1
|
Kim HY, Cho SH, Kim MJ, Song MK, Song SY, Kim DH, Oh SH. Multilayer Film with Bioactive and Antiadhesive Layers for Accelerated Tendon Regeneration. ACS APPLIED BIO MATERIALS 2025; 8:3375-3388. [PMID: 40195577 DOI: 10.1021/acsabm.5c00131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Despite advances in surgical techniques for tendon injuries and improvements in rehabilitation, the challenge of achieving sufficient tendon regeneration and preventing postoperative tissue adhesions persists for orthopedic surgeons. In this study, we developed a multilayer film with a platelet-derived growth factor-BB (PDGF-BB)-immobilized leaf-stacked structure (LSS) layer (bioactive layer) and an alginate layer (antiadhesive layer) on both sides of a PCL film (PDGF/FLSS-Alg). The porous LSS layer on the PCL film was fabricated using a heating-cooling method with tetraglycol, where PDGF-BB was adsorbed onto the LSS layer. An alginate coating was applied on the opposite side to form the antiadhesion layer. The PDGF-BB loaded on the LSS layer provided a sustained release at effective concentrations for over 29 days. From in vitro cell culture and in vivo animal studies, the alginate layer proved effective in preventing cell/tissue adhesion; meanwhile, the bioactive layer facilitated tenogenic differentiation in hBMSCs and supported tendon regeneration. Accordingly, we propose that PDGF/FLSS-Alg offers a viable strategy for effective tendon regeneration in clinical practice.
Collapse
Affiliation(s)
- Ho Yong Kim
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Republic of Korea
| | - Seung Hyeon Cho
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Republic of Korea
| | - Min Ji Kim
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Republic of Korea
| | - Myung-Keun Song
- Department of Orthopaedic Surgery, Gyeongsang National University Hospital, Jinju 52727, Republic of Korea
| | - Sang-Youn Song
- Department of Orthopaedic Surgery, Gyeongsang National University Hospital, Jinju 52727, Republic of Korea
| | - Dong-Hee Kim
- Department of Orthopaedic Surgery, Gyeongsang National University Hospital, Jinju 52727, Republic of Korea
| | - Se Heang Oh
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Republic of Korea
- Department of Biomedical Sciences & Biosystems, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
2
|
Rajalekshmi R, Agrawal DK. Synergistic potential of stem cells and microfluidics in regenerative medicine. Mol Cell Biochem 2025; 480:1481-1493. [PMID: 39285093 PMCID: PMC11842489 DOI: 10.1007/s11010-024-05108-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/27/2024] [Indexed: 02/21/2025]
Abstract
Regenerative medicine has immense potential to revolutionize healthcare by using regenerative capabilities of stem cells. Microfluidics, a cutting-edge technology, offers precise control over cellular microenvironments. The integration of these two fields provides a deep understanding of stem cell behavior and enables the development of advanced therapeutic strategies. This critical review explores the use of microfluidic systems to culture and differentiate stem cells with precision. We examined the use of microfluidic platforms for controlled nutrient supply, mechanical stimuli, and real-time monitoring, providing an unprecedented level of detail in studying cellular responses. The convergence of stem cells and microfluidics holds immense promise for tissue repair, regeneration, and personalized medicine. It offers a unique opportunity to revolutionize the approach to regenerative medicine, facilitating the development of advanced therapeutic strategies and enhancing healthcare outcomes.
Collapse
Affiliation(s)
- Resmi Rajalekshmi
- Department of Translational Research, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766, USA
| | - Devendra K Agrawal
- Department of Translational Research, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766, USA.
| |
Collapse
|
3
|
Oliveira BA, Levy D, Paz JL, de Freitas FA, Reichert CO, Rodrigues A, Bydlowski SP. 7-Ketocholesterol Effects on Osteogenic Differentiation of Adipose Tissue-Derived Mesenchymal Stem Cells. Int J Mol Sci 2024; 25:11380. [PMID: 39518932 PMCID: PMC11545361 DOI: 10.3390/ijms252111380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/15/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Some oxysterols were shown to promote osteogenic differentiation of mesenchymal stem cells (MSCs). Little is known about the effects of 7-ketocholesterol (7-KC) in this process. We describe its impact on human adipose tissue-derived MSC (ATMSC) osteogenic differentiation. ATMSCs were incubated with 7-KC in osteogenic or adipogenic media. Osteogenic and adipogenic differentiation was evaluated by Alizarin red and Oil Red O staining, respectively. Osteogenic (ALPL, RUNX2, BGLAP) and adipogenic markers (PPARƔ, C/EBPα) were determined by RT-PCR. Differentiation signaling pathways (SHh, Smo, Gli-3, β-catenin) were determined by indirect immunofluorescence. ATMSCs treated with 7-KC in osteogenic media stained positively for Alizarin Red. 7-KC in adipogenic media decreased the number of adipocytes. 7-KC increased ALPL and RUNX2 but not BGLAP expressions. 7-KC decreased expression of PPARƔ and C/EBPα, did not change SHh, Smo, and Gli-3 expression, and increased the expression of β-catenin. In conclusion, 7-KC favors osteogenic differentiation of ATMSCs through the expression of early osteogenic genes (matrix maturation phase) by activating the Wnt/β-catenin signaling pathway, while inhibiting adipogenic differentiation. This knowledge can be potentially useful in regenerative medicine, in treatments for bone diseases.
Collapse
Affiliation(s)
- Beatriz Araújo Oliveira
- Lipids, Oxidation, and Cell Biology Team, Laboratory of Immunology (LIM19), Heart Institute (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-900, SP, Brazil (D.L.); (F.A.d.F.); (C.O.R.)
| | - Débora Levy
- Lipids, Oxidation, and Cell Biology Team, Laboratory of Immunology (LIM19), Heart Institute (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-900, SP, Brazil (D.L.); (F.A.d.F.); (C.O.R.)
| | - Jessica Liliane Paz
- Lipids, Oxidation, and Cell Biology Team, Laboratory of Immunology (LIM19), Heart Institute (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-900, SP, Brazil (D.L.); (F.A.d.F.); (C.O.R.)
| | - Fabio Alessandro de Freitas
- Lipids, Oxidation, and Cell Biology Team, Laboratory of Immunology (LIM19), Heart Institute (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-900, SP, Brazil (D.L.); (F.A.d.F.); (C.O.R.)
| | - Cadiele Oliana Reichert
- Lipids, Oxidation, and Cell Biology Team, Laboratory of Immunology (LIM19), Heart Institute (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-900, SP, Brazil (D.L.); (F.A.d.F.); (C.O.R.)
| | - Alessandro Rodrigues
- Department of Earth and Exact Sciences, Universidade Federal de Sao Paulo, Diadema 09972-270, SP, Brazil;
| | - Sérgio Paulo Bydlowski
- Lipids, Oxidation, and Cell Biology Team, Laboratory of Immunology (LIM19), Heart Institute (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-900, SP, Brazil (D.L.); (F.A.d.F.); (C.O.R.)
- National Institute of Science and Technology for Regenerative Medicine (INCT Regenera), National Council for Scientific and Technological Development (CNPq), Rio de Janeiro 21941-902, RJ, Brazil
| |
Collapse
|
4
|
Sato M, Inada E, Kubota N, Ozawa M. Loss of Cell-Cell Contact Inhibits Cellular Differentiation of α-Catenin Knock Out P19 Embryonal Carcinoma Cells and Their Colonization into the Developing Mouse Embryos. BIOTECH 2024; 13:41. [PMID: 39449371 DOI: 10.3390/biotech13040041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/17/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
Cadherin-catenin cell-cell adhesion complexes, composed of cadherin, β-catenin or plakoglobin, and α-catenin (α-cat) molecules, are crucial for maintaining cell-cell contact and are commonly referred to as "adherens junctions (AJs)." Inactivating this system leads to loss of cell-cell contact and developmental arrest in early embryos. However, it remains unclear whether the loss of cell-cell contact affects the differentiation of embryonic cells. In this study, we explored the use of a murine embryonal carcinoma cell line, P19, as an in vitro model for early embryogenesis. P19 cells easily form embryoid bodies (EBs) and are susceptible to cellular differentiation in response to retinoic acid (RA) and teratoma formation. Using CRISPR/Cas9 technology to disrupt the endogenous α-cat gene in P19 cells, we generated α-cat knockout (KO) cells that exhibited a loss of cell-cell contact. When cultivated on non-coated dishes, these α-cat KO cells formed EBs, but their structures were labile. In the RA-containing medium, the α-cat KO EBs failed to produce differentiated cells on their outer layer and continued to express SSEA-1, an antigen specific to pluripotent cells. Teratoma formation assays revealed an absence of overt differentiated cells in tumors derived from α-cat KO P19 cells. Aggregation assays revealed the inability of the KO cells to colonize into the zona pellucida-denuded 8-cell embryos. These findings suggest that the AJs are essential for promoting the early stages of cellular differentiation and for the colonization of early-developing embryos.
Collapse
Affiliation(s)
- Masahiro Sato
- Section of Gene Expression Regulation, Frontier Science Research Center, Kagoshima University, Kagoshima 890-8544, Japan
| | - Emi Inada
- Department of Pediatric Dentistry, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| | - Naoko Kubota
- Department of Pediatric Dentistry, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| | - Masayuki Ozawa
- Department of Biochemistry and Molecular Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| |
Collapse
|
5
|
Zamora Alvarado JE, McCloskey KE, Gopinathan A. Migration and proliferation drive the emergence of patterns in co-cultures of differentiating vascular progenitor cells. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2024; 21:6731-6757. [PMID: 39483091 PMCID: PMC11556463 DOI: 10.3934/mbe.2024295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Vascular cells self-organize into unique structures guided by cell proliferation, migration, and/or differentiation from neighboring cells, mechanical factors, and/or soluble signals. However, the relative contribution of each of these factors remains unclear. Our objective was to develop a computational model to explore the different factors affecting the emerging micropatterns in 2D. This was accomplished by developing a stochastic on-lattice population-based model starting with vascular progenitor cells with the potential to proliferate, migrate, and/or differentiate into either endothelial cells or smooth muscle cells. The simulation results yielded patterns that were qualitatively and quantitatively consistent with experimental observations. Our results suggested that post-differentiation cell migration and proliferation when balanced could generate between 30-70% of each cell type enabling the formation of vascular patterns. Moreover, the cell-to-cell sensing could enhance the robustness of this patterning. These findings computationally supported that 2D patterning is mechanistically similar to current microfluidic platforms that take advantage of the migration-directed self-assembly of mature endothelial and mural cells to generate perfusable 3D vasculature in permissible hydrogel environments and suggest that stem or progenitor cells may not be fully necessary components in many tissue formations like those formed by vasculogenesis.
Collapse
Affiliation(s)
- Jose E. Zamora Alvarado
- School of Engineering, University of California Merced, Merced, CA 95343, USA
- Graduate Program in Materials and Biomaterials Science and Engineering, University of California Merced, Merced, CA 95343, USA
| | - Kara E. McCloskey
- School of Engineering, University of California Merced, Merced, CA 95343, USA
- Graduate Program in Materials and Biomaterials Science and Engineering, University of California Merced, Merced, CA 95343, USA
| | - Ajay Gopinathan
- Graduate Program in Materials and Biomaterials Science and Engineering, University of California Merced, Merced, CA 95343, USA
- Department of Physics, University of California Merced, Merced, CA 95343, USA
| |
Collapse
|
6
|
Kim MJ, Park JH, Seok JM, Jung J, Hwang TS, Lee HC, Lee JH, Park SA, Byun JH, Oh SH. BMP-2-immobilized PCL 3D printing scaffold with a leaf-stacked structure as a physically and biologically activated bone graft. Biofabrication 2024; 16:025014. [PMID: 38306679 DOI: 10.1088/1758-5090/ad2537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/01/2024] [Indexed: 02/04/2024]
Abstract
Although three-dimensional (3D) printing techniques are used to mimic macro- and micro-structures as well as multi-structural human tissues in tissue engineering, efficient target tissue regeneration requires bioactive 3D printing scaffolds. In this study, we developed a bone morphogenetic protein-2 (BMP-2)-immobilized polycaprolactone (PCL) 3D printing scaffold with leaf-stacked structure (LSS) (3D-PLSS-BMP) as a bioactive patient-tailored bone graft. The unique LSS was introduced on the strand surface of the scaffold via heating/cooling in tetraglycol without significant deterioration in physical properties. The BMP-2 adsorbed on3D-PLSS-BMPwas continuously released from LSS over a period of 32 d. The LSS can be a microtopographical cue for improved focal cell adhesion, proliferation, and osteogenic differentiation.In vitrocell culture andin vivoanimal studies demonstrated the biological (bioactive BMP-2) and physical (microrough structure) mechanisms of3D-PLSS-BMPfor accelerated bone regeneration. Thus, bioactive molecule-immobilized 3D printing scaffold with LSS represents a promising physically and biologically activated bone graft as well as an advanced tool for widespread application in clinical and research fields.
Collapse
Affiliation(s)
- Min Ji Kim
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Republic of Korea
| | - Jin-Ho Park
- Department of Oral and Maxillofacial Surgery, Gyeongsang National University School of Medicine, Gyeongsang National University Hospital, Institute of Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Ji Min Seok
- Nano-Convergence Mechanical Systems Research Division, Korea Institute of Machinery and Materials (KIMM), 156 Gajeongbuk-ro, Yuseong-gu, Daejeon 304-343, Republic of Korea
| | - Jiwoon Jung
- Department of Veterinary Medical Imaging, College of Veterinary Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Tae Sung Hwang
- Department of Veterinary Medical Imaging, College of Veterinary Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Hee-Chun Lee
- Department of Veterinary Medical Imaging, College of Veterinary Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Jin Ho Lee
- Department of Advanced Materials, Hannam University, Daejeon 34054, Republic of Korea
| | - Su A Park
- Nano-Convergence Mechanical Systems Research Division, Korea Institute of Machinery and Materials (KIMM), 156 Gajeongbuk-ro, Yuseong-gu, Daejeon 304-343, Republic of Korea
| | - June-Ho Byun
- Department of Oral and Maxillofacial Surgery, Gyeongsang National University School of Medicine, Gyeongsang National University Hospital, Institute of Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Se Heang Oh
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
7
|
Wadkin LE, Makarenko I, Parker NG, Shukurov A, Figueiredo FC, Lako M. Human Stem Cells for Ophthalmology: Recent Advances in Diagnostic Image Analysis and Computational Modelling. CURRENT STEM CELL REPORTS 2023; 9:57-66. [PMID: 38145008 PMCID: PMC10739444 DOI: 10.1007/s40778-023-00229-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2023] [Indexed: 12/26/2023]
Abstract
Purpose of Review To explore the advances and future research directions in image analysis and computational modelling of human stem cells (hSCs) for ophthalmological applications. Recent Findings hSCs hold great potential in ocular regenerative medicine due to their application in cell-based therapies and in disease modelling and drug discovery using state-of-the-art 2D and 3D organoid models. However, a deeper characterisation of their complex, multi-scale properties is required to optimise their translation to clinical practice. Image analysis combined with computational modelling is a powerful tool to explore mechanisms of hSC behaviour and aid clinical diagnosis and therapy. Summary Many computational models draw on a variety of techniques, often blending continuum and discrete approaches, and have been used to describe cell differentiation and self-organisation. Machine learning tools are having a significant impact in model development and improving image classification processes for clinical diagnosis and treatment and will be the focus of much future research.
Collapse
Affiliation(s)
- L. E. Wadkin
- School of Mathematics, Statistics and Physics, Newcastle University, Newcastle upon Tyne, UK
| | - I. Makarenko
- School of Mathematics, Statistics and Physics, Newcastle University, Newcastle upon Tyne, UK
| | - N. G. Parker
- School of Mathematics, Statistics and Physics, Newcastle University, Newcastle upon Tyne, UK
| | - A. Shukurov
- School of Mathematics, Statistics and Physics, Newcastle University, Newcastle upon Tyne, UK
| | - F. C. Figueiredo
- Department of Ophthalmology, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - M. Lako
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
8
|
Kiselev EI, Pflug F, von Haeseler A. Critical Growth of Cerebral Tissue in Organoids: Theory and Experiments. PHYSICAL REVIEW LETTERS 2023; 131:178402. [PMID: 37955473 DOI: 10.1103/physrevlett.131.178402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/30/2023] [Indexed: 11/14/2023]
Abstract
We develop a Fokker-Planck theory of tissue growth with three types of cells (symmetrically dividing, asymmetrically dividing, and nondividing) as main agents to study the growth dynamics of human cerebral organoids. Fitting the theory to lineage tracing data obtained in next generation sequencing experiments, we show that the growth of cerebral organoids is a critical process. We derive analytical expressions describing the time evolution of clonal lineage sizes and show how power-law distributions arise in the limit of long times due to the vanishing of a characteristic growth scale. We discuss that the independence of critical growth on initial conditions could be biologically advantageous.
Collapse
Affiliation(s)
- Egor I Kiselev
- Center for Integrative Bioinformatics Vienna (CIBIV), Max Perutz Laboratories, University of Vienna and Medical University of Vienna, Vienna Bio Center (VBC), 1030 Vienna, Austria
- Physics Department, Technion, 320003 Haifa, Israel
| | - Florian Pflug
- Center for Integrative Bioinformatics Vienna (CIBIV), Max Perutz Laboratories, University of Vienna and Medical University of Vienna, Vienna Bio Center (VBC), 1030 Vienna, Austria
- Biological Complexity Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Arndt von Haeseler
- Center for Integrative Bioinformatics Vienna (CIBIV), Max Perutz Laboratories, University of Vienna and Medical University of Vienna, Vienna Bio Center (VBC), 1030 Vienna, Austria
- Bioinformatics and Computational Biology, Faculty of Computer Science, University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
9
|
Srivastava P, Romanazzo S, Kopecky C, Nemec S, Ireland J, Molley TG, Lin K, Jayathilaka PB, Pandzic E, Yeola A, Chandrakanthan V, Pimanda J, Kilian K. Defined Microenvironments Trigger In Vitro Gastrulation in Human Pluripotent Stem Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2203614. [PMID: 36519269 PMCID: PMC9929265 DOI: 10.1002/advs.202203614] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/19/2022] [Indexed: 06/17/2023]
Abstract
Gastrulation is a stage in embryo development where three germ layers arise to dictate the human body plan. In vitro models of gastrulation have been demonstrated by treating pluripotent stem cells with soluble morphogens to trigger differentiation. However, in vivo gastrulation is a multistage process coordinated through feedback between soluble gradients and biophysical forces, with the multipotent epiblast transforming to the primitive streak followed by germ layer segregation. Here, the authors show how constraining pluripotent stem cells to hydrogel islands triggers morphogenesis that mirrors the stages preceding in vivo gastrulation, without the need for exogenous supplements. Within hours of initial seeding, cells display a contractile phenotype at the boundary, which leads to enhanced proliferation, yes-associated protein (YAP) translocation, epithelial to mesenchymal transition, and emergence of SRY-box transcription factor 17 (SOX17)+ T/BRACHYURY+ cells. Molecular profiling and pathway analysis reveals a role for mechanotransduction-coupled wingless-type (WNT) signaling in orchestrating differentiation, which bears similarities to processes observed in whole organism models of development. After two days, the colonies form multilayered aggregates, which can be removed for further growth and differentiation. This approach demonstrates how materials alone can initiate gastrulation, thereby providing in vitro models of development and a tool to support organoid bioengineering efforts.
Collapse
Affiliation(s)
- Pallavi Srivastava
- School of ChemistryAustralian Centre for NanoMedicineUniversity of New South WalesSydneyNSW2052Australia
- School of Biomedical SciencesUniversity of New South WalesSydneyNSW2052Australia
- Adult Cancer ProgramSchool of Clinical Medicine, Lowy Cancer Research CentreUNSW SydneySydneyNSW2052Australia
| | - Sara Romanazzo
- School of ChemistryAustralian Centre for NanoMedicineUniversity of New South WalesSydneyNSW2052Australia
| | - Chantal Kopecky
- School of ChemistryAustralian Centre for NanoMedicineUniversity of New South WalesSydneyNSW2052Australia
- Adult Cancer ProgramSchool of Clinical Medicine, Lowy Cancer Research CentreUNSW SydneySydneyNSW2052Australia
| | - Stephanie Nemec
- School of Materials Science and EngineeringUniversity of New South WalesSydneyNSW2052Australia
| | - Jake Ireland
- School of ChemistryAustralian Centre for NanoMedicineUniversity of New South WalesSydneyNSW2052Australia
| | - Thomas G. Molley
- School of Materials Science and EngineeringUniversity of New South WalesSydneyNSW2052Australia
| | - Kang Lin
- School of Materials Science and EngineeringUniversity of New South WalesSydneyNSW2052Australia
| | - Pavithra B. Jayathilaka
- School of ChemistryAustralian Centre for NanoMedicineUniversity of New South WalesSydneyNSW2052Australia
| | - Elvis Pandzic
- Katharina Gaus Light Microscopy FacilityMark Wainwright Analytical CentreUniversity of New South WalesSydneyNSW2052Australia
| | - Avani Yeola
- Adult Cancer ProgramSchool of Clinical Medicine, Lowy Cancer Research CentreUNSW SydneySydneyNSW2052Australia
| | - Vashe Chandrakanthan
- School of Biomedical SciencesUniversity of New South WalesSydneyNSW2052Australia
- Adult Cancer ProgramSchool of Clinical Medicine, Lowy Cancer Research CentreUNSW SydneySydneyNSW2052Australia
| | - John Pimanda
- School of Biomedical SciencesUniversity of New South WalesSydneyNSW2052Australia
- Adult Cancer ProgramSchool of Clinical Medicine, Lowy Cancer Research CentreUNSW SydneySydneyNSW2052Australia
- Department of HaematologyPrince of Wales HospitalRandwickNSW2031Australia
| | - Kristopher Kilian
- School of ChemistryAustralian Centre for NanoMedicineUniversity of New South WalesSydneyNSW2052Australia
- Adult Cancer ProgramSchool of Clinical Medicine, Lowy Cancer Research CentreUNSW SydneySydneyNSW2052Australia
- School of Materials Science and EngineeringUniversity of New South WalesSydneyNSW2052Australia
| |
Collapse
|
10
|
Sapienza S, Tedeschi V, Apicella B, Palestra F, Russo C, Piccialli I, Pannaccione A, Loffredo S, Secondo A. Size-Based Effects of Anthropogenic Ultrafine Particles on Lysosomal TRPML1 Channel and Autophagy in Motoneuron-like Cells. Int J Mol Sci 2022; 23:ijms232113041. [PMID: 36361823 PMCID: PMC9656695 DOI: 10.3390/ijms232113041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 11/16/2022] Open
Abstract
Background: An emerging body of evidence indicates an association between anthropogenic particulate matter (PM) and neurodegeneration. Although the historical focus of PM toxicity has been on the cardiopulmonary system, ultrafine PM particles can also exert detrimental effects in the brain. However, only a few studies are available on the harmful interaction between PM and CNS and on the putative pathomechanisms. Methods: Ultrafine PM particles with a diameter < 0.1 μm (PM0.1) and nanoparticles < 20 nm (NP20) were sampled in a lab-scale combustion system. Their effect on cell tracking in the space was studied by time-lapse and high-content microscopy in NSC-34 motor neurons while pHrodo™ Green conjugates were used to detect PM endocytosis. Western blotting analysis was used to quantify protein expression of lysosomal channels (i.e., TRPML1 and TPC2) and autophagy markers. Current-clamp electrophysiology and Fura2-video imaging techniques were used to measure membrane potential, intracellular Ca2+ homeostasis and TRPML1 activity in NSC-34 cells exposed to PM0.1 and NP20. Results: NP20, but not PM0.1, reduced NSC-34 motor neuron movement in the space. Furthermore, NP20 was able to shift membrane potential of motor neurons toward more depolarizing values. PM0.1 and NP20 were able to enter into the cells by endocytosis and exerted mitochondrial toxicity with the consequent stimulation of ROS production. This latter event was sufficient to determine the hyperactivation of the lysosomal channel TRPML1. Consequently, both LC3-II and p62 protein expression increased after 48 h of exposure together with AMPK activation, suggesting an engulfment of autophagy. The antioxidant molecule Trolox restored TRPML1 function and autophagy. Conclusions: Restoring TRPML1 function by an antioxidant agent may be considered a protective mechanism able to reestablish autophagy flux in motor neurons exposed to nanoparticles.
Collapse
Affiliation(s)
- Silvia Sapienza
- Department of Neuroscience, Reproductive and Odontostomatological Sciences, University of Naples Federico II, 80131 Naples, Italy
| | - Valentina Tedeschi
- Department of Neuroscience, Reproductive and Odontostomatological Sciences, University of Naples Federico II, 80131 Naples, Italy
| | - Barbara Apicella
- Istituto di Scienze e Tecnologie per l’Energia e la Mobilità Sostenibili (STEMS)-CNR, 80125 Naples, Italy
| | - Francesco Palestra
- Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research (CISI), WAO Center of Excellence, University of Naples Federico II, 80131 Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, 80131 Naples, Italy
| | - Carmela Russo
- Istituto di Scienze e Tecnologie per l’Energia e la Mobilità Sostenibili (STEMS)-CNR, 80125 Naples, Italy
| | - Ilaria Piccialli
- Department of Neuroscience, Reproductive and Odontostomatological Sciences, University of Naples Federico II, 80131 Naples, Italy
| | - Anna Pannaccione
- Department of Neuroscience, Reproductive and Odontostomatological Sciences, University of Naples Federico II, 80131 Naples, Italy
| | - Stefania Loffredo
- Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research (CISI), WAO Center of Excellence, University of Naples Federico II, 80131 Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, 80131 Naples, Italy
| | - Agnese Secondo
- Department of Neuroscience, Reproductive and Odontostomatological Sciences, University of Naples Federico II, 80131 Naples, Italy
- Correspondence:
| |
Collapse
|
11
|
A 3D Mathematical Model of Coupled Stem Cell-Nutrient Dynamics in Myocardial Regeneration Therapy. J Theor Biol 2022; 537:111023. [PMID: 35041851 DOI: 10.1016/j.jtbi.2022.111023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 11/04/2021] [Accepted: 01/09/2022] [Indexed: 11/23/2022]
Abstract
Stem cell therapy is a promising treatment for the regeneration of myocardial tissue injured by an ischemic event. Mathematical modeling of myocardial regeneration via stem cell therapy is a challenging task, since the mechanisms underlying the processes involved in the treatment are not yet fully understood. Many aspects must be accounted for, such as the spread of stem cells and nutrients, chemoattraction, cell proliferation, stages of cell maturation, differentiation, angiogenesis, stochastic effects, just to name a few. In this paper we propose a 3D mathematical model with a free boundary that aims to provide a qualitative description of some main aspects of the stem cell regenerative therapy in a simplified scenario. The paper mainly focuses on the description of the shrinking of the necrotic core during treatment. The stem cell and nutrients dynamics are described through coupled reaction-diffusion problems. Proliferation, chemoattraction, tissue regeneration and nutrient consumption are included in the model.
Collapse
|
12
|
Protein conformational dynamics and phenotypic switching. Biophys Rev 2021; 13:1127-1138. [PMID: 35059032 PMCID: PMC8724335 DOI: 10.1007/s12551-021-00858-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 10/18/2021] [Indexed: 12/14/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) are proteins that lack rigid 3D structure but exist as conformational ensembles. Because of their structural plasticity, they can interact with multiple partners. The protein interactions between IDPs and their partners form scale-free protein interaction networks (PINs) that facilitate information flow in the cell. Because of their plasticity, IDPs typically occupy hub positions in cellular PINs. Furthermore, their conformational dynamics and propensity for post-translational modifications contribute to "conformational" noise which is distinct from the well-recognized transcriptional noise. Therefore, upregulation of IDPs in response to a specific input, such as stress, contributes to increased noise and, hence, an increase in stochastic, "promiscuous" interactions. These interactions lead to activation of latent pathways or can induce "rewiring" of the PIN to yield an optimal output underscoring the critical role of IDPs in regulating information flow. We have used PAGE4, a highly intrinsically disordered stress-response protein as a paradigm. Employing a variety of experimental and computational techniques, we have elucidated the role of PAGE4 in phenotypic switching of prostate cancer cells at a systems level. These cumulative studies over the past decade provide a conceptual framework to better understand how IDP conformational dynamics and conformational noise might facilitate cellular decision-making.
Collapse
|
13
|
Chu SL, Abe K, Yokota H, Cho D, Chen YH, Tsai MD. High Resolution U-Net for Quantitatively Analyzing Early Spatial Patterning of Human Induced Pluripotent Stem Cells on Micropatterns. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:3713-3716. [PMID: 34892043 DOI: 10.1109/embc46164.2021.9630956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Human induced pluripotent stem cells (hiPSCs) can differentiate into three germ layer cells, i.e. ectoderm, mesoderm and endoderm, on micropatterned chips in highly synchronous and reproducible manners. The cells are confined within the chip, expanding two-dimensionally as almost in the form of monolayer, thus to be ideal for serving quantitative analysis of their pluripotency. We present a new U-Net (MP-UNet) structure for cell segmentation of early spatial patterning of hiPSCs on micropattern chips using Hoechst fluorescence images. In this structure, the encoding/decoding layers can be dynamically adjusted to extract sufficient image features and be flexible to image sizes. Dice and weight loss functions are designed to identify slight difference in low signal-to-noise ratio, high boundary-to-area ratio and compacted cell images. Several sizes of Hoechst images were tested to show MP-UNet can achieve high accuracy in cell regions and number counting for various sizes of micropattern chips, thus to be excellent quantitative tool for early spatial patterning of hiPSCs.
Collapse
|
14
|
Ahmed M, Lai TH, Kim DR. A Small Fraction of Progenitors Differentiate Into Mature Adipocytes by Escaping the Constraints on the Cell Structure. Front Cell Dev Biol 2021; 9:753042. [PMID: 34708046 PMCID: PMC8542793 DOI: 10.3389/fcell.2021.753042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/10/2021] [Indexed: 11/13/2022] Open
Abstract
Differentiating 3T3-L1 pre-adipocytes are a mixture of non-identical culture cells. It is vital to identify the cell types that respond to the induction stimulus to understand the pre-adipocyte potential and the mature adipocyte behavior. To test this hypothesis, we deconvoluted the gene expression profiles of the cell culture of MDI-induced 3T3-L1 cells. Then we estimated the fractions of the sub-populations and their changes in time. We characterized the sub-populations based on their specific expression profiles. Initial cell cultures comprised three distinct phenotypes. A small fraction of the starting cells responded to the induction and developed into mature adipocytes. Unresponsive cells were probably under structural constraints or were committed to differentiating into alternative phenotypes. Using the same population gene markers, similar proportions were found in induced human primary adipocyte cell cultures. The three sub-populations had diverse responses to treatment with various drugs and compounds. Only the response of the maturating sub-population resembled that estimated from the profiles of the mixture. We then showed that even at a low division rate, a small fraction of cells could increase its share in a dynamic two-populations model. Finally, we used a cell cycle expression index to validate that model. To sum, pre-adipocytes are a mixture of different cells of which a limited fraction become mature adipocytes.
Collapse
Affiliation(s)
- Mahmoud Ahmed
- Department of Biochemistry and Convergence Medical Sciences, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, South Korea
| | - Trang Huyen Lai
- Department of Biochemistry and Convergence Medical Sciences, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, South Korea
| | - Deok Ryong Kim
- Department of Biochemistry and Convergence Medical Sciences, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, South Korea
| |
Collapse
|
15
|
Modulating Tumor Cell Functions by Tunable Nanopatterned Ligand Presentation. NANOMATERIALS 2020; 10:nano10020212. [PMID: 31991896 PMCID: PMC7074906 DOI: 10.3390/nano10020212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/15/2020] [Accepted: 01/17/2020] [Indexed: 12/19/2022]
Abstract
Cancer comprises a large group of complex diseases which arise from the misrouted interplay of mutated cells with other cells and the extracellular matrix. The extracellular matrix is a highly dynamic structure providing biochemical and biophysical cues that regulate tumor cell behavior. While the relevance of biochemical signals has been appreciated, the complex input of biophysical properties like the variation of ligand density and distribution is a relatively new field in cancer research. Nanotechnology has become a very promising tool to mimic the physiological dimension of biophysical signals and their positive (i.e., growth-promoting) and negative (i.e., anti-tumoral or cytotoxic) effects on cellular functions. Here, we review tumor-associated cellular functions such as proliferation, epithelial-mesenchymal transition (EMT), invasion, and phenotype switch that are regulated by biophysical parameters such as ligand density or substrate elasticity. We also address the question of how such factors exert inhibitory or even toxic effects upon tumor cells. We describe three principles of nanostructured model systems based on block copolymer nanolithography, electron beam lithography, and DNA origami that have contributed to our understanding of how biophysical signals direct cancer cell fate.
Collapse
|
16
|
Towards Three-Dimensional Dynamic Regulation and In Situ Characterization of Single Stem Cell Phenotype Using Microfluidics. Mol Biotechnol 2018; 60:843-861. [DOI: 10.1007/s12033-018-0113-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
17
|
Perez Gonzalez N, Tao J, Rochman ND, Vig D, Chiu E, Wirtz D, Sun SX. Cell tension and mechanical regulation of cell volume. Mol Biol Cell 2018; 29:0. [PMID: 30113884 PMCID: PMC6254581 DOI: 10.1091/mbc.e18-04-0213] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Animal cells use an unknown mechanism to control their growth and physical size. Here, using the fluorescence exclusion method, we measure cell volume for adherent cells on substrates of varying stiffness. We discover that the cell volume has a complex dependence on substrate stiffness and is positively correlated with the size of the cell adhesion to the substrate. From a mechanical force–balance condition that determines the geometry of the cell surface, we find that the observed cell volume variation can be predicted quantitatively from the distribution of active myosin through the cell cortex. To connect cell mechanical tension with cell size homeostasis, we quantified the nuclear localization of YAP/TAZ, a transcription factor involved in cell growth and proliferation. We find that the level of nuclear YAP/TAZ is positively correlated with the average cell volume. Moreover, the level of nuclear YAP/TAZ is also connected to cell tension, as measured by the amount of phosphorylated myosin. Cells with greater apical tension tend to have higher levels of nuclear YAP/TAZ and a larger cell volume. These results point to a size-sensing mechanism based on mechanical tension: the cell tension increases as the cell grows, and increasing tension feeds back biochemically to growth and proliferation control.
Collapse
Affiliation(s)
- Nicolas Perez Gonzalez
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218
| | - Jiaxiang Tao
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218
| | - Nash D Rochman
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218
| | - Dhruv Vig
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218
| | - Evelyn Chiu
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218
| | - Denis Wirtz
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218.,Physical Sciences in Oncology Center (PSOC), Johns Hopkins University, Baltimore, MD 21218
| | - Sean X Sun
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218.,Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218.,Physical Sciences in Oncology Center (PSOC), Johns Hopkins University, Baltimore, MD 21218
| |
Collapse
|
18
|
Smith Q, Rochman N, Carmo AM, Vig D, Chan XY, Sun S, Gerecht S. Cytoskeletal tension regulates mesodermal spatial organization and subsequent vascular fate. Proc Natl Acad Sci U S A 2018; 115:8167-8172. [PMID: 30038020 PMCID: PMC6094121 DOI: 10.1073/pnas.1808021115] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Morphogenesis during human development relies on the interplay between physiochemical cues that are mediated in part by cellular density and cytoskeletal tension. Here, we interrogated these factors on vascular lineage specification during human-induced pluripotent stem-cell (hiPSC) fate decision. We found that independent of chemical cues, spatially presented physical cues induce the self-organization of Brachyury-positive mesodermal cells, in a RhoA/Rho-associated kinase (ROCK)-dependent manner. Using unbiased support vector machine (SVM) learning, we found that density alone is sufficient to predict mesodermal fate. Furthermore, the long-withstanding presentation of spatial confinement during hiPSC differentiation led to an organized vascular tissue, reminiscent of native blood vessels, a process dependent on cell density as found by SVM analysis. Collectively, these results show how tension and density relate to vascular identity mirroring early morphogenesis. We propose that such a system can be applied to study other aspects of the stem-cell niche and its role in embryonic patterning.
Collapse
Affiliation(s)
- Quinton Smith
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218
- Physical Sciences-Oncology Center, Johns Hopkins University, Baltimore, MD 21218
- The Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218
| | - Nash Rochman
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218
- Physical Sciences-Oncology Center, Johns Hopkins University, Baltimore, MD 21218
- The Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218
| | - Ana Maria Carmo
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218
- Physical Sciences-Oncology Center, Johns Hopkins University, Baltimore, MD 21218
- The Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218
| | - Dhruv Vig
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218
- Physical Sciences-Oncology Center, Johns Hopkins University, Baltimore, MD 21218
- The Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218
| | - Xin Yi Chan
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218
- Physical Sciences-Oncology Center, Johns Hopkins University, Baltimore, MD 21218
- The Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218
| | - Sean Sun
- Physical Sciences-Oncology Center, Johns Hopkins University, Baltimore, MD 21218;
- The Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218
| | - Sharon Gerecht
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218;
- Physical Sciences-Oncology Center, Johns Hopkins University, Baltimore, MD 21218
- The Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218
| |
Collapse
|
19
|
Anderson RH, Francis KR. Modeling rare diseases with induced pluripotent stem cell technology. Mol Cell Probes 2018; 40:52-59. [PMID: 29307697 PMCID: PMC6033695 DOI: 10.1016/j.mcp.2018.01.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 12/22/2017] [Accepted: 01/02/2018] [Indexed: 12/18/2022]
Abstract
Rare diseases, in totality, affect a significant proportion of the population and represent an unmet medical need facing the scientific community. However, the treatment of individuals affected by rare diseases is hampered by poorly understood mechanisms preventing the development of viable therapeutics. The discovery and application of cellular reprogramming to create novel induced pluripotent stem cell models of rare diseases has revolutionized the rare disease community. Through developmental and functional analysis of differentiated cell types, these stem cell models carrying patient-specific mutations have become an invaluable tool for rare disease research. In this review article, we discuss the reprogramming of samples from individuals affected with rare diseases to induced pluripotent stem cells, current and future applications for this technology, and how integration of genome editing to rare disease research will help to improve our understanding of disease pathogenesis and lead to patient therapies.
Collapse
Affiliation(s)
- Ruthellen H Anderson
- Cellular Therapies and Stem Cell Biology Group, Sanford Research, Sioux Falls, SD, USA; Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA
| | - Kevin R Francis
- Cellular Therapies and Stem Cell Biology Group, Sanford Research, Sioux Falls, SD, USA; Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA.
| |
Collapse
|
20
|
Ovadia EM, Colby DW, Kloxin AM. Designing well-defined photopolymerized synthetic matrices for three-dimensional culture and differentiation of induced pluripotent stem cells. Biomater Sci 2018; 6:1358-1370. [PMID: 29675520 PMCID: PMC6126667 DOI: 10.1039/c8bm00099a] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Induced pluripotent stem cells (iPSCs) are of interest for the study of disease, where these cells can be derived from patients and have the potential to be differentiated into any cell type; however, three-dimensional (3D) culture and differentiation of iPSCs within well-defined synthetic matrices for these applications remains limited. Here, we aimed to establish synthetic cell-degradable hydrogels that allow precise presentation of specific biochemical cues for 3D culture of iPSCs with relevance for hypothesis testing and lineage-specific differentiation. We synthesized poly(ethylene glycol)-(PEG)-peptide-based hydrogels by photoinitiated step growth polymerization and used them to test the hypothesis that the viability of iPSCs within these matrices could be rescued with appropriate biochemical cues inspired by proteins and integrins important for iPSC culture on Matrigel. Specifically, we selected a range of motifs inspired by iPSC binding to Matrigel, including laminin-derived IKVAV and YIGSR, α5β1-binding PHSRNG10RGDS, αvβ5-binding KKQRFRHRNRKG, and RGDS that is known to bind a variety of integrins for generally promoting cell adhesion. YIGSR and PHSRNG10RGDS resulted in the highest iPSC viability, where binding of β1 integrin was key, and these permissive compositions also allowed iPSC differentiation into neural progenitor cells (NPCs) (decreased oct4 expression and increased pax6 expression) in response to soluble factors. The resulting NPCs formed clusters of different sizes in response to each peptide, suggesting that matrix biochemical cues affect iPSC proliferation and clustering in 3D culture. In summary, we have established photopolymerizable synthetic matrices for the encapsulation, culture, and differentiation of iPSCs for studies of cell-matrix interactions and deployment in disease models.
Collapse
Affiliation(s)
- Elisa M Ovadia
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA.
| | | | | |
Collapse
|
21
|
|
22
|
Blum W, Henzi T, Schwaller B, Pecze L. Biological noise and positional effects influence cell stemness. J Biol Chem 2018; 293:5247-5258. [PMID: 29440274 DOI: 10.1074/jbc.ra117.001643] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 02/12/2018] [Indexed: 01/01/2023] Open
Abstract
Biological (or cellular) noise is the random quantitative variability of proteins and other molecules in individual, genetically identical cells. As the result of biological noise in the levels of some transcription factors that determine a cell's differentiation status, differentiated cells may dedifferentiate to a stem cell state given a sufficiently long time period. Here, to provide direct evidence supporting this hypothesis, we used a live-cell monitoring system based on enhanced green fluorescent protein (eGFP) expression to continuously assess the "stemness" of individual human and murine malignant mesothelioma cells over a period of up to 3 months. Re-expression of the transcription factors, the top hierarchical stemness markers Sox2 (SRY-box 2) and Oct4 (octamer-binding transcription factor), monitored as cell eGFP expression was observed in a subpopulation of differentiated eGFP(-) malignant mesothelioma cells. However, we found that this transition was extremely rare. Of note, when it did occur, neighboring cells that were not direct descendants of a newly emerged eGFP(+) stem cell were more likely than non-neighboring cells to also become an eGFP(+) stem cell. This observation suggested a positional effect and led to a clustered "mosaic" reappearance of eGFP(+) stem cells. Moreover, stem cells reappeared even in cell cultures derived from one single differentiated eGFP(-) cell. On the basis of our experimental in vitro and in vivo findings, we developed a tumor growth model to predict the clustered localization of cancer stem cells within a tumor mass.
Collapse
Affiliation(s)
- Walter Blum
- From the Unit of Anatomy, Section of Medicine, University of Fribourg, 1700 Fribourg, Switzerland
| | - Thomas Henzi
- From the Unit of Anatomy, Section of Medicine, University of Fribourg, 1700 Fribourg, Switzerland
| | - Beat Schwaller
- From the Unit of Anatomy, Section of Medicine, University of Fribourg, 1700 Fribourg, Switzerland
| | - László Pecze
- From the Unit of Anatomy, Section of Medicine, University of Fribourg, 1700 Fribourg, Switzerland
| |
Collapse
|
23
|
Chen X, Kang YM, Fu YX. Switches in a genetic regulatory system under multiplicative non-Gaussian noise. J Theor Biol 2017; 435:134-144. [PMID: 28916451 DOI: 10.1016/j.jtbi.2017.09.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 08/12/2017] [Accepted: 09/11/2017] [Indexed: 11/18/2022]
Abstract
The non-Gaussian noise is multiplicatively introduced to model the universal fluctuation in the gene regulation of the bacteriophage λ. To investigate the key effect of non-Gaussian noise on the genetic on/off switch dynamics from the viewpoint of quantitative analysis, we employ the high-order perturbation expansion to deduce the stationary probability density of repressor concentration and the mean first passage time from low concentration to high concentration and vice versa. The occupation probability of different concentration states can be estimated from the height and shape of the peaks of the stationary probability density, which could be used to determine the overall expression level. A further concern is the mean first passage time, also referred to as the mean switching time, which can be adopted as an important measure to characterize the adaptability of gene expression to the environmental variation. Through our investigation, it is observed that the non-Gaussian heavy-tailed noise can better induce the switches between distinct genetic expression states and additionally, it accelerates the switching process more evidently compared to the Gaussian noise and the bounded noise.
Collapse
Affiliation(s)
- Xi Chen
- School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yan-Mei Kang
- School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Yu-Xuan Fu
- School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
24
|
Phillips AW, Nestor JE, Nestor MW. Developing HiPSC Derived Serum Free Embryoid Bodies for the Interrogation of 3-D Stem Cell Cultures Using Physiologically Relevant Assays. J Vis Exp 2017. [PMID: 28784957 DOI: 10.3791/55799] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Although a number of in vitro disease models have been developed using hiPSCs, one limitation is that these two-dimensional (2-D) systems may not represent the underlying cytoarchitectural and functional complexity of the affected individuals carrying suspected disease variants. Conventional 2-D models remain incomplete representations of in vivo-like structures and do not adequately capture the complexity of the brain. Thus, there is an emerging need for more 3-D hiPSC-based models that can better recapitulate the cellular interactions and functions seen in an in vivo system. Here we report a protocol to develop a 3-D system from undifferentiated hiPSCs based on the serum free embryoid body (SFEB). This 3-D model mirrors aspects of a developing ventralized neocortex and allows for studies into functions integral to living neural cells and intact tissue such as migration, connectivity, communication, and maturation. Specifically, we demonstrate that the SFEBs using our protocol can be interrogated using physiologically relevant and high-content cell based assays such as calcium imaging, and multi-electrode array (MEA) recordings without cryosectioning. In the case of MEA recordings, we demonstrate that SFEBs increase both spike activity and network-level bursting activity during long-term culturing. This SFEB protocol provides a robust and scalable system for the study of developing network formation in a 3-D model that captures aspects of early cortical development.
Collapse
|
25
|
Galvanauskas V, Grincas V, Simutis R, Kagawa Y, Kino-oka M. Current state and perspectives in modeling and control of human pluripotent stem cell expansion processes in stirred-tank bioreactors. Biotechnol Prog 2017; 33:355-364. [DOI: 10.1002/btpr.2431] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 12/10/2016] [Indexed: 01/02/2023]
Affiliation(s)
| | - Vykantas Grincas
- Department of Automation; Kaunas University of Technology; Kaunas Lithuania
| | - Rimvydas Simutis
- Department of Automation; Kaunas University of Technology; Kaunas Lithuania
| | - Yuki Kagawa
- Department of Biotechnology; Osaka University; Osaka Japan
| | | |
Collapse
|
26
|
Wang X, Hu X, Dulińska-Molak I, Kawazoe N, Yang Y, Chen G. Discriminating the Independent Influence of Cell Adhesion and Spreading Area on Stem Cell Fate Determination Using Micropatterned Surfaces. Sci Rep 2016; 6:28708. [PMID: 27349298 PMCID: PMC4923853 DOI: 10.1038/srep28708] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 06/06/2016] [Indexed: 02/06/2023] Open
Abstract
Adhesion and spreading are essential processes of anchorage dependent cells involved in regulation of cell functions. Cells interact with their extracellular matrix (ECM) resulting in different degree of adhesion and spreading. However, it is not clear whether cell adhesion or cell spreading is more important for cell functions. In this study, 10 types of isotropical micropatterns that were composed of 2 μm microdots were prepared to precisely control the adhesion area and spreading area of human mesenchymal stem cells (MSCs). The respective influence of adhesion and spreading areas on stem cell functions was investigated. Adhesion area showed more significant influences on the focal adhesion formation, binding of myosin to actin fibers, cytoskeletal organization, cellular Young's modulus, accumulation of YAP/TAZ in nuclei, osteogenic and adipogenic differentiation of MSCs than did the spreading area. The results indicated that adhesion area rather than spreading area played more important roles in regulating cell functions. This study should provide new insight of the influence of cell adhesion and spreading on cell functions and inspire the design of biomaterials to process in an effective manner for manipulation of cell functions.
Collapse
Affiliation(s)
- Xinlong Wang
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Xiaohong Hu
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Graduate School of Life and Environmental Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Ida Dulińska-Molak
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw, Poland
| | - Naoki Kawazoe
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Yingnan Yang
- Graduate School of Life and Environmental Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Guoping Chen
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| |
Collapse
|