal cortex of rats, we investigated whether SAA has long-term protective effects on ischemia-induced sensorimotor and memory deficits in our behavioral tests. The results indicated that a single SAA treatment improved the cortical ischemia-induced sensorimotor deficits during 15 days' cylinder test period, and alleviated ischemia-induced sustained spatial memory impairments during the 2 months' dependent Morris Water Maze (MWM) tests. In addition, either ischemic injury or SAA treatment did not show any changes compared with sham group in other behavioral tests including rotarod tests, swimming speed in MWM tests, open field tests, elevated plus maze tests, treadmill tests and forced swimming tests. The results reveal that the cognitive deficits are not the results of animal's anxiety or confounding motor impairments. Overall, the present paradigm appears suitable for the preclinical evaluation of the long-term effects of pharmacological treatments on ischemic stroke. Meanwhile, SAA might have therapeutic potential for the treatment of memory deficits associated with ischemic stroke.
Collapse
Affiliation(s)
- Chun-Xiang Jiao
- Laboratory of Learning and Memory, Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, CAS, Kunming.,Kunming College of Life Sciences, University of Chinese Academy of Sciences.,Yunnan Provincial Key Laboratory of Entomollogical Biopharmaceutical Research and Development, College of Pharmacy and Chemistry, Dali University, Dali
| | - Heng Zhou
- Laboratory of Learning and Memory, Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, CAS, Kunming.,School of Life Sciences, University of Science and Technology of China, Hefei, People's Republic of China
| | - Chun-Xian Yang
- Laboratory of Learning and Memory, Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, CAS, Kunming.,Kunming College of Life Sciences, University of Chinese Academy of Sciences
| | - Chen Ma
- Laboratory of Learning and Memory, Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, CAS, Kunming.,Kunming College of Life Sciences, University of Chinese Academy of Sciences
| | - Yue-Xiong Yang
- Laboratory of Learning and Memory, Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, CAS, Kunming.,Kunming College of Life Sciences, University of Chinese Academy of Sciences
| | - Rong-Rong Mao
- Laboratory of Learning and Memory, Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, CAS, Kunming.,Kunming College of Life Sciences, University of Chinese Academy of Sciences
| | - Lin Xu
- Laboratory of Learning and Memory, Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, CAS, Kunming.,Kunming College of Life Sciences, University of Chinese Academy of Sciences
| | - Qi-Xin Zhou
- Laboratory of Learning and Memory, Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, CAS, Kunming.,Kunming College of Life Sciences, University of Chinese Academy of Sciences
| |
Collapse
|
35
|
Gao H, Sun W, Zhao J, Wu X, Lu JJ, Chen X, Xu QM, Khan IA, Yang S. Tanshinones and diethyl blechnics with anti-inflammatory and anti-cancer activities from Salvia miltiorrhiza Bunge (Danshen). Sci Rep 2016; 6:33720. [PMID: 27666387 PMCID: PMC5036060 DOI: 10.1038/srep33720] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 09/01/2016] [Indexed: 02/06/2023] Open
Abstract
Four novel compounds (1-4) as well as fourteen reported compounds (5-18) were isolated and purified from Salvia miltiorrhiza Bunge (Danshen). The structures of novel compounds were determined by 1D and 2D NMR, HRESIMS data, etc. The anti-inflammatory properties of all the compounds on RAW264.7 macrophages and their cytotoxicity on H1299 and Bel-7402 cell lines coupled with a structure-activity relationship (SAR) were investigated. Compound 4 demonstrated the best anti-inflammatory activity and was chosen for further research. Compound 4 greatly suppressed secretion of nitric oxide (NO), tumor necrosis factor (TNF)-α and interleukin-6 (IL-6) in the RAW264.7 macrophages stimulated by LPS. Additionally, the protein expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) was decreased and the nuclear translocation of NF-κB was attenuated after treatment with compound 4 in vitro. Compound 4 was able to dramatically inhibit LPS-induced activation of JNK1/2 and ERK1/2 and remarkably disrupted the TLR4 dimerization in LPS-induced RAW264.7 macrophages. Thus, the new compound 4 suppressed LPS-induced inflammation partially is due to the blocking TLR4 dimerization. In addition, the anti-cancer activity investigation indicated that most of isolated compounds exhibited cytotoxicity and the SAR analysis showed that the intact D ring was indispensable and unsaturated D ring played vital role.
Collapse
Affiliation(s)
- Hongwei Gao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Wen Sun
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Jianping Zhao
- National Center for Natural Products Research, and Department of Pharmacognosy, Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, Mississippi 38677, USA
| | - Xiaxia Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Qiong-ming Xu
- College of Pharmaceutical Science, SooChow University, Suzhou 215123, China
| | - Ikhlas A. Khan
- National Center for Natural Products Research, and Department of Pharmacognosy, Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, Mississippi 38677, USA
| | - Shilin Yang
- College of Pharmaceutical Science, SooChow University, Suzhou 215123, China
| |
Collapse
|
36
|
Xu Y, Lin H, Zheng W, Ye X, Yu L, Zhuang J, Yang Q, Wang D. Matrine ameliorates adriamycin-induced nephropathy in rats by enhancing renal function and modulating Th17/Treg balance. Eur J Pharmacol 2016; 791:491-501. [PMID: 27640745 DOI: 10.1016/j.ejphar.2016.09.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 09/04/2016] [Accepted: 09/14/2016] [Indexed: 02/07/2023]
Abstract
Matrine (MAT) is an active alkaloid extracted from Radix Sophora flavescens. The present study was to investigate whether MAT could effectively treat Adriamycin-induced nephropathy (AIN). AIN was induced in rats using a single injection of Adriamycin (ADR). Renal interleukin-6 (IL-6), IL-10, IL-17 and transforming growth factor-β (TGF-β) levels, and the expression of forkhead box protein 3 (Foxp3) and retinoid-related orphan nuclear receptor γt (Rorγt) was measured. AIN rats developed severe albuminuria, hypoalbuminaemia, hyperlipidaemia and podocyte injury. Daily administration of MAT (100mg/kg or 200mg/kg) significantly prevented ADR-induced podocyte injury, decreased AIN symptoms and improved renal pathology manifestations. Of note, treatment with MAT (100mg/kg) plus prednisone (Pre, 5mg/kg) had equivalent efficacy to that of Pre alone (10mg/kg). Additional findings showed that ADR triggered a disordered cytokine network and abnormal expression of Foxp3 and Rorγt in rats, as reflected by increased levels of IL-6, IL-10, TGF-β, Rorγt and decreased levels of IL-10 and Foxp3. Interestingly, MAT weakened the disordered cytokine network and normalized the expression of Foxp3 and Rorγt. In addition, a significant negative correlation was observed between the values of Foxp3/Rorγt and renal pathology scores. Finally, MAT normalized regulatory T cells (Treg)/ T-helper17 cells (Th17) ratio in peripheral blood mononuclear cells of AIN rats. These data indicate MAT prevents AIN through the modification of disordered plasma lipids and recovery of renal function, and this bioactivity is at least partly attributed to the suppression of renal inflammation and the regulation of the Treg/Th17 imbalance.
Collapse
Affiliation(s)
- Yixiao Xu
- Department of Pediatrics, the Second Affiliated & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Department of Pathophysiology, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Hongzhou Lin
- Department of Pediatrics, the Second Affiliated & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Wenjie Zheng
- Department of Pediatrics, the Second Affiliated & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Xiaohua Ye
- Department of Pediatrics, the Second Affiliated & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Lingfang Yu
- Department of Pediatrics, the Second Affiliated & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Jieqiu Zhuang
- Department of Pediatrics, the Second Affiliated & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Qing Yang
- Department of Pediatrics, the Second Affiliated & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Dexuan Wang
- Department of Pediatrics, the Second Affiliated & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
37
|
New insights into salvianolic acid A action: Regulation of the TXNIP/NLRP3 and TXNIP/ChREBP pathways ameliorates HFD-induced NAFLD in rats. Sci Rep 2016; 6:28734. [PMID: 27345365 PMCID: PMC4922017 DOI: 10.1038/srep28734] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 06/08/2016] [Indexed: 12/30/2022] Open
Abstract
Salvianolic acid A (SalA), one of the most efficacious polyphenol compounds extracted from Radix Salvia miltiorrhiza (Danshen), has been shown to possess many potential pharmacological activities. This study aimed to investigate whether SalA has hepatoprotective effects against high-fat diet (HFD)-induced non-alcoholic fatty liver disease (NAFLD) and to further explore the mechanism underlying this process. SalA treatment significantly attenuated HFD-induced obesity and liver injury, and markedly decreased lipid accumulation in HFD-fed rat livers. Moreover, SalA treatment ameliorated HFD-induced hepatic inflammation and oxidative stress by decreasing hepatotoxic levels of cytokines, suppressing the overproduction of reactive oxygen species (ROS) and methane dicarboxylic aldehyde (MDA) and preventing the decreased expression of superoxide dismutase (SOD). Importantly, SalA reversed the HFD- or palmitic acid (PA)-induced activation of the NLRP3 inflammasome, the nuclear translocation of ChREBP and the up-regulation of FAS, and these effects were accompanied by TXNIP down-regulation. However, TXNIP siRNA treatment partially abrogated the above-mentioned effects of SalA in PA-treated HepG2 cells. Together, our results demonstrated, for the first time, that SalA protects against HFD-induced NAFLD by ameliorating hepatic lipid accumulation and inflammation, and these protective effects may partially due to regulation of the TXNIP/NLRP3 and TXNIP/ChREBP pathways.
Collapse
|
38
|
Cobrotoxin from Naja naja atra Venom Ameliorates Adriamycin Nephropathy in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:450581. [PMID: 26640497 PMCID: PMC4658410 DOI: 10.1155/2015/450581] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 09/09/2015] [Accepted: 09/29/2015] [Indexed: 02/01/2023]
Abstract
Chronic kidney disease (CKD) becomes a global health problem with high morbidity and mortality. Adriamycin- (ADR-) induced rodent chronic nephropathy is a classic experimental model of human minimal lesion nephrotic syndrome. The present study investigated the effect of cobrotoxin (CTX) on ADR-induced nephropathy. Rats were given 6 mg/kg ADR once through the tail vein to replicate ADR nephropathy model. CTX was administered to rats daily by placing a fast dissolving CTX membrane strip under the tongue starting from 5 days prior to ADR administration until the end of experiment. The results showed that CTX ameliorated the symptoms of ADR nephropathy syndrome with reduced body weight loss, proteinuria, hypoalbuminemia, dyslipidemia, serum electrolyte imbalance, oxidative stress, renal function abnormities, and kidney pathological lesions. Anti-inflammatory cytokine IL-10 expression was elevated after CTX administration in ADR nephropathy model. CTX inhibited the phosphorylation of IκB-α and NF-κB p65 nuclear translocation. Meanwhile, CTX upregulated the protein level of podocyte-specific nephrin and downregulated the level of fibrosis-related TGF-β. These findings suggest that CTX may be a potential drug for chronic kidney diseases.
Collapse
|