1
|
Alraddadi EA, Aljuhani FF, Alsamiri GY, Hafez SY, Alselami G, Almarghalani DA, Alamri FF. The Effects of Cannabinoids on Ischemic Stroke-Associated Neuroinflammation: A Systematic Review. J Neuroimmune Pharmacol 2025; 20:12. [PMID: 39899062 PMCID: PMC11790784 DOI: 10.1007/s11481-025-10171-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 01/20/2025] [Indexed: 02/04/2025]
Abstract
Stroke represents a significant burden on global health and the economy, with high mortality rates, disability, and recurrence. Ischemic stroke is a serious condition that occurs when a blood vessel in the brain is interrupted, reducing the blood supply to the affected area. Inflammation is a significant component in stroke pathophysiology. Neuroinflammation is triggered following the acute ischemic ictus, where the blood-brain barrier (BBB) breaks down, causing damage to the endothelial cells. The damage will eventually generate oxidative stress, activate the pathological phenotypes of astrocytes and microglia, and lead to neuronal death in the neurovascular unit. As a result, the brain unleashes a robust neuroinflammatory response, which can further worsen the neurological outcomes. Neuroinflammation is a complex pathological process involved in ischemic damage and repair. Finding new neuroinflammation molecular targets is essential to develop effective and safe novel treatment approaches against ischemic stroke. Accumulating studies have investigated the pharmacological properties of cannabinoids (CBs) for many years, and recent research has shown their potential therapeutic use in treating ischemic stroke in rodent models. These findings revealed promising impacts of CBs in reducing neuroinflammation and cellular death and ameliorating neurological deficits. In this review, we explore the possibility of the therapeutic administration of CBs in mitigating neuroinflammation caused by a stroke. We summarize the results from several preclinical studies evaluating the efficacy of CBs anti-inflammatory interventions in ischemic stroke. Although convincing preclinical evidence implies that CBs targeting neuroinflammation are promising for ischemic stroke, translating these findings into the clinical setting has proven to be challenging. The translation hurdle is due to the essence of the CBs ability to cause anxiety, cognitive deficit, and psychosis. Future studies are warranted to address the dose-beneficial effect of CBs in clinical trials of ischemic stroke-related neuroinflammation treatment.
Collapse
Affiliation(s)
- Eman A Alraddadi
- Department of Basic Sciences, College of Science and Health Professions, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Faisal F Aljuhani
- Department of Basic Sciences, College of Science and Health Professions, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Ghadah Y Alsamiri
- Department of Basic Sciences, College of Science and Health Professions, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Salwa Y Hafez
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
- College of Nursing, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Ghaida Alselami
- Department of Basic Sciences, College of Science and Health Professions, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Daniyah A Almarghalani
- Stroke Research Unit, Taif University, Taif, Saudi Arabia
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Faisal F Alamri
- Department of Basic Sciences, College of Science and Health Professions, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia.
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia.
| |
Collapse
|
2
|
Yang LK, Wang W, Guo DY, Dong B. Non-canonical signaling initiated by hormone-responsive G protein-coupled receptors from subcellular compartments. Pharmacol Ther 2025; 266:108788. [PMID: 39722422 DOI: 10.1016/j.pharmthera.2024.108788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 11/13/2024] [Accepted: 12/12/2024] [Indexed: 12/28/2024]
Abstract
G protein-coupled receptors (GPCRs), the largest family of membrane receptors in the mammalian genomes, regulate almost all known physiological processes by transducing numerous extracellular stimuli including almost two-thirds of endogenous hormones and neurotransmitters. The traditional view held that GPCR signaling occurs exclusively at the cell surface, where the receptors bind with the ligands and undergo conformational changes to recruit and activate heterotrimeric G proteins. However, with the application of advanced biochemical and biophysical techniques, this conventional model is challenged by the elucidation of spatiotemporal GPCR activation with the evidence that receptors can signal from subcellular compartments to exhibit various molecular and cellular responses with physiological and pathophysiological relevance. Thus, this 'location bias' of GPCR signaling has become another layer of complexity of GPCR signal transduction. In this review, we generally introduce the development of the concept of compartmentalized GPCR signaling and comprehensively summarize the receptors reported to be localized on the membranes of different intracellular organelles. We review the physiological functions of these compartmentalized GPCRs with emphasis on some well-characterized prototypical hormone/neurotransmitter-binding receptors, including β2-adrenergic receptor, opioid receptors, parathyroid hormone type 1 receptor, thyroid-stimulating hormone receptor, cannabinoid receptor type 1, and metabotropic glutamate receptor 5, as examples. In addition, the therapeutic implications of compartmentalized GPCR signaling by introducing lipophilic or hydrophilic ligands for intracellular targeting, lipid conjugation anchor drugs, and strategy to modulate receptor internalization/resensitization, are highlighted and open new avenues in GPCR pharmacology and therapeutics.
Collapse
Affiliation(s)
- Li-Kun Yang
- Fang Zongxi Center for Marine EvoDevo, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Wei Wang
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada; Department of Clinical Laboratory, Xiamen Huli Guoyu Clinic, Co., Ltd., Xiamen, China
| | - Dong-Yu Guo
- Department of Clinical Laboratory, Xiamen Huli Guoyu Clinic, Co., Ltd., Xiamen, China
| | - Bo Dong
- Fang Zongxi Center for Marine EvoDevo, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Insititute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China..
| |
Collapse
|
3
|
Anchimowicz J, Zielonka P, Jakiela S. Plant Secondary Metabolites as Modulators of Mitochondrial Health: An Overview of Their Anti-Oxidant, Anti-Apoptotic, and Mitophagic Mechanisms. Int J Mol Sci 2025; 26:380. [PMID: 39796234 PMCID: PMC11720160 DOI: 10.3390/ijms26010380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/29/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025] Open
Abstract
Plant secondary metabolites (PSMs) are a diverse group of bioactive compounds, including flavonoids, polyphenols, saponins, and terpenoids, which have been recognised for their critical role in modulating cellular functions. This review provides a comprehensive analysis of the effects of PSMs on mitochondrial health, with particular emphasis on their therapeutic potential. Emerging evidence shows that these metabolites improve mitochondrial function by reducing oxidative stress, promoting mitochondrial biogenesis, and regulating key processes such as apoptosis and mitophagy. Mitochondrial dysfunction, a hallmark of many pathologies, including neurodegenerative disorders, cardiovascular diseases, and metabolic syndrome, has been shown to benefit from the protective effects of PSMs. Recent studies show that PSMs can improve mitochondrial dynamics, stabilise mitochondrial membranes, and enhance bioenergetics, offering significant promise for the prevention and treatment of mitochondrial-related diseases. The molecular mechanisms underlying these effects, including modulation of key signalling pathways and direct interactions with mitochondrial proteins, are discussed. The integration of PSMs into therapeutic strategies is highlighted as a promising avenue for improving treatment efficacy while minimising the side effects commonly associated with synthetic drugs. This review also highlights the need for future research to elucidate the specific roles of individual PSMs and their synergistic interactions within complex plant matrices, which may further optimise their therapeutic utility. Overall, this work provides valuable insights into the complex role of PSMs in mitochondrial health and their potential as natural therapeutic agents targeting mitochondrial dysfunction.
Collapse
Affiliation(s)
| | | | - Slawomir Jakiela
- Department of Physics and Biophysics, Institute of Biology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (J.A.); (P.Z.)
| |
Collapse
|
4
|
Senese R, Petito G, Silvestri E, Ventriglia M, Mosca N, Potenza N, Russo A, Falvo S, Manfrevola F, Cobellis G, Chioccarelli T, Porreca V, Mele VG, Chianese R, de Lange P, Ricci G, Cioffi F, Lanni A. The impact of cannabinoid receptor 1 absence on mouse liver mitochondria homeostasis: insight into mitochondrial unfolded protein response. Front Cell Dev Biol 2024; 12:1464773. [PMID: 39512900 PMCID: PMC11541708 DOI: 10.3389/fcell.2024.1464773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/09/2024] [Indexed: 11/15/2024] Open
Abstract
Introduction The contribution of Cannabinoid type 1 receptor (CB1) in mitochondrial energy transduction mechanisms and mitochondrial activities awaits deeper investigations. Our study aims to assess the impact of CB1 absence on the mitochondrial compartment in the liver, focusing on both functional aspects and remodeling processes. Methods We used CB1-/- and CB1+/+ male mice. Cytochrome C Oxidase activity was determined polarographically. The expression and the activities of separated mitochondrial complexes and supercomplexes were performed by using Blue-Native Page, Western blotting and histochemical staining for in-gel activity. Key players of Mitochondrial Quality Control processes were measured using RT-qPCR and Western blotting. Liver fine sub-cellular ultrastructural features were analyzed by TEM analysis. Results and discussion In the absence of CB1, several changes in the liver occur, including increased oxidative capacity, reduced complex I activity, enhanced complex IV activity, general upregulation of respiratory supercomplexes, as well as higher levels of oxidative stress. The mitochondria and cellular metabolism may be affected by these changes, increasing the risk of ROS-related damage. CB1-/- mice show upregulation of mitochondrial fusion, fission and biogenesis processes which suggests a dynamic response to the absence of CB1. Furthermore, oxidative stress disturbs mitochondrial proteostasis, initiating the mitochondrial unfolded protein response (UPRmt). We noted heightened levels of pivotal enzymes responsible for maintaining mitochondrial integrity, along with heightened expression of molecular chaperones and transcription factors associated with cellular stress reactions. Additionally, our discoveries demonstrate a synchronized reaction to cellular stress, involving both UPRmt and UPRER pathways.
Collapse
Affiliation(s)
- Rosalba Senese
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “L. Vanvitelli”, Caserta, Italy
| | - Giuseppe Petito
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “L. Vanvitelli”, Caserta, Italy
| | - Elena Silvestri
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | - Maria Ventriglia
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “L. Vanvitelli”, Caserta, Italy
| | - Nicola Mosca
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “L. Vanvitelli”, Caserta, Italy
| | - Nicoletta Potenza
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “L. Vanvitelli”, Caserta, Italy
| | - Aniello Russo
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “L. Vanvitelli”, Caserta, Italy
| | - Sara Falvo
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “L. Vanvitelli”, Caserta, Italy
| | - Francesco Manfrevola
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Gilda Cobellis
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Teresa Chioccarelli
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Veronica Porreca
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Vincenza Grazia Mele
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Rosanna Chianese
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Pieter de Lange
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “L. Vanvitelli”, Caserta, Italy
| | - Giulia Ricci
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Federica Cioffi
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | - Antonia Lanni
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “L. Vanvitelli”, Caserta, Italy
| |
Collapse
|
5
|
Suárez-Suárez C, González-Pérez S, Márquez-Miranda V, Araya-Duran I, Vidal-Beltrán I, Vergara S, Carvacho I, Hinostroza F. The Endocannabinoid Peptide RVD-Hemopressin Is a TRPV1 Channel Blocker. Biomolecules 2024; 14:1134. [PMID: 39334900 PMCID: PMC11430712 DOI: 10.3390/biom14091134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024] Open
Abstract
Neurotransmission is critical for brain function, allowing neurons to communicate through neurotransmitters and neuropeptides. RVD-hemopressin (RVD-Hp), a novel peptide identified in noradrenergic neurons, modulates cannabinoid receptors CB1 and CB2. Unlike hemopressin (Hp), which induces anxiogenic behaviors via transient receptor potential vanilloid 1 (TRPV1) activation, RVD-Hp counteracts these effects, suggesting that it may block TRPV1. This study investigates RVD-Hp's role as a TRPV1 channel blocker using HEK293 cells expressing TRPV1-GFP. Calcium imaging and patch-clamp recordings demonstrated that RVD-Hp reduces TRPV1-mediated calcium influx and TRPV1 ion currents. Molecular docking and dynamics simulations indicated that RVD-Hp interacts with TRPV1's selectivity filter, forming stable hydrogen bonds and van der Waals contacts, thus preventing ion permeation. These findings highlight RVD-Hp's potential as a therapeutic agent for conditions involving TRPV1 activation, such as pain and anxiety.
Collapse
Affiliation(s)
- Constanza Suárez-Suárez
- Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Talca 3460000, Chile; (C.S.-S.); (S.G.-P.)
| | - Sebastián González-Pérez
- Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Talca 3460000, Chile; (C.S.-S.); (S.G.-P.)
| | - Valeria Márquez-Miranda
- Center for Bioinformatics and Integrative Biology (CBIB), Universidad Andrés Bello, Santiago 8370146, Chile; (V.M.-M.); (I.A.-D.)
| | - Ingrid Araya-Duran
- Center for Bioinformatics and Integrative Biology (CBIB), Universidad Andrés Bello, Santiago 8370146, Chile; (V.M.-M.); (I.A.-D.)
| | - Isabel Vidal-Beltrán
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca 3460000, Chile;
| | - Sebastián Vergara
- Departamento de Medicina Traslacional, Facultad de Medicina, Universidad Católica del Maule, Talca 3460000, Chile; (S.V.); (I.C.)
| | - Ingrid Carvacho
- Departamento de Medicina Traslacional, Facultad de Medicina, Universidad Católica del Maule, Talca 3460000, Chile; (S.V.); (I.C.)
| | - Fernando Hinostroza
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca 3460000, Chile;
- Departamento de Medicina Traslacional, Facultad de Medicina, Universidad Católica del Maule, Talca 3460000, Chile; (S.V.); (I.C.)
- Centro de Investigación en Neuropsicología y Neurociencias Cognitivas, Facultad de Ciencias de la Salud, Universidad Católica del Maule, Talca 3460000, Chile
- Centro para la Investigación Traslacional en Neurofarmacología, Universidad de Valparaíso, Valparaíso 2340000, Chile
| |
Collapse
|
6
|
Bao H, Wang C, Xue X, Hu B, Guo Q. CB1 receptor mediates anesthetic drug ketamine‑induced neuroprotection against glutamate in HT22 cells. Exp Ther Med 2024; 27:268. [PMID: 38756904 PMCID: PMC11097274 DOI: 10.3892/etm.2024.12556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 04/02/2024] [Indexed: 05/18/2024] Open
Abstract
The anesthetic drug, ketamine (KTM) has been shown to induce therapeutic effects against major depressive disorder (MDD), however the related underlying mechanisms remain unclear. In the present study, HT22 neuronal cells were treated with glutamate to imitate oxidative stress injury in MDD, and it was hypothesized that the cannabinoid type 1 (CB1) receptor mediates KTM-induced neuroprotection via ameliorating mitochondrial function in glutamate-treated neuronal cells. Compared with the control, glutamate decreased cell viability and intracellular antioxidants, including glutathione (GSH), catalase and superoxide dismutase 2 levels, and inhibited mitochondrial function simultaneously. Moreover, glutamate increased lactate dehydrogenase release, cellular apoptosis level, cleaved caspase-3 expression and intracellular oxidants, such as reactive oxygen species, oxidized GSH and mitochondrial superoxide in the cells. The presence of KTM, however, significantly decreased the glutamate-induced oxidative stress injury, ameliorated the antioxidant/oxidant levels in the cells, enhanced mitochondrial function and upregulated CB1 receptor expression (P<0.05). Co-administration of the CB1 receptor antagonist AM251 markedly abolished the KTM-induced cytoprotective effects and ameliorations of antioxidant/oxidant levels and mitochondrial function, and also reversed CB1 upregulation (P<0.05). These observations indicated that KTM decreases the oxidative stress injury caused by glutamate in HT22 neuronal cells, and the neuroprotective effects may be mediated by the CB1 receptor.
Collapse
Affiliation(s)
- He Bao
- Department of Pharmacy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Chen Wang
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Xiaorong Xue
- Department of Pharmacy, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, Shaanxi 710004, P.R. China
| | - Bin Hu
- Department of Pharmacy, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, Shaanxi 710004, P.R. China
| | - Qi Guo
- Department of Pharmacy, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
7
|
Akimov MG, Gretskaya NM, Gorbacheva EI, Khadour N, Chernavskaya VS, Sherstyanykh GD, Kovaleko TF, Fomina-Ageeva EV, Bezuglov VV. The Interaction of the Endocannabinoid Anandamide and Paracannabinoid Lysophosphatidylinositol during Cell Death Induction in Human Breast Cancer Cells. Int J Mol Sci 2024; 25:2271. [PMID: 38396948 PMCID: PMC10888638 DOI: 10.3390/ijms25042271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/05/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
Endocannabinoid anandamide (AEA) and paracannabinoid lysophosphatidylinositol (LPI) play a significant role in cancer cell proliferation regulation. While anandamide inhibits the proliferation of cancer cells, LPI is known as a cancer stimulant. Despite the known endocannabinoid receptor crosstalk and simultaneous presence in the cancer microenvironment of both molecules, their combined activity has never been studied. We evaluated the effect of LPI on the AEA activity in six human breast cancer cell lines of different carcinogenicity (MCF-10A, MCF-7, BT-474, BT-20, SK-BR-3, MDA-MB-231) using resazurin and LDH tests after a 72 h incubation. AEA exerted both anti-proliferative and cytotoxic activity with EC50 in the range from 31 to 80 µM. LPI did not significantly affect the cell viability. Depending on the cell line, the response to the LPI-AEA combination varied from a decrease in AEA cytotoxicity to an increase in it. Based on the inhibitor analysis of the endocannabinoid receptor panel, we showed that for the former effect, an active GPR18 receptor was required and for the latter, an active CB2 receptor. The data obtained for the first time are important for the understanding the manner by which endocannabinoid receptor ligands acting simultaneously can modulate cancer growth at different stages.
Collapse
Affiliation(s)
- Mikhail G. Akimov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (N.M.G.); (E.I.G.); (N.K.); (V.S.C.); (G.D.S.); (T.F.K.); (E.V.F.-A.); (V.V.B.)
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Jastrzębski MK, Wójcik P, Stępnicki P, Kaczor AA. Effects of small molecules on neurogenesis: Neuronal proliferation and differentiation. Acta Pharm Sin B 2024; 14:20-37. [PMID: 38239239 PMCID: PMC10793103 DOI: 10.1016/j.apsb.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/06/2023] [Accepted: 09/13/2023] [Indexed: 01/22/2024] Open
Abstract
Neurons are believed to be non-proliferating cells. However, neuronal stem cells are still present in certain areas of the adult brain, although their proliferation diminishes with age. Just as with other cells, their proliferation and differentiation are modulated by various mechanisms. These mechanisms are foundational to the strategies developed to induce neuronal proliferation and differentiation, with potential therapeutic applications for neurodegenerative diseases. The most common among these diseases are Parkinson's disease and Alzheimer's disease, associated with the formation of β -amyloid (Aβ ) aggregates which cause a reduction in the number of neurons. Compounds such as LiCl, 4-aminothiazoles, Pregnenolone, ACEA, harmine, D2AAK1, methyl 3,4-dihydroxybenzoate, and shikonin may induce neuronal proliferation/differentiation through the activation of pathways: MAPK ERK, PI3K/AKT, NFκ B, Wnt, BDNF, and NPAS3. Moreover, combinations of these compounds can potentially transform somatic cells into neurons. This transformation process involves the activation of neuron-specific transcription factors such as NEUROD1, NGN2, ASCL1, and SOX2, which subsequently leads to the transcription of downstream genes, culminating in the transformation of somatic cells into neurons. Neurodegenerative diseases are not the only conditions where inducing neuronal proliferation could be beneficial. Consequently, the impact of pro-proliferative compounds on neurons has also been researched in mouse models of Alzheimer's disease.
Collapse
Affiliation(s)
- Michał K. Jastrzębski
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Medical University of Lublin, Faculty of Pharmacy, Lublin PL-20093, Poland
| | - Piotr Wójcik
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Medical University of Lublin, Faculty of Pharmacy, Lublin PL-20093, Poland
| | - Piotr Stępnicki
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Medical University of Lublin, Faculty of Pharmacy, Lublin PL-20093, Poland
| | - Agnieszka A. Kaczor
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Medical University of Lublin, Faculty of Pharmacy, Lublin PL-20093, Poland
- School of Pharmacy, University of Eastern Finland, Kuopio FI-70211, Finland
| |
Collapse
|
9
|
Ma L, Wang Y, Li X, Wang Z, Zhang B, Luo Y, Wu Y, Li Z, Niu W. Tom70-regulated mitochondrial biogenesis via TFAM improves hypoxia-induced dysfunction of pulmonary vascular endothelial cells and alleviates hypoxic pulmonary hypertension. Respir Res 2023; 24:310. [PMID: 38093274 PMCID: PMC10717060 DOI: 10.1186/s12931-023-02631-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Hypoxic pulmonary hypertension (HPH) is a common type of pulmonary hypertension and characterized by pulmonary vascular remodeling and constriction. A large number of studies have shown that pulmonary vascular endothelial cells (PVECs) dysfunction plays an important role in the initiation and development stages of HPH, but the mechanism of PVECs dysfunction after hypoxia remains unclear. In this study, we explored the exact mechanism of PVECs dysfunction after hypoxia. METHODS In vitro, we used primary cultured PVECs hypoxia model to mimic HPH injury. We detected the expressions of mitochondrial biogenesis markers, mitochondrial transcription factor A (TFAM) level inside mitochondria, mitochondrial quantity and function, and the components expressions of translocase of outer mitochondrial membrane (TOM) at 24 h after hypoxia. To explore the effects of Tom70 on mitochondrial biogenesis and functions of PVECs after hypoxia, Tom70 overexpression adenovirus was constructed, and the expressions of mitochondrial biogenesis markers, TFAM level inside mitochondria, mitochondrial quantity and function, and the functions of PVECs were detected. And in vivo, we used cre-dependent overexpression adenovirus of Tom70 in the Cdh5-CreERT2 mouse model of HPH to verify the role of upregulating PVECs Tom70 in improving HPH. RESULTS Hypoxia obviously increased the expressions of mitochondrial biogenesis markers for PGC-1α, NRF-1 and TFAM, but reduced the content of TFAM in mitochondria and the quantity and functions of mitochondria. In addition, only Tom70 expression among the TOM components was significantly decreased after hypoxia, and up-regulation of Tom70 significantly increased the content of TFAM in mitochondria of PVECs by transporting TFAM into mitochondria after hypoxia, enhanced the quantity and functions of mitochondria, improved the functions of PVECs, and ultimately alleviated HPH. CONCLUSION The findings of present study demonstrated that hypoxia induced the decreased expression of Tom70 in PVECs, reduced the mitochondrial biogenesis-associated TFAM protein transporting into mitochondria, inhibited mitochondrial biogenesis, caused PVECs injury, and prompted the formation of HPH. However, up-regulation of Tom70 abolished the hypoxia-induced injurious effects on PVECs and alleviated HPH.
Collapse
Affiliation(s)
- Lei Ma
- Department of Anesthesiology, Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Street, Xi'an, 710004, People's Republic of China.
| | - Yanxia Wang
- Department of Pathology, Xijing Hospital and School of Basic Medicine, Air Force Medical University, 169 Changle Western Street, Xi'an, 710032, People's Republic of China
| | - Xiaoqian Li
- Department of Cardiology, Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, 28 Fuxing Street, Beijing, 100853, People's Republic of China
| | - Zefang Wang
- Department of Basic Medicine, Graduate School, Chinese PLA General Hospital, 28 Fuxing Street, Beijing, 100853, People's Republic of China
| | - Bo Zhang
- Department of Physiology and Pathophysiology, School of Basic Medicine, Air Force Medical University, 169 Changle Western Street, Xi'an, 710032, People's Republic of China
| | - Ying Luo
- Department of Physiology and Pathophysiology, School of Basic Medicine, Air Force Medical University, 169 Changle Western Street, Xi'an, 710032, People's Republic of China
| | - Yousheng Wu
- National Demonstration Center for Experimental Preclinical Medicine Education, Air Force Medical University, 169 Changle Western Street, Xi'an, 710032, People's Republic of China
| | - Zhichao Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, 229 Taibai North Street, Xi'an, 710069, People's Republic of China.
| | - Wen Niu
- Department of Physiology and Pathophysiology, School of Basic Medicine, Air Force Medical University, 169 Changle Western Street, Xi'an, 710032, People's Republic of China.
| |
Collapse
|
10
|
Yang X, Zhang Y, Luo JX, Zhu T, Ran Z, Mu BR, Lu MH. Targeting mitophagy for neurological disorders treatment: advances in drugs and non-drug approaches. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:3503-3528. [PMID: 37535076 DOI: 10.1007/s00210-023-02636-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 07/18/2023] [Indexed: 08/04/2023]
Abstract
Mitochondria serve as a vital energy source for nerve cells. The mitochondrial network also acts as a defense mechanism against external stressors that can threaten the stability of the nervous system. However, excessive accumulation of damaged mitochondria can lead to neuronal death. Mitophagy is an essential pathway in the mitochondrial quality control system and can protect neurons by selectively removing damaged mitochondria. In most neurological disorders, dysfunctional mitochondria are a common feature, and drugs that target mitophagy can improve symptoms. Here, we reviewed the role of mitophagy in Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease, stroke, and traumatic brain injuries. We also summarized drug and non-drug approaches to promote mitophagy and described their therapeutic role in neurological disorders in order to provide valuable insight into the potential therapeutic agents available for neurological disease treatment. However, most studies on mitophagy regulation are based on preclinical research using cell and animal models, which may not accurately reflect the effects in humans. This poses a challenge to the clinical application of drugs targeting mitophagy. Additionally, these drugs may carry the risk of intolerable side effects and toxicity. Future research should focus on the development of safer and more targeted drugs for mitophagy.
Collapse
Affiliation(s)
- Xiong Yang
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yu Zhang
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jia-Xin Luo
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Tao Zhu
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zhao Ran
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ben-Rong Mu
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Mei-Hong Lu
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
11
|
Ding W, Yang L, Shi E, Kim B, Low S, Hu K, Gao L, Chen P, Ding W, Borsook D, Luo A, Choi JH, Wang C, Akeju O, Yang J, Ran C, Schreiber KL, Mao J, Chen Q, Feng G, Shen S. The endocannabinoid N-arachidonoyl dopamine is critical for hyperalgesia induced by chronic sleep disruption. Nat Commun 2023; 14:6696. [PMID: 37880241 PMCID: PMC10600211 DOI: 10.1038/s41467-023-42283-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 10/05/2023] [Indexed: 10/27/2023] Open
Abstract
Chronic pain is highly prevalent and is linked to a broad range of comorbidities, including sleep disorders. Epidemiological and clinical evidence suggests that chronic sleep disruption (CSD) leads to heightened pain sensitivity, referred to as CSD-induced hyperalgesia. However, the underlying mechanisms are unclear. The thalamic reticular nucleus (TRN) has unique integrative functions in sensory processing, attention/arousal and sleep spindle generation. We report that the TRN played an important role in CSD-induced hyperalgesia in mice, through its projections to the ventroposterior region of the thalamus. Metabolomics revealed that the level of N-arachidonoyl dopamine (NADA), an endocannabinoid, was decreased in the TRN after CSD. Using a recently developed CB1 receptor (cannabinoid receptor 1) activity sensor with spatiotemporal resolution, CB1 receptor activity in the TRN was found to be decreased after CSD. Moreover, CSD-induced hyperalgesia was attenuated by local NADA administration to the TRN. Taken together, these results suggest that TRN NADA signaling is critical for CSD-induced hyperalgesia.
Collapse
Affiliation(s)
- Weihua Ding
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Liuyue Yang
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Eleanor Shi
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Bowon Kim
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Sarah Low
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kun Hu
- Department of Pathology, Tuft University School of Medicine, Boston, MA, USA
| | - Lei Gao
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ping Chen
- College of Science and Mathematics, University of Massachusetts Boston, Boston, MA, USA
| | - Wei Ding
- College of Science and Mathematics, University of Massachusetts Boston, Boston, MA, USA
| | - David Borsook
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Andrew Luo
- Summer Intern Program of the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, currently at Brandeis University, Boston, MA, USA
| | - Jee Hyun Choi
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul, South Korea
| | - Changning Wang
- Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Oluwaseun Akeju
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jun Yang
- Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Chongzhao Ran
- Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kristin L Schreiber
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jianren Mao
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Qian Chen
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Guoping Feng
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Shiqian Shen
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
12
|
Podinić T, Werstuck G, Raha S. The Implications of Cannabinoid-Induced Metabolic Dysregulation for Cellular Differentiation and Growth. Int J Mol Sci 2023; 24:11003. [PMID: 37446181 DOI: 10.3390/ijms241311003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
The endocannabinoid system (ECS) governs and coordinates several physiological processes through an integrated signaling network, which is responsible for inducing appropriate intracellular metabolic signaling cascades in response to (endo)cannabinoid stimulation. This intricate cellular system ensures the proper functioning of the immune, reproductive, and nervous systems and is involved in the regulation of appetite, memory, metabolism, and development. Cannabinoid receptors have been observed on both cellular and mitochondrial membranes in several tissues and are stimulated by various classes of cannabinoids, rendering the ECS highly versatile. In the context of growth and development, emerging evidence suggests a crucial role for the ECS in cellular growth and differentiation. Indeed, cannabinoids have the potential to disrupt key energy-sensing metabolic signaling pathways requiring mitochondrial-ER crosstalk, whose functioning is essential for successful cellular growth and differentiation. This review aims to explore the extent of cannabinoid-induced cellular dysregulation and its implications for cellular differentiation.
Collapse
Affiliation(s)
- Tina Podinić
- The Department of Pediatrics and the Graduate Program in Medical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Geoff Werstuck
- Department of Medicine and the Thrombosis and Atherosclerosis Research Institute, David Braley Research Institute, McMaster University, Hamilton, ON L8L 2X2, Canada
| | - Sandeep Raha
- The Department of Pediatrics and the Graduate Program in Medical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
13
|
Tang TYC, Kim JS, Das A. Role of omega-3 and omega-6 endocannabinoids in cardiopulmonary pharmacology. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2023; 97:375-422. [PMID: 37236765 DOI: 10.1016/bs.apha.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Endocannabinoids are derived from dietary omega-3 and omega-6 fatty acids and play an important role in regulation of inflammation, development, neurodegenerative diseases, cancer, and cardiovascular diseases. They elicit this effect via interactions with cannabinoid receptors 1 and 2 which are also targeted by plant derived cannabinoid from cannabis. The evidence of the involvement of the endocannabinoid system in cardiopulmonary function comes from studies that show that cannabis consumption leads to cardiovascular effect such as arrythmia and is beneficial in lung cancer patients. Moreover, omega-3 and omega-6 endocannabinoids play several important roles in cardiopulmonary system such as causing airway relaxation, suppressing atherosclerosis and hypertension. These effects are mediated via the cannabinoids receptors that are abundant in the cardiopulmonary system. Overall, this chapter reviews the known role of phytocannabinoids and endocannabinoids in the cardiopulmonary context.
Collapse
Affiliation(s)
- Tiffany Y-C Tang
- School of Chemistry and Biochemistry, College of Sciences. Georgia Institute of Technology, Parker H. Petit Institute for Bioengineering and Biosciences, Atlanta, GA, United States
| | - Justin S Kim
- School of Chemistry and Biochemistry, College of Sciences. Georgia Institute of Technology, Parker H. Petit Institute for Bioengineering and Biosciences, Atlanta, GA, United States
| | - Aditi Das
- School of Chemistry and Biochemistry, College of Sciences. Georgia Institute of Technology, Parker H. Petit Institute for Bioengineering and Biosciences, Atlanta, GA, United States.
| |
Collapse
|
14
|
Sánchez-Sánchez L, García J, Fernández R, Noskova E, Egiguren-Ortiz J, Gulak M, Ochoa E, Laso A, Oiarbide M, Santos JI, Fe Andrés M, González-Coloma A, Adell A, Astigarraga E, Barreda-Gómez G. Characterization of the Antitumor Potential of Extracts of Cannabis sativa Strains with High CBD Content in Human Neuroblastoma. Int J Mol Sci 2023; 24:ijms24043837. [PMID: 36835247 PMCID: PMC9964014 DOI: 10.3390/ijms24043837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Cannabis has been used for decades as a palliative therapy in the treatment of cancer. This is because of its beneficial effects on the pain and nausea that patients can experience as a result of chemo/radiotherapy. Tetrahydrocannabinol and cannabidiol are the main compounds present in Cannabis sativa, and both exert their actions through a receptor-mediated mechanism and through a non-receptor-mediated mechanism, which modulates the formation of reactive oxygen species. These oxidative stress conditions might trigger lipidic changes, which would compromise cell membrane stability and viability. In this sense, numerous pieces of evidence describe a potential antitumor effect of cannabinoid compounds in different types of cancer, although controversial results limit their implementation. In order to further investigate the possible mechanism involved in the antitumoral effects of cannabinoids, three extracts isolated from Cannabis sativa strains with high cannabidiol content were analyzed. Cell mortality, cytochrome c oxidase activity and the lipid composition of SH-SY5Y cells were determined in the absence and presence of specific cannabinoid ligands, with and without antioxidant pre-treatment. The cell mortality induced by the extracts in this study appeared to be related to the inhibition of the cytochrome c oxidase activity and to the THC concentration. This effect on cell viability was similar to that observed with the cannabinoid agonist WIN55,212-2. The effect was partially blocked by the selective CB1 antagonist AM281, and the antioxidant α-tocopherol. Moreover, certain membrane lipids were affected by the extracts, which demonstrated the importance of oxidative stress in the potential antitumoral effects of cannabinoids.
Collapse
Affiliation(s)
- Laura Sánchez-Sánchez
- Research and Development Department, IMG Pharma Biotech S.L., 48160 Derio, Spain
- Instituto de Biología y Genética Molecular (IBGM), Unidad de Excelencia, Universidad de Valladolid-CSIC, 47011 Valladolid, Spain
| | - Javier García
- Institute of Agricultural Sciences (ICA), Spanish Research Council (CSIC), 28006 Madrid, Spain
| | - Roberto Fernández
- Research and Development Department, IMG Pharma Biotech S.L., 48160 Derio, Spain
| | - Ekaterina Noskova
- Research and Development Department, IMG Pharma Biotech S.L., 48160 Derio, Spain
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC), University of Cantabria, 39011 Santander, Spain
| | - June Egiguren-Ortiz
- Research and Development Department, IMG Pharma Biotech S.L., 48160 Derio, Spain
- Pharmacology Department, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
| | | | - Eneko Ochoa
- Pharmacology Department, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
- Research and Development Division, AleoVitro, 48160 Derio, Spain
| | - Antonio Laso
- Research and Development Division, AleoVitro, 48160 Derio, Spain
| | - Mikel Oiarbide
- Pharmacology Department, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
| | - José Ignacio Santos
- Pharmacology Department, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
| | - María Fe Andrés
- Institute of Agricultural Sciences (ICA), Spanish Research Council (CSIC), 28006 Madrid, Spain
| | - Azucena González-Coloma
- Institute of Agricultural Sciences (ICA), Spanish Research Council (CSIC), 28006 Madrid, Spain
| | - Albert Adell
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC), University of Cantabria, 39011 Santander, Spain
| | - Egoitz Astigarraga
- Research and Development Department, IMG Pharma Biotech S.L., 48160 Derio, Spain
| | - Gabriel Barreda-Gómez
- Research and Development Department, IMG Pharma Biotech S.L., 48160 Derio, Spain
- Correspondence: ; Tel.: +34-94-4316-577; Fax: +34-94-6013-455
| |
Collapse
|
15
|
Screening System of Cannabis sativa Extracts Based on Their Mitochondrial Safety Profile Using Cytochrome c Oxidase Activity as a Biomarker. Int J Mol Sci 2023; 24:ijms24021315. [PMID: 36674832 PMCID: PMC9864325 DOI: 10.3390/ijms24021315] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/23/2022] [Accepted: 01/04/2023] [Indexed: 01/12/2023] Open
Abstract
The development of Cannabis sativa strains with high cannabidiol (CBD) and low tetrahydrocannabinol (THC) content is a growing field of research, both for medical and recreational use. However, the mechanisms behind clinical actions of cannabinoids are still under investigation, although there is growing evidence that mitochondria play an important role in many of them. Numerous studies have described that cannabinoids modulate mitochondrial activity both through activation of mitochondrial cannabinoid receptors and through direct action on other proteins such as mitochondrial complexes involved in cellular respiration. Thus, the aim of this study was to determine the actions of a panel of extracts, isolated from high-CBD varieties of Cannabis sativa, on the activity of the mitochondrial electron transport chain complex IV, cytochrome c oxidase (CCO), in order to select those with a safer profile. After demonstrating that Cannabis sativa strains could be identified by cannabinoids content, concentration-response curves were performed with a collection of extracts from strains with high-CBD and low-THC content using bovine CCO. The CCO rate was clearly modified by specific extracts of Cannabis sativa plants compared to others. Half maximal inhibitory concentrations (IC50) of extracts and the inhibitory effects evoked at 1 × 10-4 g/mL displayed a significant correlation with the THC. Therefore, the screening of extracts based on CCO activity provides a powerful and rapid methodology to identify those plants with higher mitochondrial toxicity or even mito-protective actions.
Collapse
|
16
|
Gómez-Cañas M, Rodríguez-Cueto C, Satta V, Hernández-Fisac I, Navarro E, Fernández-Ruiz J. Endocannabinoid-Binding Receptors as Drug Targets. Methods Mol Biol 2023; 2576:67-94. [PMID: 36152178 DOI: 10.1007/978-1-0716-2728-0_6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cannabis plant has been used from ancient times with therapeutic purposes for treating human pathologies, but the identification of the cellular and molecular mechanisms underlying the therapeutic properties of the phytocannabinoids, the active compounds in this plant, occurred in the last years of the past century. In the late 1980s and early 1990s, seminal studies demonstrated the existence of cannabinoid receptors and other elements of the so-called endocannabinoid system. These G protein-coupled receptors (GPCRs) are a key element in the functions assigned to endocannabinoids and appear to serve as promising pharmacological targets. They include CB1, CB2, and GPR55, but also non-GPCRs can be activated by endocannabinoids, like ionotropic receptor TRPV1 and even nuclear receptors of the PPAR family. Their activation, inhibition, or simply modulation have been associated with numerous physiological effects at both central and peripheral levels, which may have therapeutic value in different human pathologies, then providing a solid experimental explanation for both the ancient medicinal uses of Cannabis plant and the recent advances in the development of cannabinoid-based specific therapies. This chapter will review the scientific knowledge generated in the last years around the research on the different endocannabinoid-binding receptors and their signaling mechanisms. Our intention is that this knowledge may help readers to understand the relevance of these receptors in health and disease conditions, as well as it may serve as the theoretical basis for the different experimental protocols to investigate these receptors and their signaling mechanisms that will be described in the following chapters.
Collapse
Affiliation(s)
- María Gómez-Cañas
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Carmen Rodríguez-Cueto
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Valentina Satta
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Inés Hernández-Fisac
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Elisa Navarro
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Javier Fernández-Ruiz
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.
| |
Collapse
|
17
|
Malheiro RF, Carmo H, Carvalho F, Silva JP. Cannabinoid-mediated targeting of mitochondria on the modulation of mitochondrial function and dynamics. Pharmacol Res 2023; 187:106603. [PMID: 36516885 DOI: 10.1016/j.phrs.2022.106603] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
Mitochondria play a critical role in the regulation of several biological processes (e.g., programmed cell death, inflammation, neurotransmission, cell differentiation). In recent years, accumulating findings have evidenced that cannabinoids, a group of endogenous and exogenous (synthetic and plant-derived) psychoactive compounds that bind to cannabinoid receptors, may modulate mitochondrial function and dynamics. As such, mitochondria have gained increasing interest as central mediators in cannabinoids' pharmacological and toxicological signatures. Here, we review the mechanisms underlying the cannabinoids' modulation of mitochondrial activity and dynamics, as well as the potential implications of such mitochondrial processes' disruption on cell homeostasis and disease. Interestingly, cannabinoids may target different mitochondrial processes (e.g., regulation of intracellular calcium levels, bioenergetic metabolism, apoptosis, and mitochondrial dynamics, including mitochondrial fission and fusion, transport, mitophagy, and biogenesis), by modulating multiple and complex signaling pathways. Of note, the outcome may depend on the experimental models used, as well as the chemical structure, concentration, and exposure settings to the cannabinoid, originating equivocal data. Notably, this interaction seems to represent not only an important feature of cannabinoids' toxicological signatures, with potential implications for the onset of distinct pathological conditions (e.g., cancer, neurodegenerative diseases, metabolic syndromes), but also an opportunity to develop novel therapeutic strategies for such pathologies, which is also discussed in this review.
Collapse
Affiliation(s)
- Rui Filipe Malheiro
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; UCIBIO, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| | - Helena Carmo
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; UCIBIO, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| | - Félix Carvalho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; UCIBIO, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| | - João Pedro Silva
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; UCIBIO, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| |
Collapse
|
18
|
Jong YI, Harmon SK, O'Malley KL. GPCR
Signaling from Intracellular Membranes. GPCRS AS THERAPEUTIC TARGETS 2022:216-298. [DOI: 10.1002/9781119564782.ch8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
19
|
Yang Y, Zhang Q, Yang J, Wang Y, Zhuang K, Zhao C. Possible Association of Nucleobindin-1 Protein with Depressive Disorder in Patients with HIV Infection. Brain Sci 2022; 12:brainsci12091151. [PMID: 36138887 PMCID: PMC9496684 DOI: 10.3390/brainsci12091151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/18/2022] [Accepted: 08/20/2022] [Indexed: 12/02/2022] Open
Abstract
Background: Mental disorders linked with dysfunction in the temporal cortex, such as anxiety and depression, can increase the morbidity and mortality of people living with HIV (PLWHA). Expressions of both nucleobindin 1 (NUCB1) and cannabinoid receptor 1 (CNR1) in the neurons have been found to alter in patients with depressive disorder, but whether it is involved in the development of depression in the context of HIV infection is unknown. Objectives To investigate the effects of NUCB1 on depressive disorder among PLWHA and preliminarily explore the underlying molecular mechanisms. Methods: Individuals who were newly HIV diagnosed were assessed on the Hospital Anxiety and Depression scale (HADS). Then SHIV-infected rhesus monkeys were used to investigate the possible involvement of the NUCB1 and the CNR1 protein in depression-like behavior. Results: The prevalence rate of depression among PLWHA was 27.33% (41/150). The mechanism results showing elevated NUCB1 levels in cerebrospinal fluid from HIV-infected patients suffering from depression were confirmed compared to those of HIV-infected patients. Moreover, the immunohistochemical analysis indicated the expression of NUCB1 in the temporal cortex neurons of SHIV-infected monkeys was higher than that of the healthy control. Conversely, CNR1 expression was down-regulated at protein levels. Conclusions: Depression symptoms are common among PLWHA and associate with NUCB1 expression increases, and NUCB1 may be a potential target for depression.
Collapse
Affiliation(s)
- Yun Yang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230022, China
| | - Qian Zhang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230022, China
| | - Jing Yang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230022, China
| | - Yun Wang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230022, China
| | - Ke Zhuang
- ABSL-III Laboratory at the Center for Animal Experiment, State Key Laboratory of Virology, Wuhan University, Wuhan 430071, China
- Correspondence: (K.Z.); (C.Z.)
| | - Changcheng Zhao
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230022, China
- Correspondence: (K.Z.); (C.Z.)
| |
Collapse
|
20
|
Chioccarelli T, Falco G, Cappetta D, De Angelis A, Roberto L, Addeo M, Ragusa M, Barbagallo D, Berrino L, Purrello M, Ambrosino C, Cobellis G, Pierantoni R, Chianese R, Manfrevola F. FUS driven circCNOT6L biogenesis in mouse and human spermatozoa supports zygote development. Cell Mol Life Sci 2021; 79:50. [PMID: 34936029 PMCID: PMC8739325 DOI: 10.1007/s00018-021-04054-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 11/10/2021] [Accepted: 11/19/2021] [Indexed: 02/06/2023]
Abstract
Circular RNA (circRNA) biogenesis requires a backsplicing reaction, promoted by inverted repeats in cis-flanking sequences and trans factors, such as RNA-binding proteins (RBPs). Among these, FUS plays a key role. During spermatogenesis and sperm maturation along the epididymis such a molecular mechanism has been poorly explored. With this in mind, we chose circCNOT6L as a study case and wild-type (WT) as well as cannabinoid receptor type-1 knock-out (Cb1−/−) male mice as animal models to analyze backsplicing mechanisms. Our results suggest that spermatozoa (SPZ) have an endogenous skill to circularize mRNAs, choosing FUS as modulator of backsplicing and under CB1 stimulation. A physical interaction between FUS and CNOT6L as well as a cooperation among FUS, RNA Polymerase II (RNApol2) and Quaking (QKI) take place in SPZ. Finally, to gain insight into FUS involvement in circCNOT6L biogenesis, FUS expression was reduced through RNA interference approach. Paternal transmission of FUS and CNOT6L to oocytes during fertilization was then assessed by using murine unfertilized oocytes (NF), one-cell zygotes (F) and murine oocytes undergoing parthenogenetic activation (PA) to exclude a maternal contribution. The role of circCNOT6L as an active regulator of zygote transition toward the 2-cell-like state was suggested using the Embryonic Stem Cell (ESC) system. Intriguingly, human SPZ exactly mirror murine SPZ.
Collapse
Affiliation(s)
- Teresa Chioccarelli
- Dipartimento di Medicina Sperimentale, Sez. Bottazzi, Università degli Studi della Campania "L. Vanvitelli", Via Costantinopoli 16, 80138, Napoli, Italy
| | - Geppino Falco
- Dipartimento di Biologia, Università di Napoli "Federico II", Napoli, Italy.,Istituto di Ricerche Genetiche Gaetano Salvatore, Biogem scarl, Ariano Irpino, Avellino, Italy
| | - Donato Cappetta
- Dipartimento di Medicina Sperimentale, Sez. Bottazzi, Università degli Studi della Campania "L. Vanvitelli", Via Costantinopoli 16, 80138, Napoli, Italy
| | - Antonella De Angelis
- Dipartimento di Medicina Sperimentale, Sez. Bottazzi, Università degli Studi della Campania "L. Vanvitelli", Via Costantinopoli 16, 80138, Napoli, Italy
| | - Luca Roberto
- Istituto di Ricerche Genetiche Gaetano Salvatore, Biogem scarl, Ariano Irpino, Avellino, Italy
| | - Martina Addeo
- Dipartimento di Biologia, Università di Napoli "Federico II", Napoli, Italy
| | - Marco Ragusa
- Dipartimento di Scienze Biomediche e Biotecnologiche, Università di Catania, Via Santa Sofia 97, 95123, Catania, Italy
| | - Davide Barbagallo
- Dipartimento di Scienze Biomediche e Biotecnologiche, Università di Catania, Via Santa Sofia 97, 95123, Catania, Italy
| | - Liberato Berrino
- Dipartimento di Medicina Sperimentale, Sez. Bottazzi, Università degli Studi della Campania "L. Vanvitelli", Via Costantinopoli 16, 80138, Napoli, Italy
| | - Michele Purrello
- Dipartimento di Scienze Biomediche e Biotecnologiche, Università di Catania, Via Santa Sofia 97, 95123, Catania, Italy
| | - Concetta Ambrosino
- Istituto di Ricerche Genetiche Gaetano Salvatore, Biogem scarl, Ariano Irpino, Avellino, Italy.,Dipartimento di Scienze e Tecnologie, Università del Sannio, Benevento, Italy
| | - Gilda Cobellis
- Dipartimento di Medicina Sperimentale, Sez. Bottazzi, Università degli Studi della Campania "L. Vanvitelli", Via Costantinopoli 16, 80138, Napoli, Italy
| | - Riccardo Pierantoni
- Dipartimento di Medicina Sperimentale, Sez. Bottazzi, Università degli Studi della Campania "L. Vanvitelli", Via Costantinopoli 16, 80138, Napoli, Italy
| | - Rosanna Chianese
- Dipartimento di Medicina Sperimentale, Sez. Bottazzi, Università degli Studi della Campania "L. Vanvitelli", Via Costantinopoli 16, 80138, Napoli, Italy.
| | - Francesco Manfrevola
- Dipartimento di Medicina Sperimentale, Sez. Bottazzi, Università degli Studi della Campania "L. Vanvitelli", Via Costantinopoli 16, 80138, Napoli, Italy
| |
Collapse
|
21
|
Serrat R, Covelo A, Kouskoff V, Delcasso S, Ruiz-Calvo A, Chenouard N, Stella C, Blancard C, Salin B, Julio-Kalajzić F, Cannich A, Massa F, Varilh M, Deforges S, Robin LM, De Stefani D, Busquets-Garcia A, Gambino F, Beyeler A, Pouvreau S, Marsicano G. Astroglial ER-mitochondria calcium transfer mediates endocannabinoid-dependent synaptic integration. Cell Rep 2021; 37:110133. [PMID: 34936875 DOI: 10.1016/j.celrep.2021.110133] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/08/2021] [Accepted: 11/23/2021] [Indexed: 10/19/2022] Open
Abstract
Intracellular calcium signaling underlies the astroglial control of synaptic transmission and plasticity. Mitochondria-endoplasmic reticulum contacts (MERCs) are key determinants of calcium dynamics, but their functional impact on astroglial regulation of brain information processing is unexplored. We found that the activation of astrocyte mitochondrial-associated type-1 cannabinoid (mtCB1) receptors determines MERC-dependent intracellular calcium signaling and synaptic integration. The stimulation of mtCB1 receptors promotes calcium transfer from the endoplasmic reticulum to mitochondria through a specific molecular cascade, involving the mitochondrial calcium uniporter (MCU). Physiologically, mtCB1-dependent mitochondrial calcium uptake determines the dynamics of cytosolic calcium events in astrocytes upon endocannabinoid mobilization. Accordingly, electrophysiological recordings in hippocampal slices showed that conditional genetic exclusion of mtCB1 receptors or dominant-negative MCU expression in astrocytes blocks lateral synaptic potentiation, through which astrocytes integrate the activity of distant synapses. Altogether, these data reveal an endocannabinoid link between astroglial MERCs and the regulation of brain network functions.
Collapse
Affiliation(s)
- Roman Serrat
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, 33077 Bordeaux, France; University of Bordeaux, 33077 Bordeaux, France; INRAE, Nutrition and Integrative Neurobiology, UMR 1286, Bordeaux, France
| | - Ana Covelo
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, 33077 Bordeaux, France; University of Bordeaux, 33077 Bordeaux, France
| | - Vladimir Kouskoff
- University of Bordeaux, 33077 Bordeaux, France; Interdisciplinary Institute for Neuroscience, CNRS UMR 5297, 33000 Bordeaux, France
| | - Sebastien Delcasso
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, 33077 Bordeaux, France; University of Bordeaux, 33077 Bordeaux, France; Institut de Biochimie et Genetique Cellulaires, CNRS UMR 5095, Bordeaux, France
| | - Andrea Ruiz-Calvo
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, 33077 Bordeaux, France; University of Bordeaux, 33077 Bordeaux, France
| | - Nicolas Chenouard
- University of Bordeaux, 33077 Bordeaux, France; Interdisciplinary Institute for Neuroscience, CNRS UMR 5297, 33000 Bordeaux, France
| | - Carol Stella
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, 33077 Bordeaux, France; University of Bordeaux, 33077 Bordeaux, France
| | - Corinne Blancard
- University of Bordeaux, 33077 Bordeaux, France; Institut de Biochimie et Genetique Cellulaires, CNRS UMR 5095, Bordeaux, France
| | - Benedicte Salin
- University of Bordeaux, 33077 Bordeaux, France; Institut de Biochimie et Genetique Cellulaires, CNRS UMR 5095, Bordeaux, France
| | - Francisca Julio-Kalajzić
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, 33077 Bordeaux, France; University of Bordeaux, 33077 Bordeaux, France
| | - Astrid Cannich
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, 33077 Bordeaux, France; University of Bordeaux, 33077 Bordeaux, France
| | - Federico Massa
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, 33077 Bordeaux, France; University of Bordeaux, 33077 Bordeaux, France
| | - Marjorie Varilh
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, 33077 Bordeaux, France; University of Bordeaux, 33077 Bordeaux, France
| | - Severine Deforges
- University of Bordeaux, 33077 Bordeaux, France; Interdisciplinary Institute for Neuroscience, CNRS UMR 5297, 33000 Bordeaux, France
| | - Laurie M Robin
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, 33077 Bordeaux, France; University of Bordeaux, 33077 Bordeaux, France
| | - Diego De Stefani
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy
| | - Arnau Busquets-Garcia
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, 33077 Bordeaux, France; University of Bordeaux, 33077 Bordeaux, France
| | - Frederic Gambino
- University of Bordeaux, 33077 Bordeaux, France; Interdisciplinary Institute for Neuroscience, CNRS UMR 5297, 33000 Bordeaux, France
| | - Anna Beyeler
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, 33077 Bordeaux, France; University of Bordeaux, 33077 Bordeaux, France
| | - Sandrine Pouvreau
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, 33077 Bordeaux, France; University of Bordeaux, 33077 Bordeaux, France; Interdisciplinary Institute for Neuroscience, CNRS UMR 5297, 33000 Bordeaux, France.
| | - Giovanni Marsicano
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, 33077 Bordeaux, France; University of Bordeaux, 33077 Bordeaux, France.
| |
Collapse
|
22
|
Hempel B, Xi ZX. Receptor mechanisms underlying the CNS effects of cannabinoids: CB 1 receptor and beyond. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2021; 93:275-333. [PMID: 35341569 PMCID: PMC10709991 DOI: 10.1016/bs.apha.2021.10.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Cannabis legalization continues to progress in many US states and other countries. Δ9-tetrahydrocannabinol (Δ9-THC) is the major psychoactive constituent in cannabis underlying both its abuse potential and the majority of therapeutic applications. However, the neural mechanisms underlying cannabis action are not fully understood. In this chapter, we first review recent progress in cannabinoid receptor research, and then examine the acute CNS effects of Δ9-THC or other cannabinoids (WIN55212-2) with a focus on their receptor mechanisms. In experimental animals, Δ9-THC or WIN55212-2 produces classical pharmacological effects (analgesia, catalepsy, hypothermia, hypolocomotion), biphasic changes in affect (reward vs. aversion, anxiety vs. anxiety relief), and cognitive deficits (spatial learning and memory, short-term memory). Accumulating evidence indicates that activation of CB1Rs underlies the majority of Δ9-THC or WIN55121-2's pharmacological and behavioral effects. Unexpectedly, glutamatergic CB1Rs preferentially underlie cannabis action relative to GABAergic CB1Rs. Functional roles for CB1Rs expressed on astrocytes and mitochondria have also been uncovered. In addition, Δ9-THC or WIN55212-2 is an agonist at CB2R, GPR55 and PPARγ receptors and recent studies implicate these receptors in a number of their CNS effects. Other receptors (such as serotonin, opioid, and adenosine receptors) also modulate Δ9-THC's actions and their contributions are detailed. This chapter describes the neural mechanisms underlying cannabis action, which may lead to new discoveries in cannabis-based medication development for the treatment of cannabis use disorder and other human diseases.
Collapse
Affiliation(s)
- Briana Hempel
- Addiction Biology Unit, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, United States
| | - Zheng-Xiong Xi
- Addiction Biology Unit, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, United States.
| |
Collapse
|
23
|
Rapaka D, Bitra VR, Challa SR, Adiukwu PC. Potentiation of microglial endocannabinoid signaling alleviates neuroinflammation in Alzheimer's disease. Neuropeptides 2021; 90:102196. [PMID: 34508923 DOI: 10.1016/j.npep.2021.102196] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/26/2021] [Accepted: 08/31/2021] [Indexed: 12/29/2022]
Abstract
Alzheimer's disease (AD) isaprogressive neurodegenerative disorder characterized by chronic inflammation due to the presence of neurotoxic Aβ and tau proteins. Increased microglial activation and inflated immune response are the other factors to be considered in AD pathology. Microglial cells own biochemical machinery that synthesizes and release endocannabinoids. The exploitation of therapeutic actions of endocannabinoid system has newly emerged in the field of Alzheimer's disease. The activation of cannabinoid receptors/ cannabinoid system modulates inflammatory responses. This review assesses the association between the microglial endocannabinoid system and neuroinflammation in AD. The data supporting the anti-inflammatory role of pharmacological agents modulating cannabinoid system are also reviewed.
Collapse
Affiliation(s)
- Deepthi Rapaka
- A.U. College of Pharmaceutical Sciences, Andhra University, Visakhapatnam 530003, India.
| | | | - Siva Reddy Challa
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine, Peoria, IL 61614, USA
| | - Paul C Adiukwu
- School of Pharmacy, University of Botswana, P/Bag-0022, Gaborone, Botswana
| |
Collapse
|
24
|
de la Tremblaye PB, Wellcome JL, Wiley K, Lomahan CA, Moschonas EH, Cheng JP, Bondi CO, Kline AE. Chronic unpredictable stress during adolescence protects against adult traumatic brain injury-induced affective and cognitive deficits. Brain Res 2021; 1767:147544. [PMID: 34090883 PMCID: PMC8349874 DOI: 10.1016/j.brainres.2021.147544] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/24/2021] [Accepted: 06/01/2021] [Indexed: 01/06/2023]
Abstract
Pre-clinical early-life stress paradigms model early adverse events in humans. However, the long-term behavioral consequences of early-life adversities after traumatic brain injury (TBI) in adults have not been examined. In addition, endocannabinoids may protect against TBI neuropathology. Hence, the current study assessed the effects of adverse stress during adolescence on emotional and cognitive performance in rats sustaining a TBI as adults, and how cannabinoid receptor 1 (CB1) activation impacts the outcome. On postnatal days (PND) 30-60, adolescent male rats were exposed to four weeks of chronic unpredictable stress (CUS), followed by four weeks of no stress (PND 60-90), or no stress at any time (Control), and then anesthetized and provided a cortical impact of moderate severity (2.8 mm tissue deformation at 4 m/s) or sham injury. TBI and Sham rats (CUS and Control) were administered either arachidonyl-2'-chloroethylamide (ACEA; 1 mg/kg, i.p.), a CB1 receptor agonist, or vehicle (VEH; 1 mL/kg, i.p.) immediately after surgery and once daily for 7 days. Anxiety-like behavior was assessed in an open field test (OFT) and learning and memory in novel object recognition (NOR) and Morris water maze (MWM) tasks. No differences were revealed among the Sham groups in any behavioral assessment and thus the groups were pooled. In the ACEA and VEH-treated TBI groups, CUS increased exploration in the OFT, enhanced NOR focus, and decreased the time to reach the escape platform in the MWM, suggesting decreased anxiety and enhanced learning and memory relative to the Control group receiving VEH (p < 0.05). ACEA also enhanced NOR and MWM performance in the Control + TBI group (p < 0.05). These data suggest that 4 weeks of CUS provided during adolescence may provide protection against TBI acquired during adulthood and/or induce adaptive behavioral responses. Moreover, CB1 receptor agonism produces benefits after TBI independent of CUS protection.
Collapse
Affiliation(s)
- Patricia B de la Tremblaye
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States; Neurobiology, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - JoDy L Wellcome
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Kaitlyn Wiley
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Carolyn A Lomahan
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Eleni H Moschonas
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Jeffrey P Cheng
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Corina O Bondi
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States; Neurobiology, University of Pittsburgh, Pittsburgh, PA 15213, United States; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Anthony E Kline
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15213, United States; Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15213, United States; Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213, United States; Psychology, University of Pittsburgh, Pittsburgh, PA 15213, United States.
| |
Collapse
|
25
|
Leo LM, Abood ME. CB1 Cannabinoid Receptor Signaling and Biased Signaling. Molecules 2021; 26:molecules26175413. [PMID: 34500853 PMCID: PMC8433814 DOI: 10.3390/molecules26175413] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/30/2021] [Accepted: 09/03/2021] [Indexed: 12/11/2022] Open
Abstract
The CB1 cannabinoid receptor is a G-protein coupled receptor highly expressed throughout the central nervous system that is a promising target for the treatment of various disorders, including anxiety, pain, and neurodegeneration. Despite the wide therapeutic potential of CB1, the development of drug candidates is hindered by adverse effects, rapid tolerance development, and abuse potential. Ligands that produce biased signaling—the preferential activation of a signaling transducer in detriment of another—have been proposed as a strategy to dissociate therapeutic and adverse effects for a variety of G-protein coupled receptors. However, biased signaling at the CB1 receptor is poorly understood due to a lack of strongly biased agonists. Here, we review studies that have investigated the biased signaling profile of classical cannabinoid agonists and allosteric ligands, searching for a potential therapeutic advantage of CB1 biased signaling in different pathological states. Agonist and antagonist bound structures of CB1 and proposed mechanisms of action of biased allosteric modulators are used to discuss a putative molecular mechanism for CB1 receptor activation and biased signaling. Current studies suggest that allosteric binding sites on CB1 can be explored to yield biased ligands that favor or hinder conformational changes important for biased signaling.
Collapse
|
26
|
Rodriguez JL, Lopez JA, Steel JJ. Involvement of the endocannabinoid system in the inhibition of Sindbis virus replication: a preliminary study. J Cannabis Res 2021; 3:10. [PMID: 33892823 PMCID: PMC8066438 DOI: 10.1186/s42238-021-00068-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 04/13/2021] [Indexed: 01/03/2023] Open
Abstract
Background Sindbis virus (Alphaviridae) is a plus-strand RNA virus that is dependent on the host cell for replication. Cannabinoid (CB) receptors are found on most human cells, including virally infected cells. Activation of cannabinoid receptors has been shown to alter normal cellular physiology. This study aimed to assess how agonist (ACEA) or antagonists/inverse agonist (AM251) of the cannabinoid receptors would alter the cellular environment and impact Sindbis virus replication. Methods Human hepatoma (Huh7) cells were used as our model for viral replication. Cells were infected with Sindbis virus (SINV) and then treated with CB agonist (ACEA) (10 μM) or antagonist/inverse agonist (AM-251) (10 μM) and virus replication was monitored. A double subgenomic Sindbis virus containing a green fluorescent protein (GFP) reporter gene inserted into a 3′ subgenomic promoter was utilized for these assays to quickly measure viral replication. GFP fluorescent cells were analyzed using flow cytometry to measure the percentage of cells expressing the viral reporter and also quantify the levels of GFP fluorescence. Result Treatment of SINV-infected Huh7 cells with CB1 receptor antagonist/inverse agonist (AM251, 10 μM) resulted in a significant decrease in viral replication, while infected cells treated with a CB1 receptor agonist (ACEA, 10 μM) resulted in a significant increase of viral infection. The data indicates that activation of CB1 receptor by cannabinoids significantly influences the ability of Sindbis virus to replicate in the host cell. Conclusion Blocking CB1 receptor activity with 10 μM AM251 reduced viral replication, but activating the CB1 receptor with 10 μM ACEA resulted in an increase in viral infection. These results indicate cannabinoids may significantly impact a virus replicating in human liver cells. Future confirmation with other viruses and cell lines will be performed to better understand the impact of cannabinoids on viral infections.
Collapse
Affiliation(s)
- Juan L Rodriguez
- Biology Department, Colorado State University-Pueblo, 2200 Bonforte Blvd LS220, Pueblo, CO, 81001, USA.
| | - Joseph A Lopez
- Biology Department, Colorado State University-Pueblo, 2200 Bonforte Blvd LS220, Pueblo, CO, 81001, USA
| | - J Jordan Steel
- Biology Department, Colorado State University-Pueblo, 2200 Bonforte Blvd LS220, Pueblo, CO, 81001, USA.,Department of Biology, US Air Force Academy, 2355 Faculty Dr. DFB, Colorado Springs, CO, USA
| |
Collapse
|
27
|
Cankara FN, Çelik ZB, Günaydın C. Cannabinoid receptor-1 has an effect on CD200 under rotenone and alpha-synuclein induced stress. Neurosci Lett 2021; 755:135908. [PMID: 33892001 DOI: 10.1016/j.neulet.2021.135908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 10/21/2022]
Abstract
Decades after identifying cannabinoids and their beneficial effects on Parkinson's disease (PD), many gaps are still missing. Although, CB2-dependent actions have been shown as underlying positive effects of cannabinoid treatment, in recent years, another receptor of cannabinoids, CB1, emerged as a valuable player in cannabinoid-induced neuroprotection. Remarkably, the effects of CB1 are mainly related to immune cells in the CNS, microglia, and astrocytes. However, oxidative stress, α-syn accumulation, and immune disbalance are essential aspects of both neurons and glial cells. Therefore, in this study, we investigated the effects of the CB1 on both α-syn and rotenone-treated SH-SY5Y and C8-D1A cells. ACEA and AM-251 were used as CB1 agonists and antagonists. Cell viability, IL-1β, IL-6, TNF-α levels, and CD200 expressions were determined in culture mediums. Our results demonstrated that preformed fibril form (pFF) of α-syn did not cause any significant change in SH-SY5Y cells compared to C8-D1A cells. Rotenone significantly increased the expression of IL-1β, IL-6, and TNF-α levels in both cells. pFF α-syn and rotenone treatment caused a decrease in CD200 expression. Surprisingly both ACEA and AM-251 alleviated rotenone-induced increase in cytokine levels in both cell lines. Although ACEA prevented pFF α-syn induced increase in cytokine levels and decrease in CD200 expression in C8-D1A cells, AM-251 failed to affect CD200 expression levels. Additionally, ACEA + AM-251 abolished the protective effects of both ACEA and AM-251 against rotenone and α-syn insults in both cell lines. The current study suggests that cannabinoid receptor agonism alleviates rotenone and α-syn-dependent inflammation in neurons and astrocytes.
Collapse
Affiliation(s)
- Fatma Nihan Cankara
- Süleyman Demirel University, Faculty of Medicine, Department of Pharmacology, Isparta, Turkey.
| | - Zülfinaz Betül Çelik
- Ondokuz Mayıs University, Faculty of Medicine, Department of Medical Biology, Samsun, Turkey.
| | - Caner Günaydın
- Ondokuz Mayıs University, Faculty of Medicine, Department of Pharmacology, Samsun, Turkey.
| |
Collapse
|
28
|
Heimann AS, Dale CS, Guimarães FS, Reis RAM, Navon A, Shmuelov MA, Rioli V, Gomes I, Devi LL, Ferro ES. Hemopressin as a breakthrough for the cannabinoid field. Neuropharmacology 2021; 183:108406. [PMID: 33212113 PMCID: PMC8609950 DOI: 10.1016/j.neuropharm.2020.108406] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 11/06/2020] [Accepted: 11/11/2020] [Indexed: 12/14/2022]
Abstract
Hemopressin (PVNFKFLSH in rats, and PVNFKLLSH in humans and mice), a fragment derived from the α-chain of hemoglobin, was the first peptide described to have type 1 cannabinoid receptor activity. While hemopressin was shown to have inverse agonist/antagonistic activity, extended forms of hemopressin (i.e. RVD-hemopressin, also called pepcan-12) exhibit type 1 and type 2 cannabinoid receptor agonistic/allosteric activity, and recent studies suggest that they can activate intracellular mitochondrial cannabinoid receptors. Therefore, hemopressin and hemopressin-related peptides could have location-specific and biased pharmacological action, which would increase the possibilities for fine-tunning and broadening cannabinoid receptor signal transduction. Consistent with this, hemopressins were shown to play a role in a number of physiological processes including antinociceptive and anti-inflammatory activity, regulation of food intake, learning and memory. The shortest active hemopressin fragment, NFKF, delays the first seizure induced by pilocarpine, and prevents neurodegeneration in an experimental model of autoimmune encephalomyelitis. These functions of hemopressins could be due to engagement of both cannabinoid and non-cannabinoid receptor systems. Self-assembled nanofibrils of hemopressin have pH-sensitive switchable surface-active properties, and show potential as inflammation and cancer targeted drug-delivery systems. Upon disruption of the self-assembled hemopressin nanofibril emulsion, the intrinsic analgesic and anti-inflammatory properties of hemopressin could help bolster the therapeutic effect of anti-inflammatory or anti-cancer formulations. In this article, we briefly review the molecular and behavioral pharmacological properties of hemopressins, and summarize studies on the intricate and unique mode of generation and binding of these peptides to cannabinoid receptors. Thus, the review provides a window into the current status of hemopressins in expanding the repertoire of signaling and activity by the endocannabinoid system, in addition to their new potential for pharmaceutic formulations.
Collapse
Affiliation(s)
| | - Camila S Dale
- Department of Anatomy, Biomedical Science Institute, University of São Paulo, 05508-000, São Paulo, SP, Brazil
| | - Francisco S Guimarães
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, 14025-600, Ribeirão Preto, SP, Brazil; Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, 14025-600, Ribeirão Preto, SP, Brazil
| | - Ricardo A M Reis
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Rio de Janeiro, Federal University, 21949-900, Rio de Janeiro, RJ, Brazil
| | - Ami Navon
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Michal A Shmuelov
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Vanessa Rioli
- Special Laboratory of Applied Toxinology (LETA), Center of Toxins, Immune Response and Cell Signaling (CETICS), Butantan Institute, São Paulo, 05503-900, Brazil
| | - Ivone Gomes
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, 10029, New York, NY, United States
| | - Lakshmi L Devi
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, 10029, New York, NY, United States
| | - Emer S Ferro
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot, 7610001, Israel; Department of Pharmacology, Biomedical Science Institute, University of São Paulo, 05508-000, São Paulo, SP, Brazil.
| |
Collapse
|
29
|
Lucas Luz W, Santos-Silva M, Cardoso PB, Assad N, Moraes ERDS, Grisólia ABA, Braga DV, Leão LKR, de Moraes SAS, Passos ADC, Batista EDJO, Gouveia A, Oliveira KRHM, Herculano AM. Putative Activation of the CB1 Cannabinoid Receptors Prevents Anxiety-Like Behavior, Oxidative Stress, and GABA Decrease in the Brain of Zebrafish Submitted to Acute Restraint Stress. Front Behav Neurosci 2021; 14:598812. [PMID: 33536881 PMCID: PMC7848035 DOI: 10.3389/fnbeh.2020.598812] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/04/2020] [Indexed: 12/14/2022] Open
Abstract
Anxiety disorder is a well-recognized condition observed in subjects submitted to acute stress. Although the brain mechanisms underlying this disorder remain unclear, the available evidence indicates that oxidative stress and GABAergic dysfunction mediate the generation of stress-induced anxiety. Cannabinoids are known to be efficient modulators of behavior, given that the activation of the cannabinoid receptors type-1 (CB1 receptors) induces anxiolytic-like effects in animal models. In the present study, we aimed to describe the effects of the stimulation of the CB1 receptors on anxiety-like behavior, oxidative stress, and the GABA content of the brains of zebrafish submitted to acute restraint stress (ARS). The animals submitted to the ARS protocol presented evident anxiety-like behavior with increased lipid peroxidation in the brain tissue. The evaluation of the levels of GABA in the zebrafish telencephalon presented decreased levels of GABA in the ARS group in comparison with the control. Treatment with ACEA, a specific CB1 receptor agonist, prevented ARS-induced anxiety-like behavior and oxidative stress in the zebrafish brain. ACEA treatment also prevented a decrease in GABA in the telencephalon of the animals submitted to the ARS protocol. Overall, these preclinical data strongly suggest that the CB1 receptors represent a potential target for the development of the treatment of anxiety disorders elicited by acute stress.
Collapse
Affiliation(s)
- Waldo Lucas Luz
- Laboratory of Experimental Neuropharmacology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Mateus Santos-Silva
- Laboratory of Experimental Neuropharmacology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Patrick Bruno Cardoso
- Laboratory of Experimental Neuropharmacology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Nadyme Assad
- Laboratory of Experimental Neuropharmacology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | | | - Alan Barroso Araújo Grisólia
- Laboratory of Experimental Neuropharmacology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Danielle Valente Braga
- Laboratory of Experimental Neuropharmacology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Luana Ketlen Reis Leão
- Laboratory of Experimental Neuropharmacology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | | | - Adelaide da Conceição Passos
- Laboratory of Experimental Neuropharmacology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Evander de Jesus Oliveira Batista
- Laboratory of Experimental Neuropharmacology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil.,Laboratory of Protozoology, Tropical Medicine Center, Federal University of Pará, Belém, Brazil
| | - Amauri Gouveia
- Laboratory of Neuroscience and Behavior, Federal University of Pará, Belém, Brazil
| | - Karen R H Matos Oliveira
- Laboratory of Experimental Neuropharmacology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Anderson Manoel Herculano
- Laboratory of Experimental Neuropharmacology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| |
Collapse
|
30
|
Riquelme-Sandoval A, de Sá-Ferreira CO, Miyakoshi LM, Hedin-Pereira C. New Insights Into Peptide Cannabinoids: Structure, Biosynthesis and Signaling. Front Pharmacol 2020; 11:596572. [PMID: 33362550 PMCID: PMC7759141 DOI: 10.3389/fphar.2020.596572] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/19/2020] [Indexed: 01/01/2023] Open
Abstract
Classically, the endocannabinoid system (ECS) consists of endogenous lipids, of which the best known are anandamide (AEA) and 2 arachidonoylglycerol (2-AG), their enzyme machinery for synthesis and degradation and their specific receptors, cannabinoid receptor one (CB1) and cannabinoid receptor two (CB2). However, endocannabinoids also bind to other groups of receptors. Furthermore, another group of lipids are considered to be endocannabinoids, such as the fatty acid ethanolamides, the fatty acid primary amides and the monoacylglycerol related molecules. Recently, it has been shown that the hemopressin peptide family, derived from α and β chains of hemoglobins, is a new family of cannabinoids. Some studies indicate that hemopressin peptides are expressed in the central nervous system and peripheral tissues and act as ligands of these receptors, thus suggesting that they play a physiological role. In this review, we examine new evidence on lipid endocannabinoids, cannabinoid receptors and the modulation of their signaling pathways. We focus our discussion on the current knowledge of the pharmacological effects, the biosynthesis of the peptide cannabinoids and the new insights on the activation and modulation of cannabinoid receptors by these peptides. The novel peptide compounds derived from hemoglobin chains and their non-classical activation of cannabinoid receptors are only starting to be uncovered. It will be exciting to follow the ensuing discoveries, not only in reference to what is already known of the classical lipid endocannabinoids revealing more complex aspects of endocannabinoid system, but also as to its possibilities as a future therapeutic tool.
Collapse
Affiliation(s)
- Agustín Riquelme-Sandoval
- Laboratory of Cellular Neuroanatomy, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Caio O de Sá-Ferreira
- Laboratory of Cellular Neuroanatomy, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leo M Miyakoshi
- Laboratory of Cellular Neuroanatomy, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cecilia Hedin-Pereira
- Laboratory of Cellular Neuroanatomy, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,VPPCB-Fiocruz, Rio de Janeiro, Brazil.,National Institute of Science and Technology in Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil
| |
Collapse
|
31
|
Beiersdorf J, Hevesi Z, Calvigioni D, Pyszkowski J, Romanov R, Szodorai E, Lubec G, Shirran S, Botting CH, Kasper S, Guy GW, Gray R, Di Marzo V, Harkany T, Keimpema E. Adverse effects of Δ9-tetrahydrocannabinol on neuronal bioenergetics during postnatal development. JCI Insight 2020; 5:135418. [PMID: 33141759 PMCID: PMC7714410 DOI: 10.1172/jci.insight.135418] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 10/28/2020] [Indexed: 11/22/2022] Open
Abstract
Ongoing societal changes in views on the medical and recreational roles of cannabis increased the use of concentrated plant extracts with a Δ9-tetrahydrocannabinol (THC) content of more than 90%. Even though prenatal THC exposure is widely considered adverse for neuronal development, equivalent experimental data for young age cohorts are largely lacking. Here, we administered plant-derived THC (1 or 5 mg/kg) to mice daily during P5–P16 and P5–P35 and monitored its effects on hippocampal neuronal survival and specification by high-resolution imaging and iTRAQ proteomics, respectively. We found that THC indiscriminately affects pyramidal cells and both cannabinoid receptor 1+ (CB1R)+ and CB1R– interneurons by P16. THC particularly disrupted the expression of mitochondrial proteins (complexes I–IV), a change that had persisted even 4 months after the end of drug exposure. This was reflected by a THC-induced loss of membrane integrity occluding mitochondrial respiration and could be partially or completely rescued by pH stabilization, antioxidants, bypassed glycolysis, and targeting either mitochondrial soluble adenylyl cyclase or the mitochondrial voltage-dependent anion channel. Overall, THC exposure during infancy induces significant and long-lasting reorganization of neuronal circuits through mechanisms that, in large part, render cellular bioenergetics insufficient to sustain key developmental processes in otherwise healthy neurons. Repeated THC exposure in juvenile mice compromises the limbic circuitry, with life-long impairment to the respiration of neurons.
Collapse
Affiliation(s)
- Johannes Beiersdorf
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Zsofia Hevesi
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Daniela Calvigioni
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | | | - Roman Romanov
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Edit Szodorai
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Gert Lubec
- Paracelsus Private Medical University, Salzburg, Austria
| | - Sally Shirran
- School of Chemistry, University of St. Andrews, St. Andrews, United Kingdom
| | | | - Siegfried Kasper
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | | | - Roy Gray
- GW Phamaceuticals, Salisbury, Wiltshire, United Kingdom
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy.,Canada Excellence Research Chair, Institut Universitaire de Cardiologie et de Pneumologie de Québec and Institut sur la Nutrition et les Aliments Fonctionnels, Université Laval, Québec, Québec, Canada
| | - Tibor Harkany
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria.,Department of Neuroscience, Biomedikum D7, Karolinska Institutet, Solna, Sweden
| | - Erik Keimpema
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
32
|
Yang S, Hu B, Wang Z, Zhang C, Jiao H, Mao Z, Wei L, Jia J, Zhao J. Cannabinoid CB1 receptor agonist ACEA alleviates brain ischemia/reperfusion injury via CB1-Drp1 pathway. Cell Death Discov 2020; 6:102. [PMID: 33083022 PMCID: PMC7548964 DOI: 10.1038/s41420-020-00338-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 09/23/2020] [Indexed: 12/16/2022] Open
Abstract
Activation of the cannabinoid CB1 receptor induces neuroprotection against brain ischemia/reperfusion injury (IRI); however, the mechanism is still unknown. In this study, we used oxygen-glucose deprivation/reoxygenation (OGD/R)-induced injury in neuronal cells and middle cerebral artery occlusion (MCAO)-induced brain IRI in rats to mimic ischemic brain injury, and hypothesized that the CB1 receptor agonist arachidonyl-2-chloroethylamide (ACEA) would protect ischemic neurons by inhibiting mitochondrial fission via dynamin-related protein 1 (Drp1). We found that OGD/R injury reduced cell viability and mitochondrial function, increased lactate dehydrogenase (LDH) release, and increased cell apoptosis, and mitochondrial fission. Notably, ACEA significantly abolished the OGD/R-induced neuronal injuries described above. Similarly, ACEA significantly reversed MCAO-induced increases in brain infarct volume, neuronal apoptosis and mitochondrial fission, leading to the recovery of neurological functions. The neuroprotective effects of ACEA were obviously blocked by coadministration of the CB1 receptor antagonist AM251 or by the upregulation of Drp1 expression, indicating that ACEA alleviates brain IRI via the CB1-Drp1 pathway. Our findings suggest that the CB1 receptor links aberrant mitochondrial fission to brain IRI, providing a new therapeutic target for brain IRI treatment.
Collapse
Affiliation(s)
- Shuai Yang
- Department of Neurosurgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Bin Hu
- Department of Neurosurgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zongming Wang
- Department of Neurosurgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Changming Zhang
- Department of Neurosurgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Haosen Jiao
- Department of Neurosurgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhigang Mao
- Department of Neurosurgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Liguang Wei
- Department of Neurosurgery, The Second People’s Hospital of Qinzhou City, Qinzhou, China
| | - Ji Jia
- Department of Anesthesiology, General Hospital of Southern Theatre Command of PLA, Guangzhou, China
| | - Jingling Zhao
- Department of Burns, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
33
|
Sun S, Jiang T, Duan N, Wu M, Yan C, Li Y, Cai M, Wang Q. Activation of CB1R-Dependent PGC-1α Is Involved in the Improved Mitochondrial Biogenesis Induced by Electroacupuncture Pretreatment. Rejuvenation Res 2020; 24:104-119. [PMID: 32746712 DOI: 10.1089/rej.2020.2315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Electroacupuncture (EA) pretreatment induces cerebral ischemic tolerance; however, the mechanism remains poorly understood. This study aimed to determine the participation of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α)-mediated mitochondrial biogenesis in the neuroprotection of EA and whether cannabinoid receptor 1 (CB1R) is involved in this mechanism. At 2 hours after EA pretreatment, adult male C57BL/6j mice were subjected to 60-minute right middle cerebral artery occlusion (MCAO). Mitochondrial function, the level of mitochondrial biogenesis-related proteins (nuclear transcription factor 1, NRF1; mitochondrial transcription factor A, TFAM), and mitochondrial DNA (mtDNA) were measured. A small interfering RNA (siRNA) targeting PGC-1α and the CB1R antagonists AM251 and SR141716A were given to the animals before EA pretreatment, and mitochondrial function and biogenesis were examined after MCAO. EA ameliorated the mitochondrial function, upregulated the NRF1 and TFAM expression, and increased the mtDNA levels and the volume and number of mitochondria. EA pretreatment increased the expression of PGC-1α, whereas the PGC-1α siRNA and CB1R antagonists reversed the improved neuroprotection and increased mitochondrial biogenesis induced by EA. Our results indicated that EA pretreatment protects the mitochondria and promotes mitochondrial biogenesis by activating CB1R-dependent PGC-1α, which provides a novel mechanism for EA pretreatment-induced ischemic tolerance.
Collapse
Affiliation(s)
- Sisi Sun
- Department of Anesthesiology and Center for Brain Science, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,The Medical Department of the Emergency Centre of Xi'an, Xi'an, China
| | - Tao Jiang
- Department of Anesthesiology and Center for Brain Science, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Na Duan
- Department of Anesthesiology and Center for Brain Science, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Meiyan Wu
- Department of Anesthesiology and Center for Brain Science, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chaoying Yan
- Department of Anesthesiology and Center for Brain Science, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yan Li
- Department of Anesthesiology and Center for Brain Science, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Min Cai
- Department of Psychiatry, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Qiang Wang
- Department of Anesthesiology and Center for Brain Science, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
34
|
An D, Peigneur S, Hendrickx LA, Tytgat J. Targeting Cannabinoid Receptors: Current Status and Prospects of Natural Products. Int J Mol Sci 2020; 21:E5064. [PMID: 32709050 PMCID: PMC7404216 DOI: 10.3390/ijms21145064] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 02/07/2023] Open
Abstract
Cannabinoid receptors (CB1 and CB2), as part of the endocannabinoid system, play a critical role in numerous human physiological and pathological conditions. Thus, considerable efforts have been made to develop ligands for CB1 and CB2, resulting in hundreds of phyto- and synthetic cannabinoids which have shown varying affinities relevant for the treatment of various diseases. However, only a few of these ligands are clinically used. Recently, more detailed structural information for cannabinoid receptors was revealed thanks to the powerfulness of cryo-electron microscopy, which now can accelerate structure-based drug discovery. At the same time, novel peptide-type cannabinoids from animal sources have arrived at the scene, with their potential in vivo therapeutic effects in relation to cannabinoid receptors. From a natural products perspective, it is expected that more novel cannabinoids will be discovered and forecasted as promising drug leads from diverse natural sources and species, such as animal venoms which constitute a true pharmacopeia of toxins modulating diverse targets, including voltage- and ligand-gated ion channels, G protein-coupled receptors such as CB1 and CB2, with astonishing affinity and selectivity. Therefore, it is believed that discovering novel cannabinoids starting from studying the biodiversity of the species living on planet earth is an uncharted territory.
Collapse
Affiliation(s)
| | | | | | - Jan Tytgat
- Toxicology and Pharmacology, KU Leuven, Campus Gasthuisberg, O&N 2, Herestraat 49, P.O. Box 922, 3000 Leuven, Belgium; (D.A.); (S.P.); (L.A.H.)
| |
Collapse
|
35
|
Kynurenines and the Endocannabinoid System in Schizophrenia: Common Points and Potential Interactions. Molecules 2019; 24:molecules24203709. [PMID: 31619006 PMCID: PMC6832375 DOI: 10.3390/molecules24203709] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/09/2019] [Accepted: 10/14/2019] [Indexed: 12/15/2022] Open
Abstract
Schizophrenia, which affects around 1% of the world’s population, has been described as a complex set of symptoms triggered by multiple factors. However, the exact background mechanisms remain to be explored, whereas therapeutic agents with excellent effectivity and safety profiles have yet to be developed. Kynurenines and the endocannabinoid system (ECS) play significant roles in both the development and manifestation of schizophrenia, which have been extensively studied and reviewed previously. Accordingly, kynurenines and the ECS share multiple features and mechanisms in schizophrenia, which have yet to be reviewed. Thus, the present study focuses on the main common points and potential interactions between kynurenines and the ECS in schizophrenia, which include (i) the regulation of glutamatergic/dopaminergic/γ-aminobutyric acidergic neurotransmission, (ii) their presence in astrocytes, and (iii) their role in inflammatory mechanisms. Additionally, promising pharmaceutical approaches involving the kynurenine pathway and the ECS will be reviewed herein.
Collapse
|
36
|
Antonazzo M, Botta M, Bengoetxea H, Ruiz-Ortega JÁ, Morera-Herreras T. Therapeutic potential of cannabinoids as neuroprotective agents for damaged cells conducing to movement disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 146:229-257. [PMID: 31349929 DOI: 10.1016/bs.irn.2019.06.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The basal ganglia (BG), an organized network of nuclei that integrates cortical information, play a crucial role in controlling motor function. In fact, movement disorders such as Parkinson's disease (PD) and Huntington's disease (HD) are caused by the degeneration of specific structures within the BG. There is substantial evidence supporting the idea that cannabinoids may constitute novel promising compounds for the treatment of movement disorders as neuroprotective and anti-inflammatory agents. This potential therapeutic role of cannabinoids is based, among other qualities, on their capacity to reduce oxidative injury and excitotoxicity, control calcium influx and limit the toxicity of reactive microglia. The mechanisms involved in these effects are related to CB1 and CB2 receptor activation, although some of the effects are CB receptor independent. Thus, taking into account the aforementioned properties, compounds that act on the endocannabinoid system could be useful as a basis for developing disease-modifying therapies for PD and HD.
Collapse
Affiliation(s)
- Mario Antonazzo
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain; Neurodegenerative Diseases Group, BioCruces Bizkaia Health Research Institute, Barakaldo, Bizkaia, Spain
| | - María Botta
- Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Harkaitz Bengoetxea
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - José Ángel Ruiz-Ortega
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain; Neurodegenerative Diseases Group, BioCruces Bizkaia Health Research Institute, Barakaldo, Bizkaia, Spain; Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Teresa Morera-Herreras
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain; Neurodegenerative Diseases Group, BioCruces Bizkaia Health Research Institute, Barakaldo, Bizkaia, Spain.
| |
Collapse
|
37
|
Garcia‐Arencibia M, Molina-Holgado E, Molina‐Holgado F. Effect of endocannabinoid signalling on cell fate: life, death, differentiation and proliferation of brain cells. Br J Pharmacol 2019; 176:1361-1369. [PMID: 29797438 PMCID: PMC6487559 DOI: 10.1111/bph.14369] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/09/2018] [Accepted: 05/15/2018] [Indexed: 12/21/2022] Open
Abstract
Cell fate events are regulated by different endogenous developmental factors such as the cell micro-environment, external or remote signals and epigenetic factors. Among the many regulatory factors, endocannabinoid-associated signalling pathways are known to conduct several of these events in the developing nervous system and in the adult brain. Interestingly, endocannabinoids exert modulatory actions in both physiological and pathological conditions. Endocannabinoid signalling can promote cell survival by acting on non-transformed brain cells (neurons, astrocytes or oligodendrocytes) and can have either a protumoural or antitumoural effect on transformed cells. Moreover, endocannabinoids are able to attenuate the detrimental effects on neurogenesis and neuroinflammation associated with ageing. Thus, the endocannabinoid system emerges as an important regulator of cell fate, controlling cell survival/cell death decisions depending on the cell type and its environment. LINKED ARTICLES: This article is part of a themed section on 8th European Workshop on Cannabinoid Research. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.10/issuetoc.
Collapse
Affiliation(s)
- Moises Garcia‐Arencibia
- Departamento Sanitario IES TerorConsejería de Educación y Universidades del Gobierno de CanariasLas PalmasSpain
| | - Eduardo Molina-Holgado
- Laboratorio de NeuroinflamaciónUnidad de Investigación, Hospital Nacional de Parapléjicos‐SESCAMToledo45071Spain
| | | |
Collapse
|
38
|
Cai M, Yang Q, Li G, Sun S, Chen Y, Tian L, Dong H. Activation of cannabinoid receptor 1 is involved in protection against mitochondrial dysfunction and cerebral ischaemic tolerance induced by isoflurane preconditioning. Br J Anaesth 2019; 119:1213-1223. [PMID: 29045576 DOI: 10.1093/bja/aex267] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2017] [Indexed: 12/13/2022] Open
Abstract
Background Isoflurane preconditioning (IPC) induces cerebral ischaemic tolerance, but the mechanism remains poorly understood. The aim of this study was to determine changes in mitochondrial function in the brain after IPC, and whether the cannabinoid receptor 1 (CB1R) could be involved in the mechanism of mitochondrial protection mediated by IPC. Methods Adult male Sprague-Dawley rats were pretreated with isoflurane 2% for 1 h day -1 , for 5 days consecutively, and then subjected to 120 min right middle cerebral artery occlusion. Cannabinoid receptor 1 expression in the cellular and mitochondrial membrane was measured. The CB1R agonist HU-210 was administered alone, or the antagonists AM251 and SR141716A were given to the animals before each preconditioning. Neurological scores, infarct volume, apoptosis, and mitochondrial function were examined after middle cerebral artery occlusion. Results Expression of CB1R on cellular and mitochondrial membranes was increased 6 h after preconditioning. Both IPC and HU-210 administration before middle cerebral artery occlusion improved neurological outcomes and reduced infarct volume. Isoflurane preconditioning increased the expression of the anti-apoptotic proteins Bcl-2 and Bcl-X L and reduced apoptosis in neurones. Isoflurane preconditioning and HU-210 also markedly preserved the activity of respiratory chain complexes, reduced mitochondrial radical generation, preserved mitochondrial membrane potential, and inhibited mitochondrial permeability transition pore opening. Cannabinoid receptor 1 antagonists abolished the improvement in mitochondrial function and the neuroprotective effects induced by IPC. Conclusions Our results indicate that IPC elicits brain ischaemic tolerance and mitochondrial protection by activating the CB1R, which provides a new mechanism for IPC-induced neuroprotection against cerebral ischaemia.
Collapse
Affiliation(s)
- M Cai
- Department of Anaesthesiology and Perioperative Medicine.,Department of Psychiatry, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Q Yang
- Department of Anaesthesiology and Perioperative Medicine
| | - G Li
- Department of Anaesthesiology and Perioperative Medicine
| | - S Sun
- Department of Anaesthesiology and Perioperative Medicine
| | - Y Chen
- Department of Anaesthesiology and Perioperative Medicine
| | - L Tian
- Department of Anaesthesiology and Perioperative Medicine
| | - H Dong
- Department of Anaesthesiology and Perioperative Medicine
| |
Collapse
|
39
|
de Araujo CB, Heimann AS, Remer RA, Russo LC, Colquhoun A, Forti FL, Ferro ES. Intracellular Peptides in Cell Biology and Pharmacology. Biomolecules 2019; 9:biom9040150. [PMID: 30995799 PMCID: PMC6523763 DOI: 10.3390/biom9040150] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/02/2019] [Accepted: 04/12/2019] [Indexed: 12/11/2022] Open
Abstract
Intracellular peptides are produced by proteasomes following degradation of nuclear, cytosolic, and mitochondrial proteins, and can be further processed by additional peptidases generating a larger pool of peptides within cells. Thousands of intracellular peptides have been sequenced in plants, yeast, zebrafish, rodents, and in human cells and tissues. Relative levels of intracellular peptides undergo changes in human diseases and also when cells are stimulated, corroborating their biological function. However, only a few intracellular peptides have been pharmacologically characterized and their biological significance and mechanism of action remains elusive. Here, some historical and general aspects on intracellular peptides' biology and pharmacology are presented. Hemopressin and Pep19 are examples of intracellular peptides pharmacologically characterized as inverse agonists to cannabinoid type 1 G-protein coupled receptors (CB1R), and hemopressin fragment NFKF is shown herein to attenuate the symptoms of pilocarpine-induced epileptic seizures. Intracellular peptides EL28 (derived from proteasome 26S protease regulatory subunit 4; Rpt2), PepH (derived from Histone H2B type 1-H), and Pep5 (derived from G1/S-specific cyclin D2) are examples of peptides that function intracellularly. Intracellular peptides are suggested as biological functional molecules, and are also promising prototypes for new drug development.
Collapse
Affiliation(s)
- Christiane B de Araujo
- Special Laboratory of Cell Cycle, Center of Toxins, Immune Response and Cell Signaling - CeTICS, Butantan Institute, São Paulo SP 05503-900, Brazil.
| | | | | | - Lilian C Russo
- Department of Biochemistry, Chemistry Institute, University of São Paulo 1111, São Paulo 05508-000, Brazil.
| | - Alison Colquhoun
- Department of Cell and Developmental Biology, University of São Paulo (USP), São Paulo 05508-000, Brazil.
| | - Fábio L Forti
- Department of Biochemistry, Chemistry Institute, University of São Paulo 1111, São Paulo 05508-000, Brazil.
| | - Emer S Ferro
- Department of Pharmacology, Biomedical Sciences Institute, University of São Paulo (USP), São Paulo 05508-000, Brazil.
| |
Collapse
|
40
|
Nucleoligands-repurposing G Protein-coupled Receptor Ligands to Modulate Nuclear-localized G Protein-coupled Receptors in the Cardiovascular System. J Cardiovasc Pharmacol 2019; 71:193-204. [PMID: 28858907 DOI: 10.1097/fjc.0000000000000535] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
There is significant evidence that internal pools of G protein-coupled receptors (GPCRs) exist and may be affected by both endogenous signaling molecules and hydrophobic pharmaceutical ligands, once assumed to only affect cell surface versions of these receptors. Here, we discuss evidence that the biology of nuclear GPCRs in particular is complex, rich, and highly interactive with GPCR signaling from the cell surface. Caging existing GPCR ligands may be an excellent means of further stratifying the phenotypic effects of known pharmacophores such as β-adrenergic, angiotensin II, and type B endothelin receptor ligands in the cardiovascular system. We describe some synthetic strategies we have used to design ligands to go from in cellulo to in vivo experiments. We also consider how surface and intracellular GPCR signaling might be integrated and ways to dissect this. If they could be selectively targeted, nuclear GPCRs and their associated nucleoligands would represent a completely novel area for exploration by Pharma.
Collapse
|
41
|
Lahuna O, Jockers R. [Mitochondrial signaling of G protein-coupled receptors]. Biol Aujourdhui 2018; 212:21-26. [PMID: 30362452 DOI: 10.1051/jbio/2018024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Indexed: 06/08/2023]
Abstract
G protein-coupled receptors (GPCRs) are the largest family of integral membrane receptors with 800 members in humans that are expressed at the cell surface responding to a large panel of extracellular stimuli. Recent advances indicate that GPCRs are also expressed in intracellular compartments where they fulfil important functions. Here, we will report on the mitochondrial localization and function of GPCRs.
Collapse
Affiliation(s)
- Olivier Lahuna
- Inserm, U1016, Institut Cochin, 22 rue Méchain, 75014 Paris, France - CNRS UMR 8104, Paris, France - Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Ralf Jockers
- Inserm, U1016, Institut Cochin, 22 rue Méchain, 75014 Paris, France - CNRS UMR 8104, Paris, France - Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
42
|
Paloczi J, Varga ZV, Hasko G, Pacher P. Neuroprotection in Oxidative Stress-Related Neurodegenerative Diseases: Role of Endocannabinoid System Modulation. Antioxid Redox Signal 2018; 29:75-108. [PMID: 28497982 PMCID: PMC5984569 DOI: 10.1089/ars.2017.7144] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 05/11/2017] [Indexed: 12/19/2022]
Abstract
SIGNIFICANCE Redox imbalance may lead to overproduction of reactive oxygen and nitrogen species (ROS/RNS) and subsequent oxidative tissue damage, which is a critical event in the course of neurodegenerative diseases. It is still not fully elucidated, however, whether oxidative stress is the primary trigger or a consequence in the process of neurodegeneration. Recent Advances: Increasing evidence suggests that oxidative stress is involved in the propagation of neuronal injury and consequent inflammatory response, which in concert promote development of pathological alterations characteristic of most common neurodegenerative diseases. CRITICAL ISSUES Accumulating recent evidence also suggests that there is an important interplay between the lipid endocannabinoid system [ECS; comprising the main cannabinoid 1 and 2 receptors (CB1 and CB2), endocannabinoids, and their synthetic and metabolizing enzymes] and various key inflammatory and redox-dependent processes. FUTURE DIRECTIONS Targeting the ECS to modulate redox state-dependent cell death and to decrease consequent or preceding inflammatory response holds therapeutic potential in a multitude of oxidative stress-related acute or chronic neurodegenerative disorders from stroke and traumatic brain injury to Alzheimer's and Parkinson's diseases and multiple sclerosis, just to name a few, which will be discussed in this overview. Antioxid. Redox Signal. 29, 75-108.
Collapse
Affiliation(s)
- Janos Paloczi
- Laboratory of Cardiovascular Physiology and Tissue Injury (LCPTI), National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH), Bethesda, Maryland
| | - Zoltan V. Varga
- Laboratory of Cardiovascular Physiology and Tissue Injury (LCPTI), National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH), Bethesda, Maryland
| | - George Hasko
- Department of Surgery, Rutgers New Jersey Medical School, Newark, New Jersey
| | - Pal Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury (LCPTI), National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH), Bethesda, Maryland
| |
Collapse
|
43
|
Sampaio LS, Iannotti FA, Veneziani L, Borelli-Tôrres RT, De Maio F, Piscitelli F, Reis RAM, Di Marzo V, Einicker-Lamas M. Experimental ischemia/reperfusion model impairs endocannabinoid signaling and Na +/K + ATPase expression and activity in kidney proximal tubule cells. Biochem Pharmacol 2018; 154:482-491. [PMID: 29890144 DOI: 10.1016/j.bcp.2018.06.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 06/04/2018] [Indexed: 12/19/2022]
Abstract
LLC-PK1 cells, an immortalized epithelial cell line derived from pig renal proximal tubules, express all the major players of the endocannabinoid system (ECS) such as CB1, CB2 and TRPV1 receptors, as well as the main enzymes involved in the biosynthesis and degradation of the major endocannabinoids named 2-arachidonoylglycerol, 2-AG and anandamide, AEA. Here we investigated whether the damages caused by ischemic insults either in vitro using LLC-PK1 cells exposed to antimycin A (an inductor of ATP-depletion) or in vivo using Wistar rats in a classic renal ischemia and reperfusion (IR) protocol, lead to changes in AEA and 2-AG levels, as well as altered expression of genes from the main enzymes involved in the regulation of the ECS. Our data show that the mRNA levels of the CB1 receptor gene were downregulated, while the transcript levels of monoacylglycerol lipase (MAGL), the main 2-AG degradative enzyme, were upregulated in LLC-PK1 cells after IR model. Accordingly, IR was accompanied by a significant reduction in the levels of 2-AG and AEA, as well as of the two endocannabinoid related molecules, oleoylethanolamide (OEA) and palmitoylethanolamide (PEA) in LLC-PK1 cells. In kidney cortex homogenates, only AEA levels were significantly decreased. In addition, we found that in both the in vitro and in vivo model IR caused a reduction in the expression and activity of the Na+/K+ ATPase. These changes were reversed by the CB1/CB2 agonist WIN55,212, in a CB1-receptor dependent manner in the LLC-PK1 IR model. In conclusion, the ECS and Na+/K+ ATPase are down-regulated following IR in LLC-PK1 cells and rat kidney. We suggest that CB1 agonists might represent a potential strategy to reverse the consequences of IR injury in kidney tissues.
Collapse
Affiliation(s)
- Luzia S Sampaio
- Instituto de Biofísica Carlos Chagas Filho, UFRJ, Rio de Janeiro, Brazil; Lab. Neuroquímica, Instituto Nacional de Ciência e Tecnologia em Neurociência Translacional, Brazil; CAPES Foundation, Ministry of Education of Brazil, Brasilia DF 70.040-020, Brazil
| | - Fabio A Iannotti
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, CNR, Pozzuoli (Naples), Italy
| | - Luciana Veneziani
- Instituto de Biofísica Carlos Chagas Filho, UFRJ, Rio de Janeiro, Brazil
| | - Rosa T Borelli-Tôrres
- Instituto de Biofísica Carlos Chagas Filho, UFRJ, Rio de Janeiro, Brazil; Lab. Neuroquímica, Instituto Nacional de Ciência e Tecnologia em Neurociência Translacional, Brazil
| | - Fabrizia De Maio
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, CNR, Pozzuoli (Naples), Italy
| | - Fabiana Piscitelli
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, CNR, Pozzuoli (Naples), Italy
| | - Ricardo A M Reis
- Instituto de Biofísica Carlos Chagas Filho, UFRJ, Rio de Janeiro, Brazil; Lab. Neuroquímica, Instituto Nacional de Ciência e Tecnologia em Neurociência Translacional, Brazil
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, CNR, Pozzuoli (Naples), Italy
| | | |
Collapse
|
44
|
González-Mariscal I, Montoro RA, Doyle ME, Liu QR, Rouse M, O'Connell JF, Santa-Cruz Calvo S, Krzysik-Walker SM, Ghosh S, Carlson OD, Lehrmann E, Zhang Y, Becker KG, Chia CW, Ghosh P, Egan JM. Absence of cannabinoid 1 receptor in beta cells protects against high-fat/high-sugar diet-induced beta cell dysfunction and inflammation in murine islets. Diabetologia 2018; 61:1470-1483. [PMID: 29497784 PMCID: PMC6201315 DOI: 10.1007/s00125-018-4576-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 01/25/2018] [Indexed: 01/04/2023]
Abstract
AIMS/HYPOTHESIS The cannabinoid 1 receptor (CB1R) regulates insulin sensitivity and glucose metabolism in peripheral tissues. CB1R is expressed on pancreatic beta cells and is coupled to the G protein Gαi, suggesting a negative regulation of endogenous signalling in the beta cell. Deciphering the exact function of CB1R in beta cells has been confounded by the expression of this receptor on multiple tissues involved in regulating metabolism. Thus, in models of global genetic or pharmacological CB1R blockade, it is difficult to distinguish the indirect effects of improved insulin sensitivity in peripheral tissues from the direct effects of inhibiting CB1R in beta cells per se. To assess the direct contribution of beta cell CB1R to metabolism, we designed a mouse model that allows us to determine the role of CB1R specifically in beta cells in the context of whole-body metabolism. METHODS We generated a beta cell specific Cnr1 (CB1R) knockout mouse (β-CB1R-/-) to study the long-term consequences of CB1R ablation on beta cell function in adult mice. We measured beta cell function, proliferation and viability in these mice in response to a high-fat/high-sugar diet and induction of acute insulin resistance with the insulin receptor antagonist S961. RESULTS β-CB1R-/- mice had increased fasting (153 ± 23% increase at 10 weeks of age) and stimulated insulin secretion and increased intra-islet cAMP levels (217 ± 33% increase at 10 weeks of age), resulting in primary hyperinsulinaemia, as well as increased beta cell viability, proliferation and islet area (1.9-fold increase at 10 weeks of age). Hyperinsulinaemia led to insulin resistance, which was aggravated by a high-fat/high-sugar diet and weight gain, although beta cells maintained their insulin secretory capacity in response to glucose. Strikingly, islets from β-CB1R-/- mice were protected from diet-induced inflammation. Mechanistically, we show that this is a consequence of curtailment of oxidative stress and reduced activation of the NLRP3 inflammasome in beta cells. CONCLUSIONS/INTERPRETATION Our data demonstrate CB1R to be a negative regulator of beta cell function and a mediator of islet inflammation under conditions of metabolic stress. Our findings point to beta cell CB1R as a therapeutic target, and broaden its potential to include anti-inflammatory effects in both major forms of diabetes. DATA AVAILABILITY Microarray data have been deposited at GEO (GSE102027).
Collapse
Affiliation(s)
- Isabel González-Mariscal
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD, 21224, USA
| | - Rodrigo A Montoro
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD, 21224, USA
| | - Máire E Doyle
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD, 21224, USA
| | - Qing-Rong Liu
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD, 21224, USA
| | - Michael Rouse
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD, 21224, USA
| | - Jennifer F O'Connell
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD, 21224, USA
| | - Sara Santa-Cruz Calvo
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD, 21224, USA
| | - Susan M Krzysik-Walker
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD, 21224, USA
| | - Soumita Ghosh
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD, 21224, USA
| | - Olga D Carlson
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD, 21224, USA
| | - Elin Lehrmann
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Yongqing Zhang
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Kevin G Becker
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Chee W Chia
- Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Paritosh Ghosh
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD, 21224, USA
| | - Josephine M Egan
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD, 21224, USA.
| |
Collapse
|
45
|
Inhibition of mitochondrial permeability transition pore opening contributes to cannabinoid type 1 receptor agonist ACEA-induced neuroprotection. Neuropharmacology 2018; 135:211-222. [PMID: 29574098 DOI: 10.1016/j.neuropharm.2018.03.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 03/19/2018] [Accepted: 03/20/2018] [Indexed: 11/23/2022]
Abstract
Cannabinoid type 1 (CB1) receptor agonist arachidonyl-2-chloroethylamide (ACEA) induces neuroprotection against brain ischemia, and the mechanism, however, is still elusive. In this study, we used bilateral common carotid artery occlusion (BCCAO) in mice and oxygen-glucose deprivation (OGD) in primary cultured neurons to mimic brain ischemic injury, and hypothesized that cannabinoid CB1 receptor agonist ACEA protects ischemic neurons via inhibiting the opening of mitochondrial permeability transition pore (MPTP). In vivo, we found that BCCAO treatment reduced the neurological functions, increased the number of apoptotic neuronal cells and deteriorated the mitochondrial morphology in the ischemic brain tissue. And in vitro, we observed that OGD injury reduced cell viability, mitochondrial function and anti-oxidant SOD2 expression, increased lactate dehydrogenase (LDH), mitochondrial cytochrome C (Cyto C) and apoptosis-inducing factor (AIF) releases, elevated the cell apoptosis and mitochondrial superoxide level. And the CB1 receptor agonist ACEA significantly abolished the BCCAO and OGD-induced neuronal injury above. However, the MPTP opener atractyloside (Atr) markedly reversed the ACEA-induced neuroprotective effects, inhibited the mitochondrial Cyto C and AIF releases and relieved the mitochondrial swelling, but the MPTP inhibitor cyclosporin A (CsA) did not cause significant effects on the ACEA-induced neuroprotection above. These findings indicated that inhibition of MPTP opening may be involved in the cannabinoid CB1 receptor agonist ACEA-induced neuroprotection.
Collapse
|
46
|
Cannabinoid Receptors and the Endocannabinoid System: Signaling and Function in the Central Nervous System. Int J Mol Sci 2018. [PMID: 29533978 PMCID: PMC5877694 DOI: 10.3390/ijms19030833] [Citation(s) in RCA: 803] [Impact Index Per Article: 114.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The biological effects of cannabinoids, the major constituents of the ancient medicinal plant Cannabis sativa (marijuana) are mediated by two members of the G-protein coupled receptor family, cannabinoid receptors 1 (CB1R) and 2. The CB1R is the prominent subtype in the central nervous system (CNS) and has drawn great attention as a potential therapeutic avenue in several pathological conditions, including neuropsychological disorders and neurodegenerative diseases. Furthermore, cannabinoids also modulate signal transduction pathways and exert profound effects at peripheral sites. Although cannabinoids have therapeutic potential, their psychoactive effects have largely limited their use in clinical practice. In this review, we briefly summarized our knowledge of cannabinoids and the endocannabinoid system, focusing on the CB1R and the CNS, with emphasis on recent breakthroughs in the field. We aim to define several potential roles of cannabinoid receptors in the modulation of signaling pathways and in association with several pathophysiological conditions. We believe that the therapeutic significance of cannabinoids is masked by the adverse effects and here alternative strategies are discussed to take therapeutic advantage of cannabinoids.
Collapse
|
47
|
Cannabinoid Receptor Type 1 Agonist ACEA Protects Neurons from Death and Attenuates Endoplasmic Reticulum Stress-Related Apoptotic Pathway Signaling. Neurotox Res 2017; 33:846-855. [PMID: 29134561 DOI: 10.1007/s12640-017-9839-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/11/2017] [Accepted: 11/02/2017] [Indexed: 02/02/2023]
Abstract
Neurodegeneration is the result of progressive destruction of neurons in the central nervous system, with unknown causes and pathological mechanisms not yet fully elucidated. Several factors contribute to neurodegenerative processes, including neuroinflammation, accumulation of neurotoxic factors, and misfolded proteins in the lumen of the endoplasmic reticulum (ER). Endocannabinoid signaling has been pointed out as an important modulatory system in several neurodegeneration-related processes, inhibiting the inflammatory response and increasing neuronal survival. Thus, we investigated the presumptive protective effect of the selective cannabinoid type 1 (CB1) receptor agonist arachidonyl-2'-chloroethylamide (ACEA) against inflammatory (lipopolysaccharide, LPS) and ER stress (tunicamycin) stimuli in an in vitro neuronal model (Neuro-2a neuroblastoma cells). Cell viability analysis revealed that ACEA was able to protect against cell death induced by LPS and tunicamycin. This neuroprotective effect occurs via the CB1 receptor in the inflammation process and via the transient receptor potential of vanilloid type-1 (TRPV1) channel in ER stress. Furthermore, the immunoblotting analyses indicated that the neuroprotective effect of ACEA seems to involve the modulation of eukaryotic initiation factor 2 (eIF2α), transcription factor C/EBP homologous protein (CHOP), and caspase 12, as well as the survival/death p44/42 MAPK, ERK1/2-related signaling pathways. Together, these data suggest that the endocannabinoid system is a potential therapeutic target in neurodegenerative processes, especially in ER-related neurodegenerative diseases.
Collapse
|
48
|
Jong YJI, Harmon SK, O'Malley KL. GPCR signalling from within the cell. Br J Pharmacol 2017; 175:4026-4035. [PMID: 28872669 DOI: 10.1111/bph.14023] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/08/2017] [Accepted: 08/17/2017] [Indexed: 12/22/2022] Open
Abstract
Traditionally, signal transduction from GPCRs is thought to emanate from the cell surface where receptor interactions with external stimuli can be transformed into a broad range of cellular responses. However, emergent data show that numerous GPCRs are also associated with various intracellular membranes where they may couple to different signalling systems, display unique desensitization patterns and/or exhibit distinct patterns of subcellular distribution. Although many GPCRs can be activated at the cell surface and subsequently endocytosed and transported to a unique intracellular site, other intracellular GPCRs can be activated in situ either via de novo ligand synthesis, diffusion of permeable ligands or active transport of nonpermeable ligands. Current findings reinforce the notion that intracellular GPCRs play a dynamic role in various biological functions including learning and memory, contractility and angiogenesis. As new intracellular GPCR roles are defined, the need to selectively tailor agonists and/or antagonists to both intracellular and cell surface receptors may lead to the development of more effective therapeutic tools. LINKED ARTICLES This article is part of a themed section on Molecular Pharmacology of GPCRs. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.21/issuetoc.
Collapse
Affiliation(s)
- Yuh-Jiin I Jong
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - Steven K Harmon
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - Karen L O'Malley
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
49
|
Gbahou F, Cecon E, Viault G, Gerbier R, Jean-Alphonse F, Karamitri A, Guillaumet G, Delagrange P, Friedlander RM, Vilardaga JP, Suzenet F, Jockers R. Design and validation of the first cell-impermeant melatonin receptor agonist. Br J Pharmacol 2017; 174:2409-2421. [PMID: 28493341 DOI: 10.1111/bph.13856] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 04/27/2017] [Accepted: 05/03/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE The paradigm that GPCRs are able to prolong or initiate cellular signalling through intracellular receptors recently emerged. Melatonin binds to G protein-coupled MT1 and MT2 receptors. In contrast to most other hormones targeting GPCRs, melatonin and its synthetic analogues are amphiphilic molecules easily penetrating into cells, but the existence of intracellular receptors is still unclear mainly due to a lack of appropriate tools. EXPERIMENTAL APPROACH We therefore designed and synthesized a series of hydrophilic melatonin receptor ligands coupled to the Cy3 cyanin fluorophore to reliably monitor its inability to penetrate cells. Two compounds, one lipophilic and one hydrophilic, were then functionally characterized in terms of their affinity for human and murine melatonin receptors expressed in HEK293 cells and their signalling efficacy. KEY RESULTS Among the different ligands, ICOA-13 showed the desired properties as it was cell-impermeant and bound to human and mouse MT1 and MT2 receptors. ICOA-13 showed differential activities on melatonin receptors ranging from partial to full agonistic properties for the Gi /cAMP and ERK pathway and β-arrestin 2 recruitment. Notably, ICOA-13 enabled us to discriminate between Gi /cAMP signalling of the MT1 receptor initiated at the cell surface and neuronal mitochondria. CONCLUSIONS AND IMPLICATIONS We report here the first cell-impermeant melatonin receptor agonist, ICOA-13, which allows us to discriminate between signalling events initiated at the cell surface and intracellular compartments. Detection of mitochondrial MT1 receptors may have an important impact on the development of novel melatonin receptor ligands relevant for neurodegenerative diseases, such as Huntington disease.
Collapse
Affiliation(s)
- Florence Gbahou
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS UMR 8104, Paris, France.,Université Paris Descartes, Paris, France
| | - Erika Cecon
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS UMR 8104, Paris, France.,Université Paris Descartes, Paris, France
| | - Guillaume Viault
- Institut de Chimie Organique et Analytique (ICOA), Université d'Orléans, UMR CNRS 7311, B.P. 6759, Orléans Cedex 2, France
| | - Romain Gerbier
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS UMR 8104, Paris, France.,Université Paris Descartes, Paris, France
| | - Frederic Jean-Alphonse
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Angeliki Karamitri
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS UMR 8104, Paris, France.,Université Paris Descartes, Paris, France
| | - Gérald Guillaumet
- Institut de Chimie Organique et Analytique (ICOA), Université d'Orléans, UMR CNRS 7311, B.P. 6759, Orléans Cedex 2, France
| | - Philippe Delagrange
- Pôle d'Innovation Thérapeutique Neuropsychiatrie, Institut de Recherches Servier, Croissy, France
| | - Robert M Friedlander
- Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jean-Pierre Vilardaga
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Franck Suzenet
- Institut de Chimie Organique et Analytique (ICOA), Université d'Orléans, UMR CNRS 7311, B.P. 6759, Orléans Cedex 2, France
| | - Ralf Jockers
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS UMR 8104, Paris, France.,Université Paris Descartes, Paris, France
| |
Collapse
|
50
|
The endocannabinoid system, a novel and key participant in acupuncture's multiple beneficial effects. Neurosci Biobehav Rev 2017; 77:340-357. [PMID: 28412017 DOI: 10.1016/j.neubiorev.2017.04.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/31/2017] [Accepted: 04/06/2017] [Indexed: 12/22/2022]
Abstract
Acupuncture and its modified forms have been used to treat multiple medical conditions, but whether the diverse effects of acupuncture are intrinsically linked at the cellular and molecular level and how they might be connected have yet to be determined. Recently, an emerging role for the endocannabinoid system (ECS) in the regulation of a variety of physiological/pathological conditions has been identified. Overlap between the biological and therapeutic effects induced by ECS activation and acupuncture has facilitated investigations into the participation of ECS in the acupuncture-induced beneficial effects, which have shed light on the idea that the ECS may be a primary mediator and regulatory factor of acupuncture's beneficial effects. This review seeks to provide a comprehensive summary of the existing literature concerning the role of endocannabinoid signaling in the various effects of acupuncture, and suggests a novel notion that acupuncture may restore homeostasis under different pathological conditions by regulating similar networks of signaling pathways, resulting in the activation of different reaction cascades in specific tissues in response to pathological insults.
Collapse
|