1
|
Chiaro D, Hager TJ, Renshaw KT, Moore BM, Ghobadi A, Haque RI, Han A, Broderick BM, Guha S, King GM. Precise Fabrication of Graphite-Like Material Directly on a Biological Membrane Enabled by Ethanol Ice Resist. NANO LETTERS 2025; 25:7107-7114. [PMID: 40259676 PMCID: PMC12046601 DOI: 10.1021/acs.nanolett.5c01265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/16/2025] [Accepted: 04/16/2025] [Indexed: 04/23/2025]
Abstract
Ice lithography holds the potential to bridge cryogenic electron microscopy and electron-beam lithography and achieve direct high-precision functionalization of fragile biomaterials. Here we demonstrate that 5 keV electron irradiation of ethanol ice creates a material, patterned with <100 nm resolution, that is stable in the solid phase under ambient conditions. Employing the purple membrane from Halobacterium salinarum as a test target, we additionally show that the fabrication process results in minimal biomaterial mass loss. Ketene, an unstable intermediate, was identified in the irradiated ice via Fourier transform infrared spectroscopy and is likely an important factor triggering formation of the ethanol-based material. Surface-enhanced Raman spectroscopy and additional characterization methodologies revealed that the material contains disordered graphite similar to carbon fiber and is mechanically stiff and electrically insulating. This work demonstrates a novel material for additive manufacturing in general and for the precise functionalization of biological membranes in particular.
Collapse
Affiliation(s)
- Dylan
A. Chiaro
- Department
of Physics and Astronomy, University of
Missouri, Columbia, Missouri 65211, United States
| | - Travis J. Hager
- Department
of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Kyle T. Renshaw
- Department
of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Bailey M. Moore
- Department
of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Arash Ghobadi
- Department
of Physics and Astronomy, University of
Missouri, Columbia, Missouri 65211, United States
| | - Rubaiyet I. Haque
- Department
of Civil and Mechanical Engineering, Technical
University of Denmark, Kongens,
Lyngby 2800, Denmark
| | - Anpan Han
- Department
of Civil and Mechanical Engineering, Technical
University of Denmark, Kongens,
Lyngby 2800, Denmark
| | | | - Suchismita Guha
- Department
of Physics and Astronomy, University of
Missouri, Columbia, Missouri 65211, United States
- Materials
Science and Engineering Institute, University
of Missouri, Columbia, Missouri 65211, United States
| | - Gavin M. King
- Department
of Physics and Astronomy, University of
Missouri, Columbia, Missouri 65211, United States
- Materials
Science and Engineering Institute, University
of Missouri, Columbia, Missouri 65211, United States
- Department
of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
2
|
Park J, Cheong DY, Lee G, Han CE. Deep learning-based denoising for unbiased analysis of morphology and stiffness in amyloid fibrils. Comput Biol Med 2025; 184:109410. [PMID: 39577350 DOI: 10.1016/j.compbiomed.2024.109410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 11/24/2024]
Abstract
Understanding the morphology of amyloid fibrils is crucial for comprehending the aggregation and degradation mechanisms of abnormal proteins implicated in various diseases, such as Alzheimer's disease, Parkinson's disease, type II diabetes, and various forms of amyloidosis. Atomic force microscopy (AFM) stands as the most representative method for studying amyloid fibril morphology. However, obstacles in AFM images, including noise, salt, and amorphous aggregates, often impede accurate sample quantification. In this study, we developed denoising software employing a U-Net deep learning architecture to address this issue. The software efficiently eliminated various impediments that interfere with fibril analysis in noisy AFM images, thereby facilitating precise quantification of amyloid fibrils. We also developed automated fibril analysis technologies using the denoised AFM images, leading to quicker, more precise, and more objective assessments of fibril morphology. Furthermore, we presented a method for fibril stiffness extraction from a modulus image through mask creation based on a denoised height image. Our approach secures time efficiency and precision in analyzing amyloid morphology, and we believe it will significantly advance the currently stagnant research on amyloid-related diseases.
Collapse
Affiliation(s)
- Jaehee Park
- Department of Electronics and Information Engineering, Korea University, Sejong, 30019, Republic of Korea; Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong, 30019, Republic of Korea
| | - Da Yeon Cheong
- Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong, 30019, Republic of Korea; Department of Biotechnology and Bioinformatics, Korea University, Sejong, 30019, Republic of Korea
| | - Gyudo Lee
- Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong, 30019, Republic of Korea; Department of Biotechnology and Bioinformatics, Korea University, Sejong, 30019, Republic of Korea
| | - Cheol E Han
- Department of Electronics and Information Engineering, Korea University, Sejong, 30019, Republic of Korea; Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong, 30019, Republic of Korea.
| |
Collapse
|
3
|
Sasidharan S, Knepper L, Ankrom E, Cucé G, Kong L, Ratajczak A, Im W, Thévenin D, Honerkamp-Smith A. Microfluidic measurement of the size and shape of lipid-anchored proteins. Biophys J 2024; 123:3478-3489. [PMID: 39228123 PMCID: PMC11480770 DOI: 10.1016/j.bpj.2024.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/06/2024] [Accepted: 08/29/2024] [Indexed: 09/05/2024] Open
Abstract
The surface of a cell is crowded with membrane proteins. The size, shape, density, and mobility of extracellular surface proteins mediate cell surface accessibility to external molecules, viral particles, and other cells. However, predicting these qualities is not always straightforward, even when protein structures are known. We previously developed an experimental method for measuring flow-driven lateral transport of neutravidin bound to biotinylated lipids in supported lipid bilayers. Here, we use this method to detect hydrodynamic force applied to a series of lipid-anchored proteins with increasing size. We find that the measured force reflects both protein size and shape, making it possible to distinguish these features of intact, folded proteins in their undisturbed orientation and proximity to the lipid membrane. In addition, our results demonstrate that individual proteins are transported large distances by flow forces on the order of femtoNewtons, similar in magnitude to the shear forces resulting from blood circulation or from the swimming motion of microorganisms. Similar protein transport across living cells by hydrodynamic force may contribute to biological flow sensing.
Collapse
Affiliation(s)
| | - Leah Knepper
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania
| | - Emily Ankrom
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania
| | - Gabriel Cucé
- Department of Physics, Lehigh University, Bethlehem, Pennsylvania
| | - Lingyang Kong
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania
| | - Amanda Ratajczak
- Department of Physics, Lehigh University, Bethlehem, Pennsylvania
| | - Wonpil Im
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania
| | - Damien Thévenin
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania
| | | |
Collapse
|
4
|
Smith RS, Weaver DR, King GM, Kosztin I. Chain-Length Dependence of Peptide-Lipid Bilayer Interaction Strength and Binding Kinetics: A Combined Theoretical and Experimental Approach. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:14467-14475. [PMID: 38963062 DOI: 10.1021/acs.langmuir.4c01218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Physical interactions between polypeptide chains and lipid membranes underlie critical cellular processes. Yet, despite fundamental importance, key mechanistic aspects of these interactions remain elusive. Bulk experiments have revealed a linear relationship between free energy and peptide chain length in a model system, but does this linearity extend to the interaction strength and to the kinetics of lipid binding? To address these questions, we utilized a combination of coarse-grained molecular dynamics (CG MD) simulations, analytical modeling, and atomic force microscopy (AFM)-based single molecule force spectroscopy. Following previous bulk experiments, we focused on interactions between short hydrophobic peptides (WLn, n = 1, ..., 5) with 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC) bilayers, a simple system that probes peptide primary structure effects. Potentials of mean force extracted from CG MD recapitulated the linearity of free energy with the chain length. Simulation results were quantitatively connected to bulk biochemical experiments via a single scaling factor of order unity, corroborating the methodology. Additionally, CG MD revealed an increase in the distance to the transition state, a result that weakens the dependence of the dissociation force on the peptide chain length. AFM experiments elucidated rupture force distributions and, through modeling, intrinsic dissociation rates. Taken together, the analysis indicates a rupture force plateau in the WLn-POPC system, suggesting that the final rupture event involves the last 2 or 3 residues. In contrast, the linear dependence on chain length was preserved in the intrinsic dissociation rate. This study advances the understanding of peptide-lipid interactions and provides potentially useful insights for the design of peptides with tailored membrane-interacting properties.
Collapse
Affiliation(s)
- Ryan S Smith
- Department of Physics & Astronomy, University of Missouri, Columbia, Missouri 65211, United States
| | - Dylan R Weaver
- Department of Physics & Astronomy, University of Missouri, Columbia, Missouri 65211, United States
| | - Gavin M King
- Department of Physics & Astronomy, University of Missouri, Columbia, Missouri 65211, United States
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Ioan Kosztin
- Department of Physics & Astronomy, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
5
|
Cho M, Mahmoodi Z, Shetty P, Harrison LR, Arias Montecillo M, Perumal AS, Solana G, Nicolau DV, Nicolau DV. Protein Adsorption on Solid Surfaces: Data Mining, Database, Molecular Surface-Derived Properties, and Semiempirical Relationships. ACS APPLIED MATERIALS & INTERFACES 2024; 16:28290-28306. [PMID: 38787331 DOI: 10.1021/acsami.4c06759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Protein adsorption on solid surfaces is a process relevant to biological, medical, industrial, and environmental applications. Despite this wide interest and advancement in measurement techniques, the complexity of protein adsorption has frustrated its accurate prediction. To address this challenge, here, data regarding protein adsorption reported in the last four decades was collected, checked for completeness and correctness, organized, and archived in an upgraded, freely accessible Biomolecular Adsorption Database, which is equivalent to a large-scale, ad hoc, crowd-sourced multifactorial experiment. The shape and physicochemical properties of the proteins present in the database were quantified on their molecular surfaces using an in-house program (ProMS) operating as an add-on to the PyMol software. Machine learning-based analysis indicated that protein adsorption on hydrophobic and hydrophilic surfaces is modulated by different sets of operational, structural, and molecular surface-based physicochemical parameters. Separately, the adsorption data regarding four "benchmark" proteins, i.e., lysozyme, albumin, IgG, and fibrinogen, was processed by piecewise linear regression with the protein monolayer acting as breakpoint, using the linearization of the Langmuir isotherm formalism, resulting in semiempirical relationships predicting protein adsorption. These relationships, derived separately for hydrophilic and hydrophobic surfaces, described well the protein concentration on the surface as a function of the protein concentration in solution, adsorbing surface contact angle, ionic strength, pH, and temperature of the carrying fluid, and the difference between pH and the isoelectric point of the protein. When applying the semiempirical relationships derived for benchmark proteins to two other "test" proteins with known PDB structure, i.e., β-lactoglobulin and α-lactalbumin, the errors of this extrapolation were found to be in a linear relationship with the dissimilarity between the benchmark and the test proteins. The work presented here can be used for the estimation of operational parameters modulating protein adsorption for various applications such as diagnostic devices, pharmaceuticals, biomaterials, or the food industry.
Collapse
Affiliation(s)
- Matthew Cho
- Faculty of Engineering, Department of Bioengineering, McGill University, Montreal, Quebec H3A 0C3, Canada
| | - Zahra Mahmoodi
- Faculty of Engineering, Department of Bioengineering, McGill University, Montreal, Quebec H3A 0C3, Canada
| | - Prasad Shetty
- Faculty of Engineering, Department of Bioengineering, McGill University, Montreal, Quebec H3A 0C3, Canada
| | - Lauren R Harrison
- Faculty of Engineering, Department of Bioengineering, McGill University, Montreal, Quebec H3A 0C3, Canada
| | - Maru Arias Montecillo
- Faculty of Engineering, Department of Bioengineering, McGill University, Montreal, Quebec H3A 0C3, Canada
| | | | - Gerardin Solana
- Swinburne University of Technology, Hawthorn, Vic 3122, Australia
| | - Dan V Nicolau
- Swinburne University of Technology, Hawthorn, Vic 3122, Australia
- Faculty of Life Sciences & Medicine, School of Immunology & Microbial Sciences, Peter Gorer Department of Immunobiology, King's College London, London SE1 1UL, U.K
| | - Dan V Nicolau
- Faculty of Engineering, Department of Bioengineering, McGill University, Montreal, Quebec H3A 0C3, Canada
- Swinburne University of Technology, Hawthorn, Vic 3122, Australia
| |
Collapse
|
6
|
Weaver DR, Schaefer KG, King GM. Atomic force microscope kymograph analysis: A case study of two membrane proteins. Methods 2024; 223:83-94. [PMID: 38286332 DOI: 10.1016/j.ymeth.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/31/2024] Open
Abstract
Kymograph analysis is employed across the biological atomic force microscopy (AFM) community to boost temporal resolution. The method is well suited for revealing protein dynamics at the single molecule level in near-native conditions. Yet, kymograph analysis comes with limitations that depend on several factors including protein geometry and instrumental drift. This work focuses on conformational dynamics of difficult-to-study sparse distributions of membrane proteins. We compare and contrast AFM kymograph analysis for two proteins, one of which (SecDF) exhibits conformational dynamics primarily in the vertical direction (normal to the membrane surface) and the other (Pgp) exhibits a combination of lateral dynamics and vertical motion. Common experimental issues are analyzed including translational and rotational drift. Conformational transition detection is evaluated via kymograph simulations followed by state detection algorithms. We find that kymograph analysis is largely robust to lateral drift. Displacement of the AFM line scan trajectory away from the protein center of mass by a few nanometers, roughly half of the molecule diameter, does not significantly affect transition detection nor generate undue dwell time errors. On the other hand, for proteins like Pgp that exhibit significant azimuthal maximum height dependence, rotational drift can potentially produce artifactual transitions. Measuring the height of a membrane protein protrusion is generally superior to measurement of width, confirming intuition based on vertical resolution superiority. In low signal-to-noise scenarios, common state detection algorithms struggle with transition detection as opposed to infinite hidden Markov models. AFM kymography represents a valuable addition to the membrane biophysics toolkit; continued hardware and software improvements are poised to expand the method's impact in the field.
Collapse
Affiliation(s)
- Dylan R Weaver
- Department of Physics and Astronomy, University of Missouri-Columbia, Columbia MO 65211 USA
| | - Katherine G Schaefer
- Department of Physics and Astronomy, University of Missouri-Columbia, Columbia MO 65211 USA
| | - Gavin M King
- Department of Physics and Astronomy, University of Missouri-Columbia, Columbia MO 65211 USA; Joint with Department of Biochemistry, University of Missouri-Columbia, Columbia MO 65211 USA.
| |
Collapse
|
7
|
Walsh OD, Choi L, Sigdel KP. Effect of CM15 on Supported Lipid Bilayer Probed by Atomic Force Microscopy. MEMBRANES 2023; 13:864. [PMID: 37999350 PMCID: PMC10672887 DOI: 10.3390/membranes13110864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023]
Abstract
Antimicrobial peptides are key components of the immune system. These peptides affect the membrane in various ways; some form nano-sized pores, while others only produce minor defects. Since these peptides are increasingly important in developing antimicrobial drugs, understanding the mechanism of their interactions with lipid bilayers is critical. Here, using atomic force microscopy (AFM), we investigated the effect of a synthetic hybrid peptide, CM15, on the membrane surface comprising E. coli polar lipid extract. Direct imaging of supported lipid bilayers exposed to various concentrations of the peptide revealed significant membrane remodeling. We found that CM15 interacts with supported lipid bilayers and forms membrane-spanning defects very quickly. It is found that CM15 is capable of remodeling both leaflets of the bilayer. For lower CM15 concentrations, punctate void-like defects were observed, some of which re-sealed themselves as a function of time. However, for CM15 concentrations higher than 5 µM, the defects on the bilayers became so widespread that they disrupted the membrane integrity completely. This work enhances the understanding of CM15 interactions with the bacterial lipid bilayer.
Collapse
Affiliation(s)
| | | | - Krishna P. Sigdel
- Department of Physics and Astronomy, California State Polytechnic University, Pomona, CA 91768, USA
| |
Collapse
|
8
|
Schaefer KG, Roberts AG, King GM. Advantages and potential limitations of applying AFM kymograph analysis to pharmaceutically relevant membrane proteins in lipid bilayers. Sci Rep 2023; 13:11427. [PMID: 37454132 PMCID: PMC10349840 DOI: 10.1038/s41598-023-37910-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/29/2023] [Indexed: 07/18/2023] Open
Abstract
Membrane proteins play critical roles in disease and in the disposition of many pharmaceuticals. A prime example is P-glycoprotein (Pgp) which moves a diverse range of drugs across membranes and out of the cell before a therapeutic payload can be delivered. Conventional structural biology methods have provided a valuable framework for comprehending the complex conformational changes underlying Pgp function, which also includes ATPase activity, but the lack of real-time information hinders understanding. Atomic force microscopy (AFM) is a single-molecule technique that is well-suited for studying active membrane proteins in bilayers and is poised to advance the field beyond static snapshots. After verifying Pgp activity in surface-support bilayers, we used kymograph analysis in conjunction with AFM imaging and simulations to study structural transitions at the 100 ms timescale. Though kymographs are frequently employed to boost temporal resolution, the limitations of the method have not been well characterized, especially for sparse non-crystalline distributions of pharmaceutically relevant membrane proteins like Pgp. Common experimental challenges are analyzed, including protein orientation, instrument noise, and drift. Surprisingly, a lateral drift of 75% of the protein dimension leads to only a 12% probability of erroneous state transition detection; average dwell time error achieves a maximum value of 6%. Rotational drift of proteins like Pgp, with azimuthally-dependent maximum heights, can lead to artifactual transitions. Torsional constraints can alleviate this potential pitfall. Confidence in detected transitions can be increased by adding conformation-altering ligands such as non-hydrolysable analogs. Overall, the data indicate that AFM kymographs are a viable method to access conformational dynamics for Pgp, but generalizations of the method should be made with caution.
Collapse
Affiliation(s)
- Katherine G Schaefer
- Department of Physics and Astronomy, University of Missouri, Columbia, MO, 65211, USA
| | - Arthur G Roberts
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA, 30602, USA.
| | - Gavin M King
- Department of Physics and Astronomy, University of Missouri, Columbia, MO, 65211, USA.
- Joint With Department of Biochemistry, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
9
|
Miller EJ, Phan MD, Shah J, Honerkamp-Smith AR. Passive and reversible area regulation of supported lipid bilayers in response to fluid flow. Biophys J 2023; 122:2242-2255. [PMID: 36639867 PMCID: PMC10257118 DOI: 10.1016/j.bpj.2023.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/21/2022] [Accepted: 01/09/2023] [Indexed: 01/14/2023] Open
Abstract
Biological and model membranes are frequently subjected to fluid shear stress. However, membrane mechanical responses to flow remain incompletely described. This is particularly true of membranes supported on a solid substrate, and the influences of membrane composition and substrate roughness on membrane flow responses remain poorly understood. Here, we combine microfluidics, fluorescence microscopy, and neutron reflectivity to explore how supported lipid bilayer patches respond to controlled shear stress. We demonstrate that lipid membranes undergo a significant, passive, and partially reversible increase in membrane area due to flow. We show that these fluctuations in membrane area can be constrained, but not prevented, by increasing substrate roughness. Similar flow-induced changes to membrane structure may contribute to the ability of living cells to sense and respond to flow.
Collapse
Affiliation(s)
| | - Minh D Phan
- Large-Scale Structures Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee; Center for Neutron Science, Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, Delaware
| | | | | |
Collapse
|
10
|
Ratajczak AM, Sasidharan S, Rivera Gonzalez XI, Miller EJ, Socrier L, Anthony AA, Honerkamp-Smith AR. Measuring flow-mediated protein drift across stationary supported lipid bilayers. Biophys J 2023; 122:1720-1731. [PMID: 37020419 PMCID: PMC10183372 DOI: 10.1016/j.bpj.2023.03.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/13/2023] [Accepted: 03/29/2023] [Indexed: 04/07/2023] Open
Abstract
Fluid flow near biological membranes influences cell functions such as development, motility, and environmental sensing. Flow can laterally transport extracellular membrane proteins located at the cell-fluid interface. To determine whether this transport contributes to flow signaling in cells, quantitative knowledge of the forces acting on membrane proteins is required. Here, we demonstrate a method for measuring flow-mediated lateral transport of lipid-anchored proteins. We rupture giant unilamellar vesicles to form discrete patches of supported membrane inside rectangular microchannels and then allow proteins to bind to the upper surface of the membrane. While applying flow, we observe the formation of protein concentration gradients that span the membrane patch. By observing how these gradients dynamically respond to changes in applied shear stress, we determine the flow mobility of the lipid-anchored protein. We use simplified model membranes and proteins to demonstrate our method's sensitivity and reproducibility. Our intention was to design a quantitative, reliable method and analysis for protein mobility that we will use to compare flow transport for a variety of proteins, lipid anchors, and membranes in model systems and on living cells.
Collapse
Affiliation(s)
| | | | | | - Ethan J Miller
- Department of Physics, Lehigh University, Bethlehem, Pennsylvania
| | - Larissa Socrier
- Department of Physics, Lehigh University, Bethlehem, Pennsylvania
| | - Autumn A Anthony
- Department of Physics, Lehigh University, Bethlehem, Pennsylvania
| | | |
Collapse
|
11
|
Atomic Force Microscopy Reveals Complexity Underlying General Secretory System Activity. Int J Mol Sci 2022; 24:ijms24010055. [PMID: 36613499 PMCID: PMC9820662 DOI: 10.3390/ijms24010055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
The translocation of specific polypeptide chains across membranes is an essential activity for all life forms. The main components of the general secretory (Sec) system of E. coli include integral membrane translocon SecYEG, peripheral ATPase SecA, and SecDF, an ancillary complex that enhances polypeptide secretion by coupling translocation to proton motive force. Atomic force microscopy (AFM), a single-molecule imaging technique, is well suited to unmask complex, asynchronous molecular activities of membrane-associated proteins including those comprising the Sec apparatus. Using AFM, the dynamic structure of membrane-external protein topography of Sec system components can be directly visualized with high spatial-temporal precision. This mini-review is focused on AFM imaging of the Sec system in near-native fluid conditions where activity can be maintained and biochemically verified. Angstrom-scale conformational changes of SecYEG are reported on 100 ms timescales in fluid lipid bilayers. The association of SecA with SecYEG, forming membrane-bound SecYEG/SecA translocases, is directly visualized. Recent work showing topographical aspects of the translocation process that vary with precursor species is also discussed. The data suggests that the Sec system does not employ a single translocation mechanism. We posit that differences in the spatial frequency distribution of hydrophobic content within precursor sequences may be a determining factor in mechanism selection. Precise AFM investigations of active translocases are poised to advance our currently vague understanding of the complicated macromolecular movements underlying protein export across membranes.
Collapse
|
12
|
Lin S, He Y, Feng D, Piliarik M, Chen XW. Optical Fingerprint of Flat Substrate Surface and Marker-Free Lateral Displacement Detection with Angstrom-Level Precision. PHYSICAL REVIEW LETTERS 2022; 129:213201. [PMID: 36461964 DOI: 10.1103/physrevlett.129.213201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/25/2022] [Indexed: 06/17/2023]
Abstract
We report that flat substrates such as glass coverslips with surface roughness well below 0.5 nm feature notable speckle patterns when observed with high-sensitivity interference microscopy. We uncover that these speckle patterns unambiguously originate from the subnanometer surface undulations, and develop an intuitive model to illustrate how subnanometer nonresonant dielectric features could generate pronounced interference contrast in the far field. We introduce the concept of optical fingerprint for the deterministic speckle pattern associated with a particular substrate surface area and intentionally enhance the speckle amplitudes for potential applications. We demonstrate such optical fingerprints can be leveraged for reproducible position identification and marker-free lateral displacement detection with an experimental precision of 0.22 nm. The reproducible position identification allows us to detect new nanoscopic features developed during laborious processes performed outside of the microscope. The demonstrated capability for ultrasensitive displacement detection may find applications in the semiconductor industry and superresolution optical microscopy.
Collapse
Affiliation(s)
- Shupei Lin
- School of Physics and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, People's Republic of China
| | - Yong He
- School of Physics and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, People's Republic of China
| | - Delong Feng
- School of Physics and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, People's Republic of China
| | - Marek Piliarik
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Chaberská 1014/57, 18251 Prague, Czech Republic
| | - Xue-Wen Chen
- School of Physics and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, People's Republic of China and Institute for Quantum Science and Engineering and Hubei Key Laboratory of Gravitation and Quantum Physics, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, People's Republic of China
| |
Collapse
|
13
|
Wedler V, Quinones D, Peisert H, Schäffer E. A Quick and Reproducible Silanization Method by Using Plasma Activation for Hydrophobicity-Based Kinesin Single Molecule Fluorescence-Microscopy Assays. Chemistry 2022; 28:e202202036. [PMID: 35925842 PMCID: PMC9826530 DOI: 10.1002/chem.202202036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Indexed: 01/11/2023]
Abstract
Single-molecule assays often require functionalized surfaces. One approach for microtubule assays renders surfaces hydrophobic and uses amphiphilic blocking agents. However, the optimal hydrophobicity is unclear, protocols take long, produce toxic waste, and are susceptible to failure. Our method uses plasma activation with hydrocarbons for hexamethyldisilazane (HMDS) silanization in the gas phase. We measured the surface hydrophobicity, its effect on how well microtubule filaments were bound to the surface, and the number of nonspecific interactions with kinesin motor proteins. Additionally, we tested and discuss the use of different silanes and activation methods. We found that even weakly hydrophobic surfaces were optimal. Our environmentally friendly method significanty reduced the overall preparation effort and resulted in reproducible, high-quality surfaces with low variability. We expect the method to be applicable to a wide range of other single-molecule assays.
Collapse
Affiliation(s)
- Viktoria Wedler
- Eberhard Karls Universität Tübingen, Cellular Nanoscience (ZMBP)Auf der Morgenstelle 3272076TübingenGermany
| | - Dustin Quinones
- Eberhard Karls Universität TübingenInstitute of Physical and Theoretical ChemistryAuf der Morgenstelle 1872076TübingenGermany
| | - Heiko Peisert
- Eberhard Karls Universität TübingenInstitute of Physical and Theoretical ChemistryAuf der Morgenstelle 1872076TübingenGermany
| | - Erik Schäffer
- Eberhard Karls Universität Tübingen, Cellular Nanoscience (ZMBP)Auf der Morgenstelle 3272076TübingenGermany
| |
Collapse
|
14
|
Anthony AA, Sahin O, Yapici MK, Rogers D, Honerkamp-Smith AR. Systematic measurements of interleaflet friction in supported bilayers. Biophys J 2022; 121:2981-2993. [PMID: 35754183 PMCID: PMC9388387 DOI: 10.1016/j.bpj.2022.06.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/23/2022] [Accepted: 06/22/2022] [Indexed: 11/20/2022] Open
Abstract
When lipid membranes curve or are subjected to strong shear forces, the two apposed leaflets of the bilayer slide past each other. The drag that one leaflet creates on the other is quantified by the coefficient of interleaflet friction, b. Existing measurements of this coefficient range over several orders of magnitude, so we used a recently developed microfluidic technique to measure it systematically in supported lipid membranes. Fluid shear stress was used to force the top leaflet of a supported membrane to slide over the stationary lower leaflet. Here, we show that this technique yields a reproducible measurement of the friction coefficient and is sensitive enough to detect differences in friction between membranes made from saturated and unsaturated lipids. Adding cholesterol to saturated and unsaturated membranes increased interleaflet friction significantly. We also discovered that fluid shear stress can reversibly induce gel phase in supported lipid bilayers that are close to the gel-transition temperature.
Collapse
|
15
|
Kasas AHE, Farag IM, Darwish HR, Soliman YA, Nagar EME, Ibrahim MA, Kamel S, Warda M. Molecular characterization of alpha subunit 1 of sodium pump (ATP1A1) gene in Camelus dromedarius: its differential tissue expression potentially interprets the role in osmoregulation. Mol Biol Rep 2022; 49:3849-3861. [PMID: 35235155 DOI: 10.1007/s11033-022-07232-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 02/04/2022] [Indexed: 12/19/2022]
Abstract
BACKGROUND Dromedary or one-humped camel (Camelus dromedarius) is distinctively acclimatized to survive the arid conditions of the desert environment. It has an excellent ability to compete dehydration with substantial tolerance for rapid dehydration. Therefore, it offers an excellent model for studying osmoregulation. Molecular characterization of Na+/K+ ATPase as a central regulator of electrolyte normohemostasis affords a better understanding of this mechanism in camel. Here is the first to resolve the full-length of alpha-1 subunit of sodium pump (ATP1A1) gene with its differential expression in dromedary tissues. RESULTS The nucleotide sequence for the recovered full cDNA of ATP1A1was submitted to the GenBank (NCBI GenBank accession #MW628635) and bioinformatically analyzed. The cDNA sequence was of 3760 bp length with an open reading frame (ORF) of 3066 bp encoding a putative 1021 amino acids polypeptide with a molecular mass of 112696 Da. Blast search analysis revealed the shared high similarity of dromedary ATP1A1gene with other known ATP1A1genes in different species. The comparative analysis of its protein sequence confirmed the high identity with other mammalian ATP1A1 proteins. Further transcriptomic investigation for different organs was performed by real-time PCR to compare its level of expression among different organs. The results confirm a direct function between the ATP1A1 gene expression and the order of vital performance of these organs. The expression of ATP1A1 mRNA in the adrenal gland and brain was significantly higher than that in the other organs. The noticed down expression in camel kidney concomitant with overexpression in the adrenal cortex might interpret how dromedary expels access sodium without water loss with relative high ability to restrain mineralocorticoid-induced sodium retention on drinking salty water. CONCLUSION The results reflect the importance of sodium pump in these organs. Na+/K+ ATPase in the adrenal gland and brain than other organs.
Collapse
Affiliation(s)
- A H El Kasas
- Department of Cell Biology, National Research Center, Dokki, Giza, 12622, Egypt
| | - I M Farag
- Department of Cell Biology, National Research Center, Dokki, Giza, 12622, Egypt
| | - H R Darwish
- Department of Cell Biology, National Research Center, Dokki, Giza, 12622, Egypt
| | - Y A Soliman
- Central Lab for Evaluation of Veterinary Biologics (CLEVB), Agriculture Research Center (ARC), Cairo, Egypt
| | - E M El Nagar
- Central Lab for Evaluation of Veterinary Biologics (CLEVB), Agriculture Research Center (ARC), Cairo, Egypt
| | - Marwa A Ibrahim
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Shaimaa Kamel
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Mohamad Warda
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| |
Collapse
|
16
|
Schaefer KG, Pittman AE, Barrera FN, King GM. Atomic force microscopy for quantitative understanding of peptide-induced lipid bilayer remodeling. Methods 2022; 197:20-29. [PMID: 33164792 DOI: 10.1016/j.ymeth.2020.10.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/17/2020] [Accepted: 10/20/2020] [Indexed: 12/15/2022] Open
Abstract
A number of peptides are known to bind lipid bilayer membranes and cause these natural barriers to leak in an uncontrolled manner. Though membrane permeabilizing peptides play critical roles in cellular activity and may have promising future applications in the therapeutic arena, significant questions remain about their mechanisms of action. The atomic force microscope (AFM) is a single molecule imaging tool capable of addressing lipid bilayers in near-native fluid conditions. The apparatus complements traditional assays by providing local topographic maps of bilayer remodeling induced by membrane permeabilizing peptides. The information garnered from the AFM includes direct visualization and statistical analyses of distinct bilayer remodeling modes such as highly localized pore-like voids in the bilayer and dispersed thinned membrane regions. Colocalization of distinct remodeling modes can be studied. Here we examine recent work in the field and outline methods used to achieve precise AFM image data. Experimental challenges and common pitfalls are discussed as well as techniques for unbiased analysis including the Hessian blob detection algorithm, bootstrapping, and the Bayesian information criterion. When coupled with robust statistical analyses, high precision AFM data is poised to advance understanding of an important family of peptides that cause poration of membrane bilayers.
Collapse
Affiliation(s)
- K G Schaefer
- Department of Physics and Astronomy, University of Missouri-Columbia, Columbia, MO 65211, USA
| | - A E Pittman
- Department of Physics and Astronomy, University of Missouri-Columbia, Columbia, MO 65211, USA
| | - F N Barrera
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - G M King
- Department of Physics and Astronomy, University of Missouri-Columbia, Columbia, MO 65211, USA; Department of Biochemistry, University of Missouri-Columbia, Columbia, MO 65211, USA.
| |
Collapse
|
17
|
Lyu Z, Genereux JC. Methodologies for Measuring Protein Trafficking across Cellular Membranes. Chempluschem 2021; 86:1397-1415. [PMID: 34636167 DOI: 10.1002/cplu.202100304] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/19/2021] [Indexed: 12/11/2022]
Abstract
Nearly all proteins are synthesized in the cytosol. The majority of this proteome must be trafficked elsewhere, such as to membranes, to subcellular compartments, or outside of the cell. Proper trafficking of nascent protein is necessary for protein folding, maturation, quality control and cellular and organismal health. To better understand cellular biology, molecular and chemical technologies to properly characterize protein trafficking (and mistrafficking) have been developed and applied. Herein, we take a biochemical perspective to review technologies that enable spatial and temporal measurement of protein distribution, focusing on both the most widely adopted methodologies and exciting emerging approaches.
Collapse
Affiliation(s)
- Ziqi Lyu
- Department of Chemistry, University of California, Riverside, 501 Big Springs Road, 92521, Riverside, CA, USA
| | - Joseph C Genereux
- Department of Chemistry, University of California, Riverside, 501 Big Springs Road, 92521, Riverside, CA, USA
| |
Collapse
|
18
|
Thakur A, Xu C, Li WK, Qiu G, He B, Ng SP, Wu CML, Lee Y. In vivo liquid biopsy for glioblastoma malignancy by the AFM and LSPR based sensing of exosomal CD44 and CD133 in a mouse model. Biosens Bioelectron 2021; 191:113476. [PMID: 34246124 DOI: 10.1016/j.bios.2021.113476] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/24/2021] [Accepted: 06/29/2021] [Indexed: 02/08/2023]
Abstract
Glioblastoma (GBM) is the fatal brain tumor in which secreted lactate enhances the expression of cluster of differentiation 44 (CD44) and the release of exosomes, cell-derived nanovesicles (30-200 nm), and therefore promotes tumor malignant progression. This study found that lactate-driven upregulated CD44 in malignant Glioblastoma cells (GMs) enhanced the release of CD44-enriched exosomes which increased GMs' migration and endothelial cells' tube formation, and CD44 in the secreted exosomes was sensitively detected by "capture and sensing" Titanium Nitride (TiN) - Nanoholes (NH) - discs immunocapture (TIC) - atomic force microscopy (AFM) and ultrasensitive TiN-NH-localized surface plasmon resonance (LSPR) biosensors. The limit of detection for exosomal CD44 with TIC-AFM- and TiN-NH-LSPR-biosensors was 5.29 × 10-1 μg/ml and 3.46 × 10-3 μg/ml in exosome concentration, respectively. Importantly, this work first found that label-free sensitive TiN-NH-LSPR biosensor could detect and quantify enhanced CD44 and CD133 levels in immunocaptured GMs-derived exosomes in the blood and the cerebrospinal fluid of a mouse model of GBM, supporting its potential application in a minimally invasive molecular diagnostic for GBM progression as liquid biopsy.
Collapse
Affiliation(s)
- Abhimanyu Thakur
- Department of Neuroscience, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, SAR, China
| | - Chen Xu
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, SAR, China
| | - Wing Kar Li
- Department of Biomedical Sciences, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, SAR, China
| | - Guangyu Qiu
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, SAR, China; Department of Civil, Environmental and Geomatic Engineering, Institute of Environmental Engineering, ETH Zürich, Zürich, 8093, Switzerland
| | - Bing He
- Department of Neuroscience, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, SAR, China
| | - Siu-Pang Ng
- Rafael Biotechnology Company Ltd., SAR, China
| | - Chi-Man Lawrence Wu
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, SAR, China.
| | - Youngjin Lee
- Department of Neuroscience, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, SAR, China.
| |
Collapse
|
19
|
Membrane dynamics are slowed for Alexa594-labeled membrane proteins due to substrate interactions. BBA ADVANCES 2021; 1:100026. [PMID: 37082018 PMCID: PMC10074974 DOI: 10.1016/j.bbadva.2021.100026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The addition of fluorescent dyes to proteins, lipids and other biological molecules can affect a range of processes such as mobility, molecular interactions, localization, and, ultimately, function. The dynamics of a protein can be dramatically affected if the label interacts non-specifically with the substrate or with other molecules in the system. To test how dye-substrate interactions affect protein diffusion, fluorescence recovery after photobleaching (FRAP) measurements were designed to explicitly determine the role of the dye on the diffusion of a transmembrane protein, Syntaxin1a, expressed on the cell surface. Syntaxin1a, was tagged with EGFP on the extracellular side and an EGFP nanobody with or without a dye label was attached. FRAP was performed on Syx1a-EGFP and the choice of cell growth substrate affected mobility in the presence of a dye labeled nanobody. This work provides evidence for choosing fibronectin (Fn) over poly-L-lysine (PLL) in FRAP and single molecule tracking measurements when using Alexa594, a common probe for red fluorescent measurements. Alexa594-labeled nanobody but not unlabeled nanobody, dramatically reduced the mobility of Syx1a-EGFP when cells were cultured on PLL. However, when Fn was used, the mobility returned. Mobility measured by single molecule tracking measurements align with the FRAP measurements with Fn coated surfaces being more mobile than PLL.
Collapse
|
20
|
Chattrakun K, Schaefer KG, Chandler LS, Marsh BP, King GM. Atomic Force Microscopy Reveals Membrane Protein Activity at the Single Molecule Level. Methods Mol Biol 2021; 2302:81-99. [PMID: 33877624 DOI: 10.1007/978-1-0716-1394-8_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Atomic force microscopy has emerged as a valuable complementary technique in membrane structural biology. The apparatus is capable of probing individual membrane proteins in fluid lipid bilayers at room temperature with spatial resolution at the molecular length scale. Protein conformational dynamics are accessible over a range of biologically relevant timescales. This chapter presents methodology our group uses to achieve robust AFM image data of the General Secretory system, the primary pathway of protein export from the cytoplasm to the periplasm of E. coli. Emphasis is given to measuring and maintaining biochemical activity and to objective AFM image processing methods. For example, the biochemical assays can be used to determine chemomechanical coupling efficiency of surface adsorbed translocases. The Hessian blob algorithm and its extension to nonlocalized linear features, the line detection algorithm, provide automated feature delineations. Many of the methods discussed here can be applied to other membrane protein systems of interest.
Collapse
Affiliation(s)
- Kanokporn Chattrakun
- Department of Physics and Astronomy, University of Missouri-Columbia, Columbia, MO, USA
| | - Katherine G Schaefer
- Department of Physics and Astronomy, University of Missouri-Columbia, Columbia, MO, USA
| | - Lucas S Chandler
- Department of Physics and Astronomy, University of Missouri-Columbia, Columbia, MO, USA
| | - Brendan P Marsh
- Department of Physics and Astronomy, University of Missouri-Columbia, Columbia, MO, USA.,Department of Applied Physics, Stanford University, Stanford, CA, USA
| | - Gavin M King
- Department of Physics and Astronomy, University of Missouri-Columbia, Columbia, MO, USA. .,Department of Biochemistry, University of Missouri-Columbia, Columbia, MO, USA.
| |
Collapse
|
21
|
Klinov DV, Protopopova AD, Andrianov DS, Litvinov RI, Weisel JW. An Improved Substrate for Superior Imaging of Individual Biomacromolecules with Atomic Force Microscopy. Colloids Surf B Biointerfaces 2020; 196:111321. [DOI: 10.1016/j.colsurfb.2020.111321] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 08/07/2020] [Accepted: 08/11/2020] [Indexed: 12/12/2022]
|
22
|
Martinez H, Martinez NJD, Guo J, Lujan VR, Depoy J, Brumbach MT, Brinker CJ, Bachand GD. Effects of Surface Chemistry and Topology on the Kinesin-Driven Motility of Microtubule Shuttles. ACS APPLIED BIO MATERIALS 2020; 3:7908-7918. [DOI: 10.1021/acsabm.0c01035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Haneen Martinez
- Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | | | - Jimin Guo
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Victoria R. Lujan
- Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Jessica Depoy
- Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | | | - C. Jeffrey Brinker
- Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - George D. Bachand
- Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| |
Collapse
|
23
|
Huang S, Rahmani AM, Singletary T, Colosqui CE. Molecular dynamics and continuum analyses of the electrokinetic zeta potential in nanostructured slit channels. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
24
|
Singh VK, Kumar S, Tapryal S. Aggregation Propensities of Herpes Simplex Virus-1 Proteins and Derived Peptides: An In Silico and In Vitro Analysis. ACS OMEGA 2020; 5:12964-12973. [PMID: 32548480 PMCID: PMC7288601 DOI: 10.1021/acsomega.0c00730] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/11/2020] [Indexed: 06/10/2023]
Abstract
Recurrent infections of neurotropic herpes simplex virus-1 (HSV-1) have been implicated in etiology and pathology of Alzheimer's disease (AD). Although protein and peptide aggregation events are at the center of the AD pathophysiology, except a single study where a peptide derived from glycoprotein B of HSV-1 was reported to form β-amyloid-like aggregates, similar investigations with the entire proteome of HSV-1 have not been attempted. In the current study, 70 HSV-1 proteins were screened using bioinformatics tools to identify aggregation-prone candidates. Thereafter, the 20S proteasome cleavage sites within the sequence of the selected proteins were determined using Pcleavage and NetChop algorithms, thereby mimicking a cellular proteasomal activity providing short peptides. Here, we report the biochemical characterization of a 28-residue-long peptide (HSV-1 gK208-235) derived from glycoprotein K of HSV-1. The peptide showed high aggregation propensity and homology to the C-terminus of Aβ1-42 peptide. The aggregates of gK208-235 peptide were characterized by the Congo red and Thioflavin T assays and Fourier transform infrared (FTIR) spectroscopy, and their spheroid oligomeric structure was established by atomic force microscopy (AFM). Furthermore, the aggregates demonstrated dose-dependent cytotoxicity to primary mouse splenocytes. The current findings hypothesize a mechanism by which HSV-1 may contribute to AD, which may be pursued further in the future.
Collapse
|
25
|
Matin TR, Utjesanovic M, Sigdel KP, Smith VF, Kosztin I, King GM. Characterizing the Locus of a Peripheral Membrane Protein-Lipid Bilayer Interaction Underlying Protein Export Activity in E. coli. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:2143-2152. [PMID: 32011890 DOI: 10.1021/acs.langmuir.9b03606] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Quantitative characterization of the strength of peripheral membrane protein-lipid bilayer interactions is fundamental in the understanding of many protein targeting pathways. SecA is a peripheral membrane protein that plays a central role in translocating precursor proteins across the inner membrane of E. coli. The membrane binding activity of the extreme N-terminus of SecA is critical for translocase function. Yet, the mechanical strength of the interaction and the kinetic pathways that this segment of SecA experiences when in proximity of an E. coli polar lipid bilayer has not been characterized. We directly measured the N-terminal SecA-lipid bilayer interaction using precision single molecule atomic force microscope (AFM)-based dynamic force spectroscopy. To provide conformational data inaccessible to AFM, we also performed all-atom molecular dynamics simulations and circular dichroism measurements. The N-terminal 10 amino acids of SecA have little secondary structure when bound to zwitterionic lipid head groups, but secondary structure, which rigidifies the lipid-bound protein segment, emerges when negatively charged lipids are present. Analysis of the single molecule protein-lipid dissociation data converged to a well-defined lipid-bound-state lifetime in the absence of force, τ0lipid = 0.9 s, which is well separated from and longer than the fundamental time scale of the secretion process, defined as the time required to translocate a single amino acid residue (∼50 ms). This value of τ0lipid is likely to represent a lower limit of the in vivo membrane-bound lifetime due to factors including the minimal system employed here.
Collapse
Affiliation(s)
- Tina R Matin
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211, United States
| | - Milica Utjesanovic
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211, United States
| | - Krishna P Sigdel
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211, United States
| | - Virginia F Smith
- Department of Chemistry, United States Naval Academy, Annapolis, Maryland 21402, United States
| | - Ioan Kosztin
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211, United States
| | - Gavin M King
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211, United States
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
26
|
Goodchild JA, Walsh DL, Connell SD. Nanoscale Substrate Roughness Hinders Domain Formation in Supported Lipid Bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:15352-15363. [PMID: 31626551 DOI: 10.1021/acs.langmuir.9b01990] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Supported lipid bilayers are model membranes formed at solid substrate surfaces. This architecture renders the membrane experimentally accessible to surface-sensitive techniques used to study their properties, including atomic force microscopy, optical fluorescence microscopy, quartz crystal microbalance, and X-ray/neutron reflectometry, and allows integration with technology for potential biotechnological applications such as drug screening devices. The experimental technique often dictates substrate choice or treatment, and it is anecdotally recognized that certain substrates are suitable for a particular experiment, but the exact influence of the substrate has not been comprehensively investigated. Here, we study the behavior of a simple model bilayer, phase-separating on a variety of commonly used substrates, including glass, mica, silicon, and quartz, with drastically different results. The distinct micron-scale domains observed on mica, identical to those seen in free-floating giant unilamellar vesicles, are reduced to nanometer-scale domains on glass and quartz. The mechanism for the arrest of domain formation is investigated, and the most likely candidate is nanoscale surface roughness, acting as a drag on the hydrodynamic motion of small domains during phase separation. Evidence was found that the physicochemical properties of the surface have a mediating effect, most likely because of the changes in the lubricating interstitial water layer between the surface and bilayer.
Collapse
Affiliation(s)
- James A Goodchild
- School of Physics and Astronomy , University of Leeds , Leeds LS2 9JT , U.K
| | - Danielle L Walsh
- School of Physics and Astronomy , University of Leeds , Leeds LS2 9JT , U.K
| | - Simon D Connell
- School of Physics and Astronomy , University of Leeds , Leeds LS2 9JT , U.K
| |
Collapse
|
27
|
Chattrakun K, Hoogerheide DP, Mao C, Randall LL, King GM. Protein Translocation Activity in Surface-Supported Lipid Bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:12246-12256. [PMID: 31448613 PMCID: PMC10906442 DOI: 10.1021/acs.langmuir.9b01928] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Surface-supported lipid bilayers are used widely throughout the nanoscience community as cellular membrane mimics. For example, they are frequently employed in single-molecule atomic force microscopy (AFM) studies to shed light on membrane protein conformational dynamics and folding. However, in AFM as well as in other surface-sensing techniques, the close proximity of the supporting surface raises questions about preservation of the biochemical activity. Employing the model translocase from the general secretory (Sec) system of Escherichia coli, here we quantify the activity via two biochemical assays in surface-supported bilayers. The first assesses ATP hydrolysis and the second assesses polypeptide translocation across the membrane via protection from added protease. Hydrolysis assays revealed distinct levels of activation ranging from medium (translocase-activated) to high (translocation-associated) that were similar to traditional solution experiments and further identified an adenosine triphosphatase population exhibiting characteristics of conformational hysteresis. Translocation assays revealed turn over numbers that were comparable to solution but with a 10-fold reduction in apparent rate constant. Despite differences in kinetics, the chemomechanical coupling (ATP hydrolyzed per residue translocated) only varied twofold on glass compared to solution. The activity changed with the topographic complexity of the underlying surface. Rough glass coverslips were favored over atomically flat mica, likely due to differences in frictional coupling between the translocating polypeptide and surface. Neutron reflectometry and AFM corroborated the biochemical measurements and provided structural characterization of the submembrane space and upper surface of the bilayer. Overall, the translocation activity was maintained for the surface-adsorbed Sec system, albeit with a slower rate-limiting step. More generally, polypeptide translocation activity measurements yield valuable quantitative metrics to assess the local environment about surface-supported lipid bilayers.
Collapse
Affiliation(s)
- Kanokporn Chattrakun
- Department of Physics and Astronomy, University of Missouri-Columbia, Columbia, Missouri 65211, United States
| | - David P. Hoogerheide
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Chunfeng Mao
- Department of Biochemistry, University of Missouri-Columbia, Columbia, Missouri 65211, United States
| | - Linda L. Randall
- Department of Biochemistry, University of Missouri-Columbia, Columbia, Missouri 65211, United States
| | - Gavin M. King
- Department of Physics and Astronomy, University of Missouri-Columbia, Columbia, Missouri 65211, United States
- Department of Biochemistry, University of Missouri-Columbia, Columbia, Missouri 65211, United States
| |
Collapse
|
28
|
Sanganna Gari RR, Chattrakun K, Marsh BP, Mao C, Chada N, Randall LL, King GM. Direct visualization of the E. coli Sec translocase engaging precursor proteins in lipid bilayers. SCIENCE ADVANCES 2019; 5:eaav9404. [PMID: 31206019 PMCID: PMC6561738 DOI: 10.1126/sciadv.aav9404] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 05/09/2019] [Indexed: 06/09/2023]
Abstract
Escherichia coli exports proteins via a translocase comprising SecA and the translocon, SecYEG. Structural changes of active translocases underlie general secretory system function, yet directly visualizing dynamics has been challenging. We imaged active translocases in lipid bilayers as a function of precursor protein species, nucleotide species, and stage of translocation using atomic force microscopy (AFM). Starting from nearly identical initial states, SecA more readily dissociated from SecYEG when engaged with the precursor of outer membrane protein A as compared to the precursor of galactose-binding protein. For the SecA that remained bound to the translocon, the quaternary structure varied with nucleotide, populating SecA2 primarily with adenosine diphosphate (ADP) and adenosine triphosphate, and the SecA monomer with the transition state analog ADP-AlF3. Conformations of translocases exhibited precursor-dependent differences on the AFM imaging time scale. The data, acquired under near-native conditions, suggest that the translocation process varies with precursor species.
Collapse
Affiliation(s)
| | - Kanokporn Chattrakun
- Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, USA
| | - Brendan P. Marsh
- Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, USA
| | - Chunfeng Mao
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Nagaraju Chada
- Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, USA
| | - Linda L. Randall
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Gavin M. King
- Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, USA
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
29
|
Multiple stochastic pathways in forced peptide-lipid membrane detachment. Sci Rep 2019; 9:451. [PMID: 30679525 PMCID: PMC6345752 DOI: 10.1038/s41598-018-36528-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/21/2018] [Indexed: 01/09/2023] Open
Abstract
We have used high resolution AFM based dynamic force spectroscopy to investigate peptide-lipid membrane interactions by measuring the detachment (last-rupture) force distribution, P(F), and the corresponding force dependent rupture rate, k(F), for two different peptides and lipid bilayers. The measured quantities, which differed considerably for different peptides, lipid-membranes, AFM tips (prepared under identical conditions), and retraction speeds of the AFM cantilever, could not be described in terms of the standard theory, according to which detachment occurs along a single pathway, corresponding to a diffusive escape process across a free energy barrier. In particular, the prominent retraction speed dependence of k(F) was a clear indication that peptide-lipid membrane dissociation occurs stochastically along several detachment pathways. Thereby, we have formulated a general theoretical approach for describing P(F) and k(F), by assuming that peptide detachment from lipid membranes occurs, with certain probability, along a few dominant diffusive pathways. This new method was validated through a consistent interpretation of the experimental data. Furthermore, we have found that for moderate retraction speeds at intermediate force values, k(F) exhibits catch-bond behavior (i.e. decreasing detachment rate with increasing force). According to the proposed model this behavior is due to the stochastic mixing of individual detachment pathways which do not convert or cross during rupture. To our knowledge, such catch-bond mechanism has not been proposed and demonstrated before for a peptide-lipid interaction.
Collapse
|
30
|
Abstract
As with any other microscopic technique, in atomic force microscopy (AFM), problems can arise. Some of these happen due to improper use of the microscope by the operator, and some are due to particular characteristics of the sample. Some occur depending on the type of instrument, or from probe damage. Some of them are artifacts inherent in the technique. Knowledge of these issues is important for correct data acquisition and interpretation, and in many cases, training in AFM is inadequate. In this chapter we show examples of common artifacts in AFM and describe, where possible, how to overcome them. Other practical issues important for best practice in AFM operation, such as noise reduction and data processing, are also discussed.
Collapse
Affiliation(s)
- Peter Eaton
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal. .,UCIBIO/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Porto, Portugal.
| | - Krystallenia Batziou
- UCIBIO/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
| |
Collapse
|
31
|
Effect of magnetic field on diffusion of ethylammonium nitrate – water mixtures confined between polar glass plates. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2018.10.080] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
32
|
Kurniawan J, Ventrici de Souza JF, Dang AT, Liu GY, Kuhl TL. Preparation and Characterization of Solid-Supported Lipid Bilayers Formed by Langmuir-Blodgett Deposition: A Tutorial. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:15622-15639. [PMID: 30465730 DOI: 10.1021/acs.langmuir.8b03504] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The structure, phase behavior, and properties of cellular membranes are derived from their composition, which includes phospholipids, sphingolipids, sterols, and proteins with various levels of glycosylation. Because of the intricate nature of cellular membranes, a plethora of in vitro studies have been carried out with model membrane systems that capture particular properties such as fluidity, permeability, and protein binding but vastly simplify the membrane composition in order to focus in detail on a specialized property or function. Supported lipid bilayers (SLB) are widely used as archetypes for cellular membranes, and this instructional review primarily focuses on the preparation and characterization of SLB systems formed by Langmuir deposition methods. Typical characterization methods, which take advantage of the planar orientation of SLBs, are illustrated, and references that go into more depth are included. This invited instructional review is written so that nonexperts can quickly gain in-depth knowledge regarding the preparation and characterization of SLBs. In addition, this work goes beyond traditional instructional reviews to provide expert readers with new results that cover a wider range of SLB systems than those previously reported in the literature. The quality of an SLB is frequently not well described, and details such as topological defects can influence the results and conclusions of an individual study. This article quantifies and compares the quality of SLBs fabricated from a variety of gel and fluid compositions, in correlation with preparation techniques and parameters, to generate general rules of thumb to guide the construction of designed SLB systems.
Collapse
|
33
|
Molecular cloning and characterization of the novel CYP2J2 in dromedary camels (Camelus dromedarius). Int J Biol Macromol 2018; 120:1770-1776. [PMID: 30287372 DOI: 10.1016/j.ijbiomac.2018.09.193] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/28/2018] [Accepted: 09/28/2018] [Indexed: 01/05/2023]
Abstract
Although its economic, cultural and biological importance, many genes haven't been depicted, sequenced or analyzed to date for Camelus dromedarius. In the present paper, the full-length c-DNA of a novel CYP2J2 (GenBank accession number MH511989) was cloned from liver, heart, and kidney mRNA by RACE-PCR. The full-length c-DNA of the cloned CYP2J2 was sequenced and analyzed using bioinformatics methods. The full-length c-DNA sequence was 2135 bp with no introns. The open reading frame (ORF) had 1341 nucleotides which coded for a putative protein of 446 amino acids. The deduced protein is located in the endoplasmic reticulum. It has two transmembrane regions. The nucleotides and deduced amino acids sequences of the cloned CYP2J2 were 1400 nucleotides and 47 amino acids shorter than the predicted homolog respectively. This study is the first description of the putative CYP2J2 gene, which opens the way to a new investigation-so far-never accomplished in Camelus dromedarius.
Collapse
|
34
|
Gunderson RS, Honerkamp-Smith AR. Liquid-liquid phase transition temperatures increase when lipid bilayers are supported on glass. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1965-1971. [DOI: 10.1016/j.bbamem.2018.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/30/2018] [Accepted: 05/03/2018] [Indexed: 02/02/2023]
|
35
|
Chada N, Chattrakun K, Marsh BP, Mao C, Bariya P, King GM. Single-molecule observation of nucleotide induced conformational changes in basal SecA-ATP hydrolysis. SCIENCE ADVANCES 2018; 4:eaat8797. [PMID: 30397644 PMCID: PMC6200364 DOI: 10.1126/sciadv.aat8797] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 09/13/2018] [Indexed: 05/06/2023]
Abstract
SecA is the critical adenosine triphosphatase that drives preprotein transport through the translocon, SecYEG, in Escherichia coli. This process is thought to be regulated by conformational changes of specific domains of SecA, but real-time, real-space measurement of these changes is lacking. We use single-molecule atomic force microscopy (AFM) to visualize nucleotide-dependent conformations and conformational dynamics of SecA. Distinct topographical populations were observed in the presence of specific nucleotides. AFM investigations during basal adenosine triphosphate (ATP) hydrolysis revealed rapid, reversible transitions between a compact and an extended state at the ~100-ms time scale. A SecA mutant lacking the precursor-binding domain (PBD) aided interpretation. Further, the biochemical activity of SecA prepared for AFM was confirmed by tracking inorganic phosphate release. We conclude that ATP-driven dynamics are largely due to PBD motion but that other segments of SecA contribute to this motion during the transition state of the ATP hydrolysis cycle.
Collapse
Affiliation(s)
- Nagaraju Chada
- Department of Physics and Astronomy, University of Missouri–Columbia, Columbia, MO 65211, USA
| | - Kanokporn Chattrakun
- Department of Physics and Astronomy, University of Missouri–Columbia, Columbia, MO 65211, USA
| | - Brendan P. Marsh
- Department of Physics and Astronomy, University of Missouri–Columbia, Columbia, MO 65211, USA
| | - Chunfeng Mao
- Department of Biochemistry, University of Missouri–Columbia, Columbia, MO 65211, USA
| | - Priya Bariya
- Department of Biochemistry, University of Missouri–Columbia, Columbia, MO 65211, USA
| | - Gavin M. King
- Department of Physics and Astronomy, University of Missouri–Columbia, Columbia, MO 65211, USA
- Department of Biochemistry, University of Missouri–Columbia, Columbia, MO 65211, USA
- Corresponding author.
| |
Collapse
|
36
|
Puiggalí-Jou A, Pawlowski J, del Valle LJ, Michaux C, Perpète EA, Sek S, Alemán C. Properties of Omp2a-Based Supported Lipid Bilayers: Comparison with Polymeric Bioinspired Membranes. ACS OMEGA 2018; 3:9003-9019. [PMID: 31459033 PMCID: PMC6645002 DOI: 10.1021/acsomega.8b00913] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 07/19/2018] [Indexed: 05/31/2023]
Abstract
Omp2a β-barrel outer membrane protein has been reconstituted into supported lipid bilayers (SLBs) to compare the nanomechanical properties (elastic modulus, adhesion forces, and deformation) and functionality of the resulting bioinspired system with those of Omp2a-based polymeric nanomembranes (NMs). Protein reconstitution into lipid bilayers has been performed using different strategies, the most successful one consisting of a detergent-mediated process into preformed liposomes. The elastic modulus obtained for the lipid bilayer and Omp2a are ∼19 and 10.5 ± 1.7 MPa, respectively. Accordingly, the protein is softer than the lipid bilayer, whereas the latter exhibits less mechanical strength than polymeric NMs. Besides, the function of Omp2a in the SLB is similar to that observed for Omp2a-based polymeric NMs. Results open the door to hybrid bioinspired substrates based on the integration of Omp2a-proteoliposomes and nanoperforated polymeric freestanding NMs.
Collapse
Affiliation(s)
- Anna Puiggalí-Jou
- Departament
d’Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I2, 08019 Barcelona, Spain
- Barcelona
Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. C, 08019 Barcelona, Spain
| | - Jan Pawlowski
- Biological
and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Zwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Luis J. del Valle
- Departament
d’Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I2, 08019 Barcelona, Spain
- Barcelona
Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. C, 08019 Barcelona, Spain
| | - Catherine Michaux
- Laboratoire
de Chimie Physique des Biomolécules, University of Namur, Rue de Bruxelles, 61, 5000 Namur, Belgium
| | - Eric A. Perpète
- Laboratoire
de Chimie Physique des Biomolécules, University of Namur, Rue de Bruxelles, 61, 5000 Namur, Belgium
| | - Slawomir Sek
- Biological
and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Zwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Carlos Alemán
- Departament
d’Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I2, 08019 Barcelona, Spain
- Barcelona
Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. C, 08019 Barcelona, Spain
| |
Collapse
|
37
|
Pittman AE, Marsh BP, King GM. Conformations and Dynamic Transitions of a Melittin Derivative That Forms Macromolecule-Sized Pores in Lipid Bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:8393-8399. [PMID: 29933696 DOI: 10.1021/acs.langmuir.8b00804] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Systematically evolved from the primary active component of bee venom, MelP5 is a lipophilic peptide with important physical properties that differ from wild-type melittin, including the ability to create large equilibrium pores in lipid bilayers at low peptide to lipid ratios. Self-assembly into stable membrane spanning pores makes MelP5 a promising candidate for future applications in the pharmaceutical arena. Despite significant interest, little is known about the mechanism by which MelP5 remodels the lipid bilayer upon binding. We demonstrate by direct atomic force microscope imaging of supported lipid bilayers in solution that MelP5 remodels 1-palmitoyl-2-oleoyl- sn-glycero-3-phosphocholine (POPC) in one of two ways. It creates either highly localized voids in the bilayer or diffuse nonlocalized thinning. Thinning of the bilayer was measured to be 3.0 ± 1.4 Å (mean ± standard deviation) below the surface of the upper leaflet of the bilayer. Pores, defined as highly localized voids in the bilayer, exhibited several sizes. Approximately 20% of pores exhibited large footprint areas (47 ± 20 nm2) which appear capable of passing bulky macromolecules. The peptide-effected bilayer was observed to reversibly exchange between membrane-thinned and pore states in an apparent dynamic equilibrium. Analysis of time-lapsed images suggested upper and lower bounds (0.2 < τ < 180 s) on the characteristic time scale of transitions between the membrane-thinned and pore states. Moreover, pores were found to colocalize with membrane-thinned regions, a novel observation that is consistent with the notion of cooperativity among membrane-bound peptides when forming pores.
Collapse
|
38
|
Marsh BP, Chada N, Sanganna Gari RR, Sigdel KP, King GM. The Hessian Blob Algorithm: Precise Particle Detection in Atomic Force Microscopy Imagery. Sci Rep 2018; 8:978. [PMID: 29343783 PMCID: PMC5772630 DOI: 10.1038/s41598-018-19379-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 12/29/2017] [Indexed: 11/09/2022] Open
Abstract
Imaging by atomic force microscopy (AFM) offers high-resolution descriptions of many biological systems; however, regardless of resolution, conclusions drawn from AFM images are only as robust as the analysis leading to those conclusions. Vital to the analysis of biomolecules in AFM imagery is the initial detection of individual particles from large-scale images. Threshold and watershed algorithms are conventional for automatic particle detection but demand manual image preprocessing and produce particle boundaries which deform as a function of user-defined parameters, producing imprecise results subject to bias. Here, we introduce the Hessian blob to address these shortcomings. Combining a scale-space framework with measures of local image curvature, the Hessian blob formally defines particle centers and their boundaries, both to subpixel precision. Resulting particle boundaries are independent of user defined parameters, with no image preprocessing required. We demonstrate through direct comparison that the Hessian blob algorithm more accurately detects biomolecules than conventional AFM particle detection techniques. Furthermore, the algorithm proves largely insensitive to common imaging artifacts and noise, delivering a stable framework for particle analysis in AFM.
Collapse
Affiliation(s)
- Brendan P Marsh
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri, 65211, United States of America.,Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, CB3 OWA, United Kingdom
| | - Nagaraju Chada
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri, 65211, United States of America
| | - Raghavendar Reddy Sanganna Gari
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri, 65211, United States of America.,School of Medicine, University of Virginia, Charlottesville, Virginia, 22908, United States of America
| | - Krishna P Sigdel
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri, 65211, United States of America
| | - Gavin M King
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri, 65211, United States of America. .,Department of Biochemistry, University of Missouri, Columbia, Missouri, 65211, United States of America.
| |
Collapse
|
39
|
Sidhu A, Ristic D, Sánchez H, Wyman C. The Recombination Mediator BRCA2: Architectural Plasticity of Recombination Intermediates Revealed by Single-Molecule Imaging (SFM/TIRF). Methods Enzymol 2018; 600:347-374. [DOI: 10.1016/bs.mie.2017.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
40
|
Motegi T, Yamazaki K, Ogino T, Tero R. Substrate-Induced Structure and Molecular Dynamics in a Lipid Bilayer Membrane. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:14748-14755. [PMID: 29236511 DOI: 10.1021/acs.langmuir.7b03212] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The solid-substrate-dependent structure and dynamics of molecules in a supported lipid bilayer (SLB) were directly investigated via atomic force microscopy (AFM) and single particle tracking (SPT) measurements. The appearance of either vertical or horizontal heterogeneities in the SLB was found to be strongly dependent on the underlying substrates. SLB has been widely used as a biointerface with incorporated proteins and other biological materials. Both silica and mica are popular substrates for SLB. Using single-molecule dynamics, the fluidity of the upper and lower membrane leaflets was found to depend on the substrate, undergoing coupling and decoupling on the SiO2/Si and mica substrates, respectively. The anisotropic diffusion caused by the locally destabilized structure of the SLB at atomic steps appeared on the Al2O3(0001) substrate because of the strong van der Waals interaction between the SLB and the substrate. Our finding that the well-defined surfaces of mica and sapphire result in asymmetry and anisotropy in the plasma membrane is useful for the design of new plasma-membrane-mimetic systems. The application of well-defined supporting substrates for SLBs should have similar effects as cell membrane scaffolds, which regulate the dynamic structure of the membrane.
Collapse
Affiliation(s)
| | - Kenji Yamazaki
- Division of Applied Physics, Graduate School of Engineering, Hokkaido University , Sapporo 060-8628, Japan
| | - Toshio Ogino
- Department of Engineering, Yokohama National University , Yokohama 240-8501, Japan
| | | |
Collapse
|
41
|
Abstract
Three-dimensional (3D) printing has undergone an exponential growth in popularity due to its revolutionary and near limitless manufacturing capabilities. Recent trends have seen this technology utilized across a variety of scientific disciplines, including the measurement sciences, but precise fabrication of optical components for high-performance biosensing has not yet been demonstrated. We report here 3D printing of high-quality, custom prisms by stereolithography that enable Kretschmann-configured plasmonic sensing of bacterial toxins. Simple benchtop polishing procedures render a smooth surface that supports propagation of surface plasmon polaritons with a deposited gold layer, which exhibit high bulk refractive index sensitivities and are capable of discriminating trace levels of cholera toxin on a supported lipid membrane interface. Further evidence of the flexibility of this manufacturing technique is demonstrated with printed prisms of varied geometries and in situ monitoring of nanoparticle growth by total internal reflection spectroscopy. This work represents the first example of 3D printed light-guiding sensing platforms and demonstrates the versatility and broad perspective of 3D printing in optical detection.
Collapse
Affiliation(s)
- Samuel S. Hinman
- Environmental Toxicology, University of California−Riverside, Riverside, California 92521, United States
| | - Kristy S. McKeating
- Department of Chemistry, University of California−Riverside, Riverside, California 92521, United States
| | - Quan Cheng
- Environmental Toxicology, University of California−Riverside, Riverside, California 92521, United States
- Department of Chemistry, University of California−Riverside, Riverside, California 92521, United States
| |
Collapse
|
42
|
Matin TR, Sigdel KP, Utjesanovic M, Marsh BP, Gallazzi F, Smith VF, Kosztin I, King GM. Single-Molecule Peptide-Lipid Affinity Assay Reveals Interplay between Solution Structure and Partitioning. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:4057-4065. [PMID: 28343391 DOI: 10.1021/acs.langmuir.7b00100] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Interactions between short protein segments and phospholipid bilayers dictate fundamental aspects of cellular activity and have important applications in biotechnology. Yet, the lack of a suitable methodology for directly probing these interactions has hindered the mechanistic understanding. We developed a precision atomic force microscopy-based single-molecule force spectroscopy assay and probed partitioning into lipid bilayers by measuring the mechanical force experienced by a peptide. Protein segments were constructed from the peripheral membrane protein SecA, a key ATPase in bacterial secretion. We focused on the first 10 amino-terminal residues of SecA (SecA2-11) that are lipophilic. In addition to the core SecA2-11 sequence, constructs with nearly identical chemical composition but with differing geometry were used: two copies of SecA2-11 linked in series and two copies SecA2-11 linked in parallel. Lipid bilayer partitioning interactions of peptides with differing structures were distinguished. To model the energetic landscape, a theory of diffusive barrier crossing was extended to incorporate a superposition of potential barriers with variable weights. Analysis revealed two dissociation pathways for the core SecA2-11 sequence with well-separated intrinsic dissociation rates. Molecular dynamics simulations showed that the three peptides had significant conformational differences in solution that correlated well with the measured variations in the propensity to partition into the bilayer. The methodology is generalizable and can be applied to other peptide and lipid species.
Collapse
Affiliation(s)
| | | | | | | | | | - Virginia F Smith
- Department of Chemistry, United States Naval Academy , Annapolis, Maryland 21402, United States
| | | | | |
Collapse
|
43
|
Miller EJ, Trewby W, Farokh Payam A, Piantanida L, Cafolla C, Voïtchovsky K. Sub-nanometer Resolution Imaging with Amplitude-modulation Atomic Force Microscopy in Liquid. J Vis Exp 2016:54924. [PMID: 28060262 PMCID: PMC5226432 DOI: 10.3791/54924] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Atomic force microscopy (AFM) has become a well-established technique for nanoscale imaging of samples in air and in liquid. Recent studies have shown that when operated in amplitude-modulation (tapping) mode, atomic or molecular-level resolution images can be achieved over a wide range of soft and hard samples in liquid. In these situations, small oscillation amplitudes (SAM-AFM) enhance the resolution by exploiting the solvated liquid at the surface of the sample. Although the technique has been successfully applied across fields as diverse as materials science, biology and biophysics and surface chemistry, obtaining high-resolution images in liquid can still remain challenging for novice users. This is partly due to the large number of variables to control and optimize such as the choice of cantilever, the sample preparation, and the correct manipulation of the imaging parameters. Here, we present a protocol for achieving high-resolution images of hard and soft samples in fluid using SAM-AFM on a commercial instrument. Our goal is to provide a step-by-step practical guide to achieving high-resolution images, including the cleaning and preparation of the apparatus and the sample, the choice of cantilever and optimization of the imaging parameters. For each step, we explain the scientific rationale behind our choices to facilitate the adaptation of the methodology to every user's specific system.
Collapse
|
44
|
Pires RH, Felix SB, Delcea M. The architecture of neutrophil extracellular traps investigated by atomic force microscopy. NANOSCALE 2016; 8:14193-14202. [PMID: 27387552 DOI: 10.1039/c6nr03416k] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Neutrophils are immune cells that engage in a suicidal pathway leading to the release of partially decondensed chromatin, or neutrophil extracellular traps (NETs). NETs behave as a double edged sword; they can bind to pathogens thereby ensnaring them and limiting their spread during infection; however, they may bind to host circulating materials and trigger thrombotic events, and are associated with autoimmune disorders. Despite the fundamental role of NETs as part of an immune system response, there is currently a very poor understanding of how their nanoscale properties are reflected in their macroscopic impact. In this work, using a combination of fluorescence and atomic force microscopy, we show that NETs appear as a branching filament network that results in a substantially organized porous structure with openings with 0.03 ± 0.04 μm(2) on average and thus in the size range of small pathogens. Topological profiles typically up to 3 ± 1 nm in height are compatible with a "beads on a string" model of nucleosome chromatin. Typical branch lengths of 153 ± 103 nm appearing as rigid rods and height profiles of naked DNA in NETs of 1.2 ± 0.5 nm are indicative of extensive DNA supercoiling throughout NETs. The presence of DNA duplexes could also be inferred from force spectroscopy and the occurrence of force plateaus that ranged from ∼65 pN to 300 pN. Proteolytic digestion of NETs resulted in widespread disassembly of the network structure and considerable loss of mechanical properties. Our results suggest that the underlying structure of NETs is considerably organized and that part of its protein content plays an important role in maintaining its mesh architecture. We anticipate that NETs may work as microscopic mechanical sieves with elastic properties that stem from their DNA-protein composition, which is able to segregate particles also as a result of their size. Such a behavior may explain their participation in capturing pathogens and their association with thrombosis.
Collapse
Affiliation(s)
- Ricardo H Pires
- ZIK HIKE - Center for Innovation Competence, Humoral Immune Reactions in Cardiovascular Diseases, University of Greifswald, Germany.
| | | | | |
Collapse
|